
Disunification in ACI1 Theories ∗

Agostino Dovier Carla Piazza
Università di Udine

Dip. di Matematica e Informatica
Via Le Scienze 206
33100 Udine (Italy)

dovier|piazza@dimi.uniud.it

Enrico Pontelli
New Mexico State University

Dept. Computer Science
Box 30001, Dept. CS

Las Cruces, NM 88003 (USA)
epontell@cs.nmsu.edu

Abstract

Disunification is the problem of deciding satisfiability of a system of equations and dise-
quations with respect to a given equational theory. In this paper we study the disunification
problem in the context of ACI1 equational theories. This problem is of great importance, for
instance, for the development of constraint solvers over sets. Its solution opens new possibil-
ities for developing automatic tools for static analysis and software verification. In this work
we provide a characterization of the interpretation structures suitable to model the axioms in
ACI1 theories. The satisfiability problem is solved using known techniques for the equality
constraints and novel methodologies to transform disequation constraints to manageable solved
forms. We propose four solved forms, each offering an increasingly more precise description of
the set of solutions. For each solved form we provide the corresponding rewriting algorithm and
we study the time complexity of the transformation. Remarkably, two of the solved forms can
be computed and tested in polynomial time. All these solved forms are adequate to be used in
the context of a Constraint Logic Programming system—e.g., they do not introduce universal
quantifications, as instead happens in some of the existing solved forms for disunification prob-
lems.
Keywords: Equational theories, disunification, ACI, complexity, CLP , Sets.

1 Introduction

Equational theories are first-order theories whose axioms are universally quantified equations be-
tween first-order terms [38]. A non-empty equational theory E forces certain classes of syntactically
different terms to be interpreted as the same object in any model of E. For instance, if E contains
the axiom X + Y = Y + X (for the sake of simplicity, we omit the universal quantification in the
description of axioms), then the terms a+b and b+a have to be interpreted in the same way in any
model of E. On the other hand, equational theories are not sufficiently strong to state that two
terms must be distinguished in all the models of E. As a matter of fact, the 1-element structure
1—the structure which maps all terms to the unique domain element—is a model of any equa-
tional theory, and in 1 any constraint of the form s 6= t is unsatisfiable. If a “wider” structure is

∗A preliminary version of this paper, entitled ACI1 Constraints by A. Dovier, C. Piazza, E. Pontelli, and G. Rossi,
appeared in Danny De Schreye ed., Proceedings of the 1999 International Conference on Logic Programming. Pages
573–587, The MIT Press, 1999.

1

chosen, then the satisfiability problem for a set of positive (equations) and negative (disequations)
constraints—also known as the disunification problem—becomes meaningful and complex.

In this paper we tackle this problem in the context of equational theories describing the Associa-
tive, Commutative, and Idempotent (ACI) nature of a function symbol. We also deal with theories
that incorporate an identity element (axiom (1)) for the ACI function symbol. The ultimate goal of
our effort is to develop tools for handling ACI1 constraints which can be used within a Constraint
Logic Programming (CLP) framework [27]. Constraints in the context of ACI theories—or of sim-
ilar theories for set-like structures—have been shown to be very important from the theoretical as
well as the practical point of view [32, 25, 24, 13], finding effective applications in a variety of areas,
such as software specification [40], databases [31, 7], scheduling [25] and product configuration [39],
and planning [41].

The problem of handling positive and negative constraints w.r.t. an equational theory has been
explored in the literature. Fernandez [23] explored the use of narrowing strategies to simplify dis-
unification formulae w.r.t. equational theories. Comon [15] developed a general solution to the
disunification problem; however, such solution is valid only for compact equational theories, and
ACI1—as discussed later—does not meet this requirement. The general problem of solving dise-
quations with respect to a given equational theory has also been addressed by Bürckert [9]. The
technique employed by Bürckert to solve the problem is that of transforming disequations into unifi-
cation problems, whose sets of solutions—that, for finitary theories, can be finitely represented—are
exactly the negation of the solution set of the starting problem. The answer to the satisfiability
problem is represented by a pair (σ,Ψ), called substitution with exceptions. In this context, θ is a
solution of the initial constraints if and only if θ is an instance of the substitution σ and θ is not
an instance of any of the substitutions in the set Ψ. Verifying whether θ is a solution and verifying
the existence of solutions belonging to (σ,Ψ) are non-trivial problems. Moreover, substitutions
with exceptions are essentially solved form constraints containing universally quantified variables,
which makes them unsuitable to be used in the context of a CLP system. In particular, in complex
theories such as ACI1 they can easily lead to undecidable formulae. Baader and Schulz [5] have
proposed a general technique capable of combining satisfiability algorithms for disunification in
disjoint equational theories. Following this approach, once the satisfiability problems for ACI1
constraints involving only constant symbols (discussed in Section 4) and the constraint problem
with (free) function symbols (already solved in literature [33]) have been studied separately, then
it is possible to automatically obtain a satisfiability algorithm for the combined (general) case.
However, the method leads to an exponential explosion of alternatives and there seems to be no
practical way to obtain “partial” efficient solutions from such scheme. This is the reason why we
prefer to tackle directly the combined problem (Section 5).

In this paper we present constraint solving techniques to handle ACI1 equation and disequation
constraints in CLP languages. The presentation starts with a characterization of the structures
which are suitable to model the axioms in ACI1—the join-semilattices with bottom. This is used
to explore the issue of satisfiability of positive (Section 3) and negative (Section 4) constraints with
respect to the different possible signatures of the language. This analysis captures the relationships
between the satisfiability of negative constraints and the “shape” of the interpretation structure.
The design of these structures suggests the possibility of applying the results described in the
paper to the manipulation of abstract domains for static analysis and program verification. A
similar approach in this direction has been described in [13], where ACI1 positive constraints
are used for sharing analysis. Integration of these concepts in an actual abstract interpreter for
constraint logic programming is reported to be in progress.

2

In the context of a CLP system, uninterpreted function symbols are typically manipulated as
finite tree constructors [33]. We develop a first-order theory TACI1 which extends ACI1 and cor-
responds to the structure having as domain T (Σ)/ =ACI1—i.e., the Herbrand Universe modulo the
least congruence relation imposed by ACI1—on the class of conjunctions of positive and negative
constraints. This allows us to focus on the canonical domain of Herbrand terms. In this context
we present four solved forms for disunification problems, as well as the algorithms which allow ar-
bitrary ACI1 constraints to be transformed into any of these four forms (Section 5). These solved
forms meet the general requirements for solved form constraints—e.g., deciding their satisfiability
is trivial and efficient. Furthermore, all these solved forms are adequate to be efficiently used in the
context of a CLP system—a property which is absent from most solved forms proposed by other
researchers [5, 9]. Two of these solved forms (called implicit and intermediate) can be obtained
in polynomial time from any conjunction of disequations. Finally, we show how the results have
a direct application to solve set-based constraints, taking advantage of the polynomial nature of
the implicit solved form proposed. The results achieved open new possibilities in the practical
manipulation of ACI1 constraints, thus overcoming limitations present in the existing CLP lan-
guages over set structures [19]. Section 6 presents various examples aimed at providing a feel for
the expressive power of ACI1-constraints. Section 7 summarizes our results and relates them to
analogous problems and results presented in the literature. A detailed complexity analysis of the
problem is discussed in Section 8. Some conclusions are drawn in Section 9.

2 Preliminaries

Throughout the paper we assume the standard notation of first-order logic and constraint logic
programming [22, 27]. Let us recall some commonly used terms.

A first-order signature Σ is a set of function and constant symbols. We denote with ar(f) the
arity of the function symbol f . In this paper we consider first-order signatures with a distinguished
binary function symbol ∪ (that will be used infixed) and a distinguished constant ∅. A signature
Σ is general if it contains at least one function symbol of arity greater than 0 different from ∪.
We also assume the presence of a countable set V of variables. T (Σ,V) (T (Σ)) denotes the set of
first-order terms (resp. ground terms) built from Σ and V (resp. Σ). Given a sequence of terms
t1, . . . , tn, vars(t1, . . . , tn) denotes the set of all variables that occur in at least one of the terms ti.
A variable X occurs nested in a term t if t is of the form: t1 ∪ (· · · ∪ (f(· · ·X · · ·) ∪ (· · · ∪ tn) · · ·),
f 6≡ ∪, and f ∈ Σ. Given a term or a formula t, |t| denotes the number of occurrences of symbols
from Σ ∪ V in t.

We will follow the convention of denoting variables with upper-case characters and function
symbols and constants with lower-case characters. s ≡ t is used to denote the syntactic equivalence
between the terms s and t.

A substitution is a function from V to T (Σ,V) defined as the identity function except for a finite
subset of V—called the domain of the substitution. Substitutions can be extended to terms via
structural induction [22]. The notation tσ will be used to represent the application of a substitution
σ to the term t. A substitution σ is said to be grounding for a term t if tσ is a ground term. A
substitution µ is an instance of a substitution θ if there is a substitution η such that for each
variable X Xµ = (Xθ)η.

Given L = 〈Π, Σ,V〉, where Π is a collection of predicate symbols, we denote with Adm a
predefined set of first-order formulae over L, called admissible constraints. For the sake of simplicity,
we assume that Adm contains the two constraints true and false. We will often informally talk about

3

a constraint to indicate a generic element of the class of the admissible constraints.
An L-structure (or, simply, a structure) M = 〈M, ()M〉 is composed of a non-empty set M—

the domain of the structure—and of an interpretation function ()M which assigns functions and
relations on M to the symbols of L.

A M-valuation of a constraint C is an assignment of values from M to the free variables of C.
We will often talk simply about valuations when the structure M is clear from the context. The
notion of valuation can be inductively extended to terms and formulae (as traditional practice in
logic).

A valuation σ is a successful valuation of the formula ϕ if σ(ϕ)—i.e., ϕ evaluated according to
the variables assignment described by σ—is true in the structure M. We will also denote this fact
as M |= σ(ϕ). Given a first-order theory T and a closed formula ϕ, T |= ϕ represents the fact
that for each structure M such that M |= T , it holds that M |= ϕ. Let us denote with ~∃(ϕ) the
existential closure of the formula ϕ.

Given a first-order theory T on L and a structure M for L, T and M correspond on Adm [27]
if, for each constraint C ∈ Adm, we have that

T |= ~∃(C) iff M |= ~∃(C)

Given two structures for L, M = 〈M, ()M〉 and N = 〈N, ()N 〉 an homomorphism h from M
to N is a function h : M −→ N such that:

∀f ∈ Σ, a1, . . . , an ∈ M (h(fM(a1, . . . , an)) = fN (h(a1), . . . , h(an))) (1)

and

∀p ∈ Π, a1, . . . , am ∈ M (pM(a1, . . . , am) → pN (h(a1), . . . , h(am))) . (2)

An homomorphism h is said to be an isomorphism if h is bijective and also the opposite of the
property (2) (i.e., the implication ←) holds.

Given a first-order language L and two structures M and N over L, an embedding of M in
N is an isomorphism from M into a substructure of N . If the only predicate symbol of L is the
equality, an embedding of M in N can be equivalently defined as an injective homomorphism from
M to N [37].

2.1 E-unification and E-disunification

If s, t ∈ T (Σ,V), then s = t is a Σ-equation and s 6= t is a Σ-disequation. An equational theory is a
first-order theory whose axioms are universally quantified Σ-equations.

Given an equational theory E, we can define the concept of E-equality (=E) as the least con-
gruence relation over T (Σ,V) which contains E and which is closed under substitution [6]. The
relation =E induces a partition of T (Σ) into congruence classes. The set of these classes will be
denoted by T (Σ)/ =E , while the congruence class containing t will be denoted by [t]. T (Σ)/ =E ,
together with a mapping (the interpretation function) which assigns to each term t the equivalence
class [t], is a model of the theory E.

Given a conjunction C ≡ (s1 = t1 ∧ · · · ∧ sn = tn) of Σ-equations, the (decision) E-unification
problem is the problem of deciding whether E |= ~∃C. If E is an equational theory, Birkoff’s
completeness theorem [38] ensures that E |= ~∃C if and only if T (Σ)/ =E |= ~∃C. From a constraint

4

point of view, Σ-equations can be chosen as admissible constraints. The theory E and the model
identified by T (Σ)/ =E correspond on the class containing all possible conjunctions of equations [27].

A substitution σ is an E-unifier of two terms s, t if sσ =E tσ—i.e., for all grounding substitutions
γ for sσ and tσ, it holds that E |= sσγ = tσγ [38].

A collection of E-unifiers for s, t is complete if every E-unifier of s, t can be expressed as instance
of a unifier in the collection. The elements of a complete and minimal set of unifiers are usually
called most general unifiers. The E-unification problem for s and t is the problem of finding a
possibly minimal set of E-unifiers which represents all solutions of the equation s = t.

Given a conjunction C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn) of Σ-disequations [29]—i.e., a disequation
constraint—we call (decision) E-disequation problem the problem of establishing whether E |= ~∃C.
For an equational theory E, this test has always a negative answer: the structure 1 = 〈{⊥}, ()1〉,
with ()1 the interpretation which maps each term to the unique element ⊥, is a model of any equa-
tional theory, and makes each constraint of the form s 6= t unsatisfiable. This problem originates
from the fact that a non-empty equational theory E forces certain distinct terms to be interpreted
in the same way in any model of E—however, it is not strong enough to state that two terms must
be distinguished in each model of E. As a consequence, the disequation problem is typically stated
as the problem of verifying satisfiability of ~∃C w.r.t. a given interpretation structure M. Typically
the chosen structure M is T (Σ)/ =E . A related problem is the determination of the structures M
which satisfies C.

Example 2.1 Let E consist of the unique axiom X = Y and let Adm contain all Σ-equations and
Σ-disequations. Then E corresponds to 1; in particular, E is a complete axiomatization of 1.

If E corresponds to 1, then E is said to be trivial. In particular:

Proposition 2.2 Given a non-trivial equational theory E such that the set Adm contains all Σ-
equations and Σ-disequations, there is no structure corresponding to E.

Proof. Assume, by contradiction, that there exists a structure M which corresponds to E. Since E
is not trivial, M 6= 1. Thus, |M | ≥ 2 and there are a, b ∈ M such that a 6= b. This implies that
M |= ∃X, Y (X 6= Y); but E 6|= ∃X, Y (X 6= Y), since 1 is a model of E and 1 6|= ∃X,Y (X 6= Y). 2

A theory E is satisfaction complete [27] if, for each admissible constraint C, either E |= ~∃C
or E |= ¬~∃C. With respect to the concept of satisfaction completeness in presence of non-trivial
theories, Proposition 2.2 leads to the following result:

Corollary 2.3 Given a non-trivial equational theory E such that the set Adm contains all Σ-
equations and Σ-disequations, E is not satisfaction complete.

Satisfaction completeness forces each model to be complete w.r.t. the testing of satisfiability of
the class of formulae Adm. The above result states that this is not possible for equational theories.

As mentioned in Section 1, our ultimate goal is to handle constraints composed of arbitrary
conjunctions C of Σ-equations and Σ-disequations. This class of problems has been typically referred
to as E-disunification problems [15, 9]. An E-solution σ of C in a structure M is a valuation
σ : V −→ M such that M |= σ(s) = σ(t) for all s = t in C and M |= σ(s) 6= σ(t) for all s 6= t in C.

The technique for handling equations and disequations presented in this paper provides a
methodology to tackle disunification problems. As a matter of fact, if E is a finitary theory—
i.e., every unification problem admits a finite complete collection of most general unifiers—and a
complete set of unifiers can be computed, then a disunification problem C can be simply solved by:

5

1. computing a complete set of unifiers for the equations in C, and

2. verifying whether, given any of these unifiers σ, there is a solution for the disequations of
Cσ [5].

Clearly, here we are taking advantage of the fact that ACI1-unification problems can be not only
decided, but a collection of unifiers for such problems can be explicitly computed [4].

2.2 ACI1 and its Models

Let us start by recalling some standard definitions from lattice theory [26]. A binary relation
≤ over L is a partial order on L if ≤ is reflexive, antisymmetric, and transitive. Let us denote
with ⊥ the bottom of the partial order—i.e., (∀x ∈ L)(⊥ ≤ x). 〈L,≤〉 is a join-semilattice if
the element x

∨
y ∈ L exists for each x, y ∈ L, where x

∨
y (x join y) is the unique element

satisfying the properties: x ≤ x
∨

y, y ≤ x
∨

y, and for all z ∈ L such that x ≤ z and y ≤ z
it holds that x

∨
y ≤ z. If 〈L,≤〉 is a partial order with bottom ⊥, then a ∈ L is an atom if

(∀x ∈ L)((x ≤ a∧x 6= a) → x = ⊥). Thus, if a is an atom then the only other element x such that
x ≤ a is ⊥.

Let Σ ⊇ {∅,∪} be a signature containing the binary function symbol ∪ and the constant symbol
∅, and let V be a countable set of variables. The following equations describe the theory ACI1:

(A) (X ∪ Y) ∪ Z = X ∪ (Y ∪ Z)
(C) X ∪ Y = Y ∪X
(I) X ∪X = X
(1) ∅ ∪X = X

Let us analyze the structures M = 〈M, ()M〉 for Σ = {∅,∪} that are models of ACI1. By
definition of structure, the domain M cannot be empty. Let us indicate with the symbol ⊥ the
element (∅)M ∈ M . A relation ≤ is induced by (∪)M (simply denoted by ∪M) on M :

x ≤ y ↔ x ∪M y = y

Proposition 2.4 Let M = 〈M, ()M〉 be a model of ACI. Then ≤ is a partial order on M .
Moreover, if M is a model of the axiom (1), then ⊥ = (∅)M is the bottom of (M,≤).

Proof. ≤ is reflexive, since, by (I) x∪Mx = x for all x ∈ M . ≤ is antisymmetric, since, by (C), x∪M y = y
and y ∪M x = x implies x = y.

Assume x ∪M y = y and y ∪M z = z. Then x ∪M z = x ∪M (y ∪M z). From axiom (A) we obtain
that the latter is equal to (x ∪M y) ∪M z = y ∪M z = z, which proves the transitivity of ≤. Finally, by (1)
(∀x ∈ M)((∅)M ∪M x = x), i.e., ⊥ ≤ x. 2

It is easy to observe that if M is not a model of ACI, then ≤ is not guaranteed to be a partial
order. Given a structure M for {∅,∪} that is a model of ACI1, we denote with 〈M,≤〉 the partial
order defined above [26].

Proposition 2.5 Let M = 〈M, ()M〉 be a structure for {∅,∪} with ⊥ = (∅)M ∈ M . M is a
model of ACI1 if and only if 〈M,≤〉 is a join-semilattice with bottom ⊥.

6

Proof. Let M be a model of ACI1. Proposition 2.4 ensures that ≤ is a partial order on M with bottom
⊥. Hence, 〈M,≤〉 is a join-semilattice, where x

∨
y is defined as x ∪M y.

