
A Tabled Prolog Program for Solving Sokoban

Neng-Fa Zhou
Department of Computer and Information Science,
CUNY Brooklyn College & Graduate Center, USA,

zhou@sci.brooklyn.cuny.edu

Agostino Dovier
Dipartimento di Matematica e Informatica,

Università di Udine, Udine, Italy,
agostino.dovier@uniud.it

December 14, 2012

Abstract

This paper presents our program in B-Prolog submitted to the third ASP solver competition for the
Sokoban problem. This program, based on dynamic programming, treats Sokoban as a generalized shortest
path problem. It divides a problem into independent subproblems and uses mode-directed tabling to store
subproblems and their answers. This program is very simple but quite efficient. Without use of any
sophisticated domain knowledge, it easily solves 14 of the 15 instances used in the competition. We show
that the approach can be easily applied to other optimization planning problems.
TO APPEAR IN FUNDAMENTA INFORMATICAE.

1 Introduction

Sokoban is a type of transport puzzle in which the player finds a plan for the Sokoban (means warehouse-keeper
in Japanese) to push all the boxes into the designated areas. This problem has been shown to be NP-hard and
has raised great interest because of its relation to robot motion planning [6]. This problem has been used as a
benchmark in the Answer Set Programming competition [5, 4] and International Planning competition [17] and
solutions for ASP solvers and PDDL are available. In [18], an IDA∗-based program is presented with several
domain-dependent enhancements.

This paper presents the program in B-Prolog [21], called the BPSolver program below, submitted to the
third ASP solver competition [4]. The BPSolver program is based on the dynamic programming approach and
uses mode-directed tabling [22] to store subproblems and their answers. The program was built after failed
attempts to use CLP(FD) and the planning languages B [14] and BMV [8] for the problem (see Section 6). The
BPSolver program is very simple (only a few lines of code) but quite efficient. In the competition, the BPSolver
program solved 11 of the 15 instances of which the hardest instance took only 33 seconds, and failed to solve
the remaining four instances due to lack of table space. We have re-run the tests using a 64-bit architecture
and verified that the number of instances solved increased to 14 out of 15.

As far as we know, the BPSolver program is the first to apply the dynamic programming approach to
the Sokoban problem. The BPSolver program treats Sokoban as a generalized shortest path problem where
the locations of objects particular to a subproblem are tabled. The BPSolver program does not employ any
sophisticated domain knowledge. It only checks for two simple deadlock cases: one is that a box is stuck in
a corner and the other is that two boxes next to each other are stuck by a wall. With sophisticated domain
knowledge, the BPSolver program is expected to perform much better. We have applied the same approach to
other two minimization planning problems, showing that the approach is easily applicable to other optimization
planning problems.

The remainder of the paper is structured as follows: Section 2 gives a detailed description of the Sokoban
problem; Section 3 introduces tabling, and in particular mode-directed tabling, as implemented in B-Prolog;
Section 4 explains the BPSolver program line by line; Section 5 presents the competition results; Section 6
compares with related work and points out extensions and possible improvements; and Section 7 concludes the
paper.

1

Figure 1: A Sokoban problem instance

2 The Problem Description

The following is an adapted description of the Sokoban problem used in the ASP solver competition [4].
Sokoban is a type of transport puzzle invented by Hiroyuki Imabayashi in 1980 and published by the

Japanese company Thinking Rabbit, Inc. in 1982. “Sokoban” means “warehouse-keeper” in Japanese. The
puzzle consists of a maze which has two types of squares: inaccessible wall squares and accessible floor squares.
Several boxes are initially placed on some of the floor squares and the same number of floor squares are
designated as storage squares. There is also a man (the Sokoban) whose duty is to move all the boxes to the
designated storage squares. A floor square is free if it is not occupied by either a box or the man. The man
can walk around by moving from his current position to any adjacent free floor square. He can also push a
box into an adjacent free square, but in order to do so he needs to be able to get to the free square behind the
box. The goal of the puzzle is to find a shortest plan to push all the boxes to the designated storage squares.
To reduce the number of steps, the Sokoban moves and the successive sequence of pushes in the same direction
are considered as an atomic action.

A problem instance is given by the following relations:

• right(L1, L2): location L2 is immediately to the right of location L1.

• top(L1, L2): location L2 is immediately on the top of location L1.

• box(L): location L initially holds a box.

• sokoban(L): the man is initially at location L.

• storage(L): location L is a storage square.

In this setting, the wall squares are completely ignored and the adjacency relation of the floor squares is given
by the right and top predicates. This input is well suited for Prolog. According to the ASP competition
requirements, the output should be represented by atoms of the form push(L1,Dir,L2,Time), where L1 and
L2 are two locations, L2 is reachable from L1 going through the direction Dir (left, right, up, or down), and
Time is an integer greater than 0 (bounded the further input predicate step). For each admissible value of
time exactly one push action must occur. We also consider a slight variation of this predicate where the time
information is left implicit and a consecutive sequence of push is stored in a list that, in fact, represents a plan.

