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Abstract

A protein is identified by a finite sequence of amino acids, each of them chosen

from a set of 20 elements. The Protein Structure Prediction Problem is the problem

of predicting the 3D native conformation of a protein, when its sequence of amino

acids is known. Although it is accepted that the native state minimizes the free

energy of the protein, all current mathematical models of the problem are affected

by intrinsic computational limits, and moreover there is no common agreement on

which is the most reliable energy function to be used.

In this paper we present an agent-based framework for ab-initio simulations,

composed by different levels of agents. Each amino acid of an input protein is

viewed as an independent agent that communicates with the others. Then we have

also strategic agents and cooperative ones. The framework allows a modular rep-

resentation of the problem and it is easily extensible for further refinements and for

different energy functions. Simulations at this level of abstraction allow fast calcu-

lation, distributed on each agent. We have written a multi-thread implementation,

and tested the feasibility of the engine with two energy functions.

1 Introduction

The Protein Structure Prediction Problem (PSP), fundamental for biological and phar-

maceutical research, is the problem of predicting the 3Dnative conformation of a

protein, when the sequence made of 20 kinds of amino acids (orresidues) is known.
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Amino acids are molecules composed of a number of atoms ranging from 7 to 24. The

process for reaching the native state is known as the proteinfolding. Currently, the na-

tive conformations of more than 30000 proteins are available in the Protein Data Bank

(PDB) [4].

In this work we concentrate onab-initio modelling. These methods are based on the

Anfinsen thermodynamic hypothesis[2]: the (native) conformation adopted by a protein

is the one with minimum free energy, i.e. the most stable state. A fundamental role in

the design of a predictive method is played by the spatial representation of the protein

and the static energy function, which is to be at a minimum for native conformations.

All-atom computer simulations are typically unpractical, because they are extremely

expensive. In fact, each simulated nanosecond for a small protein requires 2 to 4 CPU

days on a supercomputer at Berkeley Lab. To overcome this limit, amino acids are

modeled in a coarser way, usually as a single sphere. These simplified models of

proteins are attractive in many respects, as they have smoother energy hyper-surfaces,

and the dynamics is faster. Unfortunately, there is no general agreement on the potential

that should be used with these models, and several different energy functions can be

found in literature [32, 31].

In this paper we present a new high-level framework for ab-initio simulation using

Agent-based technologies, which extends the one presented in [6]. It is developed by

following the architecture for agent-based optimization systems presented by Milano

and Roli in [23]. This framework stratifies the agents in different levels, according

to their knowledge and their power. Here we have three layers: one containing agents

designed to explore the state space, one dealing with agents implementing global strate-

gies and the last one containing cooperation agents.

Each amino acid in the protein is modeled as an independent agent, which has

the task of exploring the configuration space. This is accomplished mainly by letting

these agents interact and exchange information. These processes operate within a sim-

ulated annealing scheme, and their moves are guided by the knowledge of the position

of surrounding objects. The communication network changes dynamically during the

simulation, as agents interact more often with their spatial neighbours. The strategic

agents govern the environmental properties and they also coordinate the basic agents

activity in order to obtain a more effective exploration strategy of the state space. The

cooperative agent, instead, exploits some external knowledge, related to local config-

urations attainable by a protein, to improve the folding process. The communication

between agents is based on Linda tuple space (see, e.g., [11]), and the program is im-
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plemented in SICStus Prolog [14]. Moreover, we have also implemented an equivalent

multithread version, written in C, which is much faster (cf. Section 6).

Here we test the system using two different energy models. The first one has been

developed by Micheletti in [13], and used there to generate coarse grained structures

to be then processed by molecular dynamics. The second has been used in a previous

version of this work [6], as a first benchmark, but never tested in detail. However, other

energy models can be used as well, as the framework is independent from it.

The program produces quite stable outcomes, in the sense that the solutions found

in different runs have similar energies. Unfortunately, the potentials used are still too

coarse to produce good predictions in terms of RMSD from known native structures.

Moreover, the introduction of the strategic level improves very much the quality of

the solutions (in terms of energetic values), while the cooperative agent decreases the

RMSD, but increases the energy. This shows the need of using a potential with a higher

resolution.

The paper is organized as follows. In Section 2 we briefly discuss the main results

related to the solution of the PSP problem. The problem is then formalized in Section 3.

In Section 5 we present the Agent-based framework. In Section 4 we describe the

energy models employed. In Section 6 we provide some details of the implementation

and in Section 7 we show the results. Finally, in Section 8 we draw some conclusions.

2 Related Work

The field ofab-initio protein structure prediction is an highly active area of research,

and we refer to [32] for a detailed review.

All-atoms ab-initio simulations by means of molecular dynamics (e.g. [28, 10, 20])

are not feasible, due to the high intrinsic complexity of the needed operations. In

particular, two to four CPU-days of a supercomputer at Berkeley Labs are needed to

simulate a single nanosecond in the evolution of a medium length protein, while the

typical folding time is of the order of milliseconds or seconds.

More efficient methods are offered by simplified models, where each amino acid

is described in a coarser way, for instance, as a single center of interaction. The cor-

responding energy models are built around by taking into account the local propensity

to adopt well-defined secondary structures, as well as intramolecular interactions. The

secondary structure propensity is usually encoded in energy terms derived from sta-

tistical database analysis, depending on the type of amino acids involved. Another
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possibility is that of imposing rigid constraints (as done in [12]) directly in the sim-

ulation. Interactions between amino acids, on the other end, may be treated either

considering their chemical and physical properties or using a statistical approach. One

relevant problem is the correlation between the different propensities and interactions

singled out. As far as empirical contact energies are concerned, a table which has been

proven to be rather accurate, when tested on several decoys’ sets, is derived in [5].