Let 〈M,≤〉 be a join-semilattice with bottom ⊥. Now M = 〈M, ()M〉 can be defined as (∅)M = ⊥ ∈ M
and ∀a1, a2 ∈ M (a1 ∪M a2 = a1

∨
a2). Observe that a1

∨
a2 exists since 〈M,≤〉 is a join-semilattice. We

prove that M is a model of ACI1 by using standard properties of join and the definition of bottom:

(A) ∀a1, a2, a3 ∈ M (a1 ∪M a2) ∪M a3 = (a1

∨
a2)

∨
a3 = a1

∨
(a2

∨
a3)

= a1 ∪M (a2 ∪M a3)
(C) ∀a1, a2 ∈ M a1 ∪M a2 = a1

∨
a2 = a2

∨
a1 = a2 ∪M a1

(I) ∀a1 ∈ M a1 ∪M a1 = a1

∨
a1 = a1

(1) ∀a1 ∈ M ∅M ∪M a1 = ⊥ ∨
a1 = a1

2

2.3 Term Normalization

The ACI1 axioms allow us to design a normalization function ρ : T (Σ,V) −→ T (Σ,V); the objective
of this function is to normalize all the occurrences of terms having ∪ as main functor. Intuitively,
the effect of ρ is to remove repeated occurrences of terms ti and occurrences of ∅ from terms of
the form t1 ∪ · · · ∪ tn, and reorder the remaining elements according to a predefined lexicographic
ordering between terms—i.e., t1 is “smaller” than t2, t2 is “smaller” than t3, etc.

The normalization proceeds in a number of steps. Let us assume the presence of a predetermined
ordering <# on the symbols in Σ ∪ V such that:

• for each X ∈ V and for each f ∈ Σ \ {∅} we assume that X <# f—i.e., all the variables
precede any other symbol in the ordering

• for each X ∈ V, ∅ <# X

• f <# ∪ for each f ∈ Σ \ {∪}
This ordering between symbols can be used to create a lexicographic ordering ≺ between all the
terms in T (Σ,V). In the following f and g stands for function symbols in Σ (including ∪) and we
assume that a term with outermost symbol ∪ is written as ∪(s, t). t ≺ t′ iff

• t = ∅, and t′ 6= ∅
• t, t′ ∈ V and t <# t′

• t ∈ V and t′ 6∈ V
• t = f(t1, . . . , tn), t′ = g(s1, . . . , sm) and f <# g

• t = f(t1, . . . , tn), t′ = f(s1, . . . , sn), and there exist 1 ≤ i ≤ n such that tj = sj for j < i and
ti ≺ si.

The actual normalization is realized by the procedure ρ described in Figure 1. Given a term
t ∈ T ({∅,∪},V), then ρ(t) is always of the form ∅ or X1 ∪ · · · ∪Xm, where X1 ¹ · · · ¹ Xm.

Observe that the result of ρ(t) is not properly a term, but the associativity of ∪ allows us to
use this entity as a term.

The function top sort used in the algorithm in Figure 1 is a lexicographical sorting algorithm that
accepts as input lists of terms from T (Σ,V), and uses <# as the ordering criterion to compare basic

7

components of the terms. η(t) is an auxiliary function that removes all the outermost parentheses
when the term t is of the form ((· · · (t1 ∪ t2) ∪ · · ·) ∪ th)—again, this is possible thanks to the
associative nature of the operator ∪.

function ρ(t):
if t is of the form f(t1, . . . , th), h ≥ 0, f 6≡ ∪
then return f(ρ(t1), . . . , ρ(th))
else begin

t1 ∪ · · · ∪ th := η(t);
for i := 1 to h do ti := ρ(ti);
L := top sort([t1, . . . , th]);
[s1, . . . , sm] := remove repetitions from L;
if m > 1 and s1 = ∅

then return s2 ∪ · · · ∪ sm

else return s1 ∪ · · · ∪ sm

end;

function η(t):
if t is of the form (t1 ∪ t2)
then return η(t1) ∪ η(t2)
else return t;

Figure 1: Normalization function

Theorem 2.6 Let S = Σ\{∅,∪}. If t ∈ T (Σ,V), vars(t) = X̄, |t| = n, then ACI1 |= ∀X̄ (ρ(t) = t)
and

1. if S is a set of constant symbols, then ρ(t) can be computed in time O(n log n),

2. if S contains a function symbol of arity greater than 0, then ρ(t) can be computed in time
O(n2).

Proof. The soundness and completeness of the transformation rules is an immediate consequences of the
axioms ACI1. The following observations can be drawn concerning the time complexity of the simplification
process:

1. In the first case, there are no occurrences of function symbols in t. Thus, there is only one list to sort
and it is made of strings of length 1. The time complexity is O(n) for η, O(n log n) for the ordering,
and O(n) to remove repetitions; the last instruction has cost O(1).

2. From [2] we know that top sort has complexity O(`tot +m), where m is the cardinality of the alphabet
and `tot is the sum of the lengths of the strings to sort. We can consider the alphabet composed of
the set of function and constant symbols and variables occurring in t. Determining the alphabet can
be achieved in time O(n log n) before calling ρ (for the sake of simplicity, we do not count parentheses
and commas). Thus, m ≤ n and `tot ≤ n; the complexity of top sort is O(n).
The time complexity T (n) can be determined as follows:





T (1) = c when t is a constant or a variable term

T (n) =
h∑

i=1

T (`i) + c when t is f(t1, . . . , th), h > 0, and `i is the length of ti

T (n) =
h∑

i=1

T (`i) + O(n) when η(t) is t1 ∪ · · · ∪ th, h > 0, and `i is the length of ti

The worst case is the last one. We prove, by induction that T (n) = O(n2).
Base: For n = 1 the result is trivial.
Step: Assume that T (`) = O(`2) ≤ k`2, for some k ∈ N, for all ` < n. Since

h∑

i=1

`i ≤ n− 1 (3)

8

then we have:

T (n) =
h∑

i=1

T (`i) + O(n) by definition

≤ k
h∑

i=1

(`i)2 + O(n) by inductive hypothesis

≤ k(
h∑

i=1

`i)2 + O(n) by algebraic properties

≤ k(n− 1)2 + O(n) by property (3)

Since we can assume k large enough to guarantee that k(n − 1)2 + O(n) ≤ kn2 and we have proved
the bound using the same constant k of the inductive hypothesis, we have that T (n) = O(n2).

2

Observe that if Σ is completely known a priori and it is not a general signature, then a radix
sort algorithm can be employed for computing ρ, leading to a time complexity of O(n + |Σ|).

Corollary 2.7 Let t1, t2 ∈ T (Σ,V). Then ACI1 |= ~∀(t1 = t2) if and only if ρ(t1) ≡ ρ(t2).

Proof. It derives from Theorem 2.6 and from the uniqueness of the results of the lexicographical ordering
without repetitions. 2

Given a term t of T (Σ) we will say that t is normalized (or in canonical form) if t ≡ ρ(t). ρ(t)
can be chosen as canonical representative of the ACI1-congruence class [t] in T (Σ) or T (Σ,V).
Observe also that ρ is an idempotent operation, thus ρ(t) ≡ ρ(ρ(t)).

Given a conjunction C ≡ (s1π1t1 ∧ · · · ∧ shπhth) where πi ∈ {=, 6=}, its normalized form is the
formula

ρ(C) ≡ ρ(s1)π1ρ(t1) ∧ · · · ∧ ρ(sh)πhρ(th).

The worst-case time complexity for the computation of the normalized form of C is O(n2), where
n = |C|.

Corollary 2.8 If C ≡ (s1π1t1 ∧ · · · ∧ shπhth), where πi ∈ {=, 6=}, then ACI1 |= ~∀(C ↔ ρ(C)).

Proof. It follows from Corollary 2.7. 2

3 ACI1 Equation Constraints — Unification

Given two terms s, t we are interested in the decision problem ACI1 |= ~∃(s = t) and in computing
a complete set of ACI1-unifiers. Thanks to Corollary 2.8, we can concentrate on the problem
ACI1 |= ~∃(ρ(s) = ρ(t)). We can distinguish three classes of unification problem, according to the
content of the signature Σ:

Elementary Unification: Σ contains exclusively the two symbols ∪ and ∅; i.e., Σ = {∅,∪}.
The decision problem in this case admits always an affirmative answer—the substitution
[V/∅ : V ∈ vars(s, t)], which assigns ∅ to each variable, is always a unifier. ρ(s) = ρ(t) is of
the form:1

X1 ∪ · · · ∪Xm = Y1 ∪ · · · ∪ Yn

1When m = 0 the l.h.s. is simply ∅ and, similarly, if n = 0 then the r.h.s. is just ∅.

9

If m = 0 and n = 0, the unique most general unifier is the empty substitution ε. When m > 0
and n = 0, the unification has the unique most general solution: [X1/∅, . . . , Xm/∅] (similarly
when m = 0 and n > 0). The case m > 0, n > 0 is more complex. However, it is possible to
prove that a unique most general unifier exists [4].

Example 3.1 Consider the unification problem X∪Y = Z∪W ∪T . The unique most general
unifier for this problem can be obtained from the following table:

X Y

A1,1 A1,2 Z

A2,1 A2,2 W

A3,1 A3,2 T

The substitution for the left-hand side variables is obtained from the columns of the table—
e.g., [X/A1,1∪A2,1∪A3,1]—while the substitution for the right-hand side variables is obtained
from the row of the table—e.g., [W/A2,1 ∪A2,2].

General methods for computing the most general unifier for this class of problems have been
presented in [4].

Unification with Constants: Σ contains the two symbols ∪ and ∅, together with a finite collec-
tion of constants {c1, . . . , cn} distinct from ∅; i.e., Σ = {∪, ∅, c1, . . . , cn}. An equation of the
type ρ(s) = ρ(t) is of the form:

X1 ∪ · · · ∪Xk ∪ b1 ∪ · · · ∪ bh = Y1 ∪ · · · ∪ Yq ∪ d1 ∪ · · · ∪ dp

where Xi, Yj are variables and bi, dj are constants. The decision problem ACI1 |= ~∃(ρ(s) =
ρ(t)) can be solved in time O(n) where n = |ρ(s)| + |ρ(t)|. First of all we can observe that
there are structures for ACI1 in which all the constant symbols are mapped to different
domain objects and where the union of different constants is mapped to different objects
as well. Thus, there are equations that are unsatisfiable in some models. For example, the
equation ∅ = c1 is unsatisfiable in any structure which maps c1 to an object different from
⊥. It is possible to verify satisfiability of an equation via a simple inclusion test on the set of
constant symbols appearing in the two terms; thanks to the <# ordering, this can be done
in linear time.

In [4] it is shown how to compute a (minimal) complete set of most general unifiers for this
problem. Uniqueness of the most general unifier is lost, due to the presence of constants,
but the problem remains finitary—i.e., it is possible to describe the complete set of solutions
through a finite number of unifiers.

General Unification: Σ contains an arbitrary collection of symbols without restrictions on their
number and arity; i.e., Σ = {∪, ∅, f1, f2, . . .}.
The general unification problem ρ(s) = ρ(t) has the following format:

X1 ∪ · · · ∪Xh ∪ s1 ∪ · · · ∪ sk = Y1 ∪ · · · ∪ Yp ∪ t1 ∪ · · · ∪ tq

where si, tj are terms whose main functor is different from ∪.

10

The decision problem is NP-complete. The unification problem remains finitary [28, 21],
and non-deterministic polynomial algorithms to enumerate the solutions have been proposed.
However, remember that the number of solutions to the unification problem can be exponen-
tial. Algorithms to compute complete collections of unifiers for this class of problems have
been presented in the literature—either as combination of simpler unification procedures [6]
or as direct unification algorithms [21].

4 ACI1 Disequation Constraints - Disunification

In this section we will concentrate on the problem of handling conjunctions of disequations. The
whole disunification problem—conjunctions of equations and disequations—can be solved in two
steps. In the first step, we can apply the unification techniques mentioned in the previous section
to the equations present in the constraint. In the second step, each unifier produced can be applied
to the constraint, thus allowing to remove all the equations from the constraint, and leaving only
the disequations ρ(s) 6= ρ(t). While in the unification case each equation is satisfiable in at least
one model of ACI1, the same does not hold in the case of disequations. A negative constraint can
be unsatisfiable in all models (e.g., ∅ 6= ∅). Other constraints (e.g., X1 6= X2) are satisfiable in some
structures and unsatisfiable in others. Thus, the study of ACI1 disequations requires an in-depth
analysis of the possible structures for the theory considered.

4.1 Elementary ACI1 Disequation Constraints

Let us consider Σ = {∅,∪}. Given a term t, ρ(t) can be either ∅ or X1 ∪ · · · ∪ Xm. Thus, a
disequation in normalized form is described by one of the following cases:

1. r 6= r (i.e., ∅ 6= ∅ or X1 ∪ · · · ∪Xm 6= X1 ∪ · · · ∪Xm)

2. X1 ∪ · · · ∪Xm 6= ∅, m > 0

3. X1 ∪ · · · ∪Xi ∪ · · · ∪Xm 6= Y1 ∪ · · · ∪ Yn, m,n > 0, such that there exists an Xi which does
not occur among Y1, . . . , Yn

Cases 2 or 3 can be obtained from ρ(s) 6= ρ(t) by swapping the left-hand side and right-hand side
of the disequation.

The first disequation is clearly false in any model of E. A disequation of the form 2 or 3 is false
in 1 but it is satisfiable in any other structure for ACI1. To obtain a successful valuation σ for
form 2 and 3 we can simply fix an element of the domain distinct from ⊥, say a, and put σ(Xi) = a,
and σ(Z) = ⊥ for all variables Z different from Xi. As far as a disequation constraint of the form
C ≡ (s1 6= t1 ∧ . . . ∧ sn 6= tn) is concerned, the following theorem gives a sufficient condition for its
satisfiability.

Theorem 4.1 Let C be a disequation constraint in normalized form containing N primitive con-
straints of type 3 and K primitive constraints of type 2. Let us define P = ς(N,K), where
ς(N, K) = N if K = 0 and ς(N, K) = N + 1 if K > 0. Then C is satisfiable in any structure which
contains a substructure isomorphic to 〈℘({a1, . . . , aP }),⊆〉.
Proof. Let Xδi i = 1, . . . , N be a variable occurring in the left-hand side but not in the right-hand side of
the ith primitive constraint. A solution σ can be built by assigning {ai} to Xδi if Xδi has not been assigned
yet. Observe that the elements {ai} are the atoms of the substructure isomorphic to 〈℘({a1, . . . , aP }),⊆〉.

11

If there are also equations of type 2, then {aN+1} is assigned to all the remaining variables; otherwise,
⊥ is assigned to all the remaining variables. 2

If, on the other hand, the structureM is fixed a priori, and possibly not wide enough—according
to Theorem 4.1 and Corollary 4.3—then the satisfiability problem becomes NP-complete:

Theorem 4.2 Let M = 〈M,≤〉 be a join-semilattice with bottom, |M | = k. Deciding the satisfia-
bility of an ACI1-constraint in M is a NP-complete problem.

Proof. Given the structure M, with its interpretation of ∪, and a valuation σ of the variables of the
constraint C on M , it is easy to infer in polynomial time if σ is a solution or not.

To prove NP-hardness, consider the following polynomial reduction. Let G = 〈V,E〉 be a graph. The
k-coloring problem for G is known to be NP-complete [17]. Let us consider the constraint:

C =
∧

X,Y ∈V,{X,Y }∈E

X 6= Y

The satisfiability of the k-coloring problem for G is equivalent to the satisfiability of C over M. 2

The NP-hard nature of the problem in presence of a fixed domain justifies a preliminary poly-
nomial test to check if the domain is “wide enough”, as described in Theorem 4.1. This can be
formalized in the following corollary.

Corollary 4.3 Let C be a disequation constraint in normalized form containing N constraints of
type 3 and K constraints of type 2, and let M be a structure. If the structure is sufficiently
“wide”—i.e., it contains a substructure isomorphic to a boolean lattice of size at least 2ς(N,K)—
then the satisfiability problem for a disequation constraint C can be decided with time complexity
O((N + K) log(N + K)).

4.2 ACI1 Disequation Constraints with Constants

Let Σ be {∅ ≡ c0,∪, c1, . . . , cm}, where c1, . . . , cm are constants.
Let us characterize the structures suitable to interpret Σ. All models M studied in the case

of elementary ACI1—thus, all join-semilattices with bottom, as discussed in Proposition 2.5—are
also models of ACI1 on Σ, provided an interpretation of the constant symbols c1, . . . , cm over M
is given. However, it is natural to focus on structures in which the m constants are interpreted
as distinct objects, each different from ⊥. This is equivalent to the introduction of an additional
(non-equational) axiom in the theory ACI1:

(F ′
2) ci 6= cj i, j ∈ {0, . . . ,m}, i 6= j

Structures satisfying ACI1F ′
2 are exactly all the join-semilattices with bottom with a domain of

at least m + 1 objects. (F ′
2) is actually an instance of the freeness axiom scheme (F2) of Clark’s

Equality Theory [12, 34]—also known as Clash [29]. For example, if m = 4, all the structures of
Figure 2 are models of such extended theory.

Furthermore, in our common intuition we desire the constants to play the role of atoms of such
semilattices. Thus, among the possible models, we are interested in those satisfying the additional
axiom Dc (D stands for Domain, c for constants)

(Dc) (∀I, J ⊆ {1, . . . , m})
(
I 6= J → ⋃

i∈I ci 6=
⋃

j∈J cj

)

12

c4

•
↗ ↖

c2• •c3

↖ ↗
•c1

↑
•⊥

c4•
↑

c3•
↑

c2•
↑

c1•
↑

⊥•

• c1 ∪ c2 ∪ c3 ∪ c4

...
...

...
...

c1• c2• c3• c4•
↖ ↑ ↗ ↗

•⊥

Figure 2: Some models of ACI1 when Σ = {∅,∪, c1, c2, c3, c4}
where, if S = {a1, . . . , an} ⊆ {1, . . . , m}, then

⋃
i∈S ci represents the term ca1 ∪ · · · ∪ can . For

instance, when m = 2, (Dc) becomes:

∅ 6= c1 ∧ ∅ 6= c2 ∧ ∅ 6= c1 ∪ c2 ∧ c1 6= c2 ∧ c1 6= c1 ∪ c2 ∧ c2 6= c1 ∪ c2

Among the structures satisfying these requirements, we can find all the Boolean lattices isomorphic
to 〈℘({c1, . . . , cm}),⊆〉, i.e., those having {c1}, . . . , {cm} as atoms. Assuming (Dc) we can also
ignore (F ′

2), since (Dc) implies (F ′
2).

From an operational point of view, let us assume that ∅ <# c1 <# · · · <# cm. Using ρ we can
focus only on the terms of the form:

∅ and X1 ∪ · · · ∪Xk ∪ ci1 ∪ · · · ∪ cih

where h + k > 0 and ij < ij+1 for j = 1, . . . , h − 1. The disequation ρ(s) 6= ρ(t) gives rise to the
following possible cases:

1. r 6= r where r is any normalized term;

2. ci1 ∪ · · · ∪ cih 6= cj1 ∪ · · · ∪ cjk
and {i1, . . . , ih} 6= {j1, . . . , jk}

3. X1 ∪ · · · ∪Xm ∪ ci1 ∪ · · · ∪ cih 6= Y1 ∪ · · · ∪ Yn ∪ cj1 ∪ · · · ∪ cjk

where m > 0 and either {X1, . . . , Xm} 6= {Y1, . . . , Yn} or {ci1 , . . . , cih} 6= {cj1 , . . . , cjk
}.

