
Multi-Agent Simulation of Protein Folding?

Luca Bortolussi1, Agostino Dovier1, and Federico Fogolari2

1 Dept. of Maths and Computer Science, University of Udine, 33100 Udine, Italy.
bortolussi|dovier@dimi.uniud.it

2 Dept. of Biomedical Science and Tech., University of Udine, 33100 Udine, Italy.
ffogolari@mail.dstb.uniud.it

Abstract. A protein is identified by a finite sequence of amino acids, each of
them chosen from a set of 20 elements. The Protein Structure Prediction Prob-
lem, fundamental for biological and pharmaceutical research, is the problem of
predicting the 3D native conformation of a protein, when its sequence of amino
acids is known. All current mathematical models of the problem are affected by
intrinsic computational limits, and by a disagreement on which is the most reli-
able energy function to be used.
In this paper we present an agent-based framework for ab-initio simulations, com-
posed by different levels of agents. Each amino acid of an input protein is viewed
as an independent agent that communicates with the others. These agents are co-
ordinated by strategic and cooperative higher level agents. The framework allows
a modular representation of the problem and it is easily extensible for further
refinements and for different energy functions. Simulations at this level of ab-
straction allow fast calculation, distributed on each agent. We provide an imple-
mentation using the Linda package of SICStus Prolog, to show the feasibility and
the power of the method.
Keywords: Computational Biology, Agent-Based Technologies, Protein Folding
Simulation.

1 Introduction
The Protein Structure Prediction Problem (PSP) is the problem of predicting the 3D
native conformation of a protein, when the sequence made of 20 kinds of amino acids
(or residues) is known. The process for reaching this state is known as the protein fold-
ing. This problem is fundamental for biological and pharmaceutical research, and it has
been tackled both computationally and experimentally. Currently, the native conforma-
tions of more than 29000 proteins are available in the Protein Data Bank (PDB) [3].
Unfortunately, identifying the structure of a protein in a laboratory can take more than
one-man year. This shows the need of a computational tool to make reliable predictions.

The PSP problem can be modelled as an optimization problem involving energy
functions to be minimized and constraints on the amino acids’ positions. Even sim-
ple abstractions are NP-complete (see, e.g., [9]). Nevertheless, in the last thirty years,
the global optimization for the PSP problem has been tackled with different classes
of methods: simulated annealing, genetic algorithms, smoothing methods, branch and
bound (cf. [12] for a review), and constraints [10]. These methods are all ab-initio meth-
ods, namely, approaches that are not based on similarities to already known proteins.
? Work partially supported by FIRB project RBNE03B8KK



When some additional knowledge is available (e.g., a database of already annotated
proteins), it is possible to employ a different class of methods (homology modelling):
the protein is matched against very similar sequences and the conformation prediction
exploits this valuable information.

In this work we concentrate on ab-initio modelling. These methods are based on the
Anfinsen thermodynamic hypothesis [2]: the (native) conformation adopted by a protein
is the one with minimum free energy, i.e. the most stable state. A fundamental role in
the design of a predictive method is played by the spatial representation of the protein
and the static energy function, which is to be at a minimum for native conformations.
All-atom computer simulations are typically unpractical, because they are extremely
expensive. In fact, each simulated nanosecond for a small protein requires many CPU
hours on a PC. To overcome this limit, most of the approaches use database fragment
assembly and/or simplified models to determine an approximate and faster solution.
Simplified models of proteins are attractive in many respects, as they have smoother
energy hyper-surfaces, and the dynamics is faster. Unfortunately, there is no general
agreement on the potential that should be used with these models, and several different
energy functions can be found in literature [26].

In this paper we present a new high-level framework for ab-initio simulation us-
ing Agent-based technologies, which extends the one presented in [5]. It is developed
by following the architecture for agent-based optimization systems presented by Mi-
lano and Roli in [21]. This framework stratifies the agents in different levels, according
to their knowledge and their power. Here we have three layers: one containing agents
designed to explore the state space, one dealing with agents implementing global strate-
gies and the last one containing cooperation agents.

Each amino acid in the protein is modelled as an independent agent, which has
the task of exploring the configuration space. This is accomplished mainly by letting
these agents interact and exchange information. These processes operate within a simu-
lated annealing scheme, and their moves are guided by the knowledge of the position of
surrounding objects. The communication network changes dynamically during the sim-
ulation, as agents interact more often with their spatial neighbours. The strategic agents
govern the environmental properties and they also coordinate the basic agents activity
in order to obtain a more effective exploration strategy of the state space. The cooper-
ative agent, instead, exploits some external knowledge, related to local configurations
attainable by a protein, to improve the folding process. The communication between
agents is based on Linda tuple space (see, e.g., [8]), and the program is implemented in
SICStus Prolog [13]. Moreover, we have also implemented an equivalent multithread
version, which is much more faster (cf. Section 5).

The protein model adopted in this version is the one developed by Micheletti et al.
in [11], which is still simple, although more accurate than the one used in [5]. Anyway,
different potentials can be easily used, as the framework is modular and independent
from the energy function. In addition, it is also intrinsically concurrent, and so it can be
run in distributed systems.

The results are encouraging. The program produces quite stable outcomes, in the
sense that the solutions found in different runs have similar energies. Unfortunately, the
potential used is still too coarse to produce good predictions in terms of RMSD from



known native structures. Moreover, the introduction of the strategic level improves very
much the quality of the solutions (in terms of energetic values), while the cooperative
agent decreases the RMSD, but increases the energy. This shows the need of using a
potential with an higher resolution.