Similar tables have been provided based on different criteria by other authors [24].

Thirumalai [33] has designed a forcefield suited for representing a protein through its

Cα-chain, which includes bonds, bend, and torsion angle energy terms. Scheraga [19]

has used a similar model including side-chain centroids. For an up-to-date discussion

on reduced potentials, see [31]. Since the focus of this paper is the development of

a computational approach to PSP based on MAS, we will not go in detail into most

recent results. It is worth however noticing that the world-wide prediction CASP ex-

periment [25] has seen a steadily increase in the performance of many prediction al-

gorithms and procedures. Among most successful ab-initio predictors (i.e. predictors

which do not start from homology with a structurally characterized sequence), the pro-

grams Rosetta [8], Tasser [34], and Fragfold [16] have been performing very well in the

recent CASP rounds. The accuracy of the methods used in the group of Baker enabled

the design (and later experimental verification) of a novel protein fold [18].

The problem can also be formulated as a non-linear minimization problem, where

the spatial domain for the amino acids is a discrete lattice. A constraint-based approach

to this problem on the so-calledFace Centered Cubic lattice, with a further abstraction

on amino acids (they are split into two families H and P), is successfully solved in [3]

for proteins of length up to 160. A constraint-based solution to the general problem

(with the 20 amino acids) is proposed instead in [12], where proteins of length up to 50

are solved. In the latter approach, the solution search is based on the constraint solver

for finite domains of SICStus Prolog [14].

At present time, we are not aware of any other approach modeling amino acids

as concurrent processes. We believe therefore that it is worth to explore further this

modeling approach. We wish to remark, however, that the simple energetic models

used impair the predictive power of the procedures described here, especially when

compared with the much more established methods mentioned above (see for a recent

perspective [30]).
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3 Proteins and the PSP Problem

A protein is made by amino acids, present in nature in 20 different types that can be

identified by a letter in the setA = {A, . . . , Z} \ {B, J,O,U,X, Z}. Theprimary

structureof a protein is its amino acid sequences1 · · · sn, wheresi ∈ A. Each protein

assumes a particular 3D conformation, called native conformation ortertiary struc-

ture, determined uniquely by its primary structure. It is precisely this specific spatial

structure that determines the function of a protein. Thermodynamical consideration

justify the hypothesis that the native structure is the 3D conformation that minimizes

the global free energy [2]. A well-defined energy function should consider all possi-

ble interactions between all atoms of every amino acid composing the protein, though

there is no common agreement on which energy function should model correctly the

phenomenon. A review of various forces and potentials can be found in [26]. The

protein structure prediction (PSP) problemis the problem of predicting the tertiary

structure of a protein given its primary structure.

The general structure of an amino acid is reported in Figure 1. There is a partcom-

monto all amino acids, theN–Cα–C ′ backbone, and acharacteristic partknown as

side chain, which consists of a number of atoms ranging from 1 to 18. Each amino acid

is linked to the following by a peptide bond, represented in the diagram by incoming

and outgoing arrows.

A more abstract view of amino acids considers each of them as a singlesphere

centered in theCα atom (see Figure 8). It is reasonable to assume the distance between

two consecutiveCα atoms to be3.8 Å, measure chosen as unitary. At this level of

abstraction, different potentials can be found in literature [19], usually composed by

statistical terms derived from analysis of known native structures from PDB. In the

following section, we present in more detail two energy functions we used for testing

the system.

4 Energy function

The problem of identifying an accurate energy for a simplified representation of the

amino acids is considered very difficult, and there is no general accordance relatively

to which one reflects better the physical reality. Consequently, in literature there are

many different energy functions one can choose from [31, 32]. All these models share

a common feature: the more accurate are the results, the more complex are the calcu-
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lations involved.

As the focus of this paper is to present the agent-based framework, the two energy

models that we used will be presented briefly hereafter. The interested reader can find

more details in the referenced papers. Both energy models represents amino acids as

single spheres centered in theCα-atoms; at this level of description the local geometry

is described by bend angles (the angles formed between two bonds linking three con-

secutive carbon atoms, see Figure 3) and torsion angles (the angles between the planes

spanned by the first three and the last threeCα-atoms in a run of four consecutive ones,

see Figure 4).

4.1 First Energy Model

The first energy model has been developed by Micheletti in [22]. The energy comprises

three terms, devoted to interaction, cooperation and chirality. In addition, there are

some penalty terms that penalize non-physical configurations by giving them a high

energy.

If we indicate withx the spatial disposition of the amino acid’s chain and witht

their type, the energy can be expressed as

E(x, t) = Ecoop(x, t) + Epairwise(x, t)+

Echiral(x, t) + Econstr(x)
(1)

The pairwise term(Epairwise) captures the interactions that occur between two

amino acids that are close enough, and it is defined using a contact interaction matrix

developed by Kolinsky in [17]. Thecooperative term(Ecoop) involves four different

amino acids and it tries to improve the packing of secondary motifs, favoring the for-

mation of close hydrogen-bonds. Thechiral term(Echiral), instead, is used to favor the

formation of helices for some putative segments, identified using knowledge extracted

from PDB database. Finally, there are three kinds ofpenalty terms: one imposing steric

constraints on the position ofCα andCβ atoms,1 one forbidding unrealistic torsional

angles and one keeping fixed the distance between two consecutiveCα atoms.

