
Decidability Results for Sets with Atoms∗

Agostino Dovier† Andrea Formisano§,‡ Eugenio G. Omodeo§

Abstract

Formal Set Theory is traditionally concerned with pure sets; consequently, the satisfiability
problem for fragments of set theory was most often addressed (and in many cases positively
solved) in the pure framework. In practical applications, however, it is common to assume the
existence of a number of primitive objects (sometimes called atoms) that can be members of
sets but behave differently from them. If these entities are assumed to be devoid of members,
the standard extensionality axiom must be revised; then decidability results can sometimes
be achieved via reduction to the pure case and sometimes can be based on direct goal-driven
algorithms. An alternative approach to modeling atoms, that allows one to retain the original
formulation of extensionality, was proposed by Quine: atoms are self-singletons. In this paper
we adopt this approach in coping with the satisfiability problem: we show the decidability of
this problem relativized to ∃∗∀-sentences, and develop a goal-driven unification algorithm.

Key words: Set-hyperset theories, Satisfiability problem, Syllogistics, Prenex sentences,
Quantifier elimination, Unification.

Introduction

· · · a transformational programming methodology that includes a fully operational set-theor-
etic proof checker · · · Based on our experience with these derivations, we believe that me-
chanical verification of program transformations is the most important missing ingredient to
the successful use of transformational programming as part of a viable program development
technology. J.-P. Keller and R. Paige [KP95]

Many practical problems can be tersely formulated within Set Theory which, indeed, con-
stitutes a powerful framework for both formalization and mechanization of mathematical no-
tions [Far01, PG96, Gor96]. Consequently, specialized inference techniques for axiomatic set theo-
ries, and, in particular, decision procedures for fragments of them, are central goals in several fields
of research. Fields which include automated deduction [PS95, Qua92, Bel99, FOT01], interactive
theorem proving [Mizar, Pau97, Saa97], symbolic model checking [BC*92], hardware and software
specification [Lam02, MS96], certified hardware design [Ras95, Ras96], program analysis and verifi-
cation [Pau95, Noë93], rapid prototyping and certified program derivation [SDDS86, DF89, KP95],
declarative programming [HL94], to mention some among many.

In weak set theories where simple notions such as union, intersection, difference, and so on
(cf. Figure 1) are involved, a crucial property holds. Namely, satisfiability of set-theoretic con-
straints can be reduced to satisfiability of ∃∗∀-sentences that predicate over equality and mem-
bership only. This is possible because all of the basic constructs/constraints of (weak) set theory
can be expressed as formulas of this class. To be more specific, let us consider a conjunction ψ

∗Research funded by MURST/MIUR project Aggregate- and number-reasoning for computing: from decision
algorithms to constraint programming with multisets, sets, and maps. This research benefited from collaborations
fostered by the European action COST n. 274 (TARSKI, see www.tarski.org).

†Università di Udine, Dipartimento di Matematica e Informatica. Email: dovier@dimi.uniud.it
‡Università di Perugia, Dipartimento di Matematica e Informatica. Email: formisano@di.univaq.it
§Università di L’Aquila, Dipartimento di Informatica. Email: omodeo@di.univaq.it

1

of literals of the forms x = {y, z}, y ⊆ x, x ∩ y = ∅, x = {∅}, x = y \ z, and x = y ∪ z. The
satisfiability of ψ is equivalent to the satisfiability of a sentence ∃x1 · · · ∃xn∀v ϕ where x1, . . . , xn

are all the variables occurring in ψ and ϕ is a Boolean combination of literals of the forms xi = xj

and xi ∈ xj . Such a sentence can be obtained by first exploiting the specifications shown in
Figure 1, then factoring out the universal quantifier, and then bounding existentially all variables
other than v. Several results concerning this class of formulas are well-known [COP01].

Definiendum Definiens

x = {y, z} ∀ v
(
y ∈ x ∧ z ∈ x ∧ (

v ∈ x → (v = y ∨ v = z)
))

y ⊆ x ∀ v
(
v ∈ y → v ∈ x

)

x ∩ y = ∅ ∀ v
(
v ∈ x → v 6∈ y

)

x = {∅} x = {y, y} ∧ y ∩ y = ∅
x = y \ z ∀ v

((
v ∈ y → (v ∈ x ↔ v 6∈ z)

) ∧ (v ∈ x → v ∈ y)
)

x = y ∪ z y ⊆ x ∧ z ⊆ x ∧ ∀ v
(
v ∈ x → (v ∈ y ∨ v ∈ z)

)

Figure 1: Translation of basic set-constructs

Gogol showed [Gog78] that the classical set theory ZFC is complete with respect to ∀∗∃-
/ ∃∗∀-sentences, namely that for every sentence ϕ of these classes either ZFC ` ϕ or ZFC ` ¬ϕ
holds. With this proof he was one of the few forerunners of a very fruitful stream of research on
computable set theory initiated over twenty-five years ago.

Reverse logic revealed that Gogol’s decidability result does not depend on strong assumptions
(such as the axiom of choice or the subset axioms [End77]), while algorithmic analysis assessed
that his ∃∗∀-provability problem belongs to the NP complexity class, and, in particular, it is
NP-complete (cf. [COP01, pp. 167–168]).

Subsequent research yielded varied generalizations of Gogol’s result. Major improvements have
been obtained in

• treating larger and larger collections of formulas in set theory (cf., e.g., [COU02]), by näıve
reference to a standard and well-understood universe of sets such as the von Neumann
hierarchy, or its sub-hierarchy of the hereditarily finite sets first investigated by Acker-
mann [Ack37, Lev79];

• seeking a syllogistic decomposition (cf., e.g., [CGO88, OPP93]) of the input formula r, so as
to fully classify those set assignments for the existential variables that make r true;

• adjusting the decision algorithm to, or enhancing it [BP96] under, varied axiomatic assump-
tions, e.g. by shifting the focus from customary set theory to hyperset theory [OP95].

Significant applications of Gogol’s result include the design of a unification algorithm for sets that
nicely fits into Constraint Logic Programming with Sets [DPPR00]. The latter algorithm was
shown in [DPR98] to be generalizable to a variety of set-theoretic contexts, and in particular to a
hyperset context [DOP99].

Formal Set Theory is generally concerned with pure sets. Namely, members of sets are sets
themselves and there exists a unique set devoid of elements (usually denoted by ∅).

Nevertheless, in practical applications it is common to assume the existence of a number of
primitive objects (sometimes called atoms), that can be members of sets but, generally, are not
supposed to possess elements. Problems related to sets with atoms (also called hybrid sets) can be
reduced to the pure case using rather standard reductions (see, e.g., [Jec79, Chapter 3, p. 198]).
However, when developing a constraint solver to deal with the hybrid case, practical considerations
lead to a direct solution of the problems. This is the approach adopted, for instance, in [DPPR00]

2

where the language CLP (SET) is presented: there atoms are viewed as being standard first-order
terms that have no members.

A third approach to the handling of hybrid sets is well-explained in the following passage:

Thereupon the question arises how to interpret ‘y ∈ z’ where z is an individual. The con-
vention that first suggests itself and has commonly been adopted in the literature is that in
such a case ‘y ∈ z’ is simply false for all y; individuals do not have members. But there is a
different convention that proves much more convenient · · · None of the utility of class theory
is impaired by counting an individual, its unit class, the unit class of that unit class, and so
on, as one and the same thing. W. V. Quine [Qui63, pp. 30–31]

The decision algorithm for ∃∗∀-sentences of [Gog78] was already adapted in [OP95] to very
weak set/hyperset theories devoid of atoms. In the same frame of mind of [Qui63], in this paper
we tune up such a decision algorithm to deal with sets with atoms. Atoms are treated here as
self-singleton sets, as suggested above, and this constitutes a novelty; indeed, to date the work
in computable set theory treats atoms as member-less entities (which are not sets, and hence
differ from ∅). One can see as a drawback in the usual approach that it forcibly brings into play
‘colored’ sets (cf. [COP01, pp. 79–81]) in order to ensure a smooth treatment of unification, thus
disrupting both elegance and intuitive appeal of the extensionality axiom. The contribution in
this paper eliminates such a drawback without limiting the realm of applicability of the revised
formal framework. In particular, as a specialization of the ∃∗∀-decision algorithm, we will design
and implement a unification algorithm which can deal with terms denoting sets with self-singleton
atoms. This result discloses a viable alternative to the approach adopted in Constraint Logic
Programming with Sets [DPPR00]. Indeed, it can be seen as a new foundational contribution to
the design of theories suitably supporting programming with sets.

In Section 1 we characterize the weak set theory underlying this study. In the subsequent
Section 2 we show how to develop a satisfiability decision test for Gogol’s collection of sentences
in the language used. Then, in Section 3 we develop a goal-driven unification algorithm for our
theory, and we report on some experimental results. Conclusions are drawn in Section 4.

1 Set Axioms

In this section we will introduce an axiomatic system which is well-suited for the purposes of the
ongoing study. Its axioms can be considered as characterizing

• a subtheory of standard Zermelo-Skolem-Fraenkel (cf. [End77, Jec79]),

• a subtheory of Aczel’s hyperset theory (cf. [Acz88, BM96]), and

• a tiny theory of sets ultimately based on atoms.

Despite being rather weak, the theory to be specified will be able to ‘judge’ every ∃∗∀-sentence
r, by entailing either r or ¬r as a theorem.

We will characterize atoms by a monadic predicate ur. Atoms are viewed here, in agreement
with [Qui63], as self-singletons in a universe which, save for what regards them, is well-founded
by membership. Accordingly,

ur(a) ↔Def a = {a}.
A weak theory of sets can be based on the axioms of extensionality, null set, single-element

addition and removal (see, e.g., [OP95]), and stated as follows using uppercase letters to denote
implicit universal quantifiers for variables:

(E) ∀ v (v ∈ X ↔ v ∈ Y) → X = Y,

(N) ∃ z ∀ v v /∈ z,

(W) ∃w ∀ v (v ∈ w ↔ v ∈ X ∨ v = Y),
(L) ∃ ` ∀ v (v ∈ ` ↔ v ∈ X ∧ v 6= Y).

3

To inject atoms into a set theory, usually one needs to restate (E) in terms slightly less
stringent than the formulation seen above, because for example, if atoms were viewed as entities
devoid of members, then any atom and the null set ∅, although being distinct, would have the
‘same’ members. A safe way of stating (E), in general, is

∀ v (v ∈ X ↔ v ∈ Y) → (
X = Y ∨ atom(X) ∨ atom(Y)

)
,

where ‘atom’ is perhaps taken as a primitive predicate, unlike our derived predicate ur. An
advantage of the ‘self-singleton approach’ is that (E) requires no change.

However, something must be stated about well-foundedness (or non well-foundedness) of sets.
A usual way of asserting well-foundedness is via the regularity axiom:

(R) ∃ r ∀ v
(
(r = X ∨ r ∈ X) ∧ ¬(v ∈ r ∧ v ∈ X)

)
.

We need to revise (R) because this formulation would allow us to infer ¬∃x ur(x). Indeed,
assuming by contradiction that ur(a), so that a ∈ a, and instantiating X as {a} in (R), the only
potential values for r are {a} and a; however, they both intersect {a}, a contradiction which proves
our claim.

The revised version (R′) of (R), and a plenitude axiom (ensuring that there exist atoms at
will), are as follows:

(R′) ∃ r
((

r = X ∨ (¬ ur(r) ∧ r ∈ X)
) ∧ (∀ v ∈ X)

(
v ∈ r → ur(v)

))
,

(D∈) ∃u
(
ur(u) ∧ (∀ v ∈ X) (u /∈ v)

)
.

For a very weak, and yet useful, theory of sets with atoms, only the axioms (E), (N), (W), and
(L) need to be added.