Figure 1 shows an example problem where the storage squares have dots on them and the boxes are red
(dark grey). This state is represented by the following facts:

top(c2r5,c2r4). right(c3r2,c4r2). right(c3r6,c4r6).

top(c2r6,c2r5). right(c4r2,c5r2). right(c4r6,c5r6).

top(c3r3,c3r2). right(c5r2,c6r2).

top(c3r4,c3r3). right(c6r3,c7r3). box(c6r3).

top(c3r5,c3r4). right(c2r4,c3r4). box(c5r4).

top(c3r6,c3r5). right(c3r4,c4r4). box(c5r5).

top(c5r5,c5r4). right(c4r4,c5r4).

top(c5r6,c5r5). right(c5r4,c6r4). storage(c3r3).

top(c6r3,c6r2). right(c6r4,c7r4). storage(c3r4).

top(c6r4,c6r3). right(c2r5,c3r5). storage(c4r4).

top(c6r5,c6r4). right(c5r5,c6r5).

top(c7r4,c7r3). right(c6r5,c7r5). sokoban(c4r6).

top(c7r5,c7r4). right(c2r6,c3r6).

The following gives a plan of 13 steps for the problem:

2

[push(c6r3,down,c6r5), push(c5r4,left,c3r4), push(c3r4,down,c3r5),

push(c5r5,up,c5r4), push(c6r5,left,c5r5), push(c5r4,right,c6r4),

push(c5r5,up,c5r4), push(c6r4,up,c6r3), push(c5r4,left,c4r4),

push(c6r3,down,c6r4), push(c3r5,up,c3r3), push(c4r4,left,c3r4),

push(c6r4,left,c4r4)]

3 Tabling in B-Prolog

Tabling [20] has become a well-known and useful feature of many Prolog systems. The idea of tabling is to
memorize answers to tabled subgoals and use the answers to resolve subsequent variant or subsumed subgoals.
This idea resembles the dynamic programming idea of reusing solutions to overlapping sub-problems and,
naturally, tabling is amenable to dynamic programming problems.

B-Prolog is a tabled Prolog system that is based on linear tabling [23], allows variant subgoals to share
answers, and uses the so-called local strategy [11] (also called lazy strategy in [23]) to return answers.1 In
B-Prolog, tabled predicates are declared explicitly by declarations in the following form:

:-table P1/N1,...,Pk/Nk

where each Pi (i ∈ {1, . . . , k}) is a predicate symbol and Ni is an integer that denotes the arity of Pi.
Consider, for example, the tabled predicate computing Fibonacci numbers:

:-table fib/2.

fib(0, 1). fib(1, 1).

fib(N, F):- N>1, N1 is N-1, N2 is N-2,

fib(N1, F1), fib(N2, F2), F is F1+F2.

Without tabling, the subgoal fib(N,X) would spawn 2N subgoals, many of which are variants. With tabling,
the time complexity drops to linear since the same variant subgoal is resolved only once.

For a tabled predicate, all the arguments of a tabled subgoal are used in variant checking and all answers
are tabled. This table-all approach is problematic for many dynamic programming problems such as those that
require computation of aggregates. Mode-directed tabling [15, 22] amounts to using table modes to instruct the
system on how to table subgoals and their answers. In B-Prolog, a table mode declaration takes the following
form:

:-table p(M1,...,Mn):C.

where p/n is a predicate symbol, C, each Mi (i ∈ {1, . . . , n}) is a mode which can be min, max, +, or -, and C,
called a cardinality limit, is an integer which limits the number of answers to be tabled for each subgoal of p/n
with the given modes. When C is 1, it can be omitted together with the preceding ‘:’. For each predicate, only
one table mode declaration can be given. In the current implementation in B-Prolog, only one argument in a
tabled predicate can have the mode min or max. Since an optimized argument can be a compound term and
the built-in @</2 is used to select better answers for compound terms, this restriction is not essential.

The mode + is called input, - output, min minimized, and max maximized. An argument with the mode
min or max is called optimized. An optimized argument is assumed to be output. The system uses only input
arguments in variant checking of tabled subgoals, ignoring all other arguments. Notice that a table mode does
not impose the instantiation state of an argument. Nevertheless, normally an input argument is ground and
an output argument is a variable.

A mode declaration not only instructs the system on what arguments are used in variant checking, it
also guides it in tabling answers. After an answer of a tabled subgoal is produced, the system tables it
unconditionally if the cardinality limit C is not reached yet (the default value for C is 1). When the cardinality
limit has been reached, however, the system tables the answer only if it is better than some existing answer
in terms of the optimized argument. If no argument is optimized, all new answers are discarded once the
cardinality limit has been reached.

A predicate with a table mode has the following semantics. Assume that all the facts that can be derived
by the rules have been derived, and that the predicate consists of a (possibly infinite) sequence of facts. A
subgoal of the predicate with the mode p(M1,...,Mn):C has up to C answers each of which has the matching
input arguments and a minimum or maximum argument.