1The position ofCβ is calculated from the chain of alpha carbon atoms using the Park and Levitt rule

(cf. [27]).
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4.2 Second Energy Model

The second energy model has been developed in [6] to perform the tests on the first

version of the simulation engine. It is composed by four separate terms, related to

bond distance(Eb), bend angle(Ea), torsional angle(Et), andcontact interaction

(Ec):

E(x, t) = Eb(x, t) + Ea(x, t) + Et(x, t) + Ec(x, t) (2)

Thebond distance term(Eb) is designed to keep fixed to 3.8Å the distance of two

consecutiveCα atoms. Thebend angle term(Ea) and thetorsional angle term(Et),

instead, are statistical potentials trying to induce a good local geometry in the folded

chain, e.g. favoring the formation of secondary structure elements. Finally, thecontact

interaction termcaptures long range interactions using the statistical contact matrix

developed in [5].

5 The Simulation Framework

In this section we describe the abstract framework of the simulation, following the line

of [7]. This scheme is independent both on the spatial model of the protein and on the

energy model employed. Therefore, it can be instantiated using different representa-

tions. Here we test the system with the two different energy functions of Section 4.

Each amino acid is associated to an independent agent, which moves in the space

and communicates with others in order to minimize the energy function. Moreover, we

also introduce other agents at different hierarchical levels, which have the objective of

coordinating and improving the overall performance of the system.

Milano and Roli in [23] have devised a general scheme to encode agent–based

minimization, and our framework can be seen as an instantiation of that model. In

particular, they identify four levels of agents, which interact in order to perform the

optimization task. Level 0 deals with generation of an initial solution, level 1 is focused

on the stochastic search in the state space, level 3 performs global strategic tasks and

level 4 is concerned with cooperation strategies.

According to this scheme, here we have agents of level 1, 2 and 3 (level 0 ones are

trivial). We deal separately with them in next subsections.

We present the basic function of those agents using Linda [11] as concurrent par-

adigm. In this language, all agents interact and communicate through writing and

reading logical atoms in the Linda tuple space.
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5.1 Level 1 – searching agents

We associate to each amino acid an agent, which has the capability to communicate

its current position to other processes, and to move in the search space, guided by its

knowledge of the position of other agents. The general behaviour of these agents can

be easily described declaratively by the predicateamino(i,S) :

amino(i,S) :-

read(authorized(i)),

in(trigger(i)),

in(resting(i)),

get_pos([pos(1,Pos_1),...,pos(n,Pos_n)]),

update_pos(i,S,[pos(1,Pos_1),...,pos(n,Pos_n)], Newpos),

out(pos(i,Newpos)),

out(trigger(1)),...,out(trigger(i-1)),

out(trigger(i+1)),...,out(trigger(n)),

out(resting(i)),

amino(i,S).

The first instruction is a blockingread , which tests if the termauthorized(i)

is present in the tuple space. This term is used to coordinate the activity with higher

level agents: these processes can remove it and thus blocking the activity of the amino

agents. Also the termresting(i) is used in this coordination task, and it allows an

amino agent to tell other processes if he is moving or not. In fact, it is removed from

the tuple space at the beginning of a computation, and it is added again at the end.

The second instruction is a blockingin , which removes the switchtrigger(i)

from the tuple space. This is a mechanism used to guarantee (a week form of) fair-

ness to the system: each agent must wait for the movement of another process before

performing its own move. In this way we avoid that a single agent takes the system

resources all for itself. Clearly, at the beginning of the simulation the switches for all

the amino processes are turned on, in order to let them move.

When the guards are satisfied, the process retrieves the most recent position of all

other amino acids (get_pos ), which is stored in the tuple space in terms of the kind

pos(i,position) . Successively, the current position of each agent is updated by

update_pos through a mechanism described in section 5.1.1, and this new position

is put in the tuple space by the followingout instruction. Finally, the switches of all

other processes are turned on by thei− 1 instructionstrigger(j) , with j 6= i, and
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then the process recursively calls itself. Actually, in the real implementation, triggers

are added only if they are not already present.

The position of these agents is expressed in cartesian coordinates. This choice

implies that the moves performed by these processes are local, i.e. they do not affect

the position of other amino acids. This is in syntony with the locality of the potential

effects: the modification of the position of an amino acid influence only the nearby

ones.

The initial configuration of the chain can be chosen between three different possi-

bilities: straight line, random, and the deposited structure for known proteins.

5.1.1 Simulating moves

The amino acids move according to a simulated annealing scheme. This algorithm,

which is inspired by analogy to the physical process of slowly cooling a melted metal to

crystallize it (cf. [1]), uses a Montecarlo-like criterion to explore the space. Each time

the procedureupdate pos is invoked, the amino acidai computes a new position

p′ in a suitable neighborhood (see next Subsection), and then compares itscurrent

potentialPc with the newpotentialPn, corresponding top′. If Pn < Pc, the amino

acid updates its position top′, otherwise it accepts the move with probabilitye−
Pn−Pc

Temp .

This hill-climbing strategy is performed to escape from a local minimum.

Temp is a parameter simulating the temperature effects. Technically, it controls the

acceptance ratio of moves that increase the energy. In simulated annealing algorithms,

it is initially high, and then it is slowly cooled to 0 (note that ifTemp is very low,

the probability of accepting moves which increase the energy is practically 0). It can

be shown that simulated annealing converges to the global optimum of the energy, if

the temperature is lowered sufficiently slowly, i.e. in an exponential time (cf. [1]). We

discuss the cooling schedule in Section 5.2.2.

5.1.2 Moving Strategy

In the energy model adopted (cf. Section 4), we have several constraints on the posi-

tion of the amino acids, which are implemented via energy barriers. This means that

we may perform moves in the space that violate these constraints, but they will be less

and less probable as the temperature of the system decreases. We have chosen this

“soft constrained” approach because the Montecarlo-like methods require an unbiased

exploration of the search space, i.e. they require that the underlying Markov Chain
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model is irreducible and ergodic (cf. [1]). Now, because all the search space is vir-

tually accessible, the moving strategy is very simple, and guarantees the previous two

properties: we choose with uniform probability a point in a cube centered at the current

position of the amino acid. The length of the side of the cube is set experimentally to

1 Å.