Notice that if we were to postulate scarcity ¬∃x ur(x) instead of plenitude, this new (R′)
would become equivalent to (R). At any rate, even in the new context the rôle of (R) remains
the one of forbidding the formation of genuine membership cycles:

Lemma 1.1 It follows from the definition of ur and from the axioms (E), (N), (W), (L), and
(R′), that for every natural number n,

(A(n)) X0 ∈ X1 ∈ · · · ∈ Xn ∈ X0 → ur(X0) ∧X0 = X1 = · · · = Xn.

Conversely,
ur(X) → X ∈ X.

Proof: (Sketch) After constructing (by (N),(W)) the set X? = {X0, . . . , Xn}, one can treat the
two cases (∃ v ∈ X?)ur(v) and (¬∃ v ∈ X?)ur(v) separately. Notice that (R′) intervenes only
in the treatment of the latter case. 2

The following law (D/∈), called anti-diagonal axiom in [COP01], will be used to show the
existence of a decision procedure:

(D/∈) ∃z
(
z /∈ z ∧ (∀x ∈ Y)(z /∈ x)

)
.

Unlike in the hyperset theory treated in [COP01], in our present context this law follows from the
available axioms:

Lemma 1.2 The statement (D/∈) ensues from (E), (N), (W), (L), and (R′).

Proof: (Sketch) Given Y , we must find a z such that both z /∈ z and ¬∃x(z ∈ x ∧ x ∈ Y) hold.
In view of (A(1)), it suffices to take z = Y \ {Y }. 2

For convenience of the reader, Figure 2 summarizes the laws on sets with self-singletons.
A consequence of (D∈) and (D/∈) which will play a crucial role in our decision technique is

the following:

4

Lemma 1.3 (Diagonalization) Sets with atoms fulfill the two laws

(Y∈) (∃ y ∈ y)
(∧

0<i6n (Xi 6= y ∧ y /∈ Xi)
)

and

(Y/∈)

(∧
0<j6m

∧
m<g6n Xj 6= Xg

) → (∃ y /∈ y)
(
(
∧

0<i6n y /∈ Xi) ∧
(
∧

0<i6n y 6= Xi) ∧ (
∧

0<j6m Xj ∈ y) ∧ (
∧

m<g6n Xg /∈ y)
)

with m,n integers, 0 6 m 6 n.

Proof: To meet (Y∈) it suffices to choose a y satisfying the condition

y ∈ y ∧ (∀x ∈ {
X1, . . . , Xn, {X1 }, . . . , {Xn }

})(
y /∈ x

)
.

Note that the existence of such a y is ensured by (D∈).
Given sets X1, . . . , Xn satisfying the antecedent of (Y/∈), one can exploit (D/∈) and (N), (W)

to choose z0, z1, . . . , zn such that z0 /∈ z0, zi /∈ zi,

∀x
(
x ∈ {

X1, . . . , Xn, {X1 }, . . . , {Xn }
} → z0 /∈ x

)
,

and
∀x

(
x ∈ Xi ∨ x = {X1} ∨ · · · ∨ x = {Xn} → zi /∈ x

)
,

for i = 1, . . . , n. Exploiting (N) and (W) again to put y = {X1, . . . , Xm, z0, . . . , zn } , one has
that: y differs from each Xi (because z0 ∈ y, z0 /∈ Xi); y /∈ y (for the opposite would imply y = zh

for some h > 0, whereas zh /∈ zh); y /∈ Xi for any Xi (because zi ∈ y); X1, . . . , Xm belong to
y whereas Xm+1, . . . , Xn (each one of which is distinct from X1, . . . , Xm and from z0, . . . , zn) do
not. Thus y is as required by the consequent of (Y/∈), and (Y/∈) follows. 2

ur(X) ↔Def ∀ v (v ∈ X ↔ v = X)
Extensionality (E) ∀ v (v ∈ X ↔ v ∈ Y) → X = Y

Null-set existence (N) ∃ z ∀ v v /∈ z

Add an element (W) ∃w ∀ v (v ∈ w ↔ v ∈ X ∨ v = Y)
Remove an element (L) ∃ ` ∀ v (v ∈ ` ↔ v ∈ X ∧ v 6= Y)

Regularity (R′) ∃ r
((

r = X ∨ (¬ ur(r) ∧ r ∈ X)
) ∧ (∀ v ∈ X)

(
v ∈ r → ur(v)

))

Plenitude (D∈) (∃u ∈ u)(∀ v ∈ X) (u /∈ v)
Acyclicity (A(n)) X0 ∈ X1 ∈ · · · ∈ Xn ∈ X0 → ur(X0) ∧X0 = X1 = · · · = Xn

Anti-diagonality (D/∈) ∃z (
z /∈ z ∧ (∀x ∈ Y)(z /∈ x)

)

Figure 2: Abbreviation, axioms, and laws for a theory of sets with self-singletons

Remark 1.4 A discussion on the von Neumann-Bernays-Gödel theory NBG of sets an classes lies
well beyond our current aims. Nevertheless, for the informed reader, we momentarily digress here
to observe that adjusting the results of this paper to NBG would presumably require substantial
reworking. On the one hand, (E), (N), (W), and (L) all hold in the NBG theory (save for the
fact that the variable Y in (W) must be restricted to sets). However, on the other hand, if one
does allow the variables to refer to proper classes as well as sets, then the plenitude axiom (D∈)
would be false when the variable X refers to the class of all sets.

Similar comments apply to the anti-diagonal law, which is the basis for ongoing decidability
results. In the context of the NBG theory, (D/∈) says that for any Y , the Russell class (of all sets
that do not belong to themselves) is not a subclass of the union-class

⋃
Y of all members of Y . If

Y is taken to be the universal class, this statement is simply false. If Y is restricted to sets, then
this law is a theorem in NBG (even without assuming the axiom of regularity): the Russell class,
being a proper class, cannot be a subclass of the set

⋃
Y .

5

2 A Decision Technique for ∃∗∀-Sentences on Sets

In this section we present a two-phase decision technique to test ∃∗∀-sentences for satisfiability
over sets with atoms. First, we show how to reduce the provability problem for ∃∗∀-sentences to
the same problem for (equivalent) formulas where universal quantifiers are bounded. Secondly, in
Sec. 2.2 we describe a decision algorithm for proving or refuting formulas of the latter kind.

2.1 Quantifier-bounding technique

We show a technique for re-expressing any given sentence ∃x1 · · · ∃xn ∀ y p in the predicates =
and ∈, with p devoid of quantifiers and functors, as a sentence which involves bounded universal
quantifiers ∀ y ∈ xj instead of the unbounded ∀ y. The three main phases of our technique are as
follows.

Atom elimination. Let Φ0 ≡ ∃x1 · · · ∃xn ∀ y p be the input formula, where we admit constant
symbols denoting atoms. Let a1, . . . , ak be all the distinct constants occurring in p and
let xn+1, . . . , xn+k be new distinct variables. We obtain a formula Φ1 equivalent to Φ0 as
follows:1

Φ1 ≡Def ∃x1 · · · ∃xn+k ∀ y

 p[a1 7→ xn+1, . . . , ak 7→ xn+k] ∧

∧n+k
i=n+1 (xi ∈ xi ∧

∧n+k
j=i+1 xi 6= xj)

︸ ︷︷ ︸
p̃

.

Quantifier bounding. In this phase we rewrite Φ1 in the form

Φ2 ≡Def ∃x1 · · · ∃xn+k

∧n+k
i=1 p̃[y 7→ xi] ∧∧n+k

j=1 (∀y ∈ xj)qj ∧
(∀y ∈ y)r ∧
(∀y /∈ y)s

,

where p̃ is the matrix of Φ1 as indicated in the previous phase description. This rewrit-
ing moves the universal quantifier inwards while performing a case-splitting analysis. In
particular, we start by considering Φ1 and observing that p̃ is a propositional combina-
tion of atomic formulas u π v with u, v in {x1, . . . , xn+k, y} and π a predicate symbol in
{=,∈}. For any given assignment of values to the variables x1, . . . , xn+k satisfying Φ1, the
formula must hold for each possible value of y. A particular y may be equal to one among
x1, . . . , xn+k, or it may be the case that y ∈ xi, for any i = 1, . . . , n + k, and so on. We
proceed by case analysis, by first splitting ∀y p̃ into various mutually exclusive sub-cases
and then processing each of them. More precisely, we start by observing that the tautology
A1 ∨ · · · ∨An+k ∨ (¬A1 ∧ · · · ∧ ¬An+k) yields that

` ∀x1 · · · ∀xn+k∀y
(

y = x1 ∨ · · · ∨ y = xn+k ∨ (y 6= x1 ∧ · · · ∧ y 6= xn+k)︸ ︷︷ ︸
α

)
.

Similarly, we have the equivalence

` α ↔
(

(y ∈ x1 ∧ α) ∨ · · · ∨ (y ∈ xn+k ∧ α) ∨ (y /∈ x1 ∧ · · · ∧ y /∈ xn+k ∧ α)︸ ︷︷ ︸
α′

)
,

and, moreover, we have that

` α′ ↔
(

(y ∈ y ∧ α′) ∨ (y /∈ y ∧ α′)
)
.

1By p[r 7→ s] we denote the formula obtained by replacing all occurrences of r in p by s.

6

Summing up:

` ∀x1 · · · ∀xn+k∀y

∨n+k
i=1 (y = xj) ∨∨n+k
j=1

(
y ∈ xj ∧

∧n+k
i=1 (y 6= xi)

)
∨(

y ∈ y ∧∧n+k
i=1 (y /∈ xi) ∧

∧n+k
i=1 (y 6= xi)

)
∨(

y /∈ y ∧∧n+k
i=1 (y /∈ xi) ∧

∧n+k
i=1 (y 6= xi)

)

.

Hence, by suitably instantiating the tautological scheme

m∨

i=1

Ai →
(
B ↔

m∧

i=1

(Ai → B)
)

with m = 2 · (n + k + 1) and B ≡ p̃, we easily get (by exploiting laws on equality and
quantification) ` Φ1 ↔ Φ2, where Φ2 is in the desired form:

Φ2 ≡Def ∃x1 · · · ∃xn+k

∧n+k
i=1

(
p̃[y 7→ xi]

)
∧

∧n+k
j=1

(
(∀y ∈ xj)

(∧n+k
i=1 (y 6= xi) → p̃

)) ∧
(∀y ∈ y)

((∧n+k
i=1 (y /∈ xi) ∧

∧n+k
i=1 (y 6= xi)

) → p̃
)
∧

(∀y /∈ y)
((∧n+k

i=1 (y /∈ xi) ∧
∧n+k

i=1 (y 6= xi)
) → p̃

)

.

Simplifications of the last two conjuncts will be carried out by the subsequent quantifier-
elimination phase.

Elimination of unbounded quantifiers. Conjuncts p̃[y 7→ xi] and (∀y ∈ xj)qj , in the formula
Φ2 resulting from the preceding phase, are already in acceptable form. In this phase we get
rid of the quantifiers (∀ y ∈ y) and (∀ y /∈ y) (which restrict y to be an atom or a set
proper, respectively), because they fail to be legal bounded quantifiers. The elimination
of the quantified conjuncts (∀ y ∈ y)r and (∀ y /∈ y)s relies on the diagonalization lemma
already seen.

The elimination of (∀y ∈ y) (“treatment of self-singletons”) is relatively easy, and we will
examine it before the (slightly more challenging) elimination of (∀y /∈ y).

Treatment of self-singletons proceeds by transforming (∀ y ∈ y) r into a formula which no
longer involves y. Recall that r has the form

(
n+k∧

i=1

(xi 6= y ∧ y /∈ xi)

)
→ r′.