Disequations of the first type are false in any model of ACI1. Disequations of second type are true
(and therefore can be removed) in any model of ACIDc. In particular, given any join-semilattice
with bottom different from 1, it is possible to satisfy a given disequation of type 2. Similarly,
satisfiability of the disequations of the third type depends on the domain considered. In particular,
a disequation of type 3 is:

• unsatisfiable in 1

• satisfiable in any model of ACI1Dc if there is a constant which occurs on one side and not
on the other, or if there is a constant in Σ which does not occur in the disequation.

The following theorem holds independently from the presence of (Dc):

Theorem 4.4 If C is a disequation constraint in normalized form and it contains r disequations
(of type 2 or 3), then C is satisfiable in any structure for ACI1 which contains a substructure
isomorphic to 〈℘({a1, . . . , ar+1}),⊆〉.

13

Proof. Let us assume that the disequations are numbered. The ith disequation contains an element
(variable or constant) νi which appears on the left-hand side and does not appear on the right-hand side—
otherwise it would be an unsatisfiable disequation of type 1. Let us construct an interpretation ()M and a
valuation σ as follows: if νi is a constant which has not been interpreted yet, then νMi = {ai}, otherwise if νi

is a variable which has not been assigned yet, then σ(νi) = {ai}. All remaining constants can be interpreted
using {ar+1}, while the remaining variables can be assigned σ(X) = ∅. It is straightforward to verify that σ
is a successful valuation of C under the interpretation ()M. 2

In order to handle structures that meet the (Dc) requirement, the size of the substructure in
Theorem 4.4 will have to be properly enlarged—including a distinct ai for each constant.

The proof of the following corollary is a simple generalization of Corollary 4.3 and Theorem 4.4.

Corollary 4.5 If the structure is sufficiently “wide”, then the decision problem for a disequation
constraint C can be solved with worst-case time complexity O(n log n), where n = |C|. For a given
fixed structure, the problem is NP -complete.

4.3 General ACI1 Disequation Constraints

Let us assume that the signature Σ contains at least one function symbol different from ∪ and of
arity greater than 0. From Section 2.2 we know that, when we consider the partial order ≤ induced
by the interpretation of ∪, the models of ACI1 are all the join-semilattices with bottom. However,
in presence of a domain M and an interpretation ∪M, the interpretation of the function symbols
of Σ introduces a variety of possibilities for building models.

4.3.1 Characterization of a Privileged Model

The most common interpretation of the function symbols different from ∪, including the constant
symbols, is the one induced by the structure T (Σ)/ =ACI1, usually denoted by H. In this structure,
()H is defined simply as (t)H = [t] for any term t. This is equivalent to the interpretation of function
symbols as finite tree constructors [33, 27].

In this section we prove some results about this structure and we define a theory TACI1 such
that H and TACI1 correspond on the class of formulae we are interested in—namely conjunctions
of equations and disequations.

Example 4.6 Figure 3 shows a representation of T (Σ)/ =ACI1 when Σ = {∅,∪, {·}} where {·} is
a function symbol of arity 1. With a slight abuse of notation, we denote with {s, t} the congruence
class of {s}∪{t}. This allows one to interpret the domain of the structure as the set of hereditarily
finite and well-founded sets. Sets at level i contain exactly i elements.

...
...

...
...

...
lev. 2 {∅, {∅}} {{∅}, {∅, {∅}}}

↑ ↖ ↑ ↖
...

...
lev. 1 {∅} {{∅}} {{∅, {∅}}} . . .

↖ ↑ ↗ ↗ ↗ . . .
lev. 0 ∅

Figure 3: T ({∅,∪, {·}})/ =ACI1

14

Let us start by observing that the atoms of 〈H,≤〉 are all and only the congruence classes
containing terms whose main (outermost) functor is different from ∪. This is stated by the following
lemma:

Lemma 4.7 The atoms of 〈H,≤〉 are exactly the congruence classes [t], for some ground term
t ≡ f(t1, . . . , tn), f 6≡ ∪, f 6≡ ∅.
Proof. We first prove that the congruence classes induced by the terms of the form f(t1, . . . , tn), with
f 6≡ ∪, f 6≡ ∅, are atoms. Assume [X] ≤ [t], namely H |= f(t1, . . . , tn) = f(t1, . . . , tn) ∪X. This equation
has only two solutions in H: X = ∅ and X = f(t1, . . . , tn) (this can be formally proved using classical results
from unification theory).

Consider now two different ground terms,

f(s1, . . . , sm) and g(t1, . . . , tn)

and assume that H 6|= f(s1, . . . , sm) = g(t1, . . . , tn). Thus,

[f(s1, . . . , sm)] 6= [f(s1, . . . , sm) ∪ g(t1, . . . , tn)]

By definition of ≤ it holds that

[f(s1, . . . , sm)] ≤ [f(s1, . . . , sm) ∪ g(t1, . . . , tn)]

and, moreover, [f(s1, . . . , sm)] 6= ∅. This means that [f(s1, . . . , sm) ∪ g(t1, . . . , tn)] is not an atom. 2

With a slight abuse of notation, from now on we will call atom any term whose main (outermost)
function symbol is different from ∪. Observe that, by reading ∪ as the traditional union operation
between sets, then the selected structure H properly models a form of the extensionality principle
for equality between sets, as illustrated in the following lemma.

Lemma 4.8 Let s, t be two terms, σ be a valuation, and let us assume that s1 ∪ · · · ∪ sm ∈ σ(s)
and t1 ∪ · · · ∪ tn ∈ σ(t), where all the si, tj are atoms. For all successful valuations σ over H of the
constraint s 6= t, there exist an atom a and an index i such that

• si = a and, for all tj, tj 6= a or,

• ti = a and, for all sj, sj 6= a.

Proof. Assume σ(s) 6= σ(t). This means that for all s′ term in the class identified by σ(s) and t′ term in
in the class identified by σ(t), it holds that ACI1 6|= (s′ = t′). But if all the atoms composing s′ were in t′

and vice versa, then by ACI we would have the equality. 2

The structure H is also a model of the freeness equational axioms (this will be proved in
Lemma 4.10):

(F1) f(X1, . . . , Xn) = f(Y1, . . . , Yn) → X1 = Y1 ∧ · · · ∧Xn = Yn f ∈ Σ, f 6≡ ∪
(F2) f(X1, . . . , Xm) 6= g(Y1, . . . , Yn) f 6≡ g, f, g 6≡ ∪
(F3) X 6= t1 ∪ · · · ∪ f(· · ·X · · ·) ∪ · · · ∪ tn f 6≡ ∪

The standard freeness axioms [12] (also known as Decomposition, Clash, and Occur-check [29]) have
been here refined to capture the behavior of ∪; in particular, the axiom schema (F3) deals with
nested occurrences of variables in a term.

15

Similarly to what we did for (Dc) in the previous section, we would like to enforce the property
that unions of distinct atoms produce distinct objects of the domain. Instead of extending (Dc)—
which would be quite cumbersome in this context—we introduce the following new axiom schema—a
form of Mutation rule [16]: for all f ∈ Σ, f 6≡ ∪, ar(f) = n:

(Df) f(X1, . . . , Xn) ∪X = Y1 ∪ Y2 →

∃Z1, Z2




(Y1 = f(X1, . . . , Xn) ∪ Z1 ∧ X = Z1 ∪ Y2) ∨
(Y2 = f(X1, . . . , Xn) ∪ Z2 ∧ X = Y1 ∪ Z2) ∨
(Y1 = f(X1, . . . , Xn) ∪ Z1 ∧ Y2 = f(X1, . . . , Xn) ∪ Z2 ∧ X = Z1 ∪ Z2)




Observe that the ← direction is a simple consequence of axioms ACI. This axiom scheme captures
the intuitive notion of atoms in the context of ∪—i.e., each term constructed using a function
symbol f distinct from ∪ is an atom of the semilattice—and subsumes the cases covered by (Dc). In
particular, it is possible (using a by case proof-theoretic analysis) to prove that ACI1DfF2 |= (Dc),
while the converse of this result is not true. Consider, for example, Σ = {∅,∪, c} and the lattice
⊥ < a1,⊥ < a2, a1 < cM, a2 < cM. It satisfies (Dc) but not (Df): consider

c ∪ ⊥︸︷︷︸
X

= a1︸︷︷︸
Y1

∪ a2︸︷︷︸
Y2

.

Instead of proving the above mentioned result, we will prove the weaker result ACI1DfF1F2F3 |=
(Dc) (i.e. TACI1 |= (Dc)).

First we prove the correspondence between the structure H and the theory

TACI1 ≡ ACI1F1F2F3Df

on the class of all the conjunction of equations and disequations. We begin by recalling a result
from [37].

Lemma 4.9 Let M and N be two structures of a first-order language L, and let h be an embedding
of M in N . If ϕ is a quantifier-free (open) formula of L, then for each valuation σ we have
M |= σ(ϕ) ↔ N |= h(σ(ϕ)) 2

To prove that H and TACI1 correspond, we first need to formally prove that H is a model of
TACI1:

Lemma 4.10 H is a model of the theory TACI1.

Proof. We prove that the property holds for the various axioms and axiom schema.

(A)(C)(I)(1): H is a model of ACI1, since for any equational theory E, T (Σ)/ =E is a model of E [38].

(F1): If f(t1, . . . , tn) and f(s1, . . . , sn) are ground terms, then the only way to prove f(t1, . . . , tn) = f(s1, . . . , sn)
from ACI1 is:

• to infer ∧n
i=1(ti = si) from ACI1;

• to apply the rule derived from classical equality axioms:

∀X1 · · ·XnX ′
1 · · ·X ′

n

(
n∧

i=1

Xi = X ′
i → f(X1, . . . , Xn) = f(X ′

1, . . . , X
′
n)

)

as last step.

16

(F2): It holds trivially, by definition of H, since terms beginning with different free symbols belong to
different classes.

(F3): The fact that H |= F3 can be proved using a straightforward induction on the complexity of the terms.

(Df): Let us assume that σ is a valuation such that

H |= σ(f(X1, . . . , Xn) ∪X = Y1 ∪ Y2)

then, from Lemma 4.8, a term in the class σ(f(X1, . . . , Xn)) must occur in σ(Y1) or in σ(Y2). This
means that

H |= σ(Y1 = f(X1, . . . , Xn) ∪W1 ∨ Y2 = f(X1, . . . , Xn) ∪W2).

Since H is a model of ACI1, we can assume that no term in σ(f(X1, . . . , Xn)) occurs in σ(W1) or in
σ(W2).
Let us consider, as first case,

H |= ∃W1σ(Y1 = f(X1, . . . , Xn) ∪W1) and H 6|= ∃W2σ(Y2 = f(X1, . . . , Xn) ∪W2).

Since H is a model of (F1), then according to Lemma 4.8 we have that all the atoms of σ(Y1 ∪ Y2)
different from those in σ(f(X1, . . . , Xn)) are atoms of σ(X).
If the atoms in σ(f(X1, . . . , Xn)) are not atoms of σ(X), then, once again from Lemma 4.8, we can
infer that all the atoms of σ(W1) and σ(Y2) have to be atoms of σ(X), and all the atoms of σ(X) have
to be atoms of σ(W1) or of σ(Y2). Hence, from ACI1, H |= σ(X = W1 ∪ Y2), i.e.,

H |= σ(Y1 = f(X1, . . . , Xn) ∪W1 ∧X = W1 ∪ Y2).

If an atom in σ(f(X1, . . . , Xn)) is an atom of σ(X), then consider Z1 = W1 ∪ f(X1, . . . , Xn). The
following statement holds: H |= σ(Y1 = f(X1, . . . , Xn)∪Z1), and, as in the previous case, H |= σ(X =
Z1 ∪ Y2).
The second case, in whichH |= ∃W2σ(Y2 = f(X1, . . . , Xn)∪W2), butH 6|= ∃W1σ(Y1 = f(X1, . . . , Xn)∪
W1), can be dealt with similarly.
The third case, in which

H |= ∃W1σ(Y2 = f(X1, . . . , Xn) ∪W1) and H |= ∃W2σ(Y1 = f(X1, . . . , Xn) ∪W2)

is similar to Z1 = W1 ∪ f(X1, . . . , Xn), when σ(f(X1, . . . , Xn)) is an atom of σ(X).

2

Lemma 4.11 If N is a model of TACI1, then the function h : H −→ N , defined as h([t]) = tN is
an embedding of H in N .

Proof. We will prove the following facts:

1. The definition of h([t]) does not depend on the choice of the representative of the class;

2. h is an homomorphism;

3. h is injective.

Since we are focusing only on equations and disequation, we can assume that L does not contain predicate
symbols different from =; thus, (2) and (3) ensure that h is an embedding.

1. If t1 and t2 are two terms such that [t1] = [t2], then by definition ACI1 |= t1 = t2. Since M |= t1 = t2
holds for every model M of ACI1, then in particular it holds for N , i.e., tN1 = tN2 .

17

2. We need to prove that for all f ∈ Σ and for all terms t1, . . . , tn ∈ T (Σ) it holds that

h(fH([t1], . . . , [tn])) = fN (h(t1), . . . , h(tn))

Now,
h(fH([t1], . . . , [tn]) = h(f(t1, . . . , tn)) By property 1. above

= (f(t1, . . . , tn))N By definition of h
= fN (tB1 , . . . , tNn) By definition of structure
= fN (h([t1]), . . . , h([tn])) By definition of h

3. We need to prove that if h([t1]) = h([t2]), then [t1] = [t2]. We have already proved that h does
not depend on the representative of the class, hence we can assume that t1 and t2 are in normalized
form. Using this assumption and Corollary 2.7 we have to prove that if t1 and t2 are normalized and
h([t1]) = h([t2]), then t1 ≡ t2.
We prove this fact by structural induction on t1.
Base: Let t1 ≡ c be a constant. Since N is a model of axiom schema (F2), it can not be that
t2 ≡ f(s1, . . . , sn), with f 6≡ ∪, f 6≡ c.
Moreover N is a model of ACI1Df , hence

cN ∪ ∅N = sN1 ∪ sN2 implies (sN1 = cN ∧ sN2 = ∅N) ∨ (sN1 = ∅N ∧ sN2 = cN) ∨ (sN1 = cN ∧ sN2 = cN)

and, since N is a model of (F2), this implies

(s1 ≡ c ∧ s2 ≡ ∅) ∨ (s1 ≡ ∅ ∧ s2 ≡ c) ∨ (s1 ≡ c ∧ s2 ≡ c)

Thus, since t2 is assumed to be normalized, it cannot be the case that t2 ≡ s1 ∪ s2. This can be
generalized to obtain t2 6≡ s1 ∪ s2 ∪ · · · ∪ sn.
Step: Let t1 ≡ f(s1, . . . , sn), with f 6≡ ∪. It cannot be t2 ≡ g(r1, . . . , rm), with g 6≡ f,∪, since N is a
model of F2.
As in the previous case we obtain that t2 cannot be of the form r1 ∪ · · · ∪ rm. Thus, it must be that
t2 ≡ f(r1, . . . , rn), and sNi = rNi , for all i ≤ n. Using the inductive hypothesis we can infer t1 ≡ t2.
Let t1 ≡ s1 ∪ · · · ∪ sm. Since it cannot be that t2 ≡ f(r1, . . . , rn) (from the previous case applied to
t2), then it must be t2 ≡ r1 ∪ · · · ∪ rn.
Since t1 and t2 are in normalized form, it must be si ≡ fi(· · ·) and rj ≡ gj(· · ·), with f, g 6≡ ∪.
Proceeding by contradiction, if tN1 6≡ tB2 , since N is a model of ACI1 the following must hold:

∃i ≤ m ∀j ≤ n sNi 6≡ tNj ∨ ∃j ≤ n i ≤ m tNj 6≡ sNi

Without loss of generality we can focus on the first case of the disjunction, and i = 1. By inductive
hypothesis we have ∀j ≤ nh([s1]) 6= h([tj]). Hence, since we have proved that h is an homomorphism,
then the following will also hold:

h([t1]) = h([s1]) ∪N · · · ∪N h([sm]) = sN1 ∪N · · · ∪N sNm
h([t2]) = h([r1]) ∪N · · · ∪N h([rn]) = rN1 ∪N · · · ∪N rNn

From this, since N is a model of Df and si ≡ f1(· · ·), we can conclude that h([t1]) 6= h([t2]).

2

Theorem 4.12 H and TACI1 correspond on the class of all the conjunctions of equations and
disequations.

18

Proof. From Lemma 4.10 it follows that if C is a first order formulae and TACI1 |= C, then H |= C.
On the other hand, if ~∃C is a formula with only existential quantifiers, then H |= ~∃C if and only if there

exists σ such that H |= σ(C). Thus, from Lemma 4.11 and Lemma 4.9, we have that N |= ~∃C for all models
N of TACI1. This implies that TACI1 |= ~∃C. 2

Corollary 4.13 TACI1 |= (Dc).

Proof. All the formulae of the axiom schema (Dc) are formed only by one disequation without variables.
Hence, by Theorem 4.12, TACI1 |= (Dc) if and only if H |= (Dc); the last property is true by definition of
H. 2

4.3.2 Satisfiability

The theorem we present in this section is fundamental for the satisfiability test of all the solved
forms presented in this paper. The goal of the theorem is to relate the normalization of terms
produced by ρ to the existence of solutions for a conjunction of disequation constraints. The
preliminary lemmas proposed in this section are aimed at analyzing the relationships between
syntactic structure of normalized constraints and successful valuations.

A valuation σ : V −→ H is said to be atomic if for all X ∈ V, σ(X) is an atom of H. Observe
that, from Lemma 4.7, we have that if σ is atomic, then σ(X) will be a congruence class of the
form [f(t1, . . . , tn)], with f 6≡ ∅, f 6≡ ∪.

Intuitively, the following lemma shows that if an atomic valuation makes two terms s and t
different, then the valuation will also guarantee that s is different from any “set” (i.e., complex
term constructed using ∪) which contains t:

Lemma 4.14 Let Σ be a general signature, and let s and t ≡ t1∪ · · ·∪ tn be two normalized terms,
where s and ti are atoms.

1. If s 6≡ t, then there exists i ≤ n such that s 6≡ ti.

2. If σ is an atomic valuation which satisfies
∨n

i=1(s 6= ti), then σ satisfies s 6= t.

Proof.
1) If for all i ≤ n we have s ≡ ti, then it is also true that for all i, j ≤ n ti ≡ tj . Hence, since t is normalized,
it must be t ≡ t1. From t ≡ t1 and s ≡ t1 we obtain s ≡ t, which contradicts the initial assumption s 6≡ t.