Mode-directed tabling is very useful for declarative description of dynamic programming problems. The
following predicate finds a path with the minimal weight between a pair of nodes in a directed graph.

1XSB system can also be used for the proposed aproach.

3

:-table sp(+,+,-,min).

sp(X,Y,[(X,Y)],W) :- edge(X,Y,W).

sp(X,Y,[(X,Z)|Path],W) :- edge(X,Z,W1),

sp(Z,Y,Path,W2), W is W1+W2.

The predicate edge(X,Y,W) defines a given weighted directed graph, where W is the weight of the edge from
node X to node Y. The predicate sp(X,Y,Path,W) states that Path is a path from X to Y with the smallest weight
W. Notice that whenever the predicate sp/4 is called, the first two arguments are assumed to be instantiated.
So for each pair of nodes, only one answer is tabled. In a general graph search problem such as the Sokoban
problem, the graph may change dynamically. In this case, the predicate needs to carry the graph itself or
changes to the graph as an extra argument.

4 The Program

In this section, we explain the BPSolver program. The program treats the Sokoban problem as a generalized
shortest path problem. For a state, if it is the goal state in which every box is in a storage location, it is
done. Otherwise, the program chooses an intermediate state and splits the problem into two subproblems, one
transforming the current state to the intermediate one and the other transforming the intermediate one to the
goal state. All states are tabled so that the same subproblem is solved only once.

4.1 Library and helper predicates

Before we show the program, we give the library and helper predicates used in the program. For each helper
predicate written as part of the program, we give its definition.

• member(X,L): succeeds when X is a member of the list L. It can be used to check if a given element X is a
member of a list L and to nondeterministically select an element X from a list L.

• select(X,L,R): the same as member(X,L) except that it binds R to the rest of the list after X is selected
from L.

• neib(Loc1,Loc2,Dir): Loc2 is the next location of Loc1 along the direction Dir. It is defined as follows in
terms of the given predicates top/2 and right/2 (the predicate is tabled for better performance):

:-table neib/3.

neib(Loc1,Loc2,up):- top(Loc1,Loc2).

neib(Loc1,Loc2,down):- top(Loc2,Loc1).

neib(Loc1,Loc2,right):- right(Loc1,Loc2).

neib(Loc1,Loc2,left):- right(Loc2,Loc1).

• insert ordered(X,L1,L2): inserts X into a sorted list L1, resulting in a new sorted list L2.

insert_ordered(X,[],[X]).

insert_ordered(X,[Y|Ys],[X,Y|Ys]):- X @=<Y,!.

insert_ordered(X,[Y|Ys],[Y|Ordered]):-

insert_ordered(X,Ys,Ordered).

• goal reached(L): every location in L is a storage location.

goal_reached([]).

goal_reached([Loc|Locs]):-

storage(Loc), goal_reached(Locs).

This can be defined equivalently using the foreach construct of B-Prolog as follows:

goal_reached(Locs):-

foreach(Loc in Locs, storage(Loc)).

• corner(Loc): succeeds if Loc is a corner location. No box can be moved to a corner unless it is a storage
square.

:-table corner/1.

corner(X) :- \+ noncorner(X).

noncorner(X) :- top(_,X),top(X,_).

noncorner(X) :- right(_,X),right(X,_).

This predicate is tabled. For the problem instance shown in Figure 1, for example, the table will contain
seven possible subgoals including corner(c2r4) and corner(c3r2).

• stuck(Loc1,Loc2): two boxes in Loc1 and Loc2 constitute a deadlock if they are next to each other by a
wall, unless both locations are storage squares.

4

:-table stuck/2.

stuck(X,Y):-

(right(X,Y);right(Y,X)),

(\+ storage(X); \+ storage(Y)),

(\+ top(X,_), \+ top(Y,_);

\+ top(_,X), \+ top(_,Y)),!.

stuck(X,Y):-

(top(X,Y);top(Y,X)),

(\+ storage(X); \+ storage(Y)),

(\+ right(X,_), \+ right(Y,_);

\+ right(_,X), \+ right(_,Y)),!.

For example, for the problem instance shown in Figure 1, the subgoal stuck(c3r2,c4r2) succeeds and so
does stuck(c4r2,c3r2).

4.2 The main program

As already said, the main idea behind the main program (reported in Figure 2) is to implement a tabled version
of a generalization of the shortest path problem. The subgoal

plan_sokoban(SokobanLoc, BoxLocs, Plan, Len)

finds a plan Plan with the minimal length Len for the current state, where SokobanLoc is the location of the
man and BoxLocs is a list of box locations. For example, for the problem instance shown in Figure 1, the
subgoal would look like

plan_sokoban(c4r6,[c5r4,c5r5,c6r3],Plan,Len).

The predicate is tabled under control by the mode plan sokoban(+,+,-,min), which means that only one plan
with the minimal length is tabled for each different state. The list BoxLocs is sorted in lexicographic order so
that only one subgoal is tabled for each configuration.