5.1.3 Communication Scheme

When a single agent selects a new position in the space, it calculates the variation of

energy corresponding to this spatial shift. However, in almost all the reduced models,

the energy relative to a single amino acid depends only from the adjacent amino acids

in the polymer chain, and from other amino acids that are close enough to trigger the

contact interactions. Thus, if an agent is very far from the current one, it won’t bring

any contribution to the energy evaluation, at least as long as it remains distant.

This observation suggests a strategy that reduces considerably the communication

overhead. Agenti first identifies its neighborsNi, i.e. all the amino acids in the chain

that are at distance less than a certain threshold, fixed here to 14Å(more or less four

times the distance of two consecutive amino acids). Then, for an user-defined number

of movesM , it communicates just with the agents inNi, ignoring all the others. When

the specified numberM of interactions is reached,amino acidi retrieves the position

of all the amino acids and then refresh its neighbour’s listNi.

In our LINDA framework, this means that the processi will turn on the switches

trigger(j) just for the agentsj ∈ Ni. Moreover, it will read the current positions

only of those amino acids, before performing the move.

The refresh frequency must not be too low, otherwise a far amino acid could, in

principle, come very close and even collide with the current one, without any awareness

of what is happening. We experimentally set it to 100.

This new communication strategy impose a redefinition of the agent behaviour,

which now has to update also the neighbor list, thus leading to the code shown below.

amino(i,S,Curr,Neigh_List) :-

read(authorized(i)),

in(trigger(i)),

in(resting(i)),

update_neigh(Curr,Neigh_List,New_NList)

get_pos(New_NList,Pos_list),

update_pos(i,S,New_NList,Pos_List,Newpos),
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out(pos(i,Newpos)),

signal_move(New_NList),

C1 is Curr + 1,

out(resting(i)),

amino(i,S,C,New_NList).

It is quite similar to the one presented in section 5.1, with few obvious modifications

in get_pos and update_pos clauses, and with the presence of a new function

for updating the neighbour’s list, i.e.update_neigh . This predicate performs the

update only ifCurr mod M ≡ 0, otherwise copiesNeigh_List into New_NList .

5.2 Level 2 – strategy

The first layer of agents is designed to explore the search space, using a simulated

annealing strategy. However, the neighborhood explored by each agent is small and

simple, while the energy landscape is very complex. This means that the simulation is

unwilling to produce good solutions in acceptable time periods. This fact points clearly

to the need of a more coordinated and efficient search of the solution space, which can

be achieved by a global coordination of the agents. This task can be performed by a

higher level agent, which has a global knowledge of the current configuration, and it is

able to control the activity of the single agents. Details are provided in next subsection.

At the same time, the simulated annealing scheme is based on the gradual lower-

ing of the temperature, which is not a property of the amino agents, but it is rather a

feature of the environment where they are endowed. This means that the cooling strat-

egy for temperature must be governed by a higher level agent, which is presented in

subsection 5.2.2.

5.2.1 Enhanced exploration of state space

As said in the previous paragraphs, the way the solution space is searched influences

very much the performance at finite of stochastic optimization algorithms. Our choice

of using an agent based optimization scheme results in an algorithm where subset of

variables of the system are updated independently by different processes. However,

the neighborhood of each agent is quite restricted, to avoid problems arising from de-

layed communication (cf. Section 8 for further comments). This choice implies that

the algorithm may take a very long time to find a good solution, and consequently the

temperature must be cooled very slowly.
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To improve the efficiency, we designed a higher level agent, called the “orchestra

director”, which essentially moves the amino acids in the state space according to a

different, global strategy. It can move the chain using two different kind of moves:

crankshaft and pivot (cf. Figure 6). Crankshaft moves essentially fix two points in the

chain (usually at distance 3), and rotate the inner amino acids along the axis identified

by these two extremes by a randomly chosen angle. Pivot moves, instead, select a point

in the chain (the pivot), and rotate a branch of the chain around this hub, again by a

random angle. These global moves keep fixed the distance between two consecutiveCα

carbon atoms, and are able to overcome the energy barriers introduced by the distance

penalty term.

These are essentially the two moves executed by our director, which is described

by the following code:

director(S,N) :-

read(orchestra_authorized),

in(orchestra_resting),

get_position(Pos_List),

move_chain(Pos_List,New_Pos_List,S,N),

put_position(New_Pos_List),

out(orchestra_resting),

director(S,N).

The first two lines implement a synchronization mechanism similar to the one used

for amino agents. The agents waits for the ground atomorchestra_authorized

to be in the tuple space, then it start moving and it signals its movement by remov-

ing the predicateorchestra_resting . Once the director has got the position of

the amino acids (get_position ), it performs some moves using the previously de-

scribed strategies, calling themove_chain clause. This predicate calls itself recur-

sively a predefined numberN of times (depending on the protein’s length), and each

time it selects what move to perform (i.e. crankshaft or pivot), the pivot points and an

angle. Then it computes the energy associated to the old and the new configuration,

and applies a Montecarlo criterion to accept the move (cf. Section 5.1.1). Finally, the

end of the movement is signaled by putting back the atomorchestra_resting .