2) By axiom (C), without loss of generality, we can assume that σ satisfies s 6= t1. From (Df) we have

s ∪ ∅ = t1 ∪ Y ↔ ∃A,B




(t1 = s ∪A ∧ ∅ = A ∪ Y)∨
(Y = s ∪B ∧ ∅ = B ∪ t1)∨
(t1 = s ∪A ∧ Y = s ∪B ∧ ∅ = A ∪B)




It is easy to show that the following property holds for all n > 0:

ACI1 |= ∀X1 · · ·Xn(X1 ∪ · · · ∪Xn = ∅ ↔ X1 = ∅ ∧ · · · ∧Xn = ∅) (4)

In fact, X1 ∪ · · · ∪Xn = ∅ implies that X1 ∪ (X1 ∪ · · · ∪Xn) = X1 ∪∅ = X1, and (X1 ∪X1)∪X2 ∪ · · · ∪Xn =
X1 ∪X2 ∪ · · · ∪Xn = ∅. Similarly for X2, . . . , Xn. The converse is immediate.

From this property we have that ∅ = A ∪ B ↔ A = ∅ ∧ B = ∅. This allows us to rewrite the above
formula as

s = t1 ∪ Y ↔ (t1 = s ∧ Y = ∅) ∨ (Y = s ∧ t1 = ∅) ∨ (t1 = s ∧ Y = s)

19

Since t is a normalized term, we know that t1 is normalized, as well, and t1 6≡ ∅: from (F2) we can infer that
t1 = ∅ is unsatisfiable. Hence, we are left with

s = t1 ∪ Y ↔ (t1 = s ∧ Y = ∅) ∨ (t1 = s ∧ Y = s)

Since the considerations hold for arbitrary Y , then we can also infer:

s = t1 ∪ (t2 ∪ . . . ∪ tn) ↔ (t1 = s ∧ t2 ∪ . . . ∪ tn = ∅) ∨ (t1 = s ∧ t2 ∪ . . . ∪ tn = s)

In our case σ(s) 6= σ(t1), which leads to σ(s) 6= σ(t1) ∪ σ(t2) ∪ . . . ∪ σ(tn), hence σ(s) 6= σ(t). 2

The following lemma provides an “extensional” view of disequations between ∪-terms:

Lemma 4.15 Let Σ be a general signature. Let s ≡ s1 ∪ · · · ∪ sm and t ≡ t1 ∪ · · · ∪ tn be two
normalized terms, si, tj are atoms.

1. If s 6≡ t, then:

• there is j ≤ m such that, for all i ≤ n, the relation sj 6≡ ti holds; or

• there is i ≤ n such that, for all j ≤ m, the relation ti 6≡ sj holds.

2. Assume that σ is an atomic valuation which satisfies



m∨

j=1

n∧

i=1

sj 6= ti


 ∨




n∨

i=1

m∧

j=1

ti 6= sj


 ,

then σ satisfies s 6= t.

Proof.
1) Let us assume that for each j ≤ m there exists ij ≤ n such that sj ≡ tij . Let us also assume that for each
i ≤ n there exists ji ≤ m such that ti ≡ sji . Since s and t are in normalized form, these assumptions lead
to the facts

• m = n and

• for all j and i it holds that i = ji and j = ij .

As a consequence s ≡ t must hold, which contradicts the hypothesis.

2) Let us show this result for m = 2, n = 2—the proof can be easily generalized to arbitrary m,n. Without
loss of generality, we can assume that σ satisfies ∧n

i=1(s1 6= ti), namely s1 6= t1 ∧ s1 6= t2.
From (Df) we have

s1 ∪ Y = t1 ∪ t2 ↔ ∃A,B




(t1 = s1 ∪A ∧ Y = A ∪ t2)∨
(t2 = s1 ∪B ∧ Y = B ∪ t1)∨
(t1 = s1 ∪A ∧ t2 = s1 ∪B ∧ Y = A ∪B)




Observe that s1∪ s2 and t1∪ t2 are normalized, hence s1, s2, t1, t2 are normalized and different from ∅. Since
σ(s1) 6= σ(t1), from the proof of Lemma 4.14 (case 2) we have that σ(t1) 6= σ(s1)∪A holds for all A. In the
same way, since σ(s1) 6= σ(t2) we have that σ(t2) 6= σ(s1) ∪ B holds for all B. So it must be the case that
σ(s1) ∪ Y 6= σ(t1) ∪ σ(t2) for all Y , and hence, with Y = σ(s2), we obtain σ(s) 6= σ(t). 2

We will define the structure N having as domain the set of natural numbers, over which we
will verify the satisfiability of numeric constraints. The function depth : T (Σ,V) −→ N will be
important to build an homomorphism between N and H. This function has been defined also on

20

non-ground terms, as this fact will prove useful in Section 8. Intuitively, the function is used to
determine the depth of a term interpreted as a tree, where all sub-terms ti of a term of the type
t1 ∪ · · · ∪ tn are seen as children of the same root. Satisfiability over N will imply satisfiability over
H. 




depth(X) = 0 if X is a variable
depth(∅) = 0
depth(c) = 1 if c is a constant, c 6≡ ∅

depth(t1 ∪ t2) = max2
i=1 depth(ti)

depth(f(t1, . . . , tn)) = 1 + maxn
i=1 depth(ti) f 6≡ ∪

Given a general signature Σ, we define the structure N = 〈N, ()N 〉, where ()N is defined as:

(t)N = depth(t)

It is immediate to prove that if ACI1 |= (s = t) for ground terms s and t, then depth(s) = depth(t).
Thus, with a slight abuse of notation, we will use depth also for the congruence class [t] of a term t.

Lemma 4.16 The function depth is an homomorphism from H to N . Moreover, if σ is a valuation
on H for the variables in s, t, and N |= σ(s) 6= σ(t), then H |= σ(s) 6= σ(t).

Proof. We prove that depth is an homomorphism:

1. depth(∅H) = 0 = ∅N ;

2. depth(cH) = 1 = cN ;

3. depth(t1 ∪H t2) = max{depth(t1), depth(t2)} = depth(t1) ∪H depth(t2);

4. depth(fH(t1, . . . , tn)) = 1 + maxn
i=1 depth(ti) = fN (depth(t1), . . . , depth(tn)).

By [37], if σ satisfies s = t in H, since depth is an homomorphism, then depth ◦ σ satisfies s = t in N .
This allows to derive the second part of the proposition by contradiction. 2

Theorem 4.17 Let Σ be a general signature. A constraint C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn) such that
ρ(si) 6≡ ρ(ti) for all i = 1, . . . , n is satisfiable in H, and in every model of TACI1.

Proof. First of all, according to Corollary 2.8, we have that ACI1 |= ~∀(C ↔ ρ(C)). So, without loss of
generality, we can assume that all the terms si, ti in C are normalized terms.

To achieve the desired result, we proceed as follows: we start by building a new system R; we prove
that each atomic valuation σ satisfying R satisfies C, and finally we prove that R admits always at least one
atomic solution.

• If (si 6= ti) ∈ C and neither si nor ti is of the form ∪ , then let us consider the disequation si 6= ti in
R. Obviously each solution of R is also a solution of si 6= ti.

• If (si 6= ti1∪· · ·∪tik
) ∈ C, where the si and the tij ’s are not of the form ∪ , then since si 6≡ ti1∪· · ·∪tik

(by hypothesis), there must exist j ≤ k such that si 6≡ tij —from Lemma 4.14 case 1. Hence, let us
consider the disequation si 6= tij in R. An atomic solution σ for R is always an atomic solution for
si 6= ti, since σ(si) is an atom different from σ(tij) (from Lemma 4.14 case 2).

• If (si1 ∪ · · · ∪ sih
6= ti1 ∪ · · · ∪ tik

) ∈ C, where the si`
and the tij are not of the form ∪ , then from

Lemma 4.15 case 1 and without loss of generality we can assume that ∧k
j=1(si1 6≡ tij). Hence, let us

consider the disequations si1 6= ti1 , . . . , si1 6= tik
in R. An atomic solution σ for R is a solution for

si 6= ti, from Lemma 4.15 case 2.

21

R is a system of disequations involving atoms and variables. To find an atomic solution σ of R, we
introduce the auxiliary function find : T (Σ,V)× V −→ ℘(N).

find(t, X) =





∅ if X does not occur in t
{0} if t ≡ X
{n | n ∈ find(t1, X) ∨ n ∈ find(t2, X)} if t ≡ t1 ∪ t2
{n + 1 | n ∈ find(ti, X) ∧ 1 ≤ i ≤ m} if t ≡ f(t1, . . . , tm)

This function produces for each pair (t,X) a set of numbers indicating the depth of the occurrences of X
in t. For each variable X in R consider the auxiliary variable NX , which ranges over integer numbers.
Additionally, for each

• pair of terms 〈s, t〉 occurring in R such that s 6≡ t

• variable X in s

• variable Y in t such that Y 6≡ X

• number m(s,X) in find(s, X)

• number m(t,Y) in find(t, Y)

we introduce the disequation
NX 6= NY + m(t,Y) −m(s,X).

For every variable NX consider also the test

NX > max{depth(v) | v ∈ R, v ground},

where the notation v ∈ R stands for: v is a term which occurs in R. This system admits always a solution.
Let us indicate with {nX | X ∈ vars(R)} a solution of such system. Since Σ is general, there is f ∈ Σ,
ar(f) > 0, f 6≡ ∅, f 6≡ ∪. We denote by rh the term constructed as follows:

{
r0 = ∅

rk+1 = f(rk, . . . , rk)

and consider the valuation σ = {X/[rnX] |X ∈ vars(R)}. We can prove that σ satisfies R. It is easy to see
that depth(σ(X)) = nX .

We prove that if s, t are two terms that occur in R (sub-terms of the si, ti), and s 6≡ t, then σ(s) 6= σ(t)
in H. From this result we can conclude the desired claim, since if si 6= ti is in R then si, ti are two terms
which occur in R and si 6≡ ti.

Let us proceed by induction on the structure of s. Since = is symmetric we can avoid to consider the
case s, t if the case t, s has already been considered.

If s ≡ ∅, then, since t 6≡ s, depth(σ(t)) > 0 = depth(σ(s)), from Lemma 4.16, we have σ(s) 6= σ(t). If,
instead s ≡ c with c constant, then, since t 6≡ s, it can be:

• t is a constant different from c, and hence σ(s) = [s] 6= [t] = σ(t);

• t ≡ c1 ∪ · · · ∪ cn, all the ci constants, then from t 6≡ s and Lemma 4.14 case 1, there exists i ≤ n, such
that s 6≡ ci, hence we have the thesis;

• t is a ground term different from a constant, a union of constants, or a non-ground term. In all these
cases, since nX > 1 for all X, depth(σ(y)) > 1 = depth(s), from Lemma 4.16 we have the thesis.

If s ≡ X, then by induction on t:

• if t is ground, then, since depth(σ(X)) = nX > depth(t), from Lemma 4.16 we have the thesis;

• if t ≡ Y , then nX 6= nY is an equation of the system, hence from Lemma 4.16 we have the thesis;

• if t ≡ f(t1, . . . , tn) and X occurs in t, (F3) leads to the thesis;

22

• if t ≡ f(t1, . . . , tn) and X does not occur in t, then since we have imposed

NY > max{depth(v) | v ∈ R, v ground}

for all Y , there must exists a variable Y in t such that depth(σ(t)) = nY + m(t,Y) with m(t,Y) ∈
find(t, Y), in the system we have forced: nX 6= nY + m(t,Y), hence from Lemma 4.16 we have the
thesis;

• if t ≡ t1 ∪ · · · ∪ tn, then from Lemma 4.14 case 1 there exists ti such that ti 6≡ X; hence, by induction
σ(ti) 6= σ(X). From Lemma 4.14 case 2 we have the desired claim.

If s ≡ f(s1, . . . , sn), then by induction on t:

• the result is trivial if t ≡ g(t1, . . . , tm), f 6≡ g;

• if t ≡ f(t1, . . . , tn), then it must be si 6≡ ti for some i ≤ n. By inductive hypothesis we obtain
σ(si) 6= σ(ti), and from (F1) we have the result;

• if t ≡ t1 ∪ · · · ∪ tm, then, from Lemma 4.14 case 1 there is ti 6≡ s. By inductive hypothesis on ti, we
have that σ(s) 6= σ(ti), and from Lemma 4.14 case 2 we can obtain the result.

If s ≡ s1∪· · ·∪sn, and t ≡ t1∪· · ·∪ tm (this is the only case not yet considered), then from Lemma 4.15 case
1 we can focus on ∧m

i=1(s1 6≡ ti). By inductive hypothesis ∧m
i=1(σ(s1) 6= σ(ti)) holds, and from Lemma 4.15

case 2 we can obtain the desired result.
Since we have proved that C is satisfiable in H, from Theorem 4.12, we have that C is satisfiable in every

model of TACI1. 2

Corollary 4.18 If Σ is a general signature, then the satisfiability of a disequation constraint in H
can be decided in polynomial time.

Proof. Theorem 2.6 ensures the polynomial nature of the computation of ρ(C) and the equivalence between
C and ρ(C). If one of the literals of ρ(C) is of the form ρ(s) 6= ρ(s) (this test can be performed in linear time
on |ρ(C)|) then ρ(C) (hence C) is clearly unsatisfiable. If this is not the case, then Theorem 4.17 allows us to
conclude that C is satisfiable. 2

5 Solved Forms

Most constraint systems rely on the availability of constraints simplifiers to transform constraints
into equivalent “simpler” formulae. In particular, it is common to identify a class of formulae,
called solved forms, which are the target of this simplification. As described in [15], solved forms
should meet some intuitive criteria, such as:

• solvability: each formula different from the constant false should admit at least one solution;
• simplicity: every solution can be easily obtained from a solved form;
• completeness: each constraint should be equivalent to a disjunction of solved form constraints.
We propose four solved forms for the ACI1-constraints considered in this paper. Each form can

be incrementally computed from the previous one. The first form (implicit) provides an implicit
representation of its set of solutions. Given a constraint, a unique implicit solved form constraint
can be computed in polynomial (quadratic) time. The second solved form (intermediate) further
simplifies a constraint in implicit normal form. In polynomial (quadratic) time it is possible to
compute a formula containing a collection of intermediate normal form constraints. Each component
of the collection can be computed in polynomial time, but the number of components might be

23

exponential. The third solved form (explicit) represents explicitly its solutions. It can be computed
from the intermediate form on demand. In this case, determining each disjunct requires exponential
time. Finally, the fourth solved form (subset) represents its solutions as constraints on individual
variables.

All the solved forms are instances of the compact formulae defined in [15]. If the theory ACI1
were compact, the ability to reach a solved form would automatically ensure satisfiability of these
constraints over H [15]. However (see Section 7.2 for a formal proof), ACI1 is not compact; thus,
a direct proof of satisfiability of the different solved forms is required.

In the following subsections we precisely characterize the four solved forms. However, we an-
ticipate that all of them satisfy the hypothesis of Theorem 4.17—thus, we have:

Corollary 5.1 An implicit/intermediate/explicit/subset solved form constraint C different from
false is satisfiable in H and TACI1 |= ~∃C.

5.1 Implicit Solved Form

The first solved form we propose refines the constraint ρ(C) by removing useless conjuncts.

Definition 5.2 A constraint C is in implicit solved form if it is false, true, or C ≡ (s1 6= t1 ∧ · · · ∧
sn 6= tn) and for all i = 1, . . . , n

• vars(si) ∪ vars(ti) 6= ∅, (i.e., it does not contain ground disequations), and

• si ≡ ρ(si) and ti ≡ ρ(ti), (i.e., all terms are normalized), and

• si 6≡ ti, (i.e., it does not contain trivial disequations), and

• if ti is a variable, then si is a variable as well—i.e., constraints on individual variables are to
be written as X 6= t—and

• if si is a variable, then it does not occur nested in ti (generalization of occur-check—cf.
definition of nested in Section 2).

Example 5.3 The following constraint is in implicit solved form:

X 6= a ∧ f(X, b) 6= f(a, Y) ∧X ∪ f(X, Y) 6= A ∪ f(c, d) ∧ f(A, b) 6= Y ∪ Z ∧X ∪ Y 6= Y ∪ c (5)

Given a constraint C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn), we can obtain an equivalent constraint
in implicit solved form, starting from ρ(C) (cf. Section 2.3) and applying the function impl simpl
described in Figure 4.2

The result of impl simpl(ρ(t)) is an equivalent constraint in implicit normal form.

Proposition 5.4 Given a constraint C, then impl simpl(ρ(C)) can be computed in time O(n2) where
n = |C|. Moreover, if X̄ = vars(C), then

ACI1F1F2F3 |= ∀X̄(C ↔ impl simpl(ρ(C))
Proof. Complexity follows from Theorem 2.6 and the fact that the function impl simpl analyzes each
disequation at most twice.

The correctness of the procedure follows from the Corollary 2.7 and from analyzing the relationships
between each rewriting rule and axioms (F1), (F2), and (F3). 2

2An efficient implementation would require a careful ordering of the reductions—e.g., applying rule (1) and (S2)
as soon as possible.

24

function impl simpl(ϕ):

while ϕ = ϕ′ ∧ c and c is a disequation not in implicit s.f. do

(1) ϕ′ ∧ r 6= r 7→ false

(2)
ϕ′ ∧ s 6= t

s 6≡ t, vars(s) = ∅ ∧ vars(t) = ∅



 7→ ϕ′

(3)
ϕ′ ∧ t 6= X

t is not a variable



 7→ ϕ′ ∧X 6= t

(4)
ϕ′ ∧X 6= t1 ∪ · · · ∪ f(· · ·X · · ·) ∪ · · · ∪ tn

f 6≡ ∪



 7→ ϕ′

(5)
ϕ′ ∧ f(· · ·) 6= g(· · ·)
f 6≡ g, f 6≡ ∪, g 6≡ ∪



 7→ ϕ′

(S1) ϕ′ ∧ true 7→ ϕ′

(S2) ϕ′ ∧ false 7→ false

Figure 4: Rewriting procedure for implicit solved form

5.2 Intermediate Solved Form

The second solved form provides an additional level of constraint simplification w.r.t. the implicit
solved form. In particular, this solved form simplifies all those disequations where one of the terms
involved is a complex term with a main functor different from ∪.

The simplification procedure used to generate the intermediate solved form constraints intro-
duces a level of non-determinism, but its complexity remains polynomial.

function int simpl(ϕ):

while there is a disequation not in intermediate s.f. in ϕ do

replace it as follows:

(1)–(5) as in impl simpl

(6)
s1 ∪ s2 6= f(t1, . . . , tn)

f 6≡ ∪



 7→ f(t1, . . . , tn) 6= s1 ∪ s2

(7) f(s1, . . . , sn) 6= f(t1, . . . , tn) 7→ (
∨n

i=1 si 6= ti)

(8) f(s1, . . . , sn) 6= t1 ∪ t2 7→



∨2
i=1(f(s1, . . . , sn) 6= ti ∧ ti 6= ∅) ∨

∨(f(s1, . . . , sn) 6= t1 ∧ f(s1, . . . , sn) 6= t2)




Figure 5: Rewriting procedure for intermediate solved form

Definition 5.5 An implicit solved form constraint C is in intermediate solved form if it is false,
true, or C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn) and for all i = 1, . . . , n

• si is a variable which does not occur nested in ti, or

• si ≡ r1 ∪ · · · ∪ rh and ti ≡ v1 ∪ · · · ∪ vk, h, k ≥ 2.