When the goal has been reached (goal reached(BoxLocs) succeeds), an empty plan is returned. Oth-
erwise, the second rule selects a box location BoxLoc from BoxLocs and a destination location DestLoc

that can be reached from BoxLoc in the direction Dir (up, down, left, or right), and adds the action
push(BoxLoc,Dir,DestLoc) into the plan. Only feasible actions are added. An action push(BoxLoc,Dir,DestLoc)

is feasible if (1) the previous location PrevNeibLoc of BoxLoc in the direction Dir is free; (2) the man can
walk to this location (reachable by sokoban); and (3) the location DestLoc is a good destination that does
not result in a deadlock. The subgoal choose dest nondeterministically chooses a destination DestLoc from
the free squares ahead of BoxLoc in the direction Dir. After pushing the box at BoxLoc to DestLoc, the man
moves to NewSokobanLoc which is the previous square of DestLoc.

The predicate reachable by sokoban checks if there is a path of free squares from one location to another.
Again, tabling is used to prevent loops and avoid resolving the same subgoal more than once.

The predicate good dest checks whether or not a location is a good destination for a box. A location Loc

is a good destination if (1) it is not occupied by any box; (2) it is not a corner unless it is a storage square; and
(3) moving a box to Loc does not result in a deadlock. As mentioned above, two boxes next to each other by a
wall constitute a deadlock unless the two locations are storage squares. There are more sophisticated deadlock
cases that involve more than two locations [18], but these cases are not considered here.

5 The Competition Results

Sokoban was one of the benchmarks of the 2011 ASP competition [4]. The main scope of the competition
is to challenge different solvers on declarative encodings. In particular, in the System Track different ASP
solvers were required to run on a proposed encoding in Answer Set Programming (pure declarative code, no
optimization). In the next section we will briefly sketch this modeling. It is a decision version of the problem
where a plan of a given length is looked for. As already said, the move of the Sokoban for reaching (if possible)
a block is supposed to happen instantaneously immediately before the successive push move. Most of the ASP
solvers behave quite well on the proposed instances. It must be observed, however, that the instances were
not so large (the more difficult were of 6 boxes/20 moves). In the Model and Solve competition, competitors
were allowed to encode directly the problem allowing some domain information. In this case a minimum length
plan is looked for. Most of the submitted programs are variants of the one proposed for the System Track; for
this approach, best performances have been obtained by the family of Clasp solvers [12] (http://potassco.
sourceforge.net/) and by EZCSP [1] (http://marcy.cjb.net/ezcsp/index.html). The BPSolver program
is available at: www.sci.brooklyn.cuny.edu/~zhou/asp11/

5

:-table plan_sokoban(+,+,-,min).

plan_sokoban(_SokobanLoc,BoxLocs,Plan,Len):-

goal_reached(BoxLocs),!,

Plan=[],Len=0.

plan_sokoban(SokobanLoc,BoxLocs,[push(BoxLoc,Dir,DestLoc)|Plan],Len):-

select(BoxLoc,BoxLocs,BoxLocs1),

neib(PrevNeibLoc,BoxLoc,Dir),

\+ member(PrevNeibLoc,BoxLocs1),

neib(BoxLoc,NextNeibLoc,Dir),

good_dest(NextNeibLoc,BoxLocs1),

reachable_by_sokoban(SokobanLoc,PrevNeibLoc,BoxLocs),

choose_dest(BoxLoc,NextNeibLoc,Dir,DestLoc,NewSokobanLoc,BoxLocs1),

insert_ordered(DestLoc,BoxLocs1,NewBoxLocs),

plan_sokoban(NewSokobanLoc,NewBoxLocs,Plan,Len1),

Len is Len1+1.

:-table reachable_by_sokoban/3.

reachable_by_sokoban(Loc,Loc,_BoxLocs).

reachable_by_sokoban(Loc1,Loc2,BoxLocs):-

neib(Loc1,Loc3,_),

\+ member(Loc3,BoxLocs),

reachable_by_sokoban(Loc3,Loc2,BoxLocs).

good_dest(Loc,BoxLocs):-

\+ member(Loc,BoxLocs),

(corner(Loc)->storage(Loc);true),

foreach(BoxLoc in BoxLocs, \+ stuck(BoxLoc,Loc)).

choose_dest(Loc,NextLoc,_Dir,Dest,NewSokobanLoc,_BoxLocs):-

Dest=NextLoc, NewSokobanLoc=Loc.

choose_dest(Loc,NextLoc,Dir,Dest,NewSokobanLoc,BoxLocs):-

neib(NextLoc,NextNextLoc,Dir),

good_dest(NextNextLoc,BoxLocs),

choose_dest(NextLoc,NextNextLoc,Dir,Dest,NewSokobanLoc,BoxLocs).