The paper is organized as follows. In Section 2 we introduce the Protein Structure
Prediction problem and discuss some related work. In Section 3 we present the Agent-
based framework, while in Section 4 we briefly describe the energy model employed.
In Section 5 we provide some details of the implementation and in Section 6 we show
some results. Finally, in Section 7 we draw some conclusions.

2 Proteins and the PSP Problem

A protein is made by amino acids. In nature there are 20 types of amino acids, that
can be identified by a letter in the set A = {A, . . . , Z} \ {B, J,O,U,X,Z}. The
primary structure of a protein is a sequence s1 · · · sn, where si ∈ A. Each protein
assumes a peculiar 3D conformation, called native conformation or tertiary structure
The primary structure of a protein uniquely determines its tertiary structure. The protein
structure prediction (PSP) problem is the problem of predicting the tertiary structure
of a protein given its primary structure. The tertiary structure determines the function
of a protein and it is the 3D conformation that minimizes the global energy of the
protein [2]. Though, there is no common agreement on which energy function should
model correctly the phenomenon.

The general structure of an amino acid is reported in Fig. 1. There is a part common
to all amino acids, the N–Cα–C ′ backbone, and a characteristic part known as side
chain, which consists of a number of atoms ranging from 1 to 18. Each amino acid is
linked to the following with the incoming and outgoing edges represented by arrows.
For proline, the side chain is bound to the nitrogen atom, replacing the hydrogen found
in all other aminoacids. A well-defined energy function should consider all possible
interactions between all atoms of every amino acid composing the protein. A review of
the various forces and potentials at this abstraction level can be found in [23]. However,
all-atoms molecular dynamics simulations (e.g. [6, 18]) are precluded by the intrinsic
complexity of the needed operations.

'

&

$

%

~side chain

Cα

H

»»N
XXXz

H

XX C′

O

»»»:backbone

Fig. 1. Amino acids: Overall structure

A more abstract view of amino acids considers each of them as a single sphere cen-
tered in the Cα atom. It is reasonable to assume the distance between two consecutive
Cα atoms to be 3.8 Å. Recent work has been done to model energy functions with this
level of abstraction, and we refer to [26] for a detailed review. The most relevant features



of the folding process are local propensity to adopt well-defined secondary structures,
as well as the polar and hydrophobic interactions. Local structures can be obtained ei-
ther by rigid constraints (cf. [10]) or by statistical energy terms derived from databases.
Interactions between aminoacids are modeled by considering chemical and physical
properties or by statistical analysis. Some of the most used potentials are [27, 16, 4, 22].
Simplified ab-initio simulations actually are extremely difficult non-linear minimiza-
tion problems, as the energy has an exponential number of local minima (cf. [23]), and
they can try to be solved both on discrete lattices and off-lattice. In the former case, a
constraint-based approach [10] was successful in solving proteins of length up to 50.
There are also a lot of approaches for off-lattice minimization (cf. [23]), both sequential
and parallel, but we are not aware of any agent-based one.

We adopt here an energy developed by Micheletti et al. [11], which will be ex-
plained in more detail in Section 4. The optimization scheme used is a parallel sim-
ulated annealing, and there are several versions of it (cf. [15] or [25]). However, our
agent approach introduces new features, and allows a very clean separation between the
different heuristics used.

Fig. 2. Structure of the multi-agent simula-
tion. Black boxes represent the levels, blue
circles the agents and red arrows the commu-
nications.

Fig. 3. Crankshaft move (above) and pivot
move (below)

3 The Simulation Framework

In this section we describe the abstract framework of the simulation, which extends
the one introduced in [5]. This scheme is independent both on the spatial model of
the protein and on the energy model employed. Therefore, it can be instantiated using
different representations. In fact, here we adopt a different and more effective energy
model than in [5], though still coarse.

In the previous version, we associate to each aminoacid a single agent, which moves
in the space and communicates with others in order to minimize the energy function.



Here we maintain this class of agents, but we also introduce other agents at different
hierarchical levels, which have the objective of coordinating and improving the overall
performance of the system.

Milano and alt. [21] have devised a general scheme to encode agent-based mini-
mization, and our framework can be seen as an instantiation of that model. In partic-
ular, they identify four levels of agents, which interact in order to perform the opti-
mization task. Level 0 deals with generation of an initial solution, level 1 is focused
on the stochastic search in the state space, level 3 performs global strategic tasks and
level 4 is concerned with cooperation strategies. According to this scheme, in [5], we
implemented just level 1 agents, while here we have also level 2 and 3 processes (level 0
agents are trivial for this application). We deal separately with them in next subsections;
see Figure 2 for a schematic representation.

We use Linda [8] as concurrent paradigm: all the communications are performed
through writing and reading logical atoms in the Linda tuple space.

3.1 Level 1 — searching agents

We basically associate to each aminoacid an agent (from now on, we call them amino
agents), which has the capability to communicate its current position to other processes,
and to move in the search space, guided by its knowledge of the position of other agents.
The general behaviour of these agents can be easily described declaratively by the pred-
icate amino(i,S), defined in Figure 4.

The first instruction is a blocking read, which tests if the term authorized(i)
is present in the tuple space. This term is used to coordinate the activity with higher
level agents: these processes can remove it and thus blocking the activity of the amino
agents. Also the term resting(i) is used in this coordination task, and it allows an
amino agent to tell other processes if he is moving or not. In fact, it is removed from
the tuple space at the beginning of a computation, and it is added again at the end.