25

Example 5.6 The following constraint is in intermediate solved form:

X 6= a ∧ Y 6= b ∧X ∪ f(X, Y) 6= A ∪ f(c, d) ∧ Y 6= ∅ ∧ Y 6= f(A, b) ∧X ∪ Y 6= Y ∪ c (6)

The procedure described in Figure 5 produces a formula containing only disequations in inter-
mediate solved form. Moreover, the formula is equivalent to the original constraint.

Proposition 5.7 Given a constraint C, the formula int simpl(ρ(C)) can be computed in time O(|C|2).
Moreover, TACI1 |= ~∀(C ↔ int simpl(ρ(C))).

Proof. The basic idea used to prove the complexity result is that of avoiding duplications of newly generated
terms in the step (8). We adopt a tree representation of terms as commonly done in the implementation of
Prolog based on Warren Abstract Machine [43]. Let C = u1 6= v1 ∧ · · · ∧ up 6= vp be the initial system. Let
us assume, without loss of generality, that it is already in implicit solved form. We will use the following
data structures:

• An array Terms, whose cells are of the form 〈Symbol, Pointer〉, where Symbol is an element of Σ ∪ V
and Pointer is a (possibly empty) list of pointers to other table cells. We will always assume that the
entry 0 of the table contains the symbol ∅ and the pointer nil. For instance, the term f(g(a), X ∪ Y)
is represented as follows:

0 ∅ nil
1 f (2, 3)
2 g (4)
3 ∪ (5, 6)
4 a nil
5 X nil
6 Y nil

Initially, the first 2p cells of the table contain the entry points of the representations of the terms
u1, v1, . . . , up, vp.

• An array Diseq that stores tuples of the type 〈Done, Left,Right,Pointer〉 where

– Left and Right are pointers to the entries in the array Terms, and they represent the left-hand
side and the right-hand side of a disequation;

– Done is a flag describing whether the disequation has been completely processed;

– Pointer is of the form and(d1, . . . , dh), or(d1, . . . , dk), or or(and(d1
1, . . . , d

1
h1

), . . . , and(dk
1 , . . . , dk

hk
)),

where di are pointers to other disequations.

At the beginning, only p cells are initialized with values: 〈false, 2i−1, 2i, nil〉 for i = 1, . . . , p. Moreover,
assume that Diseq[0] and Diseq[−1] are used for the atoms true and false, respectively.

The lists stored in the Pointer components are used to maintain the representation of the formula ϕ.
Initially ϕ = and(1, . . . , p) stating that ϕ =

∧
i=1,...,p Diseq[i]. In general, the formula ϕ is represented by the

and-or tree encoded through the Pointer fields.
The algorithm can be implemented using these data structures as follows:

• Choose a disequation i > 0 such that Diseq[i].Done = false and such that one of the rewriting rules
(1)–(8) is applicable. The different steps can be applied as follows:

– (1): set Diseq[i].Pointer = and(−1) and Diseq[i].Done = true.

– (2), (4), and (5): set Diseq[i].Pointer = and(0) and Diseq[i].Done = true.

– (3) and (6): swap the values of Diseq[i].Right and Diseq[i].Left.

26

– (7): let us denote with Sj the pointer stored in the jth position in the list Terms[Diseq[i].Left].Pointer,
and with Tj the pointer stored in the jth position in the list Terms[Diseq[i].Right].Pointer; these
represent the entry points for the terms sj and tj respectively. Add n new disequations to Diseq
(k + 1, . . . , k + n), containing (j = 1, . . . , n):

Diseq[k + j] = 〈false, Sj , Tj , nil〉
In addition, the field Diseq[i].Pointer should be set to or(k+1, . . . , k+n) and the field Diseq[i].Done
should be set to true.

– (8): let us denote with T1 the pointer stored in the first position in the list Terms[Diseq[i].Right].Pointer,
and with T2 the pointer stored in the second position in such list; these represent the entry points
for the terms t1 and t2 respectively. We need to add 4 new disequations to Diseq (k+1, . . . , k+4),
containing:

Diseq[k + 1] = 〈false, Diseq[i].Left, T1, nil〉
Diseq[k + 2] = 〈false, Diseq[i].Left, T2, nil〉
Diseq[k + 3] = 〈false, T1, 0, nil〉
Diseq[k + 4] = 〈false, T2, 0, nil〉

Finally, Diseq[i].Pointer should be set equal to or(and(k+1, k+3), and(k+2, k+4), and(k+1, k+2))
and Diseq[i].Done should be set to true.

It is clear that the global number of operations depends linearly on the number of disequations introduced.
As a matter of fact, each disequation is processed once and a fixed number of operations (maximum in the
cases (7) and (8)) is performed. Thus, the complexity of this procedure corresponds to the number of
disequations introduced. Observe that steps (2) and (5) require the ability to detect which variables are
present in each subterm. This test can be either implemented in constant time by collecting in each cell
of the array Terms additional information (thus requiring O(|C|2) total preprocessing time to build Terms)
or by making use of standard union-find techniques—thus introducing a small logarithmic overhead to the
total complexity.

Given a term t, let us denote with ||t|| the number obtained by adding the number of occurrences of
symbols in t and the number of occurrences of ∪ in t—i.e., occurrences of ∪ in t are counted twice. Let
us prove by induction on ||s||+ ||t|| ≥ 2 that the number of disequations recursively introduced by a single
disequation s 6= t is less than or equal to ||s|| ||t||.
Base: ||s|| + ||t|| = 2: this means that s 6= t is in one of the following forms: X 6= X, X 6= Y, X 6= c, c 6=
X, c 6= c, c 6= d. In all these cases at most one further equation is introduced.
Step: Let ||s||+ ||t|| > 2. Let us consider only the cases (7) and (8). The other cases are trivial.
Rule (7): By inductive hypothesis, each of the n disequations si 6= ti introduces at most ||si|| ||ti|| disequa-
tions. Thus, the considered disequation introduces a number of disequations bounded by

n +
n∑

i=1

(||si|| ||ti||) ≤ (1 +
n∑

i=1

||si||)(1 +
n∑

i=1

||ti||)

Rule (8): Instead of considering a simple application of rule (8) we consider the whole sequence of application
that “remove” all the ∪ symbols in the term in the right-hand side. Namely, the disequation:

f(s1, . . . , sn) 6= t1 ∪ t2 ∪ · · · ∪ tk

where the ti’s are either variables or terms with outermost symbol different from ∪, is replaced by:

f(s1, . . . , sn) 6= t1, . . . , f(s1, . . . , sn) 6= tk, t1 6= ∅, . . . , tk 6= ∅
The last n disequations do not introduce new disequations (they are either in solved form or they are replaced
by true or false). By inductive hypothesis, we have that the disequations f(s1, . . . , sn) 6= ti introduce no
more than ||f(s1, . . . , sn)|| ||ti|| new disequations. Thus, the considered disequation generates at most

k∑

i=1

||f(s1, . . . , sn)|| ||ti||+ k (7)

27

new disequations. Now,

||f(s1, . . . , sn)(t1 ∪ · · · ∪ tk)|| = ||f(s1, . . . , sn)||(||t1||+ · · ·+ ||tk||+ 2(k − 1))
=

∑k
i=1 ||f(s1, . . . , sn)|| ||ti1||+ 2(k − 1)||f(s1, . . . , sn)||

Since ||f(s1, . . . , sn)|| ≥ 1 and k ≥ 2, then this value is greater than (7).

Thus, the global complexity is O(|C|2) rule applications.

The correctness of the transformation can be proved by analyzing the various rewriting rules that apply
axioms (F1), (F2), and (F3). 2

The result produced by the algorithm in Figure 5 can be seen as an and-or tree structure, whose
leaves contain true, false, or a disequation in intermediate solved form. The tree can be simplified
by removing unnecessary occurrences of true and false, similarly to the effect of steps (S1) and (S2)
in Figure 4. The simplification requires a single scan of the tree structure (and thus it does not
worsen the previously described complexity result), starting from its leaves and using the obvious
simplification rules:

• or(. . . , true, . . .) 7→ true

• or(d1, . . . , di−1, false, di+1, . . . , dk) 7→ or(d1, . . . , di−1, di+1, . . . , dk)

• and(. . . , false, . . .) 7→ false

• and(d1, . . . , di−1, true, di+1, . . . , dk) 7→ and(d1, . . . , di−1, di+1, . . . , dk)

In spite of this polynomial result, a successive application of the distributivity on the formula
obtained can generate an exponential number of disjuncts. It is important to observe that this
sort of consideration holds in any general equational theory E. For example, given a binary free
function symbol f and the constraint

f(X1, Y1) 6= f(V1, Z1) ∧ · · · ∧ f(Xn, Yn) 6= f(Vn, Zn) (8)

After the application of the simplification rules in Figure 5 we obtain (in time O(n)):

(X1 6= V1 ∨ Y1 6= Z1) ∧ · · · ∧ (Xn 6= Vn ∨ Yn 6= Zn) (9)

The corresponding disjunctive normal form contains 2n disjuncts. Thus, the presence of an
exponential number of disjuncts generated by the int simpl procedure implies that a complete
description of the whole set of solutions as a disjunctive normal form formula requires an exponential
amount of time.

Corollary 5.8 Given a constraint C, an intermediate solved form constraint C′ that implies C can
be computed in time O(n2), where n = |C|. Moreover, a constraint C′ equivalent to C and composed
by a disjunction of intermediate solved form constraints can be computed in O(2p(n)), where p(n)
is a polynomial formula.

Proof. Each disjunct can be computed in from int simpl(ρ(C)) in linear time on its size. The rest of the
results derive from the previously made considerations. 2

28

5.3 Explicit Solved Form

In this section we show how a disequation r1 ∪ · · · ∪ rm 6= s1 ∪ · · · ∪ sn occurring in a constraint
in intermediate solved form can be further simplified without introducing new variables. The idea
is to reduce disequations having ∪ terms on both sides; in the simplified form, the two sides of the
disequations contain the same set of variables, with the exception of exactly one variable, which
appears only on the left-hand side of the disequation.

Definition 5.9 An intermediate solved form constraint C is in explicit solved form if it is false,
true, or C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn), and for all i = 1, . . . , n the literal si 6= ti is of the following
form:

X ∪ Y1 ∪ · · · ∪ Yh 6= Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk

where h ≥ 0 and ri’s are arbitrary terms different from the variable X.

Example 5.10 The following constraint is in explicit solved form:

X 6= a ∧ Y 6= b ∧X 6= A ∪ Z ∧ Y 6= ∅ ∧ Y 6= f(A, b) ∧X ∪ Y 6= Y ∪ c (10)

The process used to convert a constraint C in intermediate form (and different from false) into an
equivalent constraint in explicit solved form is based on the recursive replacement of each conjunct
of the form

c ≡ X1 ∪ · · · ∪Xm ∪ t1 ∪ · · · ∪ th︸ ︷︷ ︸
`

6= Y1 ∪ · · · ∪ Yn ∪ s1 ∪ · · · ∪ sk︸ ︷︷ ︸
r

,

with the formula ν(c) ≡ ϕ` ∨ ϕr, computed as: ϕ` ≡
∨h

i=1 ϕi
term ∨∨m

i=1 ϕi
var and

ϕi
term ≡ ∧k

j=1(ti 6= sj) ∧
∧n

j=1(Yj 6= Yj ∪ ti)
ϕi
var ≡ ∧

J⊆{1,...,k}(Xi ∪ Y1 ∪ · · · ∪ Yn 6= Y1 ∪ · · · ∪ Yn ∪
⋃

r∈J sr)

The definition of ϕr is perfectly symmetrical. Intuitively, ϕi
term asserts the fact that ti is not one

of the atoms of the r.h.s., while ϕi
var states that Xi is not a subset of the r.h.s.

The replacement of c with ν(c) can generate a number of new disequations (e.g., s1 6= t1 with
s1 ≡ f(t̄1) and s1 ≡ g(t̄2)) that can be rewritten by the function int simpl of Figure 5. However,
all the subproblems generated are of smaller size and therefore the function expl simpl described in
Figure 6 will eventually terminate.

function expl simpl(ϕ);

while there is a disequation c ≡ r ∪ s 6= t ∪ u in ϕ not in explicit s.f. do

replace c by ν(c)

Figure 6: Rewriting procedure for explicit solved form

The next propositions formalize these results. Propositions 5.11 and 5.12 demonstrate that
the transformation described in Figure 6 produces a constraint which is equivalent to the original
one—i.e., the solutions space is not modified. Proposition 5.13 shows that the algorithm in Figure 6
terminates for any possible choice of initial constraints.

Proposition 5.11 For a normalized disequation c of the form X1 ∪ · · · ∪ Xm ∪ t1 ∪ · · · ∪ th 6=
Y1 ∪ · · · ∪ Yn ∪ s1 ∪ · · · ∪ sk we have that TACI1 |= ~∀(c ↔ ν(c)).

29

Proof. (Sketch) Let us analyze the simple case of e ≡ (X ∪ t 6= Y ∪ s), s and t terms with outermost
symbol different from ∪. The complete proof can be derived through generalization of this case. For this
equation, the formula in the proposition reduces to:

ν(e) ≡ (s 6= t ∧ Y ∪ t 6= Y) ∨
(X ∪ Y 6= Y ∧X ∪ Y 6= Y ∪ s) ∨
(s 6= t ∧X ∪ s 6= X) ∨
(X ∪ Y 6= X ∧X ∪ Y 6= X ∪ t)

If we complement this formula we obtain

(s = t ∨ Y ∪ t = Y) ∧ (X ∪ Y = Y ∨X ∪ Y = Y ∪ s) ∧
(s = t ∨X ∪ s = X) ∧ (X ∪ Y = X ∨X ∪ Y = X ∪ t) (11)

We prove that X ∪ t = Y ∪ s is indeed equivalent to formula (11).
It is easy to show that the formula (11) implies X ∪ t = Y ∪ s by the analysis of each of the 16 disjuncts

obtained by applying distributivity over (11). For instance, the first disjunct is: s = t ∧X ∪ Y = Y ∧ s =
t ∧X ∪ Y = X, from which we have: X ∪ t = X ∪ Y ∪ t = X ∪ Y ∪ s = Y ∪ s.

To prove the converse, from (Df) axiom we have that X ∪ t = Y ∪ s if and only if:

∃A,B




(Y = A ∪ t ∧X = A ∪ s) ∨
(s = B ∪ t ∧X = B ∪ Y) ∨
(Y = A ∪ t ∧ s = t ∪B ∧X = A ∪B)


 (12)

We can show that each disjunct of the formula (12) implies one disjunct in (11).

• s = t ∨ Y ∪ t = Y :

1. Y = A ∪ t implies Y ∪ t = A ∪ t ∪ t = A ∪ t which in turn implies Y ∪ t = Y (and, thus,
s = t ∨ Y ∪ t = Y)

2. s = B ∪ t implies s = t (axiom (Df)).

3. s = t ∪B implies s = t (from axiom (Df)).

• X ∪ Y = Y ∨X ∪ Y = Y ∪ s:

1. Y = A ∪ t ∧ X = A ∪ s implies X ∪ Y = A ∪ t ∪ s = Y ∪ s, and Y ∪ s = A ∪ t ∪ s. Thus,
X ∪ Y = Y ∨X ∪ Y = Y ∪ s

2. s = B ∪ t ∧X = B ∪ Y implies s = t ∧ (B = ∅ ∨B = t) ∧X = B ∪ Y (axiom (Df)); this implies
X = Y ∨X = Y ∪ s which in turn implies X ∪ Y = Y ∨X ∪ Y = Y ∪ Y ∪ s = Y ∪ s

3. Y = t ∪A ∧ s = t ∪B ∧X = A ∪B implies

s = t ∧ (B = ∅ ∨B = t) ∧X = A ∪B ∧ Y = A ∧ t

this implies
X ∪ Y = A ∪ t ∪B ∧ s = t ∧ (B = ∅ ∨B = t) ∧ Y = A ∧ t

which leads to
X ∪ Y = Y ∨X ∪ Y = Y ∪ s

• s = t ∨X ∪ s = X:

1. Y = A ∪ t ∧X = A ∪ s implies X ∪ s = A ∪ s ∪ s = A ∪ s = X and thus s = t ∨X ∪ s = X

2. s = B ∪ t ∧X = B ∪ Y implies s = t and thus s = t ∨X ∪ s = X

3. Y = t ∪A ∧ s = t ∪B ∧X = A ∪B implies s = t and thus s = t ∨X ∪ s = X

30

• X ∪ Y = X ∨X ∪ Y = X ∪ t:

1. Y = A∪ t∧X = A∪ s implies X ∪ Y = A∪ s∪ t = X ∪ t and thus X ∪ Y = X ∨X ∪ Y = X ∪ t

2. s = B ∪ t ∧ X = B ∪ Y implies s = t ∧ (B = ∅ ∨ B = t) ∧ X = B ∪ Y ; this leads to
X ∪ Y = Y ∪B ∪ Y = Y ∪B = X

3. Y = t ∪ A ∧ s = t ∪ B ∧X = A ∪ B implies s = t ∧ (B = ∅ ∨ B = t) ∧ Y = A ∪ t ∧X = A ∪ B;
this leads to

X ∪ Y = A ∪B ∪A ∪ t = A ∪B ∪ t = X ∪B ∧ (B = ∅ ∨B = t)

which finally leads to
X ∪ Y = X ∨X ∪ Y = X ∪ t .

2

Proposition 5.12 Given an intermediate solved form constraint C, TACI1 |= ~∀(C ↔ expl simpl(C)).

Proof. This is an immediate consequence of Propositions 5.11 and 5.7. 2

Theorem 5.13 Given an intermediate solved form constraint C, expl simpl(C) terminates after the
application of O(n2) steps, adopting a structure-sharing technique.

Proof. The idea is the same as that used in proving Proposition 5.7. When a constraint c is replaced
by ν(c) ≡ ϕ` ∨ ϕr, then a number of disequations that can be further reduced are introduced (those of
the form ti 6= sj). The other disequations are already in explicit solved form and are not source of future
computations.3 We consider only ϕ`—in fact ϕr contains exactly the same disequations of ϕ`:

ϕ` ≡ ∨h
i=1

∧k
j=1(ti 6= sj) ∧

∧n
j=1(Yj 6= Yj ∪ ti)∨∨m

i=1

∧
J⊆{1,...,k}(Xi ∪ Y1 ∪ · · · ∪ Ym 6= Y1 ∪ · · · ∪ Ym ∪⋃

r∈J sr)

It is sufficient to extend the proof of Proposition 5.7 by analyzing the rewriting rule (R3) defined as

(R3) for each unprocessed disequation t1 ∪ · · · ∪ th 6= s1 ∪ · · · ∪ sk generate h · k sons labeled ti 6= sj ,
i = 1, . . . , h, j = 1, . . . , k.