In the real implementation, we decided to activate this agent only if the temperature

of the system is high enough, that is to say, only when this moves guarantee an easy

overcome of energy barriers, hence an effective exploration of the search space. Thus

we have an additional condition at its beginning, likeTemperature > Threshold .
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5.2.2 Environment

The environmental variables of the simulation are managed by a dedicated agent. In

this case, the environment simply controls the temperature, which is a feature of the

simulated annealing algorithm. This temperature must not be conceived as a physical

quantity, but rather as a control value which governs the acceptance ratio in the choice

of moves increasing the energy.

From the theory of simulated annealing (cf. [1]), we know that the way the tem-

perature is lowered is crucial for the performance of the algorithm. In fact, this can

be seen as a sequence of Markov chain processes, every one with its own stationary

distribution. These distributions converge in the limit to a distribution which assigns

probability one to the points of global minimum for the energy. For this to happen,

however, one must lower the temperature logarithmically towards zero (giving rise to

an exponential algorithm). Anyway, to reach good approximations, one has just to let

the simulation perform a sufficient number of steps at each value of the control para-

meter, in order to stabilize the corresponding Markovian process.

We applied a simple and very used strategy: at each step the temperature is de-

creased according toTk+1 = αTk, whereα = 0.98. The starting temperatureT0 must

allow a high acceptance ratio, usually around60%, and we experimentally setT0 as to

attain this acceptance ratio at the beginning of the simulation. This value guarantees

also that the system does not accept moves with too high energy penalties (cf. Sec-

tion 7). Regarding the number of iterations at each value ofT , we set it in such a way

that the average number of moves per amino acid is around 200, in order to change

the value to all the variables a suitable number of times. The code for the environment

agent is straightforward.

5.3 Level 3 — cooperation

In this section we present a dynamic cooperation strategy between agents, which is

designed to improve the folding process and try to reach sooner the configuration of

minimum energy. The main idea behind is to combine concurrency and some external

knowledge to force the agents to assume a particular configuration, which is supposed

to be favorable. More specifically, this additional information can be extracted from a

database, from statistical observations or from external tools, such as secondary struc-

ture predictors.

The cooperation is governed by a high level agent, which has access to the whole
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status of the simulation and to some suitable external knowledge. The basic additional

information we use to induce cooperation is related to the secondary structure. In

particular, we try to favor from the beginning the formation of local patterns supposed

to appear in the protein (see below).

To coordinate the action of single agents and let a particular configuration emerge

from their interaction, we adopt a strategy which is very similar in spirit to the “com-

putational fields” technique introduced by Mamei in [21]. The idea is to create a virtual

force field that can drive the movement of the single agents towards the desired config-

uration. In our setting we deal with energy, not with forces, so we find more convenient

to introduce a biasing term modifying the potential energy calculated by a single agent.

In this way, we can impose a particular configuration by giving an energy penalty to

distant ones (in terms of RMSD).

In addition, the cooperation agent controls the activity of all lower level agents,

in particular, it decides the scheduling between the amino agents and the orchestra

director. Moreover, it controls also the termination of the simulation. The stopping

condition is simple: it is triggered when the system reaches a frozen configuration at

zero temperature2, meaning that a (local) minimum has been reached and no further

improvement is possible. The declarative code of the agent is the following:

cooperator(Moves,Old_pos_list, Sec_info) :-

get_position(Pos_List),

secondary_cooperation(Pos_List, Sec_info),

check_termination(Pos_list,Old_pos_list),

out(authorized(1)),...,out(authorized(n)),

wait_for_amino_moves(Moves),

in(authorized(1)),...,in(authorized(n)),

read(resting(1)),...,read(resting(n),

out(orchestra_authorized),

in(orchestra_authorized),

read(orchestra_resting),

cooperator(Moves,Pos_list, Sec_info).

The first actions of the agent are reading the current configuration of the pro-

tein (get_position(Pos_List) ), activating the secondary structure cooperation

mechanism (secondary_cooperation(Pos_List, Sec_info) ) and check-

ing the termination conditions (check_termination ). In particular, the activation

2When the temperature falls below a predefined threshold, it is quenched to zero.
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of the cooperation mechanism is obtained by posting some atoms that trigger the cor-

responding energy term in the computations performed by lower level agents. The

following predicates are devoted to the synchronization between the amino agents and

the orchestra director. The amino agents are authorized to move by putting in the tu-

ple space the predicateauthorized(i) . When the cooperator decides that amino

agents should stop, it removes such predicate and waits for the agents to stop moving

(by a blocking read onresting(i) ). Things work similarly for the orchestra di-

rector.wait_for_amino_moves(Moves) waits for the amino acids to perform a

certain amount of moves specified byMoves.

In the previous code, we showed a strategy that alternates between amino agents

and orchestra director, by a mutually exclusive activation. Another possible strategy

is to run both amino agents and the orchestra director simultaneously, though this may

introduce more errors in the simulated annealing scheme due to higher asynchrony. A

comparison of the two strategies can be found in Section 7.

5.3.1 Cooperation via Secondary Structure

In the literature it is recognized that the formation of local patterns, likeα-helices and

β-sheets, is one of the most important aspects of the folding process (cf. [26]). Actually

the combined usage of alignment profiles, statistical machine learning algorithms and

consensus methods has resulted in location of these local structures with a three state

accuracy close to 80% (see for a discussion [29] and references cited therein). We plan

to use the information extracted from them to enhance the simulation. For the moment,

however, we introduced a preliminary version of cooperation via secondary structure,

which identifies the location of secondary structure directly from pdb files (when us-

ing information coming from secondary structure predictors, we should include in the

cofields also the accuracy level of the prediction).

Once the cooperation agent possesses this knowledge, it activates a computational

field that forces amino acids to adopt the corresponding local structure. The mathemat-

ical form of this new potential penalizes all configurations having a high RMSD from a

“typical” helix or sheet.3 Of course, this energy regards only the amino acids supposed

to form a secondary structure, and it is activated from the beginning of the simulation,

as it should be able to drive the folding process, at least locally.