The second instruction is a blocking in, which removes the switch trigger(i)
from the tuple space. This is a mechanism used to guarantee (a week form of) fairness to
the system: each agent must wait for the movement of another process before perform-
ing its own move. In this way we avoid that a single agent takes the system resources
all for itself. Clearly, at the beginning of the simulation the switches for all the amino
processes are turned on, in order to let them move.

When the guards are satisfied, the process retrieves the most recent position of all
other aminoacids (get_pos), which is stored in the tuple space in terms of the kind
pos(i,position). Successively, the current position of each agent is updated by
update_pos through a mechanism described in section 3.1, and this new position
is put in the tuple space by the following out instruction. Finally, the switches of all
other processes are turned on by the i− 1 instructions trigger(j), with j 6= i, and
then the process recursively calls itself. Actually, in the real implementation, triggers
are added only if they are not already present.

The position of these agents is expressed in cartesian coordinates. This choice im-
plies that the moves performed by these processes are local, i.e. they do not affect the
position of other aminoacids. This is in syntony with the locality of the potential effects:
the modification of the position of an aminoacid influence only the nearby ones.



The initial configuration of the chain can be chosen between four different possi-
bilities: straight line, zig-zag, random, and, for known proteins, the deposited structure.
The program terminates after a predefined number of executions of each agent, or when
the temperature is low enough3 and the sequences of computed positions are stored in
an auxiliary file.
amino(i,S) :-

read(authorized(i)),
in(trigger(i)),
in(resting(i)),
get_pos([pos(1,Pos_1),...,

pos(n,Pos_n)]),
update_pos(i,S,

[pos(1,Pos_1),...,
pos(n,Pos_n)],

Newpos),
out(pos(i,Newpos)),
out(trigger(1)),...,
out(trigger(i-1)),
out(trigger(i+1)),...,
out(trigger(n)),
out(resting(i)),!,
amino(i,S).

Fig. 4. Basic Amino Agent

amino(i,S,Curr,Neigh_List) :-
read(authorized(i)),
in(trigger(i)),
in(resting(i)),
update_neigh(Curr,

Neigh_List,New_NList),
get_pos(New_NList,Pos_list),
update_pos(i,S,New_NList,

Pos_List,Newpos),
out(pos(i,Newpos)),
signal_move(New_NList),
C1 is Curr + 1,
out(resting(i)),!,
amino(i,S,C,New_NList).

Fig. 5. Improved communication strategy

Moving Strategy The aminoacids move according to a simulated annealing scheme.
This algorithm, which is inspired by analogy to the physical process of slowly cooling
a melted metal to crystallize it (cf. [1]), uses a Monte Carlo-like criterion to explore
the space. Each time the procedure update pos is invoked, the amino acid ai com-
putes a new position p′ in a suitable neighborhood (see below), and then compares its
current potential Pc with the new potential Pn, corresponding to p′. If Pn < Pc, the
amino acid updates its position to p′, otherwise it accepts the move with probability
e−

Pn−Pc
Temp . This hill-climbing strategy is performed to escape from a local minimum.

Temp is a parameter simulating the temperature effects. Technically, it controls the ac-
ceptance ratio of moves that increase the energy. In simulated annealing algorithms, it
is initially high, and then it is slowly cooled to 0 (note that if Temp is very low, the
probability of accepting moves which increase the energy is practically 0). It can be
shown that simulated annealing converges to the global optimum of the energy, if the
temperature is lowered sufficiently slowly, i.e. logarithmically (cf. [1]). We discuss the
cooling schedule in Section 3.2.

To guarantee ergodicity (cf. [1]), we let agents choose their next position in a
very simple neighbourhood. In fact, it is a cube centered at the current position of the
aminoacid, whose side has length set experimentally to 1 Å.

Communication Scheme The energy relative to a single aminoacid depends only from
the adjacent aminoacids in the polymer chain, and from other aminoacids that are close
enough to trigger the contact interactions. Far away agents won’t bring any sensible
contribution, at least as long as they remain distant.

This observation suggests a strategy to reduce considerably the communication
overhead. Agent i first identifies its neighbours N , i.e. all the aminoacids in the chain

3 For simplicity, we omitted these details from the code presented.



that are at distance less than a certain threshold, fixed here to 14 Å. Then, for an user-
defined number of moves M , it communicates just with the agents in N , ignoring all
the others. When the specified number M of interactions is reached, it will retrieve the
position of all the aminoacids and then refresh its neighbour’s list N . In our LINDA
framework, this means that the process i will turn on the switches trigger(j) and
read the current position just for the agents j ∈ N . The refresh frequency must not be
too low, otherwise a far aminoacid could, in principle, come very close and even collide
with the current one, without any awareness of what is happening. We experimentally
found that M = 100 avoids these problems.

In Figure 5, we present the code for the modified agent behaviour.It is quite sim-
ilar to the one presented before, with few obvious modifications in get_pos and
update_pos clauses, and with the presence of a new function for updating the neigh-
bour’s list, i.e. update_neigh. This predicate performs the update only if Curr ≡
M mod 0, otherwise copies Neigh_List into New_NList. A comparison of the
performance of the two communication strategies can be found in Section 6.

