

Embedding Finite Sets
 in a Logic Programming Language

Agostino Dovier Eugenio G. Omodeo
Dipartimento di Informatica Dip. di Informatica e Sistemistica
Università di Pisa Università di Roma La Sapienza
C.so Italia 40, 56100 PISA Via Salaria 113, 00198 ROMA
dovier@di.unipi.it omodeo@assi.ing.uniroma1.it

Enrico Pontelli Gianfranco Rossi
New Mexico State Univ. Dip. di Matematica
Dept. of Computer Science Università di Bologna
Las Cruces, NM 88003 P.zza di Porta S.Donato 5,
epontell@nmsu.edu 40127 BOLOGNA
 gianfr@dm.unibo.it

Abstract. A way of introducing simple (finite) set designations and operations
as first-class objects of an (unrestricted) logic programming language is
discussed from both the declarative and the operational semantics viewpoint.
First, special set terms are added to definite Horn clause logic and an extended
Herbrand Universe based on an axiomatic characterization of the kind of sets
we are dealing with is defined accordingly. Moreover, distinguished predicates
representing set membership and equality are added to the base language along
with their negative counterparts (π and �). A new unification algorithm which
can cope with set terms is developed and proved to terminate. Usual SLD
resolution is modified so as to incorporate the new unification algorithm and to
properly manage the distinguished predicates for set operations (in particular,
conjunctions of atoms containing π and � are dealt with as constraints, first
reduced to a canonical form through a suitable canonization algorithm). Finally,
the application of the resulting language to the definition of Restricted
Universal Quantifiers is discussed.

1 Introduction
General agreement exists about the usefulness of sets as very high-level
representations of complex data structures (cf. [2]) and of set abstractions in code
specifications. In particular, sets and set abstractions can be conveniently used in rapid
software prototyping, where efficiency is not a primary requirement while the
availability of high level data and operation abstractions are key features of the
prototype implementation language.
 Only relatively few programming languages embody sets as primitive objects.
Among them, the (non-executable) specification language Z [26], the procedural
language SETL [5, 24] and the functional languages MIRANDA [25] and ME TOO
[18]. A number of recent proposals have preferred, however, a more declarative
programming framework. In particular, logic programming languages have been
advocated by many as a suitable setting for declarative programming with sets.
Among them, the proposals of the logic database languages LDL [3] and LPS [11].
Also the recent work by Legeard and Legros [13] introduces sets in a Prolog-like
language dealing with set expressions as constraints, while [23] analyzes the problem

of logic programming with sets in its generality (including infinite sets). A similar
framework but stressing the notion of equational programming is also advocated in
[9].
 Actual Prolog systems already provide some facilities to support sets in the form
of the built-in predicates setof and bagof. However, it is widely recognized that the
definition of these facilities is quite unsatisfactory. In fact, no precise logical
semantics can be attributed to them. Sets are simply represented as lists and therefore
are dealt with as ordinary terms (e.g. by an implicit order among their elements). On
the contrary, a logic language embodying sets ought to supply special set former terms
along with a few basic operations on them as part of the language, and allow other
more complex operations on sets (possibly including the setof operation), to become
definable within the language itself, without having to further extend its semantics.
 Aim of this paper is to define such an extended logic language, called {log}
(read set-log). Unlike some of the above cited proposals, however, we do not restrict
ourselves to any specific application domain. So our starting point is a pure logic
programming language, that is Definite Horn clauses with no extra-logical constructs.
Then simple set constructs are added to this language (namely, enumerated set terms,
set membership and equality and their negative counterparts) and suitable operational
and declarative semantics are defined for them. It is shown that the usual set
operations, such as union, intersection, etc., can be defined in this extended language.
Also Restricted Universal Quantifiers are shown to be definable within the language
itself; so they can be added to it as a simple syntactic extension (dealt with by a
suitable preprocessor).
 The paper is organized as follows. Section 2 briefly describes a few extensions
to ordinary logic programming language syntax that can support the introduction of
set terms. Declarative semantics of the resulting language is presented in section 3 by
defining an extended Herbrand Universe based on an axiomatic characterization of the
kind of sets we are dealing with. The problem of unification of set terms is then
addressed in section 4 and a new unification algorithm which can deal with set terms
is described in detail. Section 5 presents the extended SLD procedure incorporating
the new unification algorithm and the management of � , =, � and π, based on the so
called constraint canonization algorithm. Section 6 shows how Restricted Universal
Quantifiers can be defined in our language. Finally, a comparison with some other
related proposals is carried out in section 7.