Therefore, since the set-theoretic axioms yield

(∀ y ∈ y)
(n+k∧

i=1

y /∈ xi →
n+k∧
g=1

xg /∈ y
)
,

within r′ we can replace all occurrences of the forms xg ∈ y, and y ∈ xi, and xi = y by
false, all occurrences of the forms y = y, and y ∈ y by true, which will reduce r′ to a
formula r′′ devoid of occurrences of y.

In view of the instance

(∃ y ∈ y)
(n+k∧

i=1

(xi 6= y ∧ y /∈ xi)
)

of (Y∈), we can conclude that (∀ y ∈ y) r is equivalent, under the set-theoretic axioms, to r′′.

7

The elimination of y from the formula (∀ y /∈ y) s will be carried out by exploiting a very
similar—though apparently more complex—idea. Let us describe the algorithm for this
elimination.

1. Consider the sub-formula

(∀y /∈ y)
(∧

i

(y 6= xi ∧ y /∈ xi) → s′
)

of Φ2, where s′ is a propositional combination of atomic formulas involving only the
variables x1, . . . , xn+k, y and the predicate symbols = and ∈. Without loss of generality,
we can assume s′ to be in conjunctive normal form, namely s′ ≡ D1 ∧ · · · ∧Dd.

2. This allows us to distribute the ∀ over ∧ and to consider formulas of the form

ψ ≡ ∀y
(
y /∈ y ∧

∧

i

(y 6= xi ∧ y /∈ xi) → D
)

separately, where D is a finite disjunction of literals of the form u π v, with π in
{=,∈, 6=, /∈} and u, v variables drawn from x1, . . . , xn+k, y.

3. The consequent D can be simplified as follows in each ψ, as dictated by the antecedents
of the implication:

(a) The literals y = y and y 6= y are replaced by true and false, respectively.
(b) The literals of the forms y ∈ y, y /∈ y, y ∈ xi, y /∈ xi, y = xi, y 6= xi are replaced

by true or false, depending on the antecedents of the implication.
(c) If at least one of the disjuncts of D has been replaced by true, then the whole ψ

can be replaced by true.
(d) Any disjunct in D in which y does not occur (i.e., any literal of the form xi π xj ,

with π in {=,∈, 6=, /∈}), can be moved outside the scope of the quantifier ∀y in ψ.

Unless ψ has been reduced to true, let ψ′ be the universally quantified formula resulting
from performing the steps (3a)–(3d). Moreover, let D′ be the “residue” of D within ψ′:

ψ′ ≡ ∀y
(
y /∈ y ∧

∧

i

(y 6= xi ∧ y /∈ xi) →
(∨

j∈F1

xj ∈ y ∨
∨

j∈F2

xj /∈ y
)

︸ ︷︷ ︸
D′

)
,

where F1 and F2 are subsets of the set {1, . . . , n + k} of indices. Two situations may
occur:

(a) If one between F1 and F2 is empty, it is immediate to check that the overall formula
ψ is false.

(b) Otherwise, we replace ψ′ by the disjunction
∨

i∈F1,j∈F2
xi = xj .

Correctness of this rewriting step follows from (Y/∈) of the diagonalization lemma.

Example 2.1 As an example of how (Y/∈) enters into play, consider the simple case of the formula:

∀y (
y /∈ y ∧ (y 6= x1 ∧ y /∈ x1) ∧ (y 6= x2 ∧ y /∈ x2) → x1 ∈ y ∨ x2 /∈ y

)
.

Two cases may occur:

• If x1 = x2 then the consequent of the implication becomes equivalent to x1 ∈ y ∨ x1 /∈ y,
hence to true;

• Otherwise, if x1 6= x2, by (Y/∈) the whole formula is equivalent to false.

8

2.2 Decision technique for sentences with bounded universal quantifiers

In this section we present a satisfiability decision procedure for finite conjunctions of formulas

(∀y1 ∈ w1) · · · (∀ym ∈ wm) p

where m > 0, y1, . . . , ym are variables distinct from one another and distinct from the variables
wj , and p is a propositional combination of atomic formulas of the two kinds u = v, u ∈ v (u, v
variables). Basically, we adapt the technique described in [COP01, pp. 153–160] to sets with
self-singleton atoms. As in Sec. 2.1, we also start with constants representing atoms in the input
formula and eliminate them at the very beginning.

From now on, we indicate by r the result of atom elimination and by x1, . . . , xn the distinct
free variables in r. Moreover, we put x0 ≡Def ∅.

2.2.1 Formulas without quantifiers

Let us begin by considering the case when r is quantifier-free. Without loss of generality, we can
assume that r is a conjunction of literals u = v, u 6= v, u ∈ v, and u /∈ v, where each u and
v stands for either a variable or ∅. We determine the least equivalence relation ∼ between the
symbols x0, x1, . . . , xn such that

• xi ∼ xj when xi = xj belongs to r;

• xj0 ∼ xi0 when there is a membership cycle xi0 ∈ xi1 , xi1 ∈ xi2 , . . . , xih−1 ∈ xih
, xih

∈ xi0 in
r, and xj0 ∈ xj1 , xj1 ∈ xj2 , . . . , xjk−1 ∈ xjk

, and xjk
∈ xi0 belong to r, for some h and k.

With [x] we denote the equivalence class of the symbol x modulo ∼.
The satisfiability test consists in checking that r contains no literals u 6= v with u ∼ v; no

literals u ∈ v with v ∼ ∅; and no pair u ∈ v, u′ /∈ v′ of literals with u ∼ u′ and v ∼ v′. If the test is
successful, then sets A(x) can be assigned to variables so as to satisfy r, in the manner described
below. Let G = 〈N, E〉 be the directed graph whose

• set N of nodes consists of the equivalence classes [x] of ∼;

• set E of edges consists of all pairs 〈[x], [y]〉 such that x′ ∈ y′ is in r for some x′ ∼ x and
y′ ∼ y.

Notice that G is acyclic save for self-loops. For each node ν, we shall indicate by ip(ν) the set

ip(ν) = {η : 〈η, ν〉 is in E}

of all immediate predecessors of ν in G.
To obtain a new graph G′ = 〈N ′, E′〉 with N ⊆ N ′ and E ⊆ E′ in which no two nodes ever

share the same immediate predecessors, we submit G to the following enrichment algorithm (to be
illustrated in Example 2.3 and Figure 4). We initially put N ′ = N and E′ = E. While scanning
each node ν in N \ {[∅]} once, we do the following:

• if ip(ν) = ip(µ) for some still unscanned node µ in N \ {ν}, and moreover ip(ν) 6= {ν}, we
insert a new node ν′ into N ′, and the two edges 〈ν′, ν′〉, 〈ν′, ν〉 into E′;

• if in particular ip(ν) = ∅ (= ip([∅])), then we also add another new node ν′′ to N ′, and edges
〈ν′′, ν′′〉, 〈ν′′, ν〉 to E′.

We are thus ready to single out the desired assignment A for the variables x of r. We define
A(x) = =([x]), where for each node ν of the enriched graph G′ we put

=(ν) =

an atom aν uniquely associated with ν if 〈ν, ν〉 is an edge of G′,

{=(µ) : 〈µ, ν〉 is an edge of G′} otherwise.

9

Observe that an = complying with this specification exists; indeed, in order to determine its values
one can process the nodes according to any topological sort of G′ obtained by ignoring self-loops.

Assuming that a[x] = b whenever the variable originated from the elimination of an atom b
in the Atom Elimination phase, as described above (see Sec. 2.1, page 6), we easily get the
following lemma:

Lemma 2.2 For i, j = 0, 1, . . . , n, A(xi) = A(xj) holds if and only if xi ∼ xj. Consequently, A
correctly models all literals in r.

Proof: The first claim readily follows from the more general statement that =(ν) 6= =(µ) when
the nodes ν, µ of G′ are different. This is proved as follows. Consider a topological sort ν1, . . . , νk

of G′ obtained by ignoring all self-loops. Without loss of generality, we can assume that all nodes
having a self-loop on G′ are ν1, . . . , νh for some h 6 k. By definition of =, thanks to the plenitude
axiom, =(νi) 6= =(νj) whenever i 6= j with i, j ∈ {1, . . . , h}. By effect of the enrichment process
yielding G′ from G, it follows that for all νi0 , νi1 with i0, i1 ∈ {h + 1, . . . , k} and i0 6= i1, there
exists i2 ∈ {1, . . . , max(i0, i1)} \ {i0, i1} such that 〈νi2 , νib

〉 is an edge of G′ whereas 〈νi2 , νi1−b
〉 is

not (with b = 0 or b = 1). Hence, again by definition of =, we have =(νi0) 6= =(νi1).
Assuming r to be satisfiable, let us prove that A models all literals in r. Observe that the

graph G′ fulfills the following conditions:

- if r entails xi = xj , then [xi] = [xj];

- if r entails xi ∈ xj , then the edge 〈[xi], [xj]〉 is in G and consequently in G′;
- if r does not entail xi = xj , then [xi] and [xj] do not have the same immediate predecessors

in G′;
- if r does not entail xi ∈ xj , then 〈[xi], [xj]〉 is not an edge of G′;

Moreover, by definition, for all xi, xj , A(xi) ∈ A(xj) if and only if =([xi]) ∈ =([xj]) if and only if
〈[xi], [xj]〉 is in G′. Hence, A models all literals in r of the forms xi = xj and xi ∈ xj , whereas it
does not falsify any of the literals of the forms xi 6= xj and xi /∈ xj . 2

Figure 3 summarizes the above decision algorithm and Lemma 2.4 states its correctness.

procedure Find model(r);
determine the equivalence relation ∼ induced by r;
if Trivial contradiction(r,∼)

then return unsatisfiable;
else determine G, G′, =, and A;
return A;

end if;
end Find model;

procedure Trivial contradiction(r,∼);
if there exist u, v, u′, v′ such that

u 6= v occurs in r and u ∼ v
or u ∈ v occurs in r and ∅ ∼ v
or u ∈ v and u′ /∈ v′ occur in r and u ∼ v and u′ ∼ v′

then return true;
else return false;

end if;
end Trivial contradiction;

Figure 3: Decision procedure for quantifier-free conjunctions

10

Example 2.3 Let us consider the following formula r:

r ≡ x1 ∈ x2 ∧ x3 ∈ x2 ∧ x2 ∈ x3 ∧ x1 ∈ x4 ∧ x1 ∈ x5 ∧ x4 6= x5 ∧ x6 6= x7 ∧ ∅ /∈ x6 .

We readily see that x1 ∼ x2 ∼ x3, because x2 and x3 form a membership cycle, and hence x1 ∼ xi

holds for i = 2, 3. To see that r is satisfiable we construct the graph G depicted in Figure 4 and
enrich it as explained above. The enrichment process introduces 6 new nodes ν′1, . . . , ν

′
4 and ν′′3 , ν′′4 .

By virtue of the definition of = and A, we have

=([x0]) = ∅, =(ν′i) = aν′i , (for i = 1, . . . , 4)
=([x1]) = =([x2]) = =([x3]) = a[x1], =(ν′′i) = aν′′i , (for i = 3, 4)
=([x4]) = {a[x1], aν′1}, =([x5]) = {a[x1], aν′2},=([x6]) = {aν′3 , aν′′3 }, =([x7]) = {aν′4 , aν′′4 }.

A is then determined accordingly.
Extend, then, the above formula into r1 ≡ x1 6= x3 ∧ r. After computing the equivalence

relation ∼ for r1, one immediately detects unsatisfiability, since x1 ∼ x3 whereas x1 6= x3 is a
conjunct of r1.

Lemma 2.4 The procedure Find model determines a model of the conjunction r if and only if r
is satisfiable.