Figure 2: The main BPsolver program

6

ASP Competition 64 bits architecture
Instance BPSolver Clasp BPSolver Clasp

1-sokoban-optimization-0-0.asp 0.58 0.06 0.936 0.295
4-sokoban-optimization-0-0.asp Mem Out 0.62 406.7 1.0
5-sokoban-optimization-0-0.asp 0.00 0.16 0.060 0.270
9-sokoban-optimization-0-0.asp 0.00 2.12 0.041 2.107
13-sokoban-optimization-0-0.asp 0.06 0.74 0.056 5.909
18-sokoban-optimization-0-0.asp 0.00 9.80 0.104 13.867
20-sokoban-optimization-0-0.asp 33.57 13.24 27.157 26.360
24-sokoban-optimization-0-0.asp 2.66 3.52 3.611 8.095
27-sokoban-optimization-0-0.asp 0.78 1.16 1.150 1.513
29-sokoban-optimization-0-0.asp 0.78 2.92 1.150 5.990
33-sokoban-optimization-0-0.asp 1.96 26.74 2.1280 25.447
37-sokoban-optimization-0-0.asp 0.38 8.52 0.714 12.275
43-sokoban-optimization-0-0.asp Mem Out 35.67 Mem Out 84.719
45-sokoban-optimization-0-0.asp Mem Out 9.30 43.151 16.141
47-sokoban-optimization-0-0.asp Mem Out 18.66 79.905 53.545

Table 1: ASP competition official results and results with BProlog 7.7 on a 64-bit architecture (CPU time,
seconds).

Table 1, 2nd column, gives the CPU times of the actual runs of BPsolver in the third ASP solver competition.
The machine used was a 4 core Intel Xeon CPU X3430 (only one core per computation used), 2.4Ghz/4GB,
OS GNU/Linux, kernel 2.6.26-2-686-bigmem; the BProlog version was 7.4. In comparison, the result of Clasp,
the solver that won this benchmark, is also shown in the 3rd column. For the solved instances, BPSolver is
actually a little faster than Clasp on average. BPSolver failed to solve four of the instances due to lack of table
space.

We have re-run the tests on a dual core AMD Opteron 270 (only one core per computation used), 2GHz/4GB,
OS Linux Mandriva 2011 64 bits 2.6.38.7, using BProlog 7.7 that incorporates an improvement to enhance
sharing, which was not included in version of BProlog used in the competition. In Table 1 we report the results
of this experiment. BPsolver behaves still better: we have now only one case of failure due to lack of table
space (4th column). In the 5th column we report the runs of Clasp, with the same parameters suggested by
the Clasp developers in the ASP computation web-site.

6 Other Encodings of the Problem

The Sokoban problem is a typical planning problem where a set of admissible actions might affect the value
of some fluents that globally determine a state. This kind of problems are naturally encoded using Action
Description Languages such as STRIPS, B, C, and PDDL. Before starting the encoding one needs to carefully
choose the atomic actions allowed for the Sokoban and their duration.

6.1 B encoding

The simplest choice (finest granularity) is that at each time step the Sokoban is allowed to do a single move, or
a single push of a box, in one of the four direction up, down, left, and right; the duration of the move is 1.
This encoding is simple and elegant (see, e.g., http://ipc.informatik.uni-freiburg.de/Domains) and the
non-deterministic branching in the search is limited to 4. Any state can be represented by 3` fluents of the form
free(L), box in(L), sokoban in(L), where L is one of the ` admitted cells. The actions affect these fluents.
However, with this encoding, a lot of steps are needed either to push a block without changing directions or
to reach the next block to be pushed. This increases the number of steps necessary for the plan and, since the
size of the search tree grows exponentially w.r.t. this number, it is rather difficult to solve non-trivial instances.

As already said, the granularity chosen for the ASP competition is coarser. As soon as there is a path from
the Sokoban position to the desired side of a block, the move action is left implicit (it takes zero time). Just
a unique family of push actions are admitted, parametric on the starting From and arrival To points of the
block (aligned in a given direction D). A push of any number of steps in the same direction is viewed as an
atomic action. If, on the one side, this allows to dramatically decrease the number of (macro) actions needed
for executing the plan, on the other side, it generates new problems. The first is that the branching is now

7

Figure 3: Reachability and Loop problem

increased. The second, more subtle, is that the modeling language needs to be able to deal with a dynamic
notion of reachability.

Basically, for stating that the action push(From,D,To) be executable, we need to require that: box in(From),
that all the cells L between From and To do not contain boxes, and, morevoer, that the Sokoban can reach the
cell adjacent to From in the direction D, external to the segment [From,To]. Let us call PushPlace this cell, we
need to require that reachable(PushPlace).

We need therefore to introduce ` (one for each cell L) additional Boolean fluents reachable(L) and to deal
with them. This can be done using static causal laws (or rules) that are not allowed in all Action Description
Languages. We should write two rules of the form (using the syntax of the language B):

sokoban in(A) caused reachable(A).

reachable(A) and free(B) caused reachable(B) if adjacent(A,B).

where adjacent(A,B) can be defined as neib(A,B,) (c.f. Section 4.1).
The semantics of an Action Description Language in presence of static causal laws becomes complex [14, 8]

and is related to the notion of Answer Set [13]. As shown in [10], B programs

1. can be interpreted using constraint (logic) programming, or

2. can be automatically translated in Answer Set Programming and then solved using an ASP solver.