2 {log} syntax
To begin with, we introduce in this section the extensional representation of finite sets.
All that is presupposed is the availability of:

- an interpreted constant, {}, for the empty set Ø;
- a binary function symbol, with (used as an infix left associative

operator), to be interpreted as follows: s with t stands for the set that
results from adding t as a new element to the set s.

 Apart from these two symbols, {log} contains the usual equipment of clausal
Horn logic (cf. [14]) along with distinguished predicates for set membership and
equality (� and =) and their negative counterparts (π and �).
 The extensional representation for sets referred to above is provided by a
collection G of ground terms: this is the smallest collection such that

- the constant {} belongs to G ;
- s with t, s, t ground terms (not necessarily in G), belongs to G .

 In view of the intended interpretation, any s in G will be called a set term. A
non-ground term t is called a set term if there exists an instantiation σ of the variables
in t such that tσ belongs to G; in particular a variable is a set term. Set terms of the

form t with tn with ... with t1 wherein t is not a set term are intended to designate sets
based on a kernel t other than {} (also called colored sets).
 For the sake of simplicity we introduce special syntactic forms to designate set
terms: {t1,...,tn|s} stands for s with tn with ... with t1 and {t1,...,tn} stands for {} with tn
with ... with t1 where n ≥ 1 and s, t1,...,tn are terms. For example:

- f(a,{5}), i.e. f(a,{} with 5), is a term, but not a set term;
- {2,g(3),a}, i.e. {} with a with g(3) with 2, is a ground set term;
- {}, {1,X,Y,2}, {1,1,{2,{}},f(a,{b})} and any term {t1,...,tn|R}

with a 'tail' variable R, are set terms
- {a|f({b})} is a colored set term based on the kernel f({b}).

 For the rest of this paper, we will freely exploit the syntactic features available in
Edinburgh Prolog in addition to the constructs discussed above. Three sample {log}
clauses are:

- q(X) :- X � {a,b,c,d} & p(X)

- singleton(X) :- X = {Y}.

- in_difference(X,Set1,Set2) :-
 X � Set1 &
 X � Set2.

 Colored set terms (i.e. terms of the form {t1,...,tn|t} wherein t is not a set term) do
not designate sets of any conventional kind; one might therefore contend that such
terms ought to be forbidden as they are unlikely to serve any serious purpose in
programming. Nevertheless, we deem it convenient to always regard {t1,...,tn|t} as a
legal set term when t1,...,tn, t are legal, to make the language structure absolutely
uniform and the inference mechanisms (e.g. unification) more straightforward.

3 {log} declarative semantics
To convey the meaning of our language, we are to formally characterize the legal
interpretations of {log}. We begin by providing the axioms of a suitable first-order set
theory with equality: the legal interpretations of {log} will be the models of these
axioms (cf. [8]).
 Next we will focus on a privileged interpretation domain formed by terms, UH,
resulting from suitable modifications to the classical Herbrand universe [14];
moreover, we will designate a fixed binary relation over UH as the privileged
interpretation of � . (The predicate = will be interpreted as syntactic equality).
 The interpretation of the predicate symbols of {log} other than � or = is left
totally unspecified for the time being, as it must take into account a {log} program,
viz. a set of application-specific clausal axioms enriching the initial axiom endowment
we are presenting now.

3.1 Set axioms

Here are our basic axioms (X, Y, V, S and the Xis distinct variables ranging over the
whole interpretation domain):
 (Z) V � {};
 (W1) V π Y ∅ (V � X with Y × V � X);
 (W2) Y � X with Y;
 (L) Y � X ∅ ∃z (Y � z & X = z with Y);
 (K0) (∀z z � X) ∅ (X = ker(X));

 (K1) V � ker(X);
 (K2) ker(V with Y) = ker(V);
 (E) (ker(X) = ker(Y) & ∀z (z � X × z � Y)) ∅ X = Y;
 (R) ∃z ∀w (w � X ∅ (z � X & w � z));
 (U) f(X1,...,Xn) π {} & V � f(X1,...,Xn), where n is the arity of f
 and f/n � {{}/0, ker/1, with/2}.
 Although rather conventional in the overall, and somewhat narrow in
comparison to well-established set theories such as Zermelo-Fraenkel or von
Neumann-Bernays-Gödel, our theory slightly deviates from the classical ones under
two respects:

- Presence of urelements. One refers by this word to member-less entities
distinct from {}. It readily follows from (U) that a single function symbol, say
f/1, can be used to generate infinitely many such entities, namely

 f({}), f({{}}), f({{{}}}),
- Each term t in the interpretation domain has an associated kernel, ker(t),

which can be an urelement or {}. Intuitively speaking, we think of t as
resulting from repeated (possibly none) insertions of members into this initial
kernel, insertions being achieved by the operation with. (Note that, ker(f(a))
= f(a)).1