Proof: On the one hand, it is immediate to see that if the procedure Trivial contradiction re-
turns true, then any possible assignment of sets to the variables in r cannot satisfy all conjuncts
of r, together with all axioms of Figure 2. On the other hand, Lemma 2.2 ensures that if Triv-
ial contradiction returns false, then the assignment A determines a model of r. 2

t t

t

t

t

t

6

¡
¡

¡¡µ

6

²
±

¯
°[x0] [x1]

[x6] [x7]

[x4] [x5]

with [x0] = [∅] and [x1] = [x2] = [x3]

t t

t

t

t

t

6

¡
¡

¡¡µ

6

²
±

¯
°[x0] [x1]

[x6] [x7]

[x4] [x5]

t t t t

ttν′1 ν′2

ν′3 ν′′3 ν′4 ν′′4

6

¡
¡

¡¡µ

6

²
±

¯
° 6

²
±

¯
°

6

@
@

@@I

6

²
±

¯
° 6

²
±

¯
°

¾
6

²
±

¯
°

-
6

²
±

¯
°

Figure 4: The graph G and its enrichment G′ for the Example 2.3

2.2.2 Quantified formulas

Let us now move to the case when at least one conjunct of the input formula r is quantified.
Again, let x0 = ∅ and let x1, . . . , xn be the free variables of r. In order to decide r:

• We obtain a formula r′ by conjoining with r the formula

n−1∧

i=0

n∧

j=i+1

(
xi 6= xj →

n∨

h=1

(xn+h ∈ xi ↔ xn+h /∈ xj)
)

(1)

where xn+1, . . . , x2·n are new variables witnessing differences among the sets x0, . . . , xn. As
we are about to see, if r can be satisfied, then one can satisfy r′ too, assigning different sets
to the variables xn+1, . . . , x2·n.

11

• By proceeding inside-out, we replace in r′ each sub-formula of the form (∀ y ∈ w)p by
2·n∧

i=0

(xi ∈ w → p[y 7→ xi]) (2)

Let r̂ be the formula resulting from elimination of all quantifiers from r′. Each disjunct
D of a DNF-formula tautologically equivalent to r̂ is tested for satisfiability as explained
in Sec. 2.2.1. Satisfiability of r̂ is then declared whenever one of such tests leads to success;
when no disjunct is satisfiable, r̂ is declared to be unsatisfiable.

The following lemma guarantees the correctness of this decision procedure.

Lemma 2.5 Let r be the formula (∀y1 ∈ w1) · · · (∀ym ∈ wm) p, where y1, . . . , ym are variables
distinct from one another and distinct from the variables wj, and p is a propositional combination
of atomic formulas of the kinds u = v, u 6= v, u ∈ v, and u /∈ v (where each u and v stands for
either a variable or ∅). Moreover, let r̂ be obtained from r as described above. Then, r is satisfiable
if and only if r̂ is satisfiable.

Proof: Consider the rewritings r ; r′ ; r̂ of the formula r as outlined above. The conjunct (1)
is introduced in order to obtain a model of r which satisfies (E). Observe that the selection of a
suitable element z can always discriminate between two different sets; indeed, xi 6= xj ↔ ∃ z (z ∈
xi ↔ z /∈ xj). More generally, by induction on k, it is easily shown that k distinct elements
always suffice to distinguish between k + 1 different sets (cf. [PPR97]). Hence, under (E), r and
r′ are equisatisfiable.

Let us prove that the formula r′ is satisfiable if and only if so is r̂. Clearly, every model of r′

is a model of r̂. Conversely, assuming that some disjunct D of r̂ is satisfiable, an assignment A
satisfying D can be constructed as described before Lemma 2.4. In processing the nodes of G in
order to obtain its enrichment G′, we can treat the ∼-classes which contain none of the original
symbols x0, . . . , xn before the remaining classes/nodes. It turns out easily that no new nodes will
be added to the graph after the processing of the nodes in {[xn+1], . . . , [x2·n]} \ {[x0], . . . , [xn]}.
Indeed, for all xi0 , xi1 with i0, i1 ∈ {0, . . . , n} and xi0 6∼ xi1 , there exists a j ∈ {n + 1, . . . , 2 · n}
such that both xj ∈ xib

and xj 6∈ xi1−b
belong to D (with b = 0 or b = 1). Consequently, the

edge 〈[xj], [xib
]〉 appears in the graph G corresponding to D, while the edge 〈[xj], [xi1−b

]〉 does not
(cf. Sec. 2.2.1, page 9). Since G′ has no entering edges into any of [x0], . . . , [xn] which are new
with respect to those in G, it turns out that A(xi) ⊆ {A(xh) : h = 0, · · · , 2 · n} holds for each
i ∈ {0, · · · , n}. In conclusion, since w is one of x0, . . . , xn whenever we carry out the replacement
of (∀ y ∈ w)p by

∧2·n
i=0(xi ∈ w → p[y 7→ xi]) during the rewriting, the truth values of the two

formulas r′ and r̂ in A are the same; accordingly, A will be a model not only for r̂ but also for r′.
2

Example 2.6 Let r be the following quantified conjunction:

r ≡ (∀y ∈ x1)(y ∈ x2) ∧ ∅ /∈ x2 ∧ x1 ∈ x1

Let us apply the procedure described above, in order to establish whether r is satisfiable. The
following instance of formula (1), involving the two new variables x3 and x4, is conjoined with r:

1∧

i=0

2∧

j=i+1

(
xi 6= xj →

2∨

h=1

(xh+2 ∈ xi ↔ xh+2 /∈ xj)
)

.

Since we have convened that x0 ≡ ∅, and by virtue of (N), the preceding conjunction becomes:

r′ ≡ (
(∅ = x1 ∨ x3 ∈ x1 ∨ x4 ∈ x1)
∧ (∅ = x2 ∨ x3 ∈ x2 ∨ x4 ∈ x2)
∧ (x1 = x2 ∨ x3 /∈ x1 ∨ x3 /∈ x2 ∨ x4 /∈ x1 ∨ x4 /∈ x2)
∧ (x1 = x2 ∨ x3 /∈ x1 ∨ x3 /∈ x2 ∨ x4 ∈ x1 ∨ x4 ∈ x2)
∧ (x1 = x2 ∨ x3 ∈ x1 ∨ x3 ∈ x2 ∨ x4 /∈ x1 ∨ x4 /∈ x2)
∧ (x1 = x2 ∨ x3 ∈ x1 ∨ x3 ∈ x2 ∨ x4 ∈ x1 ∨ x4 ∈ x2)

)
.

12

At this point we can transform r by replacing the sub-formula (∀y ∈ x1)(y ∈ x2) by the following
instance of formula (2):

r′′ ≡ (
(∅ ∈ x1 → ∅ ∈ x2)
∧ (x1 ∈ x1 → x1 ∈ x2)
∧ (x2 ∈ x1 → x2 ∈ x2)
∧ (x3 ∈ x1 → x3 ∈ x2)
∧ (x4 ∈ x1 → x4 ∈ x2)

)
i.e.,

r′′ ≡ (
(∅ /∈ x1 ∨ ∅ ∈ x2)
∧ (x1 /∈ x1 ∨ x1 ∈ x2)
∧ (x2 /∈ x1 ∨ x2 ∈ x2)
∧ (x3 /∈ x1 ∨ x3 ∈ x2)
∧ (x4 /∈ x1 ∨ x4 ∈ x2)

)
.

Establishing the satisfiability of r amounts now to deciding the satisfiability of the formula

r̂ ≡ r′ ∧ r′′ ∧ (∅ /∈ x2 ∧ x1 ∈ x1).

This is easily done by transforming it into DNF-form and by inspecting the resulting disjuncts.
For instance, consider the disjunct D consisting of the conjunction of (∅ /∈ x2 ∧ x1 ∈ x1) with the
underlined literals in r′ and r′′:

D ≡ x3 ∈ x1 ∧ x4 ∈ x2 ∧ x4 /∈ x1 ∧ x4 ∈ x2 ∧ x3 ∈ x1 ∧ x3 ∈ x2

∧ ∅ /∈ x1 ∧ x1 ∈ x2 ∧ x2 /∈ x1 ∧ x3 ∈ x2 ∧ x4 /∈ x1

∧ ∅ /∈ x2 ∧ x1 ∈ x1

It turns out that x1 ∼ x3. The graph G corresponding to this disjunct is depicted in Figure 5. As
mentioned (see the proof of Lemma 2.5), the enrichment of G yielding G′ is performed by processing
first the ∼-classes (i.e., the nodes) which contain none of the original symbols x0, x1, x2. Namely,
the node [x4] is treated first and two new nodes, ν′, ν′′, are introduced. After that, no other node
needs to be processed. From the graph G′ we obtain the following values of =:

=([x0]) = ∅, =(ν′) = aν′ , =(ν′′) = aν′′ ,
=([x1]) = =([x3]) = a[x1], =([x4]) = {aν′ , aν′′}, =([x2]) = {a[x1], {aν′ , aν′′}}.

where a[x1], aν′ , and aν′′ are distinct atoms. An assignment A satisfying D is then easily obtained.
Hence, r is satisfiable.

We are now ready to state the main result of this section.

Theorem 2.7 Under (E), (N), (W), (L), (R′), and (D∈), the decision problem for ∃∗∀-
sentences is solvable.

Proof: It is a plain consequence of Lemmas 2.4 and 2.5 that the ∃∗∀-theorems of the said
axiomatic theory constitute a decidable class of sentences. 2

t t

t

t¡
¡

¡¡µ

@
@

@@I

6

²
±

¯
°[x1] [x0] [x4]

[x2]

with [x0] = [∅] and [x1] = [x3]

t t

t

t¡
¡

¡¡µ

@
@

@@I

6

²
±

¯
°[x1] [x0] [x4]

[x2]

t¾
6

²
±

¯
°

t

?

?
²
±

¯
°

ν′

ν′′

Figure 5: The graph G and its enrichment G′ for the Example 2.6

13

3 A Goal-driven Unification Algorithm for Sets with Atoms

In this section we develop a unification algorithm for the theory considered in Sec. 1. We assume
the standard notions of first-order term, substitution, etc.

Set unification is a major ingredient of {log}, a programming language akin to Prolog which
incorporates sets. This language and some of its applications are discussed, among others,
in [DOPR96]; revised versions and descendents of {log} can be downloaded from the web sites
[setlog] or [SETS]. If, within {log}, the set unification algorithm were replaced by the novel one
we will describe below, a language with the same versatility but with a neater semantics would
result, as we have briefly argued in the Introduction. Potentially, this is a significant application
of the present paper, although the details of the new algorithm, as we are about to see, turn out
to be more complex (and might become even more as the algorithm gets refined).

Most commonly, semantic unification has been investigated in connection with equational
theories, namely first-order theories whose axioms have the form s = t for first-order terms s
and t [BS98, BS01]. The unification problem in set-theoretic contexts can hardly be seen as a
point in case. In fact, let us consider the set-theoretic axioms in Figure 2. We can easily drop
the membership relator from the primitive symbols, in favor of a binary operation {· | ·} resulting
from (W): if x and y are terms denoting sets, then {x | y} represents the set whose members are
all elements of the set y plus the element x. The behavior of this construct can be rendered by
simple equational properties [DPR98]:

(Ab) {X |{X |Z}} = {X |Z};
(C`) {X |{Y |Z}} = {Y | {X |Z}}.

Accordingly, one could express membership in terms of {· | ·}, by putting: X ∈ Y ↔DefY = {X |Y }.
Our axiomatic assumptions would be then reformulated with the new construct and with additional
Skolem symbols (new and δ) as displayed in Figure 6. Even thus, our theory would retain somewhat
unconventional traits: its axioms would be clauses instead of simple atomic formulas, moreover
we could not get rid of some negative literals (such as in (N2), for instance).