3.2 Level 2 — strategy
The first layer of agents is designed to explore the state space, using a simulated anneal-
ing strategy. The way the solution space is searched influences very much the perfor-
mance at finite of stochastic optimization algorithms. The amino agent activity results
in an algorithm where subset of variables of the system are updated independently by
different processes. However, the neighborhood of each agent is quite simple, in order
to also avoid problems arising from delayed communication. In addition, most of its
points have high distance penalties. This implies that the program is unwilling to pro-
duce good solutions in acceptable time periods. Hence we need a more coordinated and
efficient search of the solution space, which can be achieved by a global coordination
of the agents. This task can be accomplished by a higher level agent, which has a total
knowledge of the current configuration, and it is able to control the activity of the single
agents. Details are provided in next subsection.

At the same time, the simulated annealing scheme is based on the gradual lowering
of the temperature, which is not a property of the amino agents, but it is rather a feature
of the environment where they are acting. This means that the cooling strategy for
temperature must be governed by an higher level agent, which is presented below.

Enhanced exploration of state space To improve the efficiency, we designed an higher
level agent, called the “orchestra director”, which essentially suspends the amino agents
activity and moves them in the state space according to a different, global strategy.

It can move the chain using two different kind of moves: crankshaft and pivot (cf.
Figure 3). Crankshaft moves essentially fix two points in the chain (usually at distance
3), and rotate the inner aminoacids along the axis identified by these two extremes by
a randomly chosen angle. Pivot moves, instead, select a point in the chain (the pivot),
and rotate a branch of the chain around this hub, again by a random angle. These global
moves keep fixed the distance between two consecutive Cα carbon atoms, and are able
to overcome the energy barriers introduced by the distance penalty term.

The agent is described by the code in Figure 6. In the first line, this agent removes
from the tuple space the terms authorized(i), thus suspending the execution of



all the amino agents. Actually, some of these agents may still be moving during the
activation of the director, hence it waits for their suspension by a blocking read of the
terms resting(i) (put in the tuple space by the amino agents while they are inac-
tive). Once the director has got the position of the aminoacids (get_position), it
performs some moves by calling the move_chain clause. This predicate calls itself re-
cursively a predefined number N of times (in our experiments we set N to 100), and each
time it selects what move to perform (i.e. crankshaft or pivot), the pivot points and an
angle. Then it computes the energy associated to the old and the new configurations, and
applies a Monte Carlo criterion to accept the move (cf. Section 3.1). Finally, it releases
the amino agents by putting again in the tuple space the terms authorized(i), and
rests for a predefined amount of time (sleep(WaitTime)).

director(S,N,WaitTime) :-
in(authorized(1)),...,

in(authorized(n)),
read(resting(1)),...,

read(resting(n),
get_position(Pos_List),
move_chain(Pos_List,

New_Pos_List,S,N),
put_position(New_Pos_List),
out(authorized(1)),...,

out(authorized(n)),
sleep(WaitTime),
director(S,N,WaitTime).

Fig. 6. Strategic agent

cooperator(Sec_Str) :-
get_position(Pos_List),
identify_oligomers(Pos_list,

Oligo_List),
communicate(Oligo_List),
communicate_sec(Sec_Str),
cooperator(Sec_Str).

Fig. 7. Cooperative agent

Environment The environmental variables of the simulation are managed by a dedi-
cated agent. In this case, the environment simply controls the temperature of the simu-
lated annealing algorithm. This parameter must not be conceived as a physical quantity,
but rather as a control value which governs the acceptance ratio in the choice of moves
increasing the energy.

From the theory of simulated annealing (cf. [1]), we know that the way the tem-
perature is lowered is crucial for the performance of the algorithm. Convergence is
guaranteed if the temperature is cooled logarithmically towards zero. Anyway, to reach
good approximations of the global minimum, one has just to let the simulation perform
a sufficient number of steps at each value of the control parameter, in order to stabilize
the corresponding Markovian process.

We applied a simple and very used strategy: at each step the temperature is de-
creased according to Tk+1 = αTk, where α = 0.98. The starting temperature T0 must
allow an high acceptance ratio, usually around 60%, and we experimentally set T0 as to
attain this acceptance ratio at the beginning of the simulation. This value guarantees also
that the system does not accept moves with too high energy penalties (cf. Section 6).
Regarding the number of iterations at each value of T , we set it in such a way that the
average number of moves per aminoacid is around 100, in order to change the value
to all the variables a suitable number of times. The code for the environment agent is
straightforward.

3.3 Level 3 — cooperation
In this section we present a dynamic cooperation strategy between agents, which is
designed to improve the folding process and try to reach sooner the configuration of



minimum energy. The main idea behind is to combine concurrency and some external
knowledge to force the agents to assume a particular configuration, which is supposed
to be favorable. More specifically, this additional information can be extracted from a
database, from statistical observations or from external tools, such as secondary struc-
ture predictors.

The cooperation is governed by an high level agent, which has access to the global
spatial information and to some suitable external knowledge. What we have realized
here is still a preliminary version, based on the identification of good local configu-
rations. In particular, if aminoacids are, at some point of the simulation, close to a
pattern “known” to be favorable, we force them to adopt it. These patterns are small lo-
cal “building blocks” that compose the protein’s tertiary structure, i.e. small oligomers
(cf. [20] and next subsection). Being based on local information, this simple coopera-
tion is not able to drive the folding process, but it can act as a stabilizing force. In addi-
tion, we exploit also some information about the secondary structure, favoring from the
beginning the formation of local patterns supposed to appear in the protein (see below).