 Let us briefly comment upon the extensionality and regularity axioms, (E) and
(R). The first of these states that in order to be equal X and Y must have the same
kernel and the same members. It follows, in view of (W1), (W2) and (K2) that with
enjoys the following properties:
 (X with Y1) with Y2 = (X with Y2) with Y1, (permutativity)
 (X with Y) with Y = X with Y. (absorption)
Another very useful consequence of (W1), (W2), (K2) and (E) is that
 Y � X × ∃z (X = z with Y),
whereby one can express membership in terms of equality. By exploiting the element
removal axiom (L) too, one obtains
 (X with Y = V with S & Y ≠ S) ∅ ∃w (w with S = X & w with Y = V),
which will prove crucial in our unification algorithm.
 The regularity axiom (R) states that from each non-empty set X one can choose a
member z which belongs to X and does not intersect X: this is a well-known expedient
way to state that membership forms no cycles (and a little more).
 It goes without saying that standard equality axioms (cf. [8]) are being postulated
here. The Clark freeness axioms [21] are being adopted too:
 f(X1,...,Xn) ≠ g(Y1,...,Ym);
 f(X1,...,Xn) = f(Y1,...,Yn) ∅ (X1 = Y1 &...& Xn = Yn);
 t[X] ≠ X.
As usual f/n and g/m differ from one another in the first of these; we must further
require that they differ from ker/1 and from with/2. Moreover, in addition to requiring
that t[X] be a term involving the variable X and distinct from it, we must require that
t[X] be not a set term.
 Technically, one can regard (U) as a novel freeness axiom, and (R) as an
analogue about sets of the occur axiom t[X] ≠ X. Actually, we must strengthen (R) for
our purposes, by adding to it
 (R') t[X] � X & ker(X) ≠ t[X].

1 These also are the main differences, so far, between our theory and the theory T0 in [19].

3.2 An adapted Herbrand universe

In order to define the privileged interpretation domain UH one considers the ordinary
Herbrand universe H (generated as usual by the collection F of functors, which is
assumed to fulfil {}/0, with/2 � F and ker/1 � F), and takes the smallest equivalence
relation ∫ over H that fulfils the above permutativity and absorption properties (with ∫
in place of =). Then, one takes a representative term from each one of the equivalence
classes forming H/∫ (according to specific criteria to be hinted at below), and finally
one puts UH = {representative terms} by definition.
 Establishing an order < over H can help in filling up the details of this plan. For
the sake of simplicity, it is reasonable to assume that a total ordering of F is given
from the outset. By exploiting this ordering, < can be defined antilexicographically.
This means – among others – that r with t < s with u holds, recursively, when either t <
u or t coincides with u and r < s.
 A ground term g is said to be canonical if either it is a constant or every one of
its subterms is canonical and, moreover, t < u holds for every subterm of the form s
with t with u of g. UH will be formed by all canonical terms. Let τ be the function that
maps a ground term t to its canonical representative. If t has the form f(t1,...,tn) with f/n
≠ with/2, τ(t) will be f(t1',...,tn') where ti' = τ(ti) for each i, 1≤i≤n. If t has the form k
with t1 with ...with tn – where the main functor of k differs from with/2 – τ(t) is the
term k' with tπ1' with...with tπm' where k', tπ1',...,tπm' are the distinct canonical
representatives of k, t1,...,tn arranged so that tπ1'< ... < tπm'. Of course the canonical
representative of each term will be its value in the privileged interpretation.
 To complete the picture of the privileged interpretation it suffices to add that for
any t, u � UH:

 - the kernel k = ker(t) is obtained by decomposing t in the form k with t1 with ...
with tn, n≥0, where the main functor of k differs from with/2;

 - whether the relation u � t holds or not can be established by decomposing t in
the same manner and by checking whether u occurs as one of the tis.

 The definition of the term canonization function τ described above can be
extended so as to encompass atoms and clauses in the following way:

 - for each ground atom A = p(t1,...,tn), τ(A) = p(τ(t1),...,τ(tn));
 - for each ground clause C = A :- B1 &...& Bn, τ(C) = τ(A) :- τ(B1) & ... &

τ(Bn);
 - for each set I of either ground atoms or ground clauses, τ(I) =

A � I
≈ {τ(A)}.