Approach 1) is also studied in a slightly different context, by other authors (e.g., [2]); however, static laws are not
considered. The encoding implemented in [10] deals with static causal laws, but the proposed implementation
does not ensure correctness for some classes of static causal laws. Other encodings are viable, but they would
introduce too many constraints. Intuitively, this happens when rules introduce loops of implications between
literals. In the case of Sokoban, simultaneous un-justified changes of fluent values might satisfy the constraints,
the Sokoban can reach unreachable cells, and not-allowed push moves can be executed. The same problem
was pointed out in [19] where authors translated a ground ASP Program into a SAT encoding. In presence of
such kind of loops, solutions of the SAT formula obtained are not admissible answer sets. The problem can
be avoided introducing the so-called loop-formulas but their number can grow exponentially. Unfortunately,
the above definition of reachability as static causal laws introduces these undesirable loops and therefore a
CLP(FD) approach for solving it in this way (e.g., using B-Prolog) is not feasible.

For instance (see Figure 3) push(9,left,3) is forbidden (12 is not reachable from 4). However, with a
simple implementation of static causal laws we would have, in particular

reachable(11) ∧ free(12) → reachable(12).

reachable(12) ∧ free(11) → reachable(11).
Let us observe that being the cells 11 and 12 both free we have two possible solutions: reachable(11) and
reachable(12) both true, or reachable(11) and reachable(12) both false. The solution with both the
fluents bound to true is not correct for the problem.

Let us assume we are able to deal with this loop problem (and, actually, we are, as explained in the next
subsection), there is still another subtle problem related with these static causal laws: a reachable fluent
seems to have a behavior different from the other fluents employed. While a box remains in the same position
if the sokoban does not move it, a cell L that is reachable at time i can become unreachable at time i + 1 due
to an action happened very far from it. Its reachable condition depends only on the new state, not on the
history. Without keeping this fact into account, even if the result of the processing of the static causal does not
state that the cell L is reachable, the semantics of the inertia in B might force L to be reachable anyway, and
therefore, non legal actions are used in searching for a plan. This problem can be solved by explicitly declaring
that reachable fluents are non-inertials and the solver should take care of this fact. A declaration of this form
is allowed by the action language C [14].

Non-inertial fluents are considered in the solving approach 2). The sokoban domain written using the action
description language B plus the inertial/non-inertial declaration can be compiled in an equivalent ASP program
using rather established guidelines. However, this can be done automatically using the code downloadable from
http://www.dimi.uniud.it/dovier/CLPASP/BBMVLAST, together with the sokoban domain.

8

It is well-known that the main problem of Answer Set Programming is the size of the ground version of the
program that is computed in the first stage of the solution’s search. We experimentally observe that this size is
bigger (typically, twice) than the size of the ASP program written by the Clasp group that won the competition.
A direct encoding of this problem in ASP, of course, produces clever code. Moreover, compilation generates a
decision version of the program and it must be launched iteratively for looking for the minimum. The running
time of the decision version is of one order of magnitude slower than the direct Clasp implementation. For
instance, using the default options of Clasp, for finding the plan of length 11 of instance 20 it takes 253s, while
for detecting that instance 4 does not have a solution of length 9 it takes 35s (compare with Table 1). Some
more details on this translation can be found in [10].

6.2 BMV encoding

To overcome the loop problem in the setting of Constraint Logic Programming of finite domains, we have
modeled the Sokoban problem using a multivalued action language [8, 9], namely using fluents that take values
on integer numbers. In particular, for each cell L we introduce a first fluent occupation(L) with three values:
0 for free, 1 for sokoban, and 2 for a box, and a second fluent, reachable(L), with allowed values from 0 to
M where (big) M is an integer value greater than the number of the locations.

For each location L, let L1, . . . , LNL
be the neighbor locations of L, where NL ≤ 4 (if L is the end of a

narrow corridor, NL = 1, if L is a corner, NL = 2, . . . , if L is internal, NL = 4). Then, for each location L, we
post the constraints:

occupation(L) = 1 → reachable(L) = 0
occupation(L) = 2 → reachable(L) = M

reachable(L) = min{reachable(L1) + 1, . . . , reachable(LNL
) + 1,M}

It turns out that each location will assume a reachable value that represent the minimum (Manhattan)
distance from the Sokoban. Reachable locations will have a value stricly less than M (unreachable locations,
equal to M) and this property is used for expressing action preconditions. Action effects are similar to those
used for the B-encoding, save that the values of the Boolean predicates free, box in, and sokoban in are now
expressed compactly using the value of the fluent occupation. Moreover, since the constraints deal with all
the reachable fluents, the solution for all the fluents is completely computed in the new state. For instance, in
the example of Figure 3, assuming M = 20, the constraint admits the unique solution:

reachable(4) = 0
reachable(2) = reachable(3) = reachable(6) = reachable(7) = 1
reachable(1) = reachable(5) = reachable(8) = 2
reachable(9) = reachable(10) = . . . = reachable(17) = 20

Although correct, this approach proved to be slower in average of two orders of magnitude w.r.t. the best
between Clasp and BPsolver (run on BProlog 7.7, exploiting its CLP(FD) solver). For instance, for detecting
that instance 4 does not have solutions of length at most 9 it takes roughly 7000s, while for stating that the
minimum solution for instance 20 has length 11 it takes 570s (compare with Table 1).