To coordinate the action of single agents and let a particular configuration emerge
from their interaction, we adopt a strategy which is very similar in spirit to the “com-
putational fields” technique introduced by Mamei et al. in [19]. The idea is to create
a virtual force field that can drive the movement of the single agents towards the de-
sired configuration. In our setting we deal with energy, not with forces, so we find more
convenient to introduce a biasing term modifying the potential energy calculated by a
single agent. In this way, we can impose a particular configuration by giving an energy
penalty to distant ones (in terms of RMSD).

Cooperation via Oligomers Micheletti et al. ([20]) studied in detail the recurrent
oligomeric structures of proteins. They looked for repeated patterns of 5 consecutive
aminoacids in known tertiary structures stored in PDB, and they found that just 40 dif-
ferent protein pieces are needed to reproduce the whole ensemble of structures, with
small errors. In fact, the tertiary structure of a protein can be reconstructed using this
small set of oligomers with a precision of 1 Å or less.

Our idea is to use this knowledge for a local improving of the folding. If 5 consecu-
tive aminoacids are in a configuration which is close to a particular block, we introduce
a biasing potential term that forces them to adopt this structure and we see if this choice
is effective or not. “Close” here means that the RMSD between the current aminoacids’
configuration and the oligomer is below a certain user-defined threshold. However, the
introduction of a local biasing can have some negative drawbacks. In particular, if this
heuristic is activated too early, it may convey rigidity to the simulation, making inac-
cessible favorable areas of the state space. This means that the chain could be frozen in
unnatural configuration, just because it was passing close to it by chance. To avoid this
collateral effects, we activate the cooperative agent late in the simulation phase, when
the temperature is low and the structure is already quite rigid. Then the modifications
of the potential will result in blocking the chain in a configuration which is locally re-
sembles a real protein. Moreover, if the energy function is not too approximate, and
the optimization has brought the chain quite close to global minimum, the cooperation
energy may let the chain jump quickly to this minimum, with a further stabilizing effect.



While trying to cover the chain with oligomers, we must ensure that overlapping
blocks (for instance, the block from aminoacid 1 to 5, and block from 3 to 7) coincide
in the overlapped region. Of course, this restricts the choice of consecutive pieces to a
subset of the 40 oligomers. Moreover, we also assign to each block a number depending
on its frequency of appearance relative to the type of the aminoacids it corresponds to.
In this way, we can avoid to force the chain in non-physical configurations.

The global coordination agent identifies the best set of oligomers to cover the actual
conformation of the chain, i.e. the set that minimizes the sum of the RMSD between
the structure and each oligomer, multiplied by a factor depending on the frequency of
appearance. To tackle combinatorial explosion (the number of possible coverings is ex-
ponential in the length of the chain), we use a build-up approach that identifies the best
covering sets for subchains and then glues them together. Once the selection has been
performed, the cooperator activates the biasing potential terms in each amino agent.
This is achieved by putting in the tuple space the list of the selected oligomers. The
energy term computed by each aminoacid is proportional to the RMSD between the
actual configuration and the oligomers corresponding to pieces of the chain contain-
ing it. The declarative code of the cooperator agent is shown in Figure 7. Practically,
its behavior is governed by the identify_oligomers clause, which executes the
selection of the cover set, and by the communicate predicate, which posts the in-
formation to the aminoacids. The communicate_sec clause broadcasts knowledge
about the secondary structure, as explained below.

Cooperation via Secondary Structure In the literature it is recognized that the forma-
tion of local patterns, like α-helices and β-sheets, is one of the most important aspects
of the folding process (cf. [23]). Actually, there are a lot of programs capable of pre-
dicting with good accuracy the location of these local structures, e.g. [17]. We plan to
use the information extracted from them to enhance the simulation. For the moment,
however, we introduced a preliminary version of cooperation via secondary structure,
which identifies the location of secondary structure directly from pdb files (we are not
cheating too much, because secondary structure predictors are very effective, especially
with short proteins).

Once the cooperation agent possess this knowledge, it activates another compu-
tational field that forces aminoacids to adopt the corresponding local structure, via the
communicate_sec predicate. The mathematical form of this new potential is similar
to the one used with oligomers, i.e. it penalizes all configurations having an high RMSD
from a “typical” helix or sheet.4 Of course, this energy regards only the aminoacids
supposed to form a secondary structure, and it is activated from the beginning of the
simulation, as it should be able to drive the folding process, at least locally.

4 Energy function
In this section we briefly describe the energy model we use in our simulation. Before
entering into details, we stress once more that the choice of the energy function is or-
thogonal to the development of the concurrent framework, which can be easily adapted
to encapsulate different models. However, the results in terms of structure prediction

4 There are different kinds of α-helices and β-sheets, but we omit here further details.



are strictly dependent from the adopted model: the more detailed the energy function is,
the better the outcome will be. Unfortunately, computational complexity grows together
with accuracy, and often one has to choose a compromise between these two features.

In the literature there is a plenty of different potentials. Here we have adopted the en-
ergy developed by Micheletti et al. in [11], mainly due to its simplicity. Each aminoacid
is represented by a single center of interaction, identified with the Cα carbon atom. The
original energy function comprises three terms, devoted to interaction, cooperation and
chirality. In addition, it contains some hard constraints that forbid non physical configu-
rations. However, the asynchronous communications between agents make the usage of
hard constraints a too strict policy for the movement. In fact some good configurations
may become unreachable due to the outdated information used (cf Section 6 for further
comments). A possible way out of this problem is to convert the hard constraints into
energy barriers that penalize the non-physical configurations.