3There are different kinds ofα-helices andβ-sheets, but we omit here further details.
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6 Implementation

In this section we describe some details of the implementation of the simulation tech-

nique in the language SICStus Prolog [14]. We have interfaced SICStus with C++

where energy functions are computed. In particular, the whole mechanism for updat-

ing the positions (i.e. theupdate_pos predicate, cf. Sec. 5) is implemented in C++

and dynamically linked into Prolog code. This guarantees a more efficient handling

of the considerable amount of operations needed to calculate the potentials. The Pro-

log code is not very different from its abstract version presented in section 5.1, and its

length is less than 150 lines. We have also written a C++ manager which launches SIC-

Stus Linda processes, visualizes the protein during the folding, and in general interacts

with the Operative System.

Actually, LINDA communication is not very efficient: each communicative act

takes about 100 milliseconds, thus leading to a very slow simulation. Therefore,

we have also written a multithreading version in pureC, which can run both un-

der Windows and Linux. This version reproduces the communication mechanisms

of LINDA using the shared memory, so it is equivalent to the program presented

in the paper, though much more efficient. All the codes can be found inhttp:

//www.dimi.uniud.it/dovier/PF .

7 Experimental results

In this section we present the results of some tests of our program. We are mainly

interested in two different aspects: seeing if and how the novel features of the frame-

work (parallelism, strategy, cooperation) improve the simulation and checking how

good are the predicted structures with respect to the resolution of the energy functions

used. Note, however, that these potentials are structurally very simple, so we are not

expecting outstanding results out of them.

We ran the simulation on different proteins of quite small size, taken from PDB [4].

This choice is forced by the low resolution of the potential. We also had to tune a lot

of parameters of the program, especially the cooling schedule for the temperature, the

weights of the penalty terms and the scheduling of the strategic and the cooperative

agents.

All the tests were performed on a bi-processor machine, mounting two Opteron

dual core CPU at 2 GHz. Therefore, we have a small degree of effective parallelism,
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which can give a hint on the parallel performances of the system.

In the following, we comment separately on the agent-based framework and on the

energy models.

7.1 Analysis of the Agent-Based Framework

In order to analyze the different enhancements introduced in the system, we performed

several tests on a single protein, 1VII, which is composed of 36 amino acids. In the

following we focus our attention on the orchestra director, on the cooperation features

and on the effects of parallelism on the underlying simulated annealing engine.

Exploration Strategy To evaluate the enhancements introduced by the orchestra di-

rector, we ran several simulation with and without it, comparing the results, in terms of

energetic values and RMSD from the native state of the solutions found. As expected,

the amino acid agents alone are not able to explore exhaustively the state space, and the

minimum values found in this case are very poor (see Table 1). This depends essen-

tially from the fact that most of their moves violate the distance constraint, especially

at high temperatures. At low temperatures, instead, the system seems driven more by

the task of minimizing this penalty term, than by the optimization of the “real” compo-

nents of energy. Therefore, the simulation gets stuck very easily in bad local minima,

and reaches good solutions just by chance. If the “orchestra director” agent is active,

instead, much better energy minima are obtained (see again Table 1). Note that combin-

ing the amino acid agents and the strategic one corresponds to having a mixed strategy

for exploring the state space, where two different neighborhoods are used: the first one,

local and compact, is searched by the amino acid agents, while the second one, which

links configurations quite far away, is searched by the strategic agent.

We observe also that the poor values of the energy and of RMSD for the simulation

with amino agents alone depend from the fact that this exploration scheme is not able

to compact and close the structure by itself. In fact, the chain remains open, and we

can see only some local structure emerging. This is evident in Figure 7.

Effects of Parallelism It is well-known that asynchronous parallel forms of simu-

lated annealing can suffer from a deterioration of results with respect to sequential

versions (cf. [15]), due to the use of outdated information in the calculation of the po-

tential. Therefore, we ran some sequential simulations, using essentially the moves

performed by the orchestra director, that is crankshaft and pivot. The energy values
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of solutions obtained with the sequential simulation are, on average, a little bit higher

than those of the multi-agent simulation (see Table 2). Hence, the introduction of paral-

lelism not only does not worsen the quality of solutions, but it also slightly improves it.

This may depend on the fact that amino agents are able to locally intensify the explo-

ration of the search space. In addition, we compared the execution time of the parallel

and the sequential simulations, for the same total number of moves per amino acid. As

we can see, multi-agent simulation is three times quicker using 4 processors, showing

therefore an almost optimal parallel speed-up.

Cooperation To test the cooperative field, we compared separately runs with and

without cooperation via secondary structure. It comes out that the quality of the so-

lutions in terms of energy are generally worse with the cooperative agent active (cf.

Tables 4 and 5, and 6 and 7). On the other hand, the RMSD is improved in most of the

cases (cf. again Tables 4 and 5, and 6 and 7). This is quite remarkable, as the informa-

tion relative to secondary structure is still local. We are also pondering the introduction

of a better form of cooperation, with some capability of driving globally the folding

process, cf. Section 8 for further comments.

7.2 Energy Comparison

In this section we compare the performances of the two energy models presented in

Section 4. The quantities used to estimate the goodness of the results are the value of

the energy and the root mean square deviation (RMSD) from the known native struc-

ture.

In the following, we presents the results of tests ran on a set of 9 proteins, extracted

from the Protein Data Bank. The complete list of tested proteins, together with their

length and the type of secondary structure present, is shown in Table 3. Therefore,

knowing their native structure, we are able to estimate the distance of the predicted

structure from the real one, thus assessing the quality of the potentials. In the tables

following, we present the simulation results with and without cooperation.