6.3 Generalization

In this paper we have focused on Sokoban, a specific planning problem. However, the approach can be applied
to planning problems in general. A planning problem is specified by an initial state, a final state, and a set of
actions each of which has a clear precondition and a clear effect. The goal of the problem is to find a shortest
plan that can transform the initial state to the final state. We have written a program for the blocks-world
problem as described in [7] and compared it with the standard encodings in CLP(FD) and ASP. The main
predicate, which provides a framework for general planning problems, is as follows:

:- table planning(+,-,min).

planning(S, [], 0) :- final_state(S), !.

planning(S, [A|Actions],N1) :-

select_action(S,A), apply_action(A,S,S1), check_state(S1),

planning(S1, Actions,N), N1 is N+1.

It’s unnecessary to store the states that have been visited to prevent loops since its done by tabling already.
In comparison with the CLP(FD) and ASP (decision version) programs given in [7], the tabled program
is incredibly fast. On an instance with 7 blocks which has a minimal plan of 54 steps, the CLP and ASP
programs took 330 seconds and 420 seconds, respectively, while the tabled program took only 15 milliseconds.
On instances with 8–11 blocks, the tabled program found optimal solutions of 109, 219, 438 and 877 steps in
2, 16, 129, and 912 seconds, respectively.2

2The CLP (B-Prolog) and ASP (Clasp) codes are taken from [7], and the same machine AMD Opteron 270 was used.

9

We also encoded the so-called reverse-sokoban, where the the roles of boxes and warehouses are switched, and
the man is let pull warehouses instead of pushing boxes. In the reversed version, many deadlock situations can
never occur (for example no warehouse can be pulled to a corner) and therefore the search space is considerably
reduced. The reversed version has been considered by ASP solutions and the Rolling Stone program [18]. Our
program for the reversed version easily solves all the 60 instances submitted to the ASP competition.

The complete codes for the two problems are available at http://www.sci.brooklyn.cuny.edu/~zhou/

asp11/opt_sokoban_rev.pl and http://www.sci.brooklyn.cuny.edu/~zhou/asp11/blocksB.pl.
As future work we plan to write a compiler from an action description language to tabled BProlog, using

the experience of the encodings made for this work. This approach should be easy in absence of static causal
laws, while some extra analysis is needed if they are used in the encoding (see also the discussion in Section
6.1).

6.4 Some AI references

In AI literature, Andreas Junghanns and Jonathan Schaeffer in [18] pointed out that the Sokoban problem is
interesting for several reasons: in general it is difficult to find a tight lower bound for the number of moves,
there is the problem of a deadlock (e.g. when a box is pushed to a corner), and, moreover, the branching
factor is very high (considering macro moves). The same authors then published some improving solutions
to the problem in the context of single agent planning, summarized in a paper with Adi Botea and Martin
Müller [3]. In particular, they exploited an abstraction based on tunnels and rooms of the Sokoban warehouse
that allowed to obtain good performances. In [16] the authors show how to develop a domain-independent
heuristics for cost-optimal planning. They apply this idea to the Sokoban, and test a STRIPS encoding
of the Sokoban on a collection, called “microban”, developed by David W. Skinner and available from http:

//users.bentonrea.com/~sasquatch/sokoban/. The STRIPS encoding used is based on the finest granularity
approach (simple move), but reachability and other techniques are used as heuristics for sequences of atomic
moves. They choose a collection of moderate instances and they are able to solve the 70% of them. Interestingly,
they are able to find plans of length 290 (atomic actions) on instance 140 in half of an hour of computation.

Apart from academic contributions to this challenging puzzle we would like to point out two working
solvers available on the web. They solve in less than one minute instances with 8-10 boxes and plans of 100 of
macro-pushes. A lot of heuristics are implemented and we cannot compare our results with theirs.

Sokoban Puzzle Solver http://codecola.net/sps/sps.htm, developed (in 2003–2005) by Faris Serdar
Taşel is basically a generate and test solver for Sokoban. An executable file for Windows is downloadable, but
extra details on the implementation are not available. In spite of its apparent simplicity, it solves in acceptable
time most of the instances available from that web page.

Sokoban Automatic Solver http://www.ic-net.or.jp/home/takaken/e/soko/index.html, developed (in
2003–2008) by Ken’ichiro Takahashi is another solver for Windows. It finds solutions that are not ensured to
be optimal. Analysis of the problem is performed allowing fast executions but the author gives no idea on how
this analysis is made.