In the following we describe the energy terms involved in a concise way, omitting
their mathematical expressions; further details can be found in [11]. If we indicate with
x the spatial disposition of the aminoacid’s chain and with t their type, the energy can
be expressed as

E(x, t) = Ecooperative(x, t) + Epairwise(x, t) + Echiral(x, t)
+Esteric(x) + Echircst(x) + Edist(x). (1)

The pairwise term captures the interactions that occur between two aminoacids that
are close enough. The contact between two aminoacids is modeled with a sigmoid func-
tion, and is weighted using an empirical contact energy table (cf. Section 2). The coop-
erative term involves four different aminoacids, and it tries to improve the packing of
secondary motifs. It advantages the situations where the aminoacid i is bonded to j, and
one aminoacid close to i is bonded to one close to j. The chiral term, instead, is used to
favor the formation of helices for some putative segments.

In addition to these three energy terms, we have several constraints implemented via
energy barriers. Esteric imposes three steric constraints to the position of Cα and Cβ

atoms. The position of Cβ is calculated from the chain of alpha carbon atoms using the
Park and Levitt rule (cf. [24]). Two of such atoms must be at a distance r greater than 3.
This is achieved by means of a potential barrier of the form

((
3
r

)6 − 1
)

if r < 3 and 0
otherwise. The Echircst is similar in spirit to the last term, a part from forbidding local
configurations which have unnatural torsional angles. Finally, the Edist term tries to
keep fixed the distance between two consecutive Cα atoms, around the value of 3.8 Å.
This is achieved through a parabolic potential of the form (r − 3.8)2. These constraint
terms are experimentally weighted in order to homogenize their values with the ones
assumed by original terms of the function.

5 Implementation
In this section we describe some details of the implementation of the simulation tech-
nique in the language SICStus Prolog [13]. We have interfaced SICStus with C++ where
energy functions are computed. In particular, the whole mechanism for updating the
positions (i.e. the update_pos predicate — Sec. 3) is implemented in C++ and dy-
namically linked into Prolog code. This guarantees a more efficient handling of the
considerable amount of operations needed to calculate the potentials. The Prolog code



is not very different from its abstract version presented in section 3.1, and its length
is less than 150 lines. We have also written a C++ manager which launches SICStus
Linda processes, visualizes the protein during the folding, and in general interacts with
the Operative System.

Actually, LINDA communication is not very efficient: each communicative act
takes about 100 milliseconds, thus leading to a very slow simulation. Therefore, we
have also written a multithreading version in pure C++, which can run both under Win-
dows and Linux. This version reproduces the communication mechanisms of LINDA
using the shared memory, so it is equivalent to the program presented in the paper,
though much more efficient. All the codes can be found in http://www.dimi.
uniud.it/dovier/PF.

6 Experimental results

In this section we present the results of some tests of our program. We are mainly inter-
ested in two different aspects: seeing if and how the novel features introduced here (fast
communication, strategy, cooperation) improve the simulation and checking how good
are the predicted structures with respect to the resolution of the energy function used.
Note, however, that this potential is structurally very simple, so we are not expecting
outstanding results out of it. Actually, it was used in [11] to produce coarse structures
that were then improved by all-atom molecular dynamics simulations.

We ran the simulation on different proteins of quite small size, taken from PDB [3],
because longer chains are out of the resolution of the potential. We also had to tune a
lot of parameters of the program, especially the cooling schedule for the temperature,
the weights of the penalty terms and the scheduling of the strategic and the cooperative
agents.

The quantities used to estimate the goodness of the results are the value of the energy
and the root mean square deviation (RMSD) from the known native structure. Note
that the relation between these two quantities is connected with the energy function
used, not with the strategy for searching the space. All the tests were performed on a
single processor machine (a notebook with a 2.66 GHz Pentium 4), and therefore the
execution time is biased by the parallelism inherent in the simulation, which loads the
single processor with a considerable computational overhead.

In Table 1, we show the best results obtained in terms of RMSD and energy without
cooperation, while in Table 2 cooperation was active. The energy considered here is the
one presented in Section 4; the contributions of cooperative computational fields are not
considered. The numbers shown are an average of 5 runs; standard deviation is shown
in brackets.

Protein RMSD energy
1LE0 4.21 (0.72) -10.253 (1.19)
1KVG 3.89 (0.77) -19.41 (0.56)
1PG1 7.25 (0.59) -54.56 (2.75)
1VII 7.22 (0.88) -51.06 (2.81)

1E0M 8.65 (0.91) -76.47 (3.78)

Table 1. Results without cooperation

Protein RMSD energy
1LE0 2.99 (0.53) -5.75 (1.44)
1KVG 1.29 (0.12) -9.27 (1.68)
1PG1 2.73 (0.46) -23.04 (1.86)
1VII 6.81 (0.38) -32.13 (6.81)

1E0M 5.96 (0.38) -22.18 (1.29)