First Energy Model In Table 4, we show the best results obtained in terms of RMSD

and energy without cooperation, while in Table 5 cooperation was active. For a safe

comparison, the energy value does not take into account the contributions of coopera-

tive computational fields, present in experiments of Table 5 only. The numbers shown

are an average of 10 runs; standard deviation is shown in brackets.
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From Table 4, we can see that, without cooperation, the simulation is quite stable:

most of the runs produce solutions with energy varying in a very small range of values.

On the contrary, the RMSD is quite high. This depends mostly on the low resolution

of the potential. In fact, this energy function has terms which compact the chain, but

no term imposing a good local structure. Therefore, the simulation maximizes the

number of contacts between amino acids, giving rise to a heavily non-physical shape.

The situation, however, changes with the introduction of the cooperative effects. In

this case, the maximization of contacts goes together with potential terms imposing

good local shapes, creating better structures but worsening the energy (less contacts are

formed). In particular, we can see a remarkable improvement of RMSD for proteins

1PG1 and 2GP8; a visual comparison of the outcome for 2GP8 is shown in Figure 8.

On the other hand, for several proteins, among which 1VII, cooperation does not

bring any sensible improvement on the RMSD value. This probably depends from the

fact that, in these cases, the constraints on the secondary structure are not so strong to

force a good global shape. In particular, the predominant terms of the energy function

try to maximize the number of favorable contacts, thus creating a structure where some

areas are extremely compact and others are left open. If the local effect induced by

secondary structure cofields is concentrated in the compressed area, then no essential

improvement arises. This is a witness of the low resolution of the potential.

Second Energy model This energy model was never tested in all its potentiality be-

fore. Test in [6] were performed in a simulation with only amino agents, which are not

able to overcome the energy barriers blocking the compactification of the chain.

In Tables 6 and 7, we can see the results for the set of testing proteins listed in

Table 3. We can see that also the resolution of this potential is not very accurate.

Generally, the values in terms of RMSD are slightly worse than for the first energy

model. This happens despite the presence of stronger local terms, that should, at least

in principle, generate better shapes. Specifically, those terms seem to enter in conflict

with the contact energy, forcing a shape with good local properties but poor global

structure. For instance, for 1ZDD without cooperation, the chain remains open, though

some form of helices emerge, cf. Figure 10.

Secondary structure cooperation follow a pattern similar to the first energy model,

improving the RMSD (and worsening the energy) for a slightly broader set of proteins.

For example, 1ZDD gets closed with secondary structure cooperation, see Figure 10.

Comparing the first and the second energy model, we can observe that there is no
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real winner. The first potential has generally solutions of slightly better quality, but it

is much heavier from a computational point of view (the simulation using the second

potential is approximately 10 times faster, cf. Table 2). This increase in time depends

from the fact that the first model needs continuously the computation positions ofCβ

atoms. Moreover, also the single terms in the energy are more expensive to calculate.

The previous discussion implies that we need a more refined potential, taking into

account all the correlations involved and modeling not only theCα atoms, but also a

coarse-grained representation of the whole side chain.

8 Conclusions

In this paper we presented a multi-agent based framework to predict the tertiary struc-

ture of a protein, designed according to the MAGMA scheme [23]. This approach is

independent from the energy model used, and can be easily adapted to more complex

spatial representations and potential functions. We basically identify every amino acid

with a concurrent agent, and we introduced also other agents, aimed at coordinating

the activity of the basic processes and inducing some basic form of cooperation.

Our long term goal is to provide a powerful tool for folding proteins, however, at

this point, we focused more in the analysis of the improvements that can arise from

the introduction of a multi-layer architecture. In fact, the energy functions used here

are too coarse to provide good biological models, as confirmed also from out tests. In

the future, we plan to develop and use a more reliable energy, possibly encapsulated in

an iterative process using more and more detailed —and computationally expensive—

potentials to refine the previous solutions.

The agent-based framework presented here shows interesting potentials, though the

energy functions used are too coarse to compete with up-to-date ab-initio predictors.

In particular, it’s remarkable the gain in speed and in quality of solutions with respect

to a sequential version of the algorithm (cf. Section 7).

The cooperation level is a powerful feature of the framework, though it is not ex-

ploited yet. Specifically, it offers the possibility of designing complex heuristics de-

pending on external information and on the search history [23]. Up to now, we use only

local information related to secondary structure. One possible direction to improve it

is to introduce information about the real physical dynamic of the folding, adding, for

instance, a computational field mimicking the hydrophobic force, therefore compacti-

fying the structure at the beginning of the simulation. Another possibility is to identify
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the so called folding core [9], which is a set of key contacts between some amino acids.

These contacts have a stabilizing effect, and their formation is thought to be one of the

most important steps in the folding process. These contacts can be forced during the

simulation by means of a computational field. In general, to fully exploit the coop-

erativity of agents, we need to integrate this information with exploration-dependant

knowledge.