By inductive hypothesis, the disequation ti 6= sj introduces at most ||ti|| · ||sj || new disequations. We
need to prove that:

h · k +
h,k∑

i=1,j=1

||ti|| · ||sj || ≤ ||t1 ∪ · · · ∪ th 6= s1 ∪ · · · ∪ sk|| = (
h∑

i=1

||ti||+ 2(h− 1))(
k∑

j=1

||sj ||+ 2(k − 1))

that holds trivially since h > 1 and k > 1. 2

Observe that ν(c) generates an exponential number of disequations. So, even if the number of
steps is polynomial, the real complexity of the algorithm is exponential: O(n22n).

Example 5.14 Let us consider the constraint f(X∪a∪g(Y), a) 6= f(X∪Y ∪b, X) and assume that
X <# Y <# a <# b <# g. The constraint is in implicit solved form; the corresponding disjunction
of constraints in intermediate solved form is

X 6= a ∨ X ∪ a ∪ g(Y) 6= X ∪ Y ∪ b

3Observe that the latter equations, although inactive, are exponential in number.

31

and the corresponding disjunction of constraints in explicit solved form is

X 6= a ∨ X 6= X ∪ a ∧ Y 6= Y ∪ a ∨ X 6= X ∪ g(Y) ∧ Y 6= Y ∪ g(Y) ∨
X 6= X ∪ b ∨ X 6= X ∪ Y ∧X ∪ Y 6= X ∪ a ∧X ∪ Y 6= X ∪ g(Y) ∧X ∪ Y 6= X ∪ a ∪ g(Y)

Observe that the components of the explicit normal form precisely identify the set of possible so-
lutions. For instance, the second disjunct forces X and Y to be not of the form a ∪ s for any
term s.

5.4 Subset Solved Form

The goal of this section is to provide an even more explicit representation of the set of solutions
of a disequation constraint. In particular, we develop this additional solved form by considering
the interpretation of ACI1 constraints on the join semilattices described earlier. This view has
the advantage of providing a very intuitive interpretation of constraints, e.g., as formulae in a set-
theoretical context, where the ACI1 operator ∪ is interpreted as the set-theoretic union operation.
As described in Section 2.2, in each join-semilattice we can define a partial order ≤ using the

∨
operator. In the set theoretical context, the partial order obtained from ∪ corresponds to the
traditional subset relationship ⊆: A ⊆ B if and only if A ∪B = B.4

Keeping this in mind, in this section we provide a method which allows to simplify the con-
straints of the form

X ∪ Y1 ∪ · · · ∪ Yh 6= Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk

to a collection of constraints of the form

Z 6⊆ t1 ∪ · · · ∪ tm, t 6⊆ Z

where p 6⊆ q is an abbreviation for q 6= q∪ p. This new solved form is very appealing, as it provides
a description of the solution in terms of constraints over individual variables (e.g., the variable Z
above).

The new rewriting procedure that performs this additional simplification may introduce new
variables. These variables are used to make explicit the existence of elements which belong to one
set and not to the other—i.e., the complement of the extensionality principle for equality between
sets.

Definition 5.15 An explicit solved form constraint C is in subset solved form if it is false, true,
or C ≡ (s1 6= t1 ∧ · · · ∧ sn 6= tn) and if for all i = 1, . . . , n si 6= ti is in one of the following forms:

1. X 6⊆ Y1 ∪ · · · ∪ Yh, h > 0 and X 6≡ Yi, or

2. f(r1, . . . , rm) 6⊆ X, or X 6⊆ f(r1, . . . , rm), for f 6≡ ∪, and X does not occur in f(r1, . . . , rm).

Starting from an explicit solved form constraint, the subset solved form can be obtained by
the application of the rewriting procedures subset only and subset simpl described respectively in
Figure 7 and in Figure 8. The first procedure maps all the disequations into negations of inclusions,
while the second procedure transforms them in subset solved form.

4Similarly, we can interpret the ACI operator as ∩ (set intersection). In this case, the ≤ partial order corresponds
to the opposite of the set inclusion—X ≤ Y if and only if Y is a subset of X. With this view, the (1) axiom is
satisfied, intuitively, by the universe U of all sets.

32

Example 5.16 subset only non-deterministically replaces the disequation in explicit solved form
X 6= a with the constraints in subset solved form X 6⊆ a and a 6⊆ X.

Consider now the disequation X ∪Y 6= Y ∪ a∪ g(X). subset only non-deterministically replaces
it into:

1. a 6⊆ X ∪ Y : Rule (1) of subset simpl rewrites it into the constraint in subset solved form:
a 6⊆ X ∧ a 6⊆ Y .

2. g(X) 6⊆ X ∪ Y : Rule (1) of subset simpl rewrites it into g(X) 6⊆ X ∧ g(X) 6⊆ Y . The first
constraint is removed (replaced by true) by rule (9) of subset simpl; the second is in subset
solved form.

3. X 6⊆ Y ∪ a ∪ g(X): Rule (2) of subset simpl rewrites it non-deterministically into:

(a) X = a∪A∧a 6⊆ A∧A 6⊆ Y ∪g(X). Rule (3) applies the substitution [X/a∪A] obtaining
a 6⊆ A ∧A 6⊆ Y ∪ g(a ∪A). Again, rule (2) rewrites the latter into:

i. A = g(a ∪A) ∪A′ ∧A′ 6⊆ Y . Rule (8) leads to failure.
ii. g(a ∪A) 6⊆ Y . We are in subset solved form.

(b) a 6⊆ X ∧X 6⊆ Y ∪ g(X). Rule (2) can be applied to the second constraint, leading to:
i. X = g(X) ∪A ∧ g(X) 6⊆ A ∧A 6⊆ Y . Rule (8) leads to failure.
ii. g(X) 6⊆ X ∧X 6⊆ Y . The first constraint is removed (replaced by true) by rule (9)

of subset simpl; the other is in subset solved form.

function subset only(ϕ):

while there is a disequation c in ϕ do

replace c according to the corresponding rule:

X ∪ Y1 ∪ · · · ∪ Yh 6= Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk

}
7→ one of

(1) r1 6⊆ X ∪ Y1 ∪ · · · ∪ Yh

...
...

(k) rk 6⊆ X ∪ Y1 ∪ · · · ∪ Yh

(k + 1) X 6⊆ Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk

Figure 7: Rewriting procedure for eliminating 6=-constraints

Proposition 5.17 Given an explicit solved form constraint C, let C1, . . . , Ch be the subset solved
form constraints returned by subset simpl(subset only(C)). Then H |= ∀̄(C ↔ ∨h

i=1 ∃X̄i Ci), where
{X̄i} = vars(Ci) \ vars(C).
Proof. We show that soundness and completeness hold for each rewriting rule.

The function subset only applies only one rule. Assume, for the sake of simplicity, that the constraint c
is of the form:

X ∪ Y 6= Y ∪ r

Therefore, the rewriting rule in the function subset only produces non deterministically the two constraints:

X 6⊆ Y ∪ r (13)
r 6⊆ X ∪ Y (14)

Any valuation σ of the variables of c over H has the general form:

33

function subset simpl(C);
while there is a 6⊆-constraint c in C not in subset solved form do

replace c according to the corresponding rewriting rule:

(1)
f(r̄) 6⊆ s1 ∪ · · · ∪ sn

n > 1



 7→ ∧n

i=1 f(r̄) 6⊆ si

(2) X 6⊆ Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk 7→ one of

(i) X = r1 ∪A ∧ r1 6⊆ A ∧A 6⊆ Y1 ∪ · · · ∪ Yh ∪ r2 ∪ · · · ∪ rk

(ii) r1 6⊆ X ∧X 6⊆ Y1 ∪ · · · ∪ Yh ∪ r2 ∪ · · · ∪ rk

(3)
X = r ∪A ∧ C

X /∈ vars(r), X ∈ vars(C \ {c})



 7→ (C \ {c})[X/A ∪ r] ∧X = A ∪ r

(4) r 6⊆ r 7→ false

(5) f(r̄) 6⊆ g(s̄) 7→ true

(6)
f(r1, . . . rm) 6⊆ f(s1, . . . , sm)

m > 1



 7→ one of (i) r1 6⊆ s1

...
...

(m) rm 6⊆ sm

(7)
r1 ∪ · · · ∪ rm 6⊆ s

m > 1



 7→ one of (i) r1 6⊆ s

...
...

(m) rm 6⊆ s

(8)
X = r ∪A ∧ C

X ∈ vars(r)



 7→ false

(9) f(· · ·X · · ·) 6⊆ X 7→ true

(10) X 6⊆ f(· · ·X · · ·) 7→ X 6⊆ ∅
(S1) true ∧ C 7→ C
(S2) false ∧ C 7→ false

Figure 8: Rewriting procedure for subset solved form

34

• σ(X) = f1(s̄1) ∪ · · · ∪ fa(s̄a), (σ(X) = ∅ when a = 0) for some fi ∈ Σ \ {∅,∪}
• σ(Y) = g1(t̄1) ∪ · · · ∪ gb(t̄b), (σ(Y) = ∅ when b = 0) for some gi ∈ Σ \ {∅,∪}
• σ(r) = h(ū), for some h ∈ Σ \ {∅,∪}

If σ is a successful valuation for c, then it must be the case that:

1. one term of the form fi(s̄i) is different from all terms of the form gj(t̄j) and from h(r̄), or

2. the term h(ū) is different from all terms of the form fj(s̄j) and gj(t̄j).

In the first case, the valuation σ satisfies also the constraint (13), while in the second case it satisfies also
the constraint (14).

On the other hand, if σ is a successful valuation for the constraint (13), then σ(X) contains at least
one atom fi(s̄i) not occurring in σ(Y ∪ r). Hence, c is satisfied by σ. If σ is a successful valuation for the
constraint (14), the situation is analogous.

We now prove the soundness and completeness of the rules in the function subset simpl.

(1) This rule is sound and complete, since f(r̄) is an atomic element of the domain.

(2) Let us assume that c is of the form X 6⊆ Y ∪ r, i.e. X ∪ Y ∪ r 6= Y ∪ r. The rule rewrites it into:

X = r ∪A ∧ r 6⊆ A ∧A 6⊆ Y (15)
r 6⊆ X ∧X 6⊆ Y (16)

Any valuation σ the terms of c has the form:

• σ(X) = f1(s̄1) ∪ · · · ∪ fa(s̄a), (σ(X) = ∅) for some fi ∈ Σ \ {∅,∪}
• σ(Y) = g1(t̄1) ∪ · · · ∪ gb(t̄a), (σ(Y) = ∅) for some gi ∈ Σ \ {∅,∪}
• σ(r) = h(ū), for some h ∈ Σ \ {∅,∪}

Let us assume that σ satisfies c. Two cases are possible: the term h(ū) is equivalent to one of the
terms fj(s̄j); the term h(ū) is not equivalent to any of the terms fj(sj). In the first case we can assume
that h(ū) ≡ f1(s̄1). Since σ satisfies c, it must be the case that there is a term of the form fj(s̄j), with
j = 2, . . . , a, which is not equivalent to any of the terms in σ(Y). We can extend the valuation σ to
the new variable A defining σ(A) = f2(s̄2) ∪ · · · ∪ fa(s̄a). It is immediate to verify that this extended
valuation satisfies the constraint (15). In the second case, the atom h(ū) is not between the atoms in
σ(X), and hence, since σ satisfies c, there must be an atom in σ(X) which is not in σ(Y). This means
that σ satisfies also the constraint (16).
If σ satisfies the constraint (15), then there is an atom in σ(A), and hence in σ(X), which is different
from h(ū), and which is not in σ(Y). Hence, σ satisfies also c.
If σ satisfies the constraint (16), then there is an atom in σ(X) which is different from h(ū) and which
is not in σ(Y). This means that σ satisfies also c.

(3) This is justified by equality.

(4) In this case the proof is immediate, since ∪ is idempotent.

(5), (6) In these cases the soundness and completeness follow trivially, since the l.h.s. of the rules involve
terms which can be only instantiated to atoms.

(7) We can see all the σ(ri) and σ(sj) as collections of atoms and prove the soundness and completeness in
a set theoretic way.

(8), (9) They are justified by axiom schema (F3).

(10) For one direction, observe that, by axiom (1), ∅ ∪ f(s̄) = f(s̄) for any term f(s̄). Assume now X 6= ∅.
Then X ∪ f(· · ·X · · ·) = f(· · ·X · · ·) if and only if X = f(· · ·X · · ·). But this is forced to be false by
axiom (F3).

35

2

Finally, we need to prove that any non-deterministic execution of subset simpl(subset only(C)),
where C is an explicit form constraint, terminates and it returns a subset solved form constraint.

Without affecting soundness and completeness, we impose a weak form of determinism to the
execution process. We assume that each execution of the rule (2i) is followed by all the possible
consecutive executions of the rules (3) or (8), (1), and (4) in this order.5

Theorem 5.18 Given an explicit solved form constraint C, then any non-deterministic execution
of subset simpl(subset only(C)) can be implemented so as to terminate, returning a subset solved
form constraint.

Proof. It is immediate to observe that the function subset only(C) terminates: the function processes each
literal of C once. The literals in subset only(C) are all of one of the two forms: r 6⊆ X ∪ Y1 ∪ · · · ∪ Yh, and
X 6⊆ Y1 ∪ · · · ∪ Yh ∪ r1 ∪ · · · ∪ rk with h, k ≥ 0.

The assumption that each execution of the rule (2i) is followed by all the possible executions of the rules
(3) (or (8)), (1), and (4) ensures that the maximum number of new variables introduced is |vars(C)|·m, where
m is the number of terms of subset only(C) in the kth of these literals (If action (8) is fired instead of action
(3), then we will have immediate termination by failure). This follows from the following consideration.
Each time we introduce a new variable A using the rule (2i) we generate the literal r1 6⊆ A. If we try to
introduce a new variable A′ using the rule (2i) on the variable A and on the term r1, then the application
of (3) gives us the literal r1 6⊆ A′ ∪ r1, which is mapped by (1) into r1 6⊆ A′ ∧ r1 6⊆ r1, and this last produces
false using the rule (4).

Hence, the rules (2i) and (3) can be applied only a finite number of times and all the other rules make
the complexity of the terms involved in the constraint decrease.

It is easy to prove that all the literals which are not in subset solved form are processed by one of the
rules of subset simpl, hence the algorithm produces a constraint in subset solved form. 2

6 Examples

In this section we present some simple examples constructed using the framework presented in
this paper. The first part collects examples which can be directly expressed using disunification
problems, while the second part presents short programs developed using a constraint logic pro-
gramming language embedding ACI1 constraints, called CLP (ACI1). In the rest of this section
we will use the notation s ⊆ t to denote the fact that t = s ∪ t.

6.1 Expressive Power of ACI1 Constraints

Let us start by considering the traditional map coloring problem. A map can be represented as a
graph, where the nodes represent the different regions while the edges connect regions which are
adjacent in the map. The objective is to color the graph using a certain number of colors and
ensuring that no two adjacent regions receive the same color. We can encode this problem by
representing each node in the graph with a distinct variable, e.g.,

Nodes = {Czech, Slovakia,Poland, Germany} ∧
Edges = {{Germany, Czech}, {Germany,Poland}, {Czech, Poland},

{Poland, Slovakia}, {Czech, Slovakia}}
5The restriction is imposed exclusively to keep the termination proof simple.

36

where the notation {t1, . . . , tn} is a short form for {t1} ∪ · · · ∪ {tn}. The coloring of the map using
colors blue, red, white can be obtained by stating that

Nodes = {blue, red, white}

and by requiring the absence of singleton sets from the colored set of edges:

{{blue}} 6⊆ Edges ∧ {{red}} 6⊆ Edges ∧ {{white}} 6⊆ Edges

A possible solution is

Germany = blue, Poland = white, Czech = red, Slovakia = blue

Another simple problem that can be directly encoded is the problem of computing all the cycles
of length n from a given directed or undirected graph. Let us consider the case of undirected
graphs, represented as in the previous case as a set of nodes and a set of edges:

Nodes = {a1, . . . , an} ∧ Edges = {{ai1 , aj1}, . . . , {aik , ajk}}

A cycle is a sequence of contiguous edges which starts and terminates at the same node. E.g., for
n = 3:

{{X1, X2}, {X2, X3}, {X3,X1}} ⊆ Edges ∧ X1 6= X2 ∧ X2 6= X3 ∧ X3 6= X1

(assuming that we want to ignore self-loops in the graph).

Let us consider one more graph example. Given a graph, we would like to determine the
subgraph isomorphism property, i.e., given two graphs G1 and G2 we would like to verify whether
there exists a subgraph of G2 which is isomorphic to G1. This can be easily achieved if we represent
the graph G1 using variables to represent its nodes:

Nodes1 = {N1, . . . ,Nh} ∧
∧

i<j

Ni 6= Nj ∧ Edges1 = {{Ni1 , Nj1}, {Ni2 ,Nj2}, . . .}

Similarly we expect the graph G2 to be represented in the usual form:

Nodes2 = {a1, . . . , ak} ∧ Edges1 = {{ai1 , aj1}, {ai2 , aj2}, . . .}

Finally, the computation of the subgraphs of G2 which are isomorphic to G1 is expressed by the
solutions of

Nodes1 ⊆ Nodes2 ∧ Edges1 ⊆ Edges2

Let us now consider a simple example from planning. In planning, it is common to impose
constraints (e.g., temporal and procedural constraints [35]) on the structure of a planning trajectory,
e.g., ordering of actions or restrictions on how often an action can be performed (e.g., due to lack
of resources). The constraints can be easily encoded in our framework by representing a plan as a
set of actions (each with its execution time—e.g., using the term occ(Action,Time)) and imposing
constraints on such set. For example:

• if we want the plan to contain at least one occurrence of action a then we can write

{occ(a, T)} ⊆ Plan

37

• if we require action a to be executed at least twice, then we can write:

{occ(a, T1), occ(a, T2)} ⊆ Plan ∧ T1 6= T2

• if we want at time t that not all actions a and b and c to be executed

{occ(a, t), occ(b, t), occ(c, t)} 6⊆ Plan

• if we are not willing to accept plans that start with action a and end with action b we can
write:

{{occ(a, 1)} 6⊆ Plan ∧ {occ(b, n)} 6⊆ Plan

• if the plan cannot contain more than k occurrences of an action a the we can write

{T1, . . . ,Tn} = {1, . . . , n} ∧
n∧

i=k+1

{occ(a, Ti)} 6⊆ Plan

if we additionally require exactly k occurrences we need to also add:

{occ(a, T1), . . . , occ(a, Tk)} ⊆ Plan

Consider a simple scheduling problem (e.g., preparing a time-table); we have two workers (a, b)
who can be employed in six possible time slots (1, . . . , 6); worker a can work only in time slots
1, 3, 5, 6 while worker b can only work in time slots 1, 2, 4. To accomplish the required job, a needs
to work for three time slots, while b needs to work for two time slots. In addition, during each time
slots only one worker can be employed. This problem can be encoded as follows:

Prefa = {1, 3, 5} ∧ Prefb = {1, 2, 4} ∧
Worka = {A1,A2,A3} ∧Workb = {B1,B2} ∧
Worka ⊆ Prefa ∧Workb ⊆ Prefb ∧
Worka ∩Workb = ∅

The ∩ constraint can be simply written as:

{B1} 6⊆ Worka ∧ {B2} 6⊆ Worka

We conclude this subsection with an example on Web Databases. According to [1], semistruc-
tured data can be represented by directed graphs with labeled edges and labeled leaf nodes (see
Figure 9). The graph can be directly encoded by the two following sets (node numbers are assigned
arbitrarily):

E = {(0, 1, name), (0, 2, father), (0, 3, father), (0, 4, tel),
(2, 5, name), (2, 6, tel), (2, 7, email), (3, 8, name), (3, 9, email)}

N = {(1, michael), (4, 2345), (5, john), (6, 2143), (7, jsmith@libero.it),
(8, mary), (9, msmith@cs.nmsu.edu)}

38

b
John

b
2143

b
jsmith@libero.it

b
Mary

b
msmith@cs.nmsu.edu

b b

b

b
Michael

b
2345

¡
¡

¡ª ?