X ∈ Y ↔Def Y = {X |Y } {X} =Def {X | ∅} ur(X) ↔Def X = {X}
(E0) δ(X, X) /∈ X → X = ∅
(E1) V ∈ X → δ(X, Y) ∈ X
(E2) δ(Y, X) ∈ X ∧ δ(X, Y) ∈ Y → X = Y

(N1) δ(∅, X) = ∅
(N2) ∅ 6= {∅}
(W1) V ∈ {X |N} → V ∈ N ∨ V = X
(W2) X ∈ {X |N}
(W3) V ∈ N → V ∈ {X |N}
(L1) V ∈ X less Y → V ∈ X
(L2) Y /∈ X less Y
(L3) V ∈ X → V ∈ X less Y ∨ V = Y

(R′
1) Y ∈ X ∧ Y ∈ δ(X, X) → ur(Y)

(R′
2) ur(δ(X,X)) ∧ Y ∈ X → ur(Y)

(D∈,1) ur(new(X))
(D∈,2) new(X) ∈ Y → Y /∈ X

(C1) ur(ci) i = 1, 2, 3, . . .
(C2) ci 6= cj i, j = 1, 2, 3, . . . and i < j

Figure 6: Weak set-theoretic axioms in clausal form.

14

Lemma 3.1 The axiomatic theory P whose postulates are those in Figure 6 is a conservative
extension of the theory Q whose axioms are those in Figure 2.

Proof: (Sketch) The language underlying P is broader than the one underlying Q, and our claim
is that any sentence belonging to the narrower language is provable in Q if and only if it is provable
in P. On the one hand, we must check that every axiom of Q is provable in P; on the other hand,
that any construct of P which does not belong to the language of Q can be seen as resulting from
the Skolemization of a sentence provable in Q.

As regards the former of these issues, consider for example (N). We can prove (N) within
P as follows. Assuming by contradiction that v ∈ ∅, we get from (E1) that δ(∅, ∅) ∈ ∅, and
since δ(∅, ∅) = ∅ by (N1) we get ∅ ∈ ∅ ∧ ∅ ∈ δ(∅, ∅), implying ur(∅) by (R′

1). However, this
conflicts with (N2); and this contradiction, showing that ∅ must be devoid of elements, leads to
the desired conclusion (N). As another example, consider (E), which we can prove within P as
follows. Assuming by contradiction that distinct sets x, y have the same elements, within P we
get from (E2) that δ(y, x) /∈ x ∨ δ(x, y) /∈ y , and consequently that δ(y, x) /∈ y ∨ δ(x, y) /∈ x ,
entailing that x, y are both devoid of elements, by (E1). This conflicts with (E0), because (E0)
entails that ∅ is the only empty set; hence we conclude that (E) is provable in P.

As regards the converse issue, namely to check that every construct of P makes sense in
connection with Q, we begin by observing that (W1), (W2), and (W3) directly result from the
Skolemization of (W); and, likewise, (L1), (L2), and (L3) originate from (L).

Then we note that the function δ is intended to be a selection function able to discriminate
between two different sets. In particular, it behaves as follows: for any non-empty set X, δ(X,Y)
is a element of X possibly not belonging to Y (this is the case whenever X \ Y is not empty).
Hence, on the basis of (E), δ(X, Y) and δ(Y, X) permit to distinguish between different sets X
and Y . Moreover, δ is assumed to be such that “unless every element of X is a self-singleton,
δ(X,X) is not a self-singleton and every element of δ(X, X) ∩X is self-singleton” (cf. regularity
axiom (R′)).

As stated in (D∈,1) and (D∈,2), the function new associates to any set X a “new” self-singleton
not belonging to any member of X (cf. plenitude axiom (D∈)). Finally, to justify the introduction
of the infinitely many ur-constants ci appearing in (C1) and (C2), we can exploit part (Y∈) of
the diagonalization lemma. 2

To denote finite sets we fix a first-order signature Σ = {∅, {· | ·}, c1, c2, . . . }. As useful pieces
of notation we will denote the term {t1 | {t2 | · · · {tn | t}}} by {t1, t2, . . . , tn | t}, and simply by
{t1, t2, . . . , tn} when t is ∅.

As before, we make use of the monadic predicate symbol ur to state that certain terms designate
atoms: thus, asserting ur(t) amounts to stating that t = {t}. Consequently, if X is a variable, then
the formula ur(X) is satisfiable, whereas both ur(∅) and ur(X) ∧ ur(Y) ∧X 6= Y ∧ ur({X, Y }) are
unsatisfiable. We assume that each term ci denotes a (distinct) self-singleton, i.e., the following
holds

(C) ur(ci) ∧ ci 6= cj for i, j = 1, 2, 3, . . . and i < j.

In the context of axiomatic set theory, two terms s and t are said to be unifiable if there is a
substitution σ such that sσ and tσ have the same designation, in which case one says that σ is a
solution of the equation s = t. In our theory, which fulfills (E), determining whether two terms s
and t designate the same set amounts to establishing whether the existential closure of the formula
∀y(y ∈ s ↔ y ∈ t) is valid. Although this is an ∃∗∀-sentence, and hence could be submitted to
the decision algorithm seen in Sec. 2, in what follows we propose a more specialized, goal-driven,
unification algorithm. Our algorithm is actually aimed at solving a system, that is, a conjunction
(represented by a set, as usual) E of equations. Of course, a substitution σ is a solution of E if
and only if it simultaneously solves all equations in E : needless to say, this is still a subproblem
of ∃∗∀-satisfiability checking.

Let us examine here what convenient format we can choose for representing the solutions σ we
are after, which, without loss of generality, we may require to be idempotent in the sense that tσσ =
tσ holds for all terms t. An equation of the form X = {t0, . . . , tn |X}, with X /∈ vars(t0, . . . , tn),

15

is said to be a membership equation: such an equation imposes that
∧

i=0,...,n ti ∈ X holds. Given
a system E , if a variable X occurs only once in E , and it occurs in an equation of the form X = t,
then X is said to be a solved variable. In this case, such an equation is said to be a solved-form
equation. A system E is said to be in pre-solved form if it contains only membership or solved-form
equations. E is said to be in solved form if it contains only solved-form equations. A system E in
solved form uniquely identifies an idempotent substitution which, trivially, is a solution to E .

In what follows, uppercase letters represent variables; N stands for a newly generated variable;
r, s, t, possibly subscripted, stand for generic terms; and c, d represent constant symbols drawn
from among the cis. With t[X] we denote a term having X as a subterm. In a term of the form
{t1, t2, . . . , tn | t} the subterm t is said to be the tail, provided that { · | · } is not the main functor
of t.

The unification algorithm Unify described in Figures 7 and 8 consists of three main parts. For
any variable X, repeated applications of the procedure Simplify memberships gather in a single
equation all the membership equations related to X. The rationale of this is that the constraints
represented by the conjunction of two equations X = {s0, . . . , sm |X} and X = {t0, . . . , tn |X}
can be rendered by the single equation X = {s0, . . . , sm, t0, . . . , tn |X}.

The core of the algorithm is the procedure Rewriting rule, which after selecting from E an
equation which can trigger one (and only one) of several rewriting rules (cf. Figure 8), fires the
corresponding action on E . The various rewriting rules can be grouped together to point out their
relationships between standard cases and names (Trivial, . . . , Decomposition [BS01]). Some rules
are non-deterministic, e.g. rules (7.1) and (7.2) that executes decomposition of terms denoting sets
containing elements.

The combination of these two procedures is applied until E reaches pre-solved form, or fail is
obtained. In the former case, the algorithm achieves a simplification of the membership equa-
tions providing a system in solved form as output. This is obtained by means of the procedure
Eliminate memberships.

procedure Unify(E);
initialize U as the empty set;
while E is not in pre-solved form do

Simplify memberships(E);
Rewriting rule(E);

end while;
Eliminate memberships(E);

end Unify;

procedure Simplify memberships(E);
while the following rule is applicable do

X = {s0, . . . , sm |X} ∧X = {t0, . . . , tn |X} ∧ E ;

X = {s0, . . . , sm, t0, . . . , tn |X} ∧ E
end Simplify memberships;

procedure Eliminate memberships(E);
while the following rule is applicable do

X = {s0, . . . , sm |X} ∧ E ;

X = {s0, . . . , sm |N} ∧ E [X 7→ {s0, . . . , sm |N}]
end Eliminate memberships;

Figure 7: The structure of the algorithm Unify

We assume that there is a set U , called store, which keeps facts of the form ur(X). At the
beginning of the execution, U is initialized as the empty set. For any variable X, the algorithm

16

procedure Rewriting rule(E);
apply one of the following rules:

Trivial (1)
t1 = t2 ∧ E

t1 ≡ t2

}
; E

Orient (2.1)
t = X ∧ E

t is not a variable

}
; X = t ∧ E

(2.2)
t = c ∧ E

t is neither a variable nor a constant d

}
; c = t ∧ E

Occur
Check

(3.1)
X = {t0, . . . , ti[X], . . . , tn |Y } ∧ E

Y is a variable

}
;

∧n
i=0 X = ti ∧ E∧

(i)Y = ∅∨
(ii)Y = X
Add ur(X) to U

(3.2) X = {t0, . . . , ti[X], . . . , tn} ∧ E
}

;
∧n

i=0 X = ti ∧ E
Add ur(X) to U

(3.3)
X = {t0, . . . , tn |Y } ∧ E

ur(X) ∈ U , Y is a variable, X /∈ vars(t0, . . . , tn)

}
;

∧n
i=0 X = ti ∧ E∧

(i)Y = ∅∨
(ii)Y = X

(3.4)
X = {t0, . . . , tn} ∧ E

ur(X) ∈ U , X /∈ vars(t0, . . . , tn)

}
;

∧n
i=0 X = ti ∧ E

(3.5)
X = {t0, . . . , tn | c} ∧ E

ur(X) ∈ U
}

;
∧n

i=0 X = ti ∧X = c ∧ E
Variable
Elimination

(4.1)
X = Y ∧ E

X occurs in E, ur(X) ∈ U , X 6≡ Y

}
;

E[X 7→ Y] ∧X = Y
Add ur(Y) to U

(4.2)
X = c ∧ E

X occurs in E
}

; E[X 7→ c] ∧X = c

(4.3)
X = t ∧ E

X occurs in E, X not in t and ur(X) /∈ U
}

; E[X 7→ t] ∧X = t

Symbol
Clash

(5.1)
c = {t1, . . . , tn | d} ∧ E

c 6≡ d, n > 0

}
; fail

(5.2) c = ∅ ∧ E }
; fail

(5.3) ∅ = {s | t} ∧ E }
; fail

(5.4) {s | t} = ∅ ∧ E }
; fail

Symbol
Clash

(6.1) c = {t0, . . . , tn |Y } ∧ E
}

;
∧n

i=0 c = ti ∧ E∧
(i)Y = ∅∨
(ii)Y = c

. .

(6.2)
c = {t0, . . . , tn | t} ∧ E

t is c or ∅
}

;
∧n

i=0 c = ti ∧ E
(Set)
Decomposition

(7.1) {t0, . . . , tm |X} = {t′0, . . . , t′n |X} ∧ E
}

;

select arbitrarily i in {0, . . . , n}; choose one among:
(i) {t1, . . . , tm |X} = {t′0, . . . , t′i−1, t′i+1, . . . , t′n |X} ∧ t0 = t′i ∧ E
(ii) {t0, . . . , tm |X} = {t′0, . . . , t′i−1, t′i+1, . . . , t′n |X} ∧ t0 = t′i ∧ E
(iii) {t1, . . . , tm |X} = {t′0, . . . , t′n |X} ∧ t0 = t′i ∧ E
(iv) {t1, . . . , tm |X} = {t′0, . . . , t′n |X} ∧X = {t0 |X} ∧ E

. .