Finally, we plan to integrate this simulation engine in a global schema for pro-

tein structure prediction, combining together multi-agent simulation (using a potential

modeling also the side-chain), lattice minimization [12] and molecular dynamics.
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Enhancements introduced by orchestra director

First Energy Model Energy RMSD

Without orchestra director -6.688 (1.483) 25.174 (0.863)

With orchestra director -56.685 (2.518) 7.644 (0.951)

Second Energy Model Energy RMSD

Without orchestra director 28.944 (5.500) 12.892 (0.825)

With orchestra director 11.325 (3.882) 8.404 (1.078)

Table 1: Comparison of performances of the framework with and without the introduc-

tion of the orchestra director agent, for the first energy model (top table) and the second

one (bottom table). Values are averages over ten runs, variance is shown in brackets.
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Sequential vs Parallel simulation

First Energy Model Energy RMSD time (min)

Sequential -54.068 (1.949) 10.728 (0.793) 280

Multi-Agent -56.685 (2.518) 7.644 (0.951) 85

Second Energy Model Energy RMSD time (min)

Sequential 39.599 (5.072) 11.255 (0.837) 28

Multi-Agent 11.325 (3.882) 8.404 (1.078) 10

Table 2: Comparison of the multi agent scheme with a sequential simulated annealing

performing pivot and crankshaft moves. Top table compares results for the first energy

model (for protein 1VII), while bottom table deals with the second energy model. Both

simulations execute the same number of moves per amino acid. Multi-agent simulation

performs better in all aspects, and it is notably three times quicker, using 4 processors.

Values are averages over ten runs, variance is shown in brackets.
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List of tested proteins

Protein # amino helix sheet

1LE0 12 x

1KVG 12 x

1LE3 16 x

1EDP 17 x

1PG1 18 x

1ZDD 34 x

1VII 36 x

2GP8 40 x

1ED0 46 x x

Table 3: List of tested proteins, with number of amino acids and type of secondary

structure present.
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Results for the first potential, without cooperation

Protein Energy RMSD

1LE0 -11.5984 (0.8323) 4.0324 (0.7783)

1KVG -19.8048 (0.7838) 3.8898 (0.6206)

1LE3 -29.5412 (1.1330) 6.0749 (0.7525)

1EDP -62.9978 (1.5487) 5.0703 (0.7261)

1PG1 -52.7987 (1.5356) 7.1490 (0.8791)

1ZDD -45.4133 (1.9326) 8.4255 (1.2578)

1VII -56.6850 (2.5189) 7.6447 (0.9509)

2GP8 -10.5285 (1.7073) 8.7200 (1.1488)

1ED0 -50.8481 (2.5158) 9.3103 (1.1701)

Table 4: Results for the first energy model without cooperation. Values are averages

over ten runs, variance is shown in brackets.
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Results for the first potential, with cooperation

Protein Energy RMSD

1LE0 -10.5248 (0.9756) 4.2291 (0.7025)

1KVG -16.7263 (0.9267) 3.8555 (0.5476)

1LE3 -27.1925 (0.9693) 5.5847 (0.5870)

1EDP -49.0921 (1.6160) 3.7743 (0.5743)

1PG1 -33.7463 (1.3319) 4.3540 (0.6856)

1ZDD -49.6080 (2.2137) 8.2052 (1.1388)

1VII -56.2129 (1.5908) 7.7737 (0.8158)

2GP8 -2.6426 (1.8351) 4.1871 (0.9585)

1ED0 -57.4477 (2.2198) 8.8542 (1.0181)

Table 5: Results for the first energy model with cooperation. Values are averages over

ten runs, variance is shown in brackets.
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Results for the second potential, without cooperation

Protein Energy RMSD

1LE0 2.8798 (1.4315) 5.4120 (0.6963)

1KVG -1.3340 (1.1783) 5.0596 (0.9254)

1LE3 1.8239 (1.7636) 7.2068 (0.9228)

1EDP -3.5488 (0.7719) 6.1642 (0.7851)

1PG1 23.7913 (1.3656) 9.1229 (1.3274)

1ZDD 14.1963 (3.1172) 8.5113 (1.2836)

1VII 11.3256 (3.8826) 8.4040 (1.0787)

2GP8 48.6291 (4.5198) 7.9520 (1.5060)

1ED0 16.7202 (2.1936) 10.7979 (0.8692)

Table 6: Results for the second energy model without cooperation. Values are averages

over ten runs, variance is shown in brackets.
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Results for the second potential, with cooperation

Protein Energy RMSD

1LE0 4.8766 (2.7584) 5.2671 (0.8173)

1KVG 1.7643 (1.4065) 4.9455 (0.8481)

1LE3 1.8885 (1.6943) 6.6555 (1.1844)

1EDP -4.7164 (0.8152) 6.0124 (0.4821)

1PG1 39.3512 (2.5879) 12.9420 (1.0104)

1ZDD -10.7000 (0.8261) 6.8331 (1.2393)

1VII -9.0183 (1.2882) 8.0266 (1.1269)

2GP8 -7.7530 (1.0468) 5.3764 (1.4519)

1ED0 -9.6144 (1.4974) 8.4351 (0.8369)

Table 7: Results for the second energy model with cooperation. Values are averages

over ten runs, variance is shown in brackets.
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Figure 1: Amino acids: Overall structure
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Figure 2: A simplified model of aminoacids, viewed as spheres centered inCα atom.
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Figure 3: Bend angleβ
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Figure 4: Torsion angleΦi (projection orthogonal to the axisCαi+1–Cαi+2)
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Figure 5: Structure of the multi-agent simulation. Black boxes represent the levels,

blue circles the agents and red arrows the communications.
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Figure 6: Crankshaft move (left) and pivot move (right)
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Figure 7: Two structures for 1VII generated using the second energy model, with (right)

and without (left) orchestra director.
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Figure 8: Protein 2GP8 predicted with the first potential. From left to right: a solu-

tion without cooperation and a solution with cooperation. Native state is depicted in

Figure 9.
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Figure 9: Native state for 2GP8.
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Figure 10: Protein 1ZDD predicted with the second potential. From left to right: a

solution without cooperation and a solution with cooperation. Native state is depicted

in Figure 11.
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Figure 11: Native state for 1ZDD.
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