@
@

@R ?

@
@

@R

©©©©©©¼

¢
¢

¢
¢

¢
¢®

A
A
A
A
A
AU

HHHHHHj

name tel email name email

name

father father

tel

Figure 9: A semistructured database instance

The expressiveness of the ACI1 constraints allows us to specify queries directly in the constraint
language. For instance, if we want to know the telephone number of john we can write:

{(A, john), (C, Telephone)} ⊆ N ∧ {(B, name,A), (B, tel, C)} ⊆ E

The answer will be collected in the variable Telephone. The possibility of expressing negative
information allows us to write a query to find the name of the Siblings of john:

{(A, john), (E,Sibling)} ⊆ N ∧ {(B, name, A), (C, father,B), (C, father, D), (D, name, E)} ⊆ E ∧ B 6= D

In these last examples we relied exclusively on the power of the constraint solver. More expres-
sive queries (e.g., those involving transitive closures) can be encoded through the use of recursion,
e.g., in the context of a language such as the CLP (ACI1) language described next.

6.2 Using the Language CLP (ACI1)

One of the objectives of the research presented in this paper is the development of the constraints
solving algorithms for the development of a constraint logic programming framework [36] dealing
with different representations of sets. We will refer to this framework as CLP (ACI1).

Let us assume that a graph is represented in a CLP program by the predicates

• nodes(Name,Nodes) where Name is the name of the graph and Nodes is the set of nodes in
the graph;

• edges(Name, edge) where Name is the name of the graph and edge is one of the edges of the
graph.

This is a standard representation technique used in CLP [36]. To define the join a1 + a2 of two
graphs a1, a2 we can use the following program:

nodes(Name1 + Name2, Nodes1 ∪Nodes2) :−
nodes(Name1, Nodes1),
nodes(Name2, Nodes2).

edges(Name1 + Name2, {V, W}) :−
edges(Name1, {V, W}).

edges(Name1 + Name2, {V, W}) :−
edges(Name2, {V, W}).

edges(Name1 + Name2, {V, W}) :−
nodes(Name1, Nodes1), nodes(Name2, Nodes2),
{V } ⊆ Nodes1, {W} ⊆ Nodes2.

39

For the next example, let us extend the considerations about planning from the previous section.
The use of CLP (ACI1) allows to express more powerful constraints on trajectories. For example,
if we want to forbid action b to follow action a, we can execute the goal not succ(a, b, P lan, n), with
respect to the program:

not succ(Xa, Xb, P lan, 0).
not succ(Xa, Xb, P lan,N) :−

N > 0,
{occ(Xa, N), occ(Xb, N + 1)} 6⊆ Plan,
not succ(Xa, Xb, P lan, N − 1).

Let us now consider the combinatorial problem of computing Schur Numbers [8]. Consider the
presence of N bins and suppose that each bin can contain a set of numbers as long as the sum of no
two numbers in the same bin produces another number in the bin. The problem is to determine for
a given N what is the largest value of M such that all numbers between 1 and M can be partitioned
in N bins without violating the stated condition.6

If we want to attempt to construct a placement of the numbers up to M in 4 bins, we can use
the following goal

← schur4({1, 2, . . . ,M}, P).

The predicate schur4 can be defined as follows:

schur4(Set,Partition) :−
Set = A1 ∪A2 ∪A3 ∪A4,
Partition = {A1, A2, A3, A4},
disj(Partition),
check sum(Partition).

disj(S) :−
(∀A ∈ S)(∀B ∈ S)(∀X ∈ A)(X 6∈ B).

check sum(S) :−
(∀A ∈ S)(∀X ∈ B)(∀Y ∈ B)({X + Y } 6⊆ B).

In this program we have used restricted universal quantifications, that is very natural when
programming with sets. We have shown in [18] how to encode this form of quantifications using
membership and equality constraints over sets and recursion. Membership and equality constraints
can be seen as special cases of the constraints discussed in this paper.

We conclude this section by presenting an example from [13], where ACI1-unification (equality
constraints) is used for checking type dependencies during compile-time program analysis ([13] uses
the ACI1 symbol ⊕ instead of ∪).

Consider the following Prolog clauses:

nat(0).
nat(s(X)) :− nat(X).
append([],Y,Y).
append([A |X], Y, [A |Z]) :− append(X, Y, Z)

6There is currently no known solution to this problem for values of n greater than 4 [8].

40

In [13] types are assigned recursively to terms using the ACI1 operator. In the case above, we have
that:

type(0) = nat
type(s(t)) = nat ∪ type(t)

type([]) = list
type([h | t]) = list ∪ type(t)

So, for instance,
type([0, s(0), s(s(0))]) = list ∪ list ∪ list = list

If a term is non-ground, then its type can be partially undefined. Using this approach, the authors
show how to replace a program with another set of clauses constructed with the type information.
For instance, the clauses for append become:

append(list,Y,Y)
append(list ∪ X, Y, list ∪ Z) :− append(X, Y, Z)

These clauses manipulate types as data, and allow to describe the type dependencies imposed by
the append clauses. The program obtained is a CLP (ACI1) program.

7 Discussion and Related Work

In this section we present some observations regarding how our results extend to the cases of
nested sets (Section 7.1). Section 7.2 compares our results with similar proposals presented in the
literature.

7.1 Nested Sets

The algorithms in this paper, as well as any other algorithm for dealing with ACI1-constraints when
Σ contains at least a function symbol f of arity greater than 0, can be used to solve constraints on
hereditarily finite and hybrid sets (where hybrid means that also terms built using “free” symbols—
atoms—can be used as elements of sets). As a matter of fact, using a unary function symbols, say
{·}, as done in Example 4.6, sets with any level of nesting can be written. Thus, we can encode
problems such as:

{X, {X, ∅, {Y }} ∪ Z ∪W} 6= {Z, {{{X ∪ Y }, ∅}}} ∪W

Set inclusion can be easily encoded by X ⊆ Y ↔ Y = X ∪ Y . Moreover, with nested sets,
membership becomes very important. This operation can be encoded as: X ∈ Y ↔ Y = {X} ∪ Y .

In order to show that general signatures are needed to work with sets, let us consider a set
equality problem of the type:

{s1, . . . , sm} = {t1, . . . , tn}
If s1, . . . , sm, t1, . . . , tn are constants, then there is an equi-satisfiable ACI1-unification problem

with constants. For instance, the two problems

{a, b, b} = {b, a}, {a, b} = {b, b}
can be encoded by:

a ∪ b ∪ b = b ∪ a, a ∪ b = b ∪ b

41

If we are not in this simple case (e.g., when the si, tj are variables or complex terms, possibly
involving other sets) it is rather unnatural or impossible to express them in a non-general ACI1
framework. For instance, consider the matching problem

{X1, . . . , Xm} = {c1, . . . , cn}
Its “natural” encoding

X1 ∪ · · · ∪Xm = c1 ∪ · · · ∪ cn

admits more solutions. Any solution of the former is a solution of the latter but not vice versa. For
instance, X1 = ∅, . . . , Xn−1 = ∅, Xn = c1 ∪ · · · ∪ cn is a solution of the latter, but not of the former.

However, it is possible to automatically add constraints to the latter in order to prune undesired
solutions. For instance, if m = 3 and n = 2 we need to add the constraints:

3∧

i=1

Xi 6= ∅ ∧Xi 6= c1 ∪ c2

Thus, introducing a suitable number of constraint a simple set unification problem can be
mapped into an exponential size ACI1-constraint with constants.

It is possible to prove [20] the existence of set-equality problems that cannot be encoded at
all in a non-general setting without using universal quantifications. For example, consider the
equality X = {Y }. In all its solutions X is mapped to a singleton set. In [20] it is proved that no
equi-satisfiable formula of the type ∃Z1 · · ·Zm(ϕ), where ϕ is a quantifier-free formula built with
literals based on ∅,∪,=,∈ (thus, a richer language), can be constructed. Constraints of this form
are special cases of formulae of multi-level syllogistic, whose decision problem is discussed in [10].

7.2 Related Works

In [15] Comon studies the problem of determining adequate solved forms for disunification problems
in the context of quotient algebras T (Σ)/ =E for various classes of equational theories E. Comon
identifies a class of formulae, called compact formulae. All the four solved forms presented in this
paper satisfy the requirement of being compact formulae. Additionally, Comon proves that compact
equational theories, i.e., theories for which:

• E-unification is finitary and decidable

• each satisfiable equation s = t, such that vars(s, t) = {X} and such that s 6=E t, admits a
finite number of solutions in H

guarantee that every compact formula distinct from false is satisfiable in T (Σ)/ =E [15].
However, ACI1 is not compact, since equations of the type X = X ∪a do not admit a finite set

of solutions if T (Σ)/ =ACI1 is infinite—which is always the case when Σ is general. Nevertheless,
we have demonstrated in the previous sections how to reduce an arbitrary disunification problem
to a compact form, as well as the fact that the specific compact forms considered in our context
are always satisfiable (Corollary 5.1). Thus, ACI1 represents a good example to indicate that
compactness of the equational theory is a sufficient but not necessary condition for the satisfiability
of formulae in compact form.

Bürckert [9] introduces a general scheme for solving disunification problems in the context of
an arbitrary equational theory E. Solutions of disunification problems are described through the

42

use of substitutions with exceptions, i.e., entities of the form (σ,Ψ) where σ is a substitution and
Ψ a set of substitutions. An actual solution to the disunification problem is represented by any
instantiation of σ which is not an instantiation of any of the substitutions in Ψ. In the context of
a theory E which is finitary with respect to unification, the set of all solutions of a disunification
problem can be represented using a finite set of substitutions with exceptions. Additionally, the Ψ
component of each of them is guaranteed to be also finite. Substitutions with exceptions can be
obtained from the solutions of a set of unification problems.

Nevertheless, this approach is not suitable to be used in the context of a CLP language. Each
substitution with exceptions is equivalent to a formula of the type:

∃W̄∀Ȳ (X1 = t1 ∧ . . . ∧Xn = tn ∧W1 6= s1 ∧ . . . ∧Wm 6= sm)

where vars(s1, . . . , sm) = Ȳ , vars(t1, . . . , tn) ∩ Ȳ = ∅ and W1, . . . ,Wm ∈ W̄ . This leads to the
generation of formulae with arbitrary quantifications, that are inadequate to a CLP framework.
Moreover, to guarantee the existence of solutions it is necessary to verify whether σ is an E-
instance of any substitution in Ψ—as stems from the Inconsistency Lemma in [9]. This requires
solving additional E-unification problems as well as having an explicit representation of Ψ.

In [5] Baader and Schulz develop a general technique capable of combining the satisfiability
algorithms (based on substitutions with exceptions) for disjoint equational theories. The approach
is general and can be applied to ACI1 as well. However, it provides a unique normal form that can
be reached in exponential time. The solution of [5] introduces a great variety of new variables and
opens a large number of alternatives. In particular, with this method one has to guess: a partition
of the m variables present in the problem (m ≤ n) into equivalence classes, a linear ordering over
the variables (among the possible m!), and a type information for each variable, specifying to which
theory E0, E1 the variable belongs to (2m possible choices). This leads to an overall complexity—

modulo the usual combinatorial approximations—of ≈ √
2

(
n

3n−2
2

) ((
2
e

)n−2
2

)
. Thus, in a particular

case as that presented in this paper, it is reasonable to improve their constraint solver, developed
for a universal framework. In the first two solved forms we do not introduce new variables and,
using the implicit normal form we do not introduce disjunctions. Starting from a constraint made
of disequations, the complexity of our approach seems to be more promising (e.g., O(n2) for the
implicit normal form) and practical.

Example 7.1 Let E1 = ACI1 on Σ1 = {∅,∪} and E2 = f(X) = f(X) ∧ c = c on Σ2 = {c, f},
and consider C: X ∪ f(Y) 6= V ∪ f(Z). To apply the algorithm of [5], it is necessary to transform
C into the equivalent constraint C′: A = f(Y) ∧ B = f(Z) ∧X ∪ A 6= V ∪ B, where A and B are
new variables. Then, all the partitions of the set {A,B, X, Y, V, Z} of variables have to be taken
into consideration. Variables in the same block of a partition are forced to be equal; however, not
all the partitions lead to a solution of the problem. For instance, the partition

{{X, V }, {Z, Y }, {A, B}}

cannot lead to a solution, independently from the other non-deterministic choices.7

Our proposal, on the contrary, first applies the function ρ to the constraint C, obtaining the
same constraint. This constraint is already in implicit normal form, and thus it is satisfiable in

7A solution derived from this partition would be a solution of: A = f(X) ∧A = f(Z) ∧X ∪A 6= X ∪A, which is
clearly unsatisfiable.

43

every model of ACI1F1F2F3Df , thanks to Theorem 4.17. On demand, we can transform it in the
explicit form (the first and the third disjuncts are also in the subset solved form):

(Y 6= Z ∧ V 6= V ∪ f(Y)) ∨ (X ∪ V 6= V ∧X ∪ V 6= V ∪ f(Z)) ∨
(Z 6= Y ∧X 6= X ∪ f(Z)) ∨ (V ∪X 6= X ∧ V ∪X 6= X ∪ f(Y))

in which the 4 disjuncts are all satisfiable.

In the context of CLP with sets, three major proposals have been presented in the literature.
In [25], Gervet presents a language, called Conjunto which incorporates a constraint solver over
boolean lattices built from (flat) set intervals. The constraints can be more complex (e.g., boolean
constraints) than those considered in this context, but the domain is less general. In particular,
the simulation of nested sets (see Section 7.1) is not possible—which prevents the direct encoding
of many interesting problems. Conjunto has been embedded in the recent releases of the ECLiPSe
system [42].

In CLPS [32] the authors use a normal form similar to the implicit one presented in this
paper. On the other hand, their constraint solving mechanisms appear to be based on reducing the
problem to standard forward-checking and look-ahead techniques. The limited literature on the
topic prevents us from a deeper comparison with the capabilities of CLPS.

{log} [18, 19] is a constraint logic programming language over hybrid and hereditarily finite
sets. Sets in {log} are represented using a more restricted construction—based on the use of
the constant ∅ and the binary function symbol with. In particular, ∪ is not directly expressible
but is derived through the use of recursive {log} definitions and from the axiomatization of with.
An extension of this language to handle ∪ as a primitive constraint has also been explored [19].
Unification in this context is still NP-complete and can be seen as an instance of the cases analyzed
in this paper. Disunification is relatively simpler: the constraint solvers developed for {log} [18]
are capable of handling both equalities and disequations, leading to a solved form containing only
primitive constraints of the form X = t and Y 6= s, where X, Y are variables, X occurs only once
in the resulting constraint, and Y does not appear in s.

We have investigated the possibility of transforming our constraints in explicit solved form
(Section 5.3) in the same solved form as the one used by {log}. This task requires the ability of
forcing variables to assume only atoms as values, something which cannot be explicitly expressed
in the context of a possibly unbound signature. This can be achieved through the introduction of
an additional type of constraint: kernel (see also [18]) which is satisfied by all the atoms of the
lattice used for the interpretation of the ACI1 theory.

A considerable amount of research has also been performed in the area of set-constraints [3, 30].
Set-constraints are conjunctions of literals based on the predicate ⊆ and the constant symbols 0,1,
and a non-empty set of first-order constant symbols (e.g., a, b); function symbols: ∪,∩, {, where {
stands for the complement operator, and, possibly, an additional set of free function symbols (e.g.,
f, g). If a function symbol f is available, then also its projection f−1

i on the ith argument can be
used as term-constructors.

The domain on which satisfiability of set-constraints must be checked is the powerset of T (Σ),
with Σ containing all symbols above but 0,1,∪,∩, {, f−1

i . Moreover, the interpretation for the
functions and their projection is fixed:

(f(a1, . . . , an))
P

= {f(t1, . . . , tn) :
∧n

i=1 ti∈a
P
i} for f ∈ Σ

(f−1
i (a))

P
= {ti : ∃t1, . . . , tn f(t1, . . . , tn) ∈ (a)

P} for f ∈ Σ

44

()
P

is extended to set-based operators in the intuitive way. In particular, the interpretation is a
model of ∪. Thus, the interpretation domain must be a join-semilattice with bottom. If we forbid
the use of symbols ∩,1, {, and the projection symbols, the work in the area of set constraint can
be seen as a work on solving ACI1 constraints on particular domains.

8 Complexity Analysis

In this section we prove that the satisfiability problem for ACI1 constraints in the general case
(i.e., when free function symbols are allowed in the signature) in the domain H is NP-complete.
NP-hardness follows from [28]. We here recall briefly a simple way to reduce 3-SAT to the “set”
unification (as in [18]). Consider the instance of 3-SAT:

ϕ = (X1 ∨ ¬X2 ∨X3) ∧ (X2 ∨ ¬X3 ∨X1) ∧ (X3 ∨ ¬X1 ∨X2)

Introducing variables Y1, Y2, Y3 for ¬X1,¬X2,¬X3 respectively, it is immediate to see that solving
the following ACI1 unification problem ({·} is the free singleton operator, false and true are two
distinct constant symbols that can be replaced, for instance, by ∅ and {∅}, {t1, . . . , tn} is a short
form for {t1} ∪ · · · ∪ {tn}) is equivalent to checking satisfiability of ϕ:

{{X1, Y1}, {X2, Y2}, {X3, Y3}, {X1, Y2, X3, false}, {X2, Y3, X1, false}, {X3, Y1, X2, false}} =
{{ false, true }}

To prove NP-completeness we can prove that each ACI1-constraint problem can be polynomi-
ally reduced to a decision problem over sets involving open formulae. The decision problem for the
latter class of formula is NP-complete [10]. This is done in Appendix A. The algorithm we have
presented in this paper is polynomial as far as pure disequation constraints are concerned. For a
generic ACI1 constraint, since we first solve equality constraints, by making use of general ACI1
unification, and then apply a substitution obtained to the remaining part of the constraint, we can
fall outside of NP because of the size explosion of terms due to application of substitution.