(7.2)
{t | s} = {t′ | s′} ∧ E

tail(s) and tail(s′) are not the same variable

}
;

(i) s = s′ ∧ t = t′ ∧ E
(ii) {t | s} = s′ ∧ t = t′ ∧ E
(iii) s = {t′ | s′} ∧ t = t′ ∧ E
(iv) s = {t′ |N} ∧ {t |N} = s′ ∧ E

end Rewriting rule;

Figure 8: Set-unification rewriting rules

17

checks whether ur(X) is in U before applying any substitution to X. Moreover, at the end of the
unification process, the store is used to compute/filter out the solutions. More precisely, we say
that a substitution σ complies with the store U if σ(X) ≡ ci holds for a constant ci, for each
fact ur(X) in U .

The following lemma states that Unify gives a correct answer whenever it terminates, provided
its execution is fully non-deterministic: in order to generate a complete set of solutions, all possible
choices for the selected action, when there are more than one, must be effected.

Lemma 3.2 Let E be a system and E1, . . . , Ek be the systems non-deterministically obtained after
any number of iterations of the while-statement within Unify. Moreover, let U1, . . . ,Uk be the
corresponding values of the store. Then,

soundness: any solution σ to Ei which complies with the store Ui is also a solution to E;
exhaustiveness: to any solution σ of E there corresponds, for some i in {1, . . . , k}, a solution σi

of Ei which complies with Ui and extends σ in the sense that Xσi ≡ Xσ for all X in vars(E).

Proof: Correctness of the procedures Simplify memberships and Eliminate memberships are imme-
diate to prove. Let us focus on the various possible steps of Rewriting rule (cf. Figure 8). Soundness
of actions (1) and (2) holds by the properties of equality. Let us analyze the other cases:

(3.1)–(3.2): If X = {t0, . . . , ti[X], . . . , tn | t}, then X must designate an atom. This fact is memo-
rized by adding ur(X) to the store U . Correctness follows immediately.

(3.3)–(3.5): In these cases the fact ur(X) is already known (i.e., ur(X) has been inserted in U by
earlier steps of the computation). Hence, the equations are rewritten accordingly.

(4): The actions in these rules are substitution applications. Checking and updating the store
guarantee correctness.

(5): All the rules of this group generate failure actions. For instance, an atom c cannot equal
{. . . | d} or d, for constant d distinct from c, by (E) and (C). Similar considerations apply
to the other three cases.

(6): Similarly to what happens for the rules (3.3) and (3.4), since c denotes an atom, any solution
satisfying the l.h.s. of a rule of this group must satisfy the equations on the corresponding
r.h.s.

(7): Rule (7.2) reflects the extensionality axiom. For a detailed proof of equivalence in the context
of finite sets, see [DPR98]. Rule (7.2) cannot be applied when tail(s) and tail(s′) are the
same variable. This particular case is handled by rule (7.1), which is a variant introduced
for ensuring termination.

2

What action selection strategy is adopted is immaterial, as just proved, from the standpoint
of correctness; however, it may badly affect termination. Indeed, it is easy to find a sequence of
actions leading to non-termination, as the following example brings into light.

Example 3.3 Consider the set of equations:

{T1 |S1} = {T2 |S2} ∧ {T3 |S2} = {T4 |S1} .

Apply action (7.2.iv) to both equations (in any order), obtaining:

S1 = {T2 |N1} ∧ {T1 |N1} = S2 ∧
S2 = {T4 |N2} ∧ {T3 |N2} = S1.

18

Then (action (4.3)) apply the substitution obtained by the first and third equation, obtaining:

S1 = {T2 |N1} ∧ {T1 |N1} = {T4 |N2} ∧
S2 = {T4 |N2} ∧ {T3 |N2} = {T2 |N1}.

The first and third equations are now in solved form; nevertheless, the second and fourth equations
constitute a system of the same form as the initial one, on which the same sequence of actions can
be applied. Of course, this can be repeated forever.

A simple deterministic strategy (similar to the one proposed in [DPPR00], in the context of
the unification problem for finite sets) can be devised to ensure termination. The crucial point
in such deterministic strategy is the introduction of a stack used to handle part of the equations
produced by action (7.2). It turns out, in fact, that processing these equations as soon as they
are generated avoids non-terminating computations. The proof of the following lemma gives the
details on this strategy.

Lemma 3.4 The algorithm Unify can be implemented so as to ensure termination.

Proof: The algorithm proceeds by selecting an equation and by applying (non-deterministically)
one of the rules of Figure 8. In order to ensure termination, we need to guide those selections which
are performed after each application of rule (7.2). For doing this we introduce into the unification
algorithm an auxiliary data-structure S, a stack of equations. Whenever S is not empty, the
equation at the top of S is always selected as the next to be processed. On the other hand,
when S is empty, the algorithm selects any equation in E arbitrarily. Consider any application of
rule (7.2). Among all equations generated by actions of this kind, only those of the form t = t′

are added to E , while the remaining ones are pushed onto the stack S.
Intuitively speaking, the key point in this strategy, ensuring termination, is the following:

whenever, by rule (7.2), a new variable is introduced (namely, N in Figure 8), the algorithm
exploits S in order to immediately process the newly generated equations. As a consequence of
this strategy, two old variables become solved (within a finite number of steps), and the global
number of non-solved variables does not increase.

To formally show termination, we introduce a measure of complexity for systems of equations.
A computation of the unification algorithm can be seen as a sequence of rewriting stage. The
termination of the algorithm will be proved by showing that with each stage the complexity of the
system always decreases. Termination follows from well-foundedness of the measure.

In general, a rewriting stage corresponds to a single application of a rewriting action from
(1)–(6) and (7.1) of Figure 8. Compound stages are those which start with action (7.2): these
must comprise in full the sequence of subsequent actions that process the equations pushed on the
stack by the application of rule (7.2).

The complexity measure associated with a system E is the triple 〈A,B, C〉 where:

• A is the number of variables in E that are not solved;

• B is the multiset {[size(`) + size(r) : ` = r in E , ` = r is not solved]}, where size(t) is the
number of occurrences of constants and function symbols in t;2

• C is the value
∑

` = r ∈ E
` = r is not solved

size′(`) where size′(t) is the number of occurrences of the set-

constructor symbol {· | ·} in t.

First of all, observe that Simplify memberships(E) leaves the measure unchanged. However,
it can be applied just a finite number of times for each non-solved variable and the number of
non-solved variables cannot be increased with respect to the initial system.

Let us consider the procedure Rewriting rule(E). Inspection reveals that
2A well-ordering between such multisets of integer numbers is the reflexive and transitive closure of the relation

≺ so defined: {[a1, . . . , ai, . . . , an]} ≺ {[a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , an]} if b1 < ai ∧ · · · ∧ bm < ai .

19

• actions (1), (2.1), (3.1)—(3.5), (6.1) and (6.2) cannot increase A, while they always decrease
B.

• Action (2.2) cannot increase A and B, while it always decreases C.

• Actions (4.1)—(4.3) decrease A (observe that after the application of this rule one member-
ship equation can become a standard equation which will then be counted by the component
B of the measure).

• Actions (5.1)—(5.4) lead to immediate termination of the algorithm by failure.

• Every branch of action (7.1) certainly decreases B, without increasing A.

• Each application of rule (7.2) must be considered together with the sequence of subsequent
actions that process the equations pushed on the stack by (7.2). In particular, rule (7.2) is
activated by the presence of an equation of the form:

{t0, . . . , tm |h} = {t′0, . . . , t′n | k} (3)

where both h, k can be atoms, ∅, or (distinct) variables.

The stack-based selection strategy for the equations generates a sequence of applications of
action (7.2), producing a conjunction of equations of the form ti = t′j of smaller size than
the equation (3), plus:

1. an equation of the form h = {t′j1 , . . . , t′j`
| k}, or

2. an equation of the form k = {ti1 , . . . , ti`
|h}, or

3. two equations h = {t′j1 , . . . , t′j`
|N}, and k = {ti1 , . . . , ti`

|N} (with N a new variable,
the same for both equations).

Moreover, such a sequence of actions produces a chain of solved equations N1 = { |N2},
N2 = { |N3}, . . . , Np = { |N}, one equation for each new variable introduced. By virtue
of the stack-based strategy, all these equations are immediately processed by substitution
application (by an action (4.i)). Consequently, they do not contribute to the complexity
measure of the system obtained at the end of the rewriting stage.

Let us analyze the form that the equations in the above listed cases 1.–3. might take. This
depends on k and h:

– h and k are both ∅. The equations generated are either ∅ = ∅ (whose size is smaller
than the equation (3)) or of the form ∅ = {·}. The latter leads to termination by failure
with the next action.

– h is a variable and k is ∅ (or vice versa). The only equations that do not lead to failure
are those of the form h = {t′j1 , . . . , t′j`

| ∅}. At the next step, substitution is applied and
therefore the measure A of complexity decreases.

– h and k are distinct variables. There are three possibilities:

∗ an equation h = {t′j1 , . . . , t′j`
| k} is generated, or

∗ an equation k = {ti1 , . . . , ti`
|h} is generated, or

∗ two equations, h = {t′j1 , . . . , t′j`
|N} and k = {ti1 , . . . , tjr |N}, are generated (N be-

ing a new variable).

In the first two cases the subsequent substitution application causes A to decrease since
the variable h (resp. k) becomes solved. In the third case two variables become solved
and only one new variable is introduced. Again, A decreases.

– h and k are atoms. The situation is analogous to the previous one. The only difference
is that action (6.1) or (6.2) will now be applied immediately after rule (7.2). A remains
unchanged but all introduced equations have size strictly smaller than equation (3). B
therefore decreases.

20

– h is an atom and k is ∅ (or vice versa). Similar to the previous case: B decreases.

– k is an atom and h is a variable (or vice versa). Similarly to the above-treated cases,
we have three possibilities:

∗ an equation h = {t′j1 , . . . , t′j`
| k} is generated, or

∗ an equation k = {ti1 , . . . , ti`
|h} is generated, or

∗ two equations, h = {t′j1 , . . . , t′j`
|N} and k = {ti1 , . . . , tjr |N}, are generated (N be-

ing a new variable).

In the first case, the subsequent substitution application causes A to decrease since
the variable h becomes solved. In the second case, action (6.1) is selected: then either
the substitution h 7→ ∅ or the substitution h 7→ k is applied: A decreases. In the
third case the algorithm proceeds by applying the substitution for h, and A does not
change. But then, action (6.1) is applied to the second equation. Consequently, either
the substitution N 7→ ∅ or the substitution N 7→ k is applied and A decreases with
respect to the initial situation.

Termination of the procedure Eliminate membership is a straightforward consequence. For any
variable X occurring in an equation X = {· · · |X}, we perform at most one rewriting and one
substitution application. Equations in solved form remain in solved form. 2

Then, we can state the following theorem:

Theorem 3.5 Every branch of the non-deterministic computation of Unify(E) terminates either
with fail or with a system Ei in solved form and its associated value Ui of the store. The whole set
of solutions to E is spanned by the systems 〈E1,U1〉, . . . , 〈Ek,Uk〉 returned by successful computation
branches. No solutions to E exist if and only if k = 0, i.e., iff fail is the only possible result.

Proof: Immediate from Lemmas 3.2 and 3.4. Notice that, unlike in Lemma 3.2, each system
Ei ∪ Ui admits a solution because we are referring to a terminating non-deterministic search. 2

Remark 3.6 (Complexity Issues) The decision version of the above-discussed unification prob-
lem (which is, given s and t, to answer the question: Is there a substitution σ such that σ(s) and
σ(t) denote the same set?) is NP-complete.