7 Concluding Remarks

This paper has presented the BPSolver program for solving the Sokoban problem. This program has demon-
strated for the first time that dynamic programming is a viable approach to the problem and mode-directed
tabling is effective. Without using sophisticated domain knowledge, this program is able to solve some inter-
esting instances that a declarative approach, based on action languages, implemented using CLP(FD), have
failed to solve. As shown in the competition results, this program is as competitive as the Clasp program for
the instances that are not so memory demanding.

The BPSolver program basically explores all possible states including states that can never occur in an
optimal solution: a way for improving it is to consider more deadlock states such as those involving multiple
blocks [18] to be filtered out. Moreover, some domain knowledge such as the topological information should be
exploited to reduce the graph. Lastly, heuristics should be employed to select a box to move and a destination
to move the box to. Ideally, a path that leads to a goal state should be explored as early as possible.

We believe that reasonable sized planning problems can benefit of the same technique presented.

Acknowledgement

We really thank Andrea Formisano for his wise advice in the B encoding of the Sokoban. Neng-Fa Zhou was
supported in part by NSF (No.1018006). Agostino Dovier is partially supported by INdAM-GNCS 2011 and
PRIN 20089M932N.

10

References

[1] Marcello Balduccini. Splitting a CR-prolog program. In LPNMR 2009, LNCS 5753, pages 17–29, 2009.

[2] R. Barták and D. Toropila. Reformulating constraint models for classical planning. In David Wilson and H. Chad
Lane, editors, FLAIRS’08: Twenty-First International Florida Artificial Intelligence Research Society Conference,
pages 525–530. AAAI Press, 2008.

[3] Adi Botea, Martin Müller, and Jonathan Schaeffer. Using abstraction for planning in sokoban. In Computers and
Games, pages 360–375, 2002.

[4] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Annamaria Bria, Gelsomina Catalano,
Susanna Cozza, Wolfgang Faber, Onofrio Febbraro, Nicola Leone, Marco Manna, Alessandra Martello, Claudio
Panetta, Simona Perri, Kristian Reale, Maria Carmela Santoro, Marco Sirianni, Giorgio Terracina, and Pier-
francesco Veltri. The third answer set programming competition. In LPNMR 2011, LNCS 6645, pages 388–403,
2011. See also: https://www.mat.unical.it/aspcomp2011.

[5] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The second answer
set programming competition. In LPNMR 2009, LNCS 5753, pages 637–654, 2009.

[6] Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Computational Geometry: Theory and
Applications, 13:215–228, 1995.

[7] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An empirical study of constraint logic programming and
answer set programming solutions of combinatorial problems. J. Exp. Theor. Artif. Intell. 21(2):79–121, 2009.

[8] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Multivalued action languages with constraints in
CLP(FD). Theory and Practice of Logic Programming, 10(2):167–235, 2010.

[9] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An investigation of Multi-Agent Planning in CLP.
Fundamenta Informaticae, 105(1-2):79–103, 2010.

[10] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Perspectives on Logic-based Approaches for Reasoning
About Actions and Change. In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning,
Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, LNCS 6565, pages 259–279. Springer,
2011.

[11] Juliana Freire, Terrance Swift, and David Scott Warren. Beyond depth-first: Improving tabled logic programs
through alternative scheduling strategies. Journal of Functional and Logic Programming, (3), 1998.

[12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Sven Thiele. Engi-
neering an incremental asp solver. In ICLP, pages 190–205, 2008.

[13] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In Proceedings of the
Joint International Conference and Symposium on Logic Programming (JICSLP), pages 1070–1080, 1988.

[14] Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif. Intell., 2:193–210, 1998.

[15] Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via mode-directed tabling. Softw., Pract.
Exper., 38(1):75–94, 2008.

[16] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-independent construction of
pattern database heuristics for cost-optimal planning. In AAAI, pages 1007–1012, 2007.

[17] International Planning Competition http://ipc.informatik.uni-freiburg.de/. The Sokoban domain can be
found in http://ipc.informatik.uni-freiburg.de/Domains.

[18] Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-agent search methods using domain
knowledge. Artif. Intell., 129(1-2):219–251, 2001.

[19] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial
Intelligence, 157(1–2):115–137, 2004.

[20] David Scott Warren. Memoing for logic programs. Comm. of the ACM, Special Section on Logic Programming,
35:93–111, 1992.

[21] Neng-Fa Zhou. The language features and architecture of B-Prolog. Theory and Practice of Logic Programming
12(1–2):189–218, 2012.

[22] Neng-Fa Zhou, Yoshitaka Kameya, and Taisuke Sato. Mode-directed tabling for dynamic programming, machine
learning, and constraint solving. In ICTAI, pages 213–218, 2010.

[23] Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling strategies and optimizations. Theory and Practice
of Logic Programming, 8(1):81–109, 2008.

11