 As anticipated at the beginning of the section, we are taking UH = τ(HP) as the
interpretation domain of any given program P. Also, functors are so interpreted that
each ground term t denotes τ(t). Then we will regard the collection τ(BP) as the
Herbrand base of P, where BP is defined as usual (without atoms involving = or � ,
though, because these have a rigid meaning). A (set) interpretation I of P can be
characterized simply as a subset of τ(BP): it will be a model of P if it satisfies the
whole ground(P).
 With the semantics thus restricted to set interpretations only, we can easily prove
the usual model-theoretic and fixpoint semantics results. In particular, with
 TP(I) = {a | a :- b1 & ... & bn � τ(ground(P)) and, for each i � {1,...,n}, either
 bi � τ(I) or bi is sπt where π � {=,� ,π,� } and bi is true w.r.t. the axioms}
and
 MP =

M model of P
↔ M

one will have
 MP = TP ≠ ω.

3.3 Side remarks about set complementation

If we included in the {log} language a set complementation operator, comp/1, so that
– among others –

 - comp({}) designates the whole interpretation domain, and
 - comp(comp(X) with Y) designates X deprived of the element Y,

then co-finite sets ought to be taken into charge along with finite sets, which would
significantly enrich the structure of any legitimate interpretation of {log}. We would
then be forced to accept certain membership cycles – since comp({}) � comp({}) –,
and would have to modify the set axioms accordingly.
 We refrain from this extension mainly because it would conflict with another
very useful extension of {log}: the introduction of intensional set formers [6,7]. As a
matter of fact, by adopting the two extensions together, one would run into
paradoxical expressions like
 { X � comp({}) : X � X }.
Should the latter be regarded as an acceptable set expression, it would designate a set
ξ fulfilling both ξ � ξ and ξ � ξ, as was first remarked by B. Russell in 1901.

4 Set unification

The development of a procedural semantics for {log} requires that the unification
algorithm is refined in order to deal with sets, and that the SLD procedure is modified
in such a way as to include set unification and proper management of the equality and
membership relations. We cope in what follows with the first of these two points,
postponing the second one to the next section.

4.1 The set unification problem

As regards the unification problem we assume all the definitions (e.g., Herbrand
system, substitution, solution, etc.) given in [15] and [16].
 Standard unification is no more adequate to deal with set terms. A first reason is
that the inherent lack of order inside a set causes the decay of the 'uniqueness' property
of the most general unifier of standard unification. This is clear from the following
example: consider the singleton Herbrand system E = {{X,Y} = {1,2}}; there are only
two solutions, namely σ1 = {X♦1,Y♦2} and σ2 = {X♦2,Y♦1}, neither of which is more
general than the other. A second reason for the inadequacy of standard unification, is
that duplicate elements in a set are not relevant as far as unification is concerned.
Thus, for instance, the two set terms {1} and {1,1} should unify, although standard
unification treats them as non-unifiable. Furthermore, the equation X = {1|X}, which
does not admit any solution in the standard case (unless infinite terms are taken into
account), has the solution σ = {X♦{1|N}} in the extended framework we are
considering.
 What is needed is some form of generalized unification, i.e. unification w.r.t. a
theory T which describes the properties of a set of functional symbols (with and {} in
our case) by means of a set of equations (axioms). In this connection, two terms s and
t are said to be T-unifiable iff there exists a substitution σ such that sσ =T tσ; such a σ
is called a T-unifier. The set of all T-unifiers of two terms s and t is denoted by
≈ΣT(s,t) (cf. for instance [22]). Of course, we are interested in the minimal set of
unifiers µΣT(s,t), that is, the set of substitutions satisfying:
 (i) µΣT(s,t) ∏ Σ;

 (ii) ∀ δ � Σ (∃ σ � µΣT(s,t) (σ ≤T δ));
 (iii) ∀ σ,δ � µΣT(s,t) (σ ≤T δ ∅ σ = δ)
for each complete set of unifiers Σ of s and t (and in particular for Σ = ≈ΣT(s,t))2.
 The characterizing properties of our set constructor with are absorption and
permutativity, as seen in section 3. Other properties for which a number of extended
unification algorithms3 have been developed in the past, such as associativity,
commutativity, distributivity and their combinations, are unfortunately not satisfied by
the with operator. In particular, ACI-unification cannot be directly applied in our case.
In fact, the identity (X with Y) with Z = X with (Y with Z), representing associativity,
does not hold, for instance, under the substitution {X♦{} with c, Y♦{} with b, Z♦a},
because the two sets {a,{b},c} and {{a,b},c} are distinct in our interpretation.
Similarly, the idempotency property X with X = X does not hold under the substitution
{X♦{} with a} since {{a},a} ≠ {a}.
 A viable approach could be to use a universal unification algorithm for a class of
theories E (i.e. "an algorithm which takes