To show NP-hardness, we carry out a reduction of 3-SAT to the problem at hand in exactly the
same straightforward way in which one handles other set-unification problems, cf. e.g. [DOPR96].
Let Φ be an instance

Φ ≡ (`(1)1 ∨ `
(1)
2 ∨ `

(1)
3) ∧ · · · ∧ (`(m)

1 ∨ `
(m)
2 ∨ `

(m)
3)

of 3-SAT, where each `
(j)
i is either a propositional variable or the negation of a propositional

variable. Let us assume that V1, V2, . . . , Vk are the propositional variables occurring in Φ.
We define a transformation function f , as

f(`) =

Xi if ` ≡ Vi,
Yi if ` ≡ ¬Vi,
{ ∅ , f(`1), f(`2), f(`3) } if ` ≡ `1 ∨ `2 ∨ `3,

and translate Φ to the equation

{{X1, Y1}, . . . , {Xk, Yk}, f(`(1)1 ∨ `
(1)
2 ∨ `

(1)
3), . . . , f(`(m)

1 ∨ `
(m)
2 ∨ `

(m)
3)} = { { ∅ , {∅}} } ,

which requires each one of the sets {Xj , Yj} to be unified with { ∅ , {∅}}, and at least one among
f(`(i)1), f(`(i)2), f(`(i)3) to be unified with {∅} (which encodes the truth value true, whereas ∅
encodes false) for each i = 1, . . . , m.

To prove NP-completeness, it remains to show that if a system of equations admits a solution,
then one can find a witness of its existence that can be checked in polynomial time. This can

21

be done by first guessing a graph which represents a potential solution to the system in the way
described in Sec. 2.2.1, and then checking its adequacy against the given equations. In essence, the
“model-graph technique” alluded to here is the one exploited in [COP90] and [OPP96] to show the
NP-completeness of problems analogous to the ∃∗∀-satisfiability problem treated in Sec. 2; in view
of this analogy, it looks quite plausible that those NP-completeness results concerning the ∃∗∀ class
carry over to our own context, thus generalizing the rather specific case of set-unifiability.

3.1 Prolog implementation and examples

The unification algorithm has been implemented in SICStus Prolog 3.10.1 [SICStus] and a pro-
totype is available at the URL: http://www.dimi.uniud.it/~dovier/CST/cst.html. The code
consists in about one hundred Prolog clauses and its length is less than 600 lines, including com-
ments. Actually, a relevant part of the code implements a minimal (textual) user interface. For
the user convenience, it (optionally) performs a sort of tracing of the unification process: each
firing of the rules of Figure 8 is echoed in order to allow one to trace the execution. The interface
also takes care of variable names, by hiding SICStus’ anonymous naming of internal variables.

The main Prolog predicate is meta/0 that launches execution. Then the prompt s-unify :-
appears. The user can introduce the input system as a sequence of equations separated by “,”.
To make the parsing simpler, the symbol “/” must be used instead of “|” within set-terms (even
though, for ease of the reader, we have kept the usual notation in the examples which follow).
If such a system is solvable, then the goal succeeds if E and U can be instantiated to a solved
form of S and to the corresponding store value, respectively. For the sake of simplicity, here the
store U is just the list of variables X such that ur(X) must hold. As usual, all possible solutions
(solved-form-system plus store-value) are obtained through backtracking. Let us examine a few
runs of the unification algorithm. (Time is expressed in msec and referred to an execution on a
Pentium4 PC, 2.66GHz.)

Example 3.7

1. Prolog execution corresponding to the system

S ≡ X = {X, Y } ∧ Y = {a} ∧ Z = {Z}.
produces the following output (suitable write instructions enable one to track the rewriting
actions):

s-unify :- X = {X,Y},Y = {a},Z = {Z}.

Selected equation: X = {X, Y} Rule: 3.2-

Selected equation: X = Y Rule: 4.1-

Selected equation: Y = Y Rule: 1-

Selected equation: Y = {a} Rule: 3.4-

Selected equation: Y = a Rule: 4.2-

Selected equation: Z = {Z} Rule: 3.2-

Selected equation: Z = Z Rule: 1-

************Found a Solution:

E: Y = a , X = a

U: Z , Y , X

Execution Time: 0

another solution (y./n.) ? y.

no more solutions

Notice that no substitution is computed for the variable Z. Since Z is in U , this means
that ur(Z) must hold, namely, Z must be an atom. Thus, any substitution extending the
substitution [Y 7→ a,X 7→ a] by mapping Z to a constant (an atom) complies with the store
and is also a solution to S.

22

2. Consider next the system

S ≡ Y = {a|X} ∧ {a, b|X} = {a|Y }.
Here are some of the solutions obtained by the implementation:

s-unify :- Y = {a|X},{a,b|X}={a|Y}.

Selected equation: Y = {a|X} Rule: 4.2-

Selected equation: {a, b|X} = {a, a|X} Rule: 7.1(iv)-

Selected equation: {b|X} = {a, a|X} Rule: 7.1(iv)-

Selected equation: X = {a, b, a, a|_6646} Rule: 4.2-

************Found a Solution:

E: X = {a, b, a, a|_6646} , Y = {a, a, b, a, a|_6646}

U:

Execution Time: 0

another solution (y./n.) ?

.....

************Found a Solution:

E: X = {b|_6149} , Y = {a, b|_6149}

U:

Execution Time: 10

another solution (y./n.) ?

.....

For this example, the Prolog program finds 13 solutions, each being equivalent to either one
of the two listed above. This high number of solutions is mainly due to the insertion of
multiple copies of a in the second set of the second equation after substitution application
(i.e., the first application of rule (4.2) in the above run).

Notice that by changing the order of the two equations (i.e., by firing the goal {a, b |X} =
{a |Y }, Y = {a |X}, one obtains 19 solutions. This different behavior of the Prolog program
originates from a different order in rule applications. In fact, in the former case rule (7.1)(iv)
is applied immediately after rule (4.2). In this manner, the tails of the two terms are unified
in the generated equation {a, b |X} = {a, a |X}. This bounds the number of possible (alter-
native) subsequent instantiations. On the other hand, in the case of the other goal, action
(7.2) is applied immediately to the equation {a, b |X} = {a |Y }; this event generates a num-
ber of non-deterministic choices (cf. Figure 8). Consequently, more redundancy is produced
because each one of these choices has to be processed before applying the substitution rule.

3. Consider the system

S ≡ {a, b|c} = {a|Y } ∧ Y = {a|X} ∧ c = {A,B}
Here is an excerpt of the corresponding run:

s-unify :- {a,b|c}={a|Y},Y={a|X},c={A,B}.

Selected equation: {a,b|c} = {a|Y} Rule: 7.2(i)-

Selected equation: {b|c} = Y Rule: 2.1-

Selected equation: Y = {b|c} Rule: 4.2-

Selected equation: a = a Rule: 1-

Selected equation: {b|c} = {a|X} Rule: 7.2(i)-

Selected equation: c = X Rule: 2.1-

23

Selected equation: X = c Rule: 4.2-

Selected equation: b = a Rule: 5.1-fail

Rule: 7.2(ii)-

Selected equation: c = {a|X} Rule: 6.1(i)-

Selected equation: X = {} Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 6.1(ii)-

Selected equation: X = c Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 7.2(iii)-

Selected equation: {b|c} = X Rule: 2.1-

Selected equation: X = {b|c} Rule: 4.2-

Selected equation: b = a Rule: 5.1-fail

Rule: 7.2(iv)-

Selected equation: c = {a|_5686} Rule: 6.1(i)-

Selected equation: _5686 = {} Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 6.1(ii)-

Selected equation: _5686 = c Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 7.2(ii)-

Selected equation: {b|c} = {a|Y} Rule: 7.2(i)-

Selected equation: c = Y Rule: 2.1-

Selected equation: Y = c Rule: 4.2-

Selected equation: b = a Rule: 5.1-fail

Rule: 7.2(ii)-

Selected equation: c = {a|Y} Rule: 6.1(i)-

Selected equation: Y = {} Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 6.1(ii)-

Selected equation: Y = c Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 7.2(iii)-

Selected equation: {b|c} = Y Rule: 2.1-

Selected equation: Y = {b|c} Rule: 4.2-

Selected equation: b = a Rule: 5.1-fail

Rule: 7.2(iv)-

Selected equation: c = {a|_3414} Rule: 6.1(i)-

Selected equation: _3414 = {} Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 6.1(ii)-

Selected equation: _3414 = c Rule: 4.2-

Selected equation: c = a Rule: 5.1-fail

Rule: 7.2(iii)-

Selected equation: {a, b|c} = Y Rule: 2.1-

Selected equation: Y = {a,b|c} Rule: 4.2-

Selected equation: a = a Rule: 1-

Selected equation: {a,b|c} = {a|X} Rule: 7.2(i)-

Selected equation: {b|c} = X Rule: 2.1-

Selected equation: X = {b|c} Rule: 4.2-

Selected equation: a = a Rule: 1-

Selected equation: c = {A, B} Rule: 6.2-

Selected equation: c = B Rule: 2.1-

Selected equation: B = c Rule: 4.2-

Selected equation: c = A Rule: 2.1-

Selected equation: A = c Rule: 4.2-

************Found a Solution:

24

E: A = c , B = c , X = {b|c} , Y = {a,b|c}

U:

Execution Time: 10

another solution (y./n.) ?

....

************Found a Solution:

E: A = c , B = c , X = {a,b|c} , Y = {a,b|c}

U:

Execution Time: 10

....

no more solutions

Notice that the equations A=c and B=c, occurring in the solutions, force A and B to be
self-singletons (namely, c) even if this fact is not entailed by the store U.

4. Let us recall the reduction of 3-SAT to the set-unification problem as described in Re-
mark 3.6. In particular, consider an instance of 3-SAT of the form:

V1 ∧ V2 ∧ (V3 ∨ ¬V1 ∨ ¬V2) ∧ · · · ∧ (Vi ∨ ¬V1 ∨ ¬V2),

where i > 3. According to our reduction, such an instance translates to an equation of the
form:

{{X1, Y1}, . . . , {Xi, Yi}, {X1, ∅}, {X2, ∅}, {X3, Y1, Y2, ∅}, . . . , {Xi, Y1, Y2, ∅} = {{∅, {∅}}}.
Below we list some of the runs of our Prolog program corresponding to different values of i
(for briefness, we switched-off the tracing facility). As expected, the execution times of such
runs emphasize the exponential behaviour of the algorithm.

s-unify :- {{X1,Y1},{X2,Y2},{X3,Y3},{X1,{}},{X2,{}},{X3,Y1,Y2,{}}} = {{{},{{}}}}.

************Found a Solution:

E: Y3 = {}, X1 = {{}}, X2 = {{}}, X3 = {{}}, Y1 = {}, Y2 = {}

U:

Execution Time: 100

s-unify :- {{X1,Y1},{X2,Y2},{X3,Y3},{X4,Y4},{X1,{}},{X2,{}},{X3,Y1,Y2,{}},

{X4,Y1,Y2,{}}} = {{{},{{}}}}.

************Found a Solution:

E: Y3 = {}, Y4 = {}, X1 = {{}}, X2 = {{}}, X3 = {{}}, X4 = {{}}, Y1 = {}, Y2 = {}

U:

Execution Time: 400

s-unify :- {{X1,Y1},{X2,Y2},{X3,Y3},{X4,Y4},{X5,Y5},{X1,{}},{X2,{}},

{X3,Y1,Y2,{}},{X4,Y1,Y2,{}},{X5,Y1,Y2,{}}} = {{{},{{}}}}.

************Found a Solution:

E: Y3 = {}, Y4 = {}, Y5 = {}, X1 = {{}}, X2 = {{}}, X3 = {{}}, X4 = {{}}, X5 = {{}},

Y1 = {}, Y2 = {}

U:

Execution Time: 1070

25

s-unify :- {{X1,Y1},{X2,Y2},{X3,Y3},{X4,Y4},{X5,Y5},{X6,Y6},{X1,{}},{X2,{}},

{X3,Y1,Y2,{}},{X4,Y1,Y2,{}},{X5,Y1,Y2,{}},{X6,Y1,Y2,{}}} = {{{},{{}}}}.