The combined effect of the results in Theorem 4.12 and in Corollary 4.18 allows us to decide
the satisfiability of every constraint in the general theory in every model. This property is com-
monly called satisfaction completeness [27]. Satisfaction completeness represent a weak form of
completeness for the formula we are interested in.

As far as we know, the decidability problem for arbitrary first-order formulas of the equational
theory ACI1 is not yet studied. Since, having one unary function symbol, say {·}, it is possible to
encode the basics of set theory (empty set ∅, the union symbol ∪, and the membership predicate
x ∈ y ↔ Y = Y ∪ {X}) our feeling is that testing the satisfiability of a generic first-order ACI1-
formula over the domain H is undecidable. But a careful proof should be done.

9 Conclusion

In this paper we have studied the problem of verifying the satisfiability of conjunctions of equations
and disequations with respect to an ACI1 theory. The ability to efficiently verify the satisfiability
of this class of formulae is vital to the development of more general and effective CLP languages
embedding sets. Existing results in the area of E-disunification (e.g., [15, 9, 5, 14, 23, 29]) present
general techniques to solve these problems, but such techniques are either inadequate to the needs

45

of a CLP framework (e.g., [9, 5]) or unsuitable to the characteristics of ACI1 equational theories
(e.g., [15]).

The contributions of this paper can be summarized as follows:

• We have characterized the class of structures which are suitable to model ACI1-like theories;
in particular, we have related the form of the structure to the problem of verifying satisfiability
of the disunification problem.

• We have provided complexity results for the problem of verifying satisfiability of elementary
disunification and disunification with constants.

• In the case of disunification under a general signature (i.e., a signature with free non-constant
function symbols), we have characterized the axiomatization which captures the desired prop-
erties, and which corresponds to the “standard” T (Σ)/ =ACI1 model.

• We have proposed four solved forms. Each solved form provides a different trade-off be-
tween computational complexity and explicit representation of the set of solutions. We have
developed algorithms to compute the equivalent solved form for arbitrary conjunctions of
disequations. Each solved form can be trivially tested for satisfiability. Furthermore two of
the four normal forms can be efficiently computed and tested in polynomial time.

As future work, we will continue to explore the issue of solved forms by extending the discussion to
embrace different ACI1 operators. E.g., we are interested in dealing with languages which include
a second ACI1 operator ∩, related to ∪ in the same way as

∨
is related to

∧
in lattice structures.

This will allow us to extend our set-theoretic operations to more complex set representations,
including both union and intersections. We will also explore the relationship between the solved
form adopted in this work and those adopted in previous proposals [19].

Since our goal is to provide constraint solving algorithms which can be integrated in the context
of a constraint logic programming framework, the issue of efficiency has to be taken into account.
In spite of the general high complexity of the problem at hand, as discussed in Section 8, we have
pointed out that there are solved forms for disequation constraints that can be computed very
efficiently; the efficiency depends heavily on the choice of the correct data structures to represent
terms and constraints (e.g., use of structure sharing and term factoring). In our future work
we propose to continue this study and to investigate the practical issues leading to an effective
implementation, along with its integration within a Constraint Logic Programming system.

Acknowledgments

This work would have not been possible without the constant help and support of Gianfranco Rossi.
The authors would also like to thank Roberto Giacobazzi and Desh Ranjan for the help on this
paper, and the anonymous referees that greatly helped in improving the presentation of the paper.

A. Dovier is partially supported by MIUR project: Aggregate—and number—reasoning for com-
puting. E. Pontelli is partially supported by NSF grants CDA9729848, EIA9810732, CCR9900320,
HRD9906130, and CCR9875279.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to Semistructured
Data and XML Morgan Kaufmann Publishers, 2000.

46

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[3] A. Aiken. Set Constraints: Results, Applications and Future Directions. Technical report,
University of California, Berkeley, 1994.

[4] F. Baader and W. Büttner. Unification in Commutative and Idempotent Monoids. Theoretical
Computer Science, 56:345–352, 1988.

[5] F. Baader and K. U. Schulz. Combination Techniques and Decision Problems for Disunifica-
tion. Theoretical Computer Science, 142:229–255, 1995.

[6] F. Baader and K. U. Schulz. Unification in the Union of Disjoint Equational Theories: Com-
bining Decision Procedures. Journal of Symbolic Computation, 21:211–243, 1996.

[7] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic Database Language.
Journal of Logic Programming 10, 3, 181–232, 1991.

[8] A. Beutelspacher and W. Brestovansky. Generalized Schur Numbers. In Combinatorial Theory,
Springer Verlag, Lecture Notes in Mathematics, pp. 30-38, 1982.

[9] H.-J. Bürckert. Solving Disequations in Equational Theories. In E. L. Lusk and R. A. Overbeek,
editors, CADE 1988, Lecture Notes in Computer Science 310, pages 517–526. Springer-Verlag,
Berlin, 1988.

[10] D. Cantone, E. G. Omodeo, A. Policriti. Set Theory for Computing. Springer Verlag, 2001.

[11] W. Charatonik and L. Pacholski. Negative Set Constraints with Equality. In Proc. 9th Symp.
Logic in Computer Science. IEEE, 1994.

[12] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293–321. Plenum Press, 1978.

[13] M. Codish and V. Lagoon. Type Dependencies for Logic Programs using ACI-unification.
Theoretical Computer Science 238(1–2):131–159 (2000).

[14] A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In International
Conference on Fifth Generation Computer Systems, ICOT, pp. 85–99, 1984.

[15] H. Comon. Disunification: a Survey. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson. The MIT Press, Cambridge, Mass.,
1991.

[16] H. Comon and C. Kirchner. Constraint Solving on Terms. In Constraints in Computational
Logics, Springer Verlag, pp. 47–103, 1999.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, Mass., 1990.

[18] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Language for Programming in
Logic with Finite Sets. Journal of Logic Programming, 28(1):1–44, 1996.

[19] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming. ACM
Transaction on Programming Language and Systems, 22(5):861–931, 2000.

[20] A. Dovier, C. Piazza, and A. Policriti. Comparing expressiveness of set constructor symbols.
In H. Kirchner and C. Ringeissen, editors, Frontier of Combining Systems 2000. Lecture Notes
in Computer Science 1794, pp. 275–289, Springer-Verlag, 2000.

[21] A. Dovier, E. Pontelli, and G. Rossi. Set Unification Revisited. NMSU-CSTR-9817, Dept. of
Computer Science, New Mexico State University, USA, October 1998.

47

[22] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press Inc., 1972.

[23] M. Fernandez. Narrowing based Procedures for Equational Disunification. In Applicable Al-
gebra in Engineering, Communications, and Computing, Springer Verlag, pp. 1–26, 1992.

[24] C. Fidge, I. Hayes, A. Martin, and A. Wabenhorst. A Set-theoretic Model for Real-Time
Specification and Reasoning. In Mathematics of Program Construction, Springer Verlag, 1998.

[25] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation of a
Practical Language. Constraints, 1:191–246, 1997.

[26] G. Grätzer. General Lattice Theory. Birkhäuser Verlag Basel und Stuttgart, 1978.

[27] J. Jaffar, M. Maher, K. Marriot, and P. Stuckey. The Semantics of Constraint Logic Programs.
Journal of Logic Programming, 37:1–46, 1998.

[28] D. Kapur and P. Narendran. NP-Completeness of the Set Unification and Matching Problems,
In J. H. Siekmann ed., 8th International Conference on Automated Deduction, Lecture Notes
in Computer Science 230, pp. 489–495, Springer-Verlag, 1986.

[29] C. Kirchner and P. Lescanne. Solving Disequations. In Proceedings of the Annual IEEE
Symposium on Logic in Computer Science, Ithaca, NY, pp. 347–352, 1987.

[30] D. Kozen. Logical Aspects of Set Constraints. In Procs. Conf. on Computer Science Logic,
Vol. 832 Lecture Notes in Computer Science, pp. 175–188. Springer-Verlag, 1993.

[31] G. M. Kuper. Logic Programming with Sets. Journal of Computer and System Science 41, 1,
pages 66–75, 1990.

[32] B. Legeard and E. Legros. Short Overview of the CLPS System. In Proc. Third Int’l Symp. on
Programming Language Implementation and Logic Programming, Lecture Notes in Computer
Science 528, pp. 431–433. Springer-Verlag, 1991.

[33] M. J. Maher. Complete Axiomatizations of the Algebras of Finite, Rational and Infinite Trees.
In Proceedings of 3rd Symposium Logic in Computer Science, pages 349–357, 1980.

[34] Mal’cev, A. Axiomatizable Classes of Locally Free Algebras of Various Types. In The Meta-
mathematics of Algebraic Systems, North Holland, 1971, ch. 23.

[35] . R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing
Dynamical Systems. MIT Press, 2001.

[36] K. Marriott and P. Stuckey. Programming with Constraints. MIT Press, 1998.

[37] A. Robinson. Introduction to Model Theory and to the Metamathematics of Algebra. North
Holland, Amsterdam, 1963.

[38] J. H. Siekmann. Unification Theory. In C. Kirchner, editor, Unification. Academic Press, 1990.

[39] T. Soininen and I. Niemelä. Developing a Declarative Rule Language for Applications in
Product Configuration. In Symposium on Practical Aspects of Declarative Languages, Springer
Verlag, pp. 305–319, 1999.

[40] J.M. Spivey. The Z Notation: A reference Manual, 2nd edition. International Series in Com-
puter Science. Prentice Hall, 1992.

[41] M. Thielscher. Reasoning about Actions with CHR and Finite Domain Constraints. In Inter-
national Conference on Logic Programming, Springer Verlag, pp. 70–84, 2002.

[42] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: a Platform for Constraint Logic Program-
ming. IC-PARC, Imperial College, 1997.

[43] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI International,
1983.

48

A NP-completeness of general ACI1-constraints

To prove NP-completeness we will make use of the model HF of hereditarily finite well-founded
sets whose domain U can be inductively defined as U =

⋃
i≥0 Ui with U0 = ∅, Ui+1 = ℘(Ui) (where

℘ stands for the power-set operator) and whose interpretation for L = {∅,∪,∈, =} is the natural
one. Any open formula built using ∅, {·},∪,=,∈ is satisfiable in some model of set theory if and
only if it is satisfiable over HF [10]. We also denote by n the singleton set of rank n, i.e., the set
inductively defined as: 0 = ∅, n + 1 = {n}.

Let Σ ⊇ {∪, ∅} be a signature. Consider a function ˆ which maps each symbol of Σ \ {∪, ∅} into
a set of the form n with n ≥ 1 and f̂ 6= ĝ if f 6≡ g. We use this function to define the function
α : T (Σ,V) −→ T (L,V):





α(X) = X if X is a variable
α(∅) = ∅HF
α(s ∪ t) = α(s) ∪HF α(t)
α(f(t1, . . . , tn)) = {〈f̂ , α(t1), . . . , α(tn)〉} f 6≡ ∅, f 6≡ ∪, ar(f) = n

where ∅HF and ∪HF are the interpretations of the empty set and of the union operator on HF.
When the context is clear we simply use ∅ and ∪ for them. 〈a1, . . . , an〉 denotes the ordered tuple
constructor that can be defined as usual in set theory (e.g., 〈x, y〉 = {{x}, {x, y}}). The range of α
is U when the term is ground. Otherwise, with a slight mixing of syntax and semantics, it returns
a pure set term involving variables. We define also the function γ : U −→ T (Σ,V):





γ(∅) = ∅
γ({t1, . . . , tm}) = γ({t1}) ∪ · · · ∪ γ({tm}) if m > 1
γ({〈f̂ , r1, . . . , rn〉}) = f(γ(r1), . . . , γ(rn))
γ({r}) = Rr if r 6≡ 〈f̂ , r1, . . . , rn〉

where Rr is a new variable, different for each r.

Example A.1 Assume {̂·} = 1, â = 2, f̂ = 3, ar(f) = 2.

• α({a} ∪ {∅}) = {〈1, {〈2〉}〉, 〈1, ∅〉}
• α({f(a, ∅)} ∪X) = {〈3, {〈2〉}, ∅〉} ∪X

• γ({〈1, {〈2〉}〉, 〈1, ∅〉}) = {a} ∪ {∅}
• γ({〈1, ∅〉, {∅, {∅}}}) = {a} ∪N , with N a new variable.

It is easy to verify by structural induction that for t ∈ T (Σ) it holds that H |= t = γ(α(t)).
Since we are in a general signature, we know that there is f ∈ Σ \ {∪, ∅}, ar(f) > 0: we denote

by f1 the term f(∅, . . . , ∅) and by fk+1 the term f(fk, . . . , fk). A valuation σ over H is said to be
a f i valuation if all variables involved are assigned to a term of this form. From Lemma 4.16 we
know that, for s, t ∈ T (Σ)

depth(t1) 6= depth(t2) → H |= t1 6= t2 (17)

If σ : V −→ H is a valuation, then with α(σ) : V −→ HF we denote the valuation defined as:
α(σ)(X) = α(σ(X)). It is immediate to prove, by structural induction on |t|, that for all terms t
α(σ)(t) = α(σ(t)).

The following result will help us in proving the main theorem of this section:

49

Lemma A.2 Let s and t be two different elements of U , and let h = max{depth(γ(s)), depth(γ(t))}.
If σ is a f i-valuation such that:

• for all X ∈ vars(γ(t)) ∪ vars(γ(s)) it holds that σ(X) = fnX with nX > h, and

• for all X,Y ∈ vars(γ(t)) ∪ vars(γ(s)) such that X 6≡ Y it holds that |nX − nY | > h,

then H |= σ(γ(s)) 6= σ(γ(t)).

Proof. 1. If γ(s) and γ(t) are ground terms, then s and t belongs to α(T (Σ)). The result holds trivially
for all the valuations σ, since γ is injective on α(T (Σ)).

2. If γ(s) is ground and γ(t) is not ground (or vice versa), then the result holds by property (17), since
depth(σ(γ(t)) > h ≥ depth(σ(γ(s))) (or vice versa).

3. If γ(s) and γ(t) are not ground and there is a variable X which occurs in γ(s), but not in γ(t), then
consider a subtree σ(X) in the term σ(γ(s)). It cannot be the case that this subtree is equal to a subtree
σ(r) of σ(γ(t)):

• if σ(r) = r, i.e. r was already ground in γ(t), then depth(r) < h < depth(σ(X)), and hence σ(r) 6=
σ(X);

• if in r there is a variable Y such that nY > nX , then depth(σ(r)) ≥ depth(σ(Y)) > depth(σ(X));

• if all the variables Y1, . . . , Yn in r are such that nYi < nX (i.e. nX − nYi > h), then depth(σ(r)) ≤
h + maxi=1,...,n{depth(σ(Yi))} ≤ h + (nYj + 1) > nX + 1 = depth(σ(X)).

4. The same reasoning can be applied if γ(s) and γ(t) are not ground and there is a variable X which
occurs in γ(t) but not in γ(s).

5. Assume γ(s) and γ(t) are not ground and vars(γ(s)) = vars(γ(t)). Without loss of generality, consider
ρ(γ(s)) and ρ(γ(t)). Let us consider one of the minimal subtrees s′ of ρ(γ(s)) such that the subtree t′ of
ρ(γ(t)) in the same position of s′ is not syntactically equal to s′.

• If s′ and t′ have two different outermost functional symbols, then σ(s′) 6= σ(t′) and hence σ(γ(s)) 6=
σ(γ(t)).

• Otherwise, since s′ is minimal, it must be the case that s′ is a variable or t′ is a variable.
If s′ ≡ X and X occurs in t′, then depth(σ(s′)) < depth(σ(t′)).
Otherwise,If s′ ≡ X and X does not occur in t′, then we can apply the same reasoning applied in case
3. If t′ ≡ X, then we can apply the same reasoning of the last two sub-cases.

2

Without loss of generality, we can assume to deal with flat form constraints, namely constraints
C whose literals are of the form X 6= Y,X = f(Y1, . . . , Yn), with f ∈ Σ. Literals of the form X = Y
can be removed by application of substitution. Starting from a generic constraint it is immediate
to obtain in polynomial time an equi-satisfiable flat form constraint. With α(C) we denote the
set-based formula obtained replacing s op t with α(s) op α(t) where op is = or 6=.

Theorem A.3 Let C be a flat form constraint. Then H |= ∃̄C if and only if HF |= ∃̄α(C).

Proof. Assume H |= ∃̄C, and let σ : vars(C) −→ T (Σ,V) be a satisfying valuation. It is immediate to
prove that HF |= α(σ)(α(C)).

Assume now that α(C) is satisfied by τ : vars(C) −→ U in HF. We prove that there is a valuation ν
of the variables in γ(τ(C)) such that the valuation µ : vars(C) −→ H, defined as: µ(X) = ν(γ(τ(X)))) is
a satisfying valuation for C over H. Let vars(C) = {X1, . . . , Xm} and S = {τ(X1), . . . , τ(Xm)}, consider
h = maxi=1,...,m{depth(γ(τ(Xi))}. Let ν be a f i-valuation such that:

50

• for all W ∈ vars(γ(τ(C))) it holds ν(W) = fnW , with nW > h, and

• for all W,V ∈ vars(γ(τ(C))) such that W 6≡ V it holds |nW − nV | > h

We analyze the various literals of C:

X = ∅: X = ∅ is in α(C) and τ(X) = ∅. By definition, γ(τ(X)) = ∅.
X = f(Y1, . . . , Yn): This means that X = {〈f̂ , Y1, . . . , Yn〉} is in α(C). Since τ is a satisfying valuation, then

τ(X) = {〈f̂ , τ(Y1), . . . , τ(Yn)〉}. This implies that for any ν:

µ(X) = ν(γ(τ(X))) = ν(γ({〈f̂ , τ(Y1), . . . , τ(Yn)〉}))
= ν(f(γ(τ(Y1)), . . . , γ(τ(Yn)))) = f(ν(γ(τ(Y1))), . . . , ν(γ(τ(Yn))))
= f(µ(Y1), . . . , µ(Yn)) = µ(f(Y1, . . . , Yn))

X = Y ∪ Z: X = Y ∪ Z is in α(C) and τ(X) = τ(Y) ∪ τ(Z). Thus, for any ν:

µ(X) = ν(γ(τ(Y) ∪ τ(Z))) = ν(γ(τ(Y)) ∪ γ(τ(Z)))
= ν(γ(τ(Y))) ∪ ν(γ(τ(Z))) = µ(Y) ∪ µ(Z)
= µ(Y ∪ Z)

X 6= Y : X 6= Y is in α(C) and τ(X) and τ(Y) are two different sets. From, Lemma A.2, we have the thesis,
since the ν we have defined satisfies the hypothesis of the Lemma.

2

Corollary A.4 Testing the satisfiability of general ACI1 constraints over H is NP-complete.

Proof. A general ACI1 constraint C can be transformed in polynomial time to a equi-satisfiable flat form
constraint. The result follows from Theorem A.3 and [10]. 2

51