Table 2. Results with cooperation



From Table 1, we can see that, without cooperation, the simulation is quite stable:
most of the runs produce solutions with energy varying in a very small range of values.
On the contrary, the RMSD is quite high. This depends mostly on the low resolution of
the potential. In fact, this energy function has terms which compact the chain, but no
term imposing a good local structure. Therefore, the simulation maximizes the number
of contacts between aminoacids, giving rise to a heavily non-physical shape. The situa-
tion, however, changes for 1LE0, 1PG1, 1KVG and 1E0M with the introduction of the
cooperative effects. In this case, the maximization of contacts goes together with po-
tential terms imposing good local shapes (and some global contact, in case of β-sheets
secondary structures), creating better structures but worsening the energy (less contacts
are formed). In particular, we can see a remarkable improvement of RMSD for proteins
1KVG, 1E0M and 1PG1; a visual comparison of the outcome for this last protein is
shown in Figure 8. However, the situation is different with 1VII. In this case, in fact, the
introduction of the cooperative terms worsens the energy, but does not improve sensibly
the RMSD. This can be explained observing the shape of 1VII and the behaviour of the
potential for its native configuration. In particular, this protein has three small helices,
and the interaction terms of the energy, evaluated for the native configuration, have a
value of 20, while the values found with our simulation are around -20 with cooperation
and -40 without it. This simply means that this energy function penalizes a configura-
tion which has helices and is compact (i.e. the native structure of 1VII). Therefore,
while imposing the formation of helices with cooperation, the simulation tries to mini-
mize as much as possible the interaction terms, leaving the structure more opened, and
not improving the RMSD (although it is locally more physical). With the other proteins,
the situation is better, as they all have also β-sheets, which are a non-local secondary
structure: they impose some contacts between distant pieces of the chain. This non-local
information seems to interact better with the compressive action of the energy function.
Therefore, these tests show that, in order to produce better predictions, we need a more
accurate potential.

To test the different terms of the cooperative field, we compare separately runs with
and without cooperation via oligomers, and via secondary structure. It comes out that
the quality of the solutions in terms of energy are always worse with the cooperative
agent active (cf. above). In addition, using just the oligomers’ information, the RMSD
is not improved considerably, but this depends on the low resolution of the energy func-
tion used. In fact, the structures identified by the energy minimization are coarse, and
do not have good local features. Therefore, when trying to force the chain locally into
a protein-like shape, we create a conflict with the potential. In addition, this coopera-
tive term is not able to modify the global structure of the chain, and so it is not able
to improve sensibly by itself the results in terms of RMSD from the native configura-
tion. Anyway, when we introduce also the secondary structure information, the situation
changes, and the RMSD is improved in most of the cases (cf. Table 1 and 2). This is
quite remarkable, as the information relative to secondary structure is still local. We
argue that a better form of cooperation, with some capability of driving globally the
folding process, will enhance the results even more (cf. Section 7).

To evaluate the enhancements introduced by the strategic agent, we deactivate it and
compared the results. As expected, the aminoacid agents alone are not able to explore



well the state space, and the minimum values found in this case are very poor (for the
1VII, much greater than zero). This depends essentially by the fact that most of their
moves violate the distance constraint, especially at high temperatures. At low temper-
atures, instead, the system seems driven more by the task of minimizing this penalty
term, than by the optimization of the “real” components of energy. Therefore, the sim-
ulation gets stuck very easily in bad local minima, and reaches good solutions just by
chance. The results shown in Table 1, instead, are obtained activating the “orchestra
director” agent just a couple of times for each value of the temperature. This suffices
to obtain much better energy minima. Note that combining the aminoacid agents and
the strategic one corresponds to having a mixed strategy for exploring the state space,
where two different neighborhoods are used: the first, local and compact, is searched by
the aminoacid agents, while the second one, which links configurations quite far away,
is searched by the strategic agent.

Regarding the optimized communication, we saw that it reduces the number of com-
munications quite a lot, and it fastens considerably the SICStus version of our simulator,
which suffers from the low speed of access to the tuple space. The multithread version,
instead, does not show a great reduction in time, but this depends form the fact that
communications there are performed via shared memory (which is very fast).

Finally, it is well known that asynchronous parallel forms of simulated annealing
can suffer from a deterioration of results with respect to sequential versions (cf. [15]),
due to the use of outdated information in the calculation of the potential. So we also run
some sequential simulations, using essentially the moves performed by the orchestra
director. The quality of the results obtained (in terms of energy values) is of the same
level than the multi-agent optimization. Moreover, the sequential simulation employed
more or less the same time of the multi-agent one to find them. This is quite encour-
aging, because the speed of the latter one can be increased by running it on a parallel
machine.

Fig. 8. Protein 1PG1. From left to right: a solution without cooperation, a solution with coopera-
tion and the native state.

7 Future work and Conclusions
In this paper we present a multi-agent based framework to simulate a protein folding
process, designed according to the MAGMA scheme [21]. This approach is indepen-
dent from the energy model used, and can be easily adapted to more complex spatial
representations and potential functions. We basically identify every biological entity
(aminoacid) with a concurrent agent. We have designed also other agents, aimed at
coordinating the activity of the basic processes and inducing some basic form of coop-
eration.



Though our goal is to provide a powerful tool for folding proteins, this is still a
preliminary version, devoted to analyze the improvements that can arise from the intro-
duction of a multi-layer architecture. In fact, the energy function used here is too coarse
to provide good biological models, as confirmed also from out tests. In the future, we
plan to use more reliable energies, maybe encapsulated in an iterative process using
more and more detailed —and computationally expensive— potentials and refining the
previous solutions. Moreover, we want to run the system in a parallel machine, to take
full advantage from the intrinsic concurrency of its design.

Regarding the cooperation level, the current version shows interesting potentials. In
fact, the introduction of a local cooperation is able to improve sensibly the resolution
of the energy function (in terms of predicted structure). However, its local action is
still too weak to drive globally the folding process, hence we want to extend it using
more external knowledge. In particular, we want to introduce information about the real
physical dynamic of the folding. For example, we could add a computational field that
mimics the hydrophobic force, therefore compactifying the structure at the beginning
of the simulation.