************Found a Solution:

E: Y3 = {}, Y4 = {}, Y5 = {}, Y6 = {}, X1 = {{}}, X2 = {{}}, X3 = {{}}, X4 = {{}},

X5 = {{}}, X6 = {{}}, Y1 = {}, Y2 = {}

U:

Execution Time: 2660

s-unify :- {{X1,Y1},{X2,Y2},{X3,Y3},{X4,Y4},{X5,Y5},{X6,Y6},{X7,Y7},{X1,{}},

{X2,{}},{X3,Y1,Y2,{}},{X4,Y1,Y2,{}},{X5,Y1,Y2,{}},{X6,Y1,Y2,{}},

{X7,Y1,Y2,{}}} = {{{},{{}}}}.

************Found a Solution:

E: Y3 = {}, Y4 = {}, Y5 = {}, Y6 = {}, Y7 = {}, X1 = {{}}, X2 = {{}}, X3 = {{}},

X4 = {{}}, X5 = {{}}, X6 = {{}}, X7 = {{}}, Y1 = {}, Y2 = {}

U:

Execution Time: 6310

4 Conclusions

Various approaches can be adopted in axiomatizing and instrumenting hybrid set/multiset/hyperset
theories, i.e., theories on sets or other kinds of aggregates ultimately based on atoms. On the one
hand, as mentioned in the Introduction and detailed in [COP01, p. 263], reduction to the pure case
constitutes the conceptually simplest (though näıve) approach. On the other hand, a treatment
involving the notion of colored set may offer practical advantages in real implementations. Among
others, multisets with colors are shown in [DPR01] to be well-suited to implement P -systems (the
abstract model behind membrane computing [Pāu00]).

In this paper we introduced a third viable treatment, which models atoms as self-singletons
following a proposal by Quine. One could have expected that the unification problem—as well
as more general solvable cases of the decision problem—would call for significantly diversified
solution techniques with the different approaches. On the opposite, the decision problem for
∃∗∀-sentences, and also the more specific unification problem, have been solved by readjusting
techniques previously designed for the cases of pure (or colored) sets and hypersets. In a sense,
this shows that one can cope with each one of the three approaches to hybrid sets by exploiting
essentially the same combinatorial ideas. In itself, this is a remarkable discovery: in the past we
found a striking analogy, as regards the decision problem, between pure sets and hypersets [OP95],
which however got disrupted, even for the special case of unification, when our focus shifted from
the pure to the hybrid context [DOP99]. The uniformity of the results in this paper with earlier
results, reassuring as it may be from an exclusively mathematical point of view, did not exempt
us from having to carry out a new effort, which had its own rewards. Very much like earlier
results paved the way to the new ones offered in this paper, certain new proofs which arose from
our present context indicate how to improve earlier results, e.g. how to shorten the proof that
goal-driven unification for colored sets always terminates.

We believe we have captured the most critical issues entering into the design of a unification
algorithm for the third approach. However, refinements are certainly feasible and also desirable:
it turns out, for example, that the instances

{c1, . . . , cn} = {cn, . . . , c1}

of unification with distinct constants ci require rapidly growing execution times as n grows. This

26

problem would be circumvented if the four alternatives of rule (7.2) were not tried in the fixed
order of Figure 8, but controlled by suitable heuristics.

Acknowledgments

We thank the anonymous referees for their useful and accurate comments, and Alberto Policriti
for fruitful discussions.

References

[Ack37] W. Ackermann. Die Widerspruchsfreiheit der allgemeinen Mengenlhere. Mathematis-
che Annalen, vol. 114, 1937.

[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14, Stanford, 1988.

[BS98] F. Baader and K. U. Schulz. Unification theory—an introduction. In W. Bibel and
P. H. Schmitt, eds., Automated Deduction. A basis for application, vol. 1, Kluwer
Academic Publishers, 1998.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, eds.,
Handbook of Automated Reasoning, vol. I, chapter 8, pages 445–532. Elsevier Science,
2001.

[BM96] J. Barwise and L. Moss. Vicious Circles. CSLI Publications, vol. 60, Stanford, 1996.

[Bel99] J. G. F. Belinfante. On Computer-Assisted Proofs in Ordinal Number Theory. Journal
of Automated Reasoning, 22:341–378, 1999.

[BP96] D. Bellè and F. Parlamento. Decidability of the ∀∗∃∗-class in the membership theory
NWL. Proceedings of Gödel’96-Logical Foundations of Mathematics, Computer Science
and Physics-Kurt Gödel’s Legacy. Brno, Czech Republic. Lecture Notes in Logic, vol. 6,
Springer-Verlag, 1996.

[BC*92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Information and Computation 98(2):142–170,
1992.

[CGO88] D. Cantone, S. Ghelfo, and E. G. Omodeo. The automation of syllogistic. I: Syllogistic
normal forms. Journal of Symbolic Computation, 6(1):83–98, 1988.

[COP90] D. Cantone, E. G. Omodeo, and A. Policriti. The automation of syllogistic. II: Opti-
mization and complexity issues. Journal of Automated Reasoning, 6(2):173–187, 1990.

[COP01] D. Cantone, E. G. Omodeo, and A. Policriti. Set Theory for Computing – From deci-

sion procedures to declarative programming with sets. Monographs in Computer Science,
Springer-Verlag, 2001.

[COU02] D. Cantone, E. G. Omodeo, and P. Ursino. Formative processes with applications to
the decision problem in set theory: I. Powerset and singleton operators. Information
and Computation, 172:165–201, 2002.

[DOP99] A. Dovier, E. G. Omodeo, and A. Policriti. Solvable set/hyperset contexts: II. A goal-
driven unification algorithm for the blended case. Applicable algebra in engineering,
communication and computing, 9(4):293-332, 1999.

[DOPR96] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Language for Program-
ming in Logic with Finite Sets. Journal of Logic Programming, 28(1):1–44, 1996.

27

[DPR01] A. Dovier, C. Piazza, and G.-F. Rossi. Multiset rewriting by multiset constraint solving.
Romanian Journal of Information Science and Technology, 4(1–2), 2001.

[DPR98] A. Dovier, A. Policriti, and G.-F. Rossi. A uniform axiomatic view of lists, mul-
tisets, and sets, and the relevant unification algorithms. Fundamenta Informaticae,
36(2/3):201–234, 1998.

[DPPR00] A. Dovier, C. Piazza, E. Pontelli, and G.-F. Rossi. Sets and constraint logic program-
ming. ACM Transactions on Programming Languages and Systems, 22(5):861–931,
2000.

[DF89] E.-E. Doberkat and D. Fox. Software Prototyping mit SETL. B. G. Teubner, Stutgart,
1989.

[End77] H. B. Enderton. Elements of set theory. Academic Press, New York, 1977–1997.

[Far01] W. M. Farmer. STMM: A Set Theory for Mechanized Mathematics. Journal of Auto-
mated Reasoning, 26(3):269–289, 2001.

[FOT01] A. Formisano, E. G. Omodeo, and M. Temperini. Instructing equational set-
reasoning with Otter. In R. Gore, A. Leitsch, and T. Nipkow, eds., Auto-
mated Reasoning. Proceedings of International Joint Conference IJCAR 2001—
(CADE + FTP + TABLEAUX), Lecture Notes in Computer Science 2083, pages 152–
167, Springer-Verlag, Berlin, 2001.

[Gog78] D. Gogol. The ∀n∃-completeness of Zermelo-Fraenkel set theory. Zeitschr. f. math.
Logik und Grundlagen d. Math., 24(4):289-290, 1978.

[Gor96] M. Gordon. Set theory, higher order logic or both? Lecture Notes in Computer Science,
1125:191–202, Springer-Verlag, 1996.

[HL94] P. Hill and J. Lloyd. The Gödel Programming Language, MIT Press, Cambridge, MA,
1994.

[Jec79] T. Jech. Set theory, Number 79 in Pure and Applied Mathematics—A Series of Mono-

graphs and Textbooks. Academic Press, 1978.

[KP95] J. P. Keller and R. Paige. Program derivation with verified transformations - A case
study. Comm. Pure Appl. Math., 48(9-10):1053–1113, 1995. Special issue in honor of
J. T. Schwartz.

[Lam02] L. Lamport. Specifying Systems – The TLA+ Language and Tools for Hardware and

Software Engineers. Pearson Education, Inc., Addison-Wesley, 2002.

[Lev79] A. Levy. Basic Set Theory. Perspectives in Mathematical Logic, Springer-Verlag,
Berlin, 1979.

[Mizar] Mizar Project Home Page. http://www.mizar.org.

[MS96] I. Meisels and M. Saaltink. The Z/EVES reference manual (for version 1.3). Technical
Report TR-96-5493-03b, ORA Canada, November 1996.

[Noë93] P. A. J. Noël. Experimenting with Isabelle in ZF set theory. Journal of Automated
Reasoning, 10(1):15–58, 1993.

[OPP93] E. G. Omodeo, F. Parlamento, and A. Policriti. A derived algorithm for evaluating
ε-expressions over abstract sets. Journal of Symbolic Computation, 15:673–704, 1993.

[OPP96] E. G. Omodeo, F. Parlamento, and A. Policriti. Decidability of ∃∗∀-sentences in
Membership Theories. Mathematical Logic Quarterly, 42(1):41–58, 1996.

28

[OP95] E. G. Omodeo and A. Policriti. Solvable set/hyperset contexts: I. Some decision
procedures for the pure, finite case. Comm. Pure Appl. Math., 48(9-10):1123–1155,
1995. Special issue in honor of J. T. Schwartz.

[Pau95] L. C. Paulson. Set Theory for Verification. II: Induction and Recursion. Journal of
Automated Reasoning, 15(2):167–215, 1995.

[Pau97] L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated Rea-
soning and Its Applications, chapter 3. MIT Press, 1997.

[PG96] L. C. Paulson and K. Grabczewski. Mechanizing set theory. Journal of Automated
Reasoning, 17(3):291–323, December 1996.

[Pāu00] G. Pāun. Computing with Membranes. Journal of Computer and System Science,
61(1):108–143, 2000.

[PPR97] F. Parlamento, A. Policriti, and K. P. S. B. Rao. Witnessing differences without re-
dundancies. Proceedings of the American Mathematical Society, 125(2):587–594, 1997.

[PS95] A. Policriti and J. T. Schwartz. T-Theorem Proving I. Journal of Symbolic Computa-
tion 20(3):315–342, 1995.

[Qua92] A. Quaife. Automated development of fundamental mathematical theories. Kluwer
Academic Publishers, 1992.

[Qui63] W. V. Quine. Set theory and its logic. The Belknap Press of Harvard University Press,
Cambridge, Massachusetts, revised edition, 3rd printing, 1971.

[Ras95] O. Rasmussen. A Ruby Proof System. Technical Report ID-TR-1995-161, Department
of Computer Science, Technical University of Denmark, 1995.

[Ras96] O. Rasmussen. Ensuring Correctness of Ruby Transformations. In M. Sheeran and
S. Singh, eds., Designing Correct Circuits. Proceedings of the 3rd Workshop on De-
signing Correct Circuits (DCC96), Springer-Verlag, Berlin, 1996.

[Saa97] M. Saaltink. The Z/EVES system. In ZUM ’97: Z Formal Specification Notation.
Proceedings of the 11th International Conference of Z Users, pages 72–85, Berlin, Ger-
many, 3–4 April 1997. Springer-Verlag.

[SDDS86] J. T. Schwartz, R. K. B. Dewar, E. Dubinsky, and E. Schonberg. Programming with
Sets: An introduction to SETL. Texts and Monographs in Computer Science. Springer-
Verlag, 1986.

[setlog] The {log} Project Home Page. http://www.math.unipr.it/~gianfr/setlog.Home.
html.

[SETS] The Programming with {SETS} Home Page. http://www.cs.nmsu.edu/~complog/
sets.

[SICStus] Swedish Institute for Computer Science. Sicstus Prolog Home Page. http://www.
sics.se/sicstus.

29