Or results showed that one of the main problems the system is facing is the introduc-
tion of the penalty terms in the potential. In particular, the term that should keep fixed
the distance between two consecutive aminoacids is troublesome. So many points in an
aminoacid’s neighbour violate it that the simulation, especially at high temperatures,
seems driven more by the tentative to bound this effect than by the minimization task
itself. To circumvent this problem, we plan to change the coordinates expressing the
configuration of the system. In particular, we can shift from the cartesian coordinates to
angular ones. This has the advantage of reducing the degrees of freedom of the system,
but at the price of both making non-local the moves of a single aminoacid and rising
the computational cost of function evaluations. Therefore, much more attention must be
put in the design of the communication and coordination mechanisms between agents.

We want also to improve the strategic level, perfecting the strategic coordination
between agents for the exploration of the state space. In addition, we want to introduce
in the program some concepts borrowed from the evolutionary algorithms [7], thus let-
ting different populations of agents coexist, search the space and interact. Furthermore,
to tackle the slowness of the simulated annealing scheme, we wish to improve it in the
direction of the parallel tempering [14].

References

1. E. Aarts and J. Korst. Simulated Annealing and Boltzmann machines. John Wiley and sons,
1989.

2. C.B. Anfinsen. Principles that govern the folding of protein chain. Science, 181:223–230,
1973.

3. H. M. Berman et al. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.
http://www.rcsb.org/pdb/.

4. M. Berrera, H. Molinari, and F. Fogolari. Amino acid empirical contact energy definitions
for fold recognition. BMC Bioinformatics, 4(8), 2003.

5. L. Bortolussi, A. Dal Palù, A. Dovier, and F. Fogolari. Protein folding simulation in CCP. In
Proceedings of BioConcur2004, 2004.

6. B. R. Brooks et al. Charmm: A program for macromolecular energy minimization and dy-
namics. J. Comput. Chem., 4:187–217, 1983.



7. P. Calegari, G. Corai, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of evolutionary
algorithms in combinatorial optimization. Journal of Heuristics, 5:145–158, 1999.

8. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444–458,
1989.

9. P. Crescenzi, D. Goldman, C. Papadimitrou, A. Piccolboni, and M. Yannakakis. On the
complexity of protein folding. In Proc. of STOC, pages 597–603, 1998.

10. A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach to protein
structure prediction. BMC Bioinformatics, 5(186), 2004.

11. G. M. S. De Mori, C. Micheletti, and G. Colombo. All-atom folding simulations of the
villin headpiece from stochastically selected coarse-grained structures. Journal Of Physical
Chemistry B, 108(33):12267–12270, 2004.

12. C. Floudas, J. L. Klepeis, and P. M. Pardalos. Global optimization approaches in protein
folding and peptide docking. In F. Roberts, editor, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. 1999.

13. Swedish Institute for Computer Science. Sicstus prolog home page. http://www.sics.
se/sicstus/.

14. C. J. Geyer. Markov chain monte carlo maximum likelihood. Computing Science and Statis-
tics, pages 156–163, 1991.

15. D. R. Greening. Parallel simulated annealing techniques. Physica D, 42:293–306, 1990.
16. A. Liwo, J. Lee, D.R. Ripoll, J. Pillardy, and H. A. Scheraga. Protein structure prediction by

global optimization of a potential energy function. Proceedings of the National Academy of
Science (USA), 96:5482–5485, 1999.

17. Pôle Biolnformatique Lyonnais. Gor iv secondary structure prediction method. http:
//npsa-pbil.ibcp.fr.

18. A. D. Jr. MacKerell et al. All-atom empirical potential for molecular modeling and dynamics
studies of proteins. J. Phys. Chem. B, 102:3586–3616, 1998.

19. M. Mamei, F. Zambonelli, and L. Leonardi. A physically grounded approach to coordinate
movements in a team. In Proceedings of ICDCS, 2002.

20. C. Micheletti, F. Seno, and A. Maritan. Recurrent oligomers in proteins - an optimal scheme
reconciling accurate and concise backbone representations in automated folding and design
studies. Proteins: Structure, Function and, 40:662–674, 2000.

21. M. Milano and A. Roli. Magma: A multiagent architecture for metaheuristics. IEEE Trans.
on Systems, Man and Cybernetics - Part B, 34(2), 2004.

22. S. Miyazawa and R. L. Jernigan. Residue-residue potentials with a favorable contact pair
term and an unfavorable high packing density term, for simulation and threading. Journal of
Molecular Biology, 256(3):623–644, 1996.

23. A. Neumaier. Molecular modeling of proteins and mathematical prediction of protein struc-
ture. SIAM Review, 39:407–460, 1997.

24. B. Park and M. Levitt. Energy functions that discriminate x-ray and near-native folds from
well-constructed decoy. Proteins: Structure Function and Genetics, 258:367–392, 1996.

25. M. Resende, P. Pardalos, and S. Duni Ekşiog̃lu. Parallel metaheuristics for combinatorial
optimization. In R. Correa et al., editors, Models for Parallel and Distributed Computation -
Theory, Algorithmic Techniques and Applications, pages 179–206. Kluwer Academic, 2002.

26. J. Skolnick and A. Kolinski. Reduced models of proteins and their applications. Polymer,
45:511–524, 2004.

27. T. Veitshans, D. Klimov, and D. Thirumalai. Protein folding kinetics: timescales, pathways
and energy landscapes in terms of sequence-dependent properties. Folding & Design, 2:1–
22, 1996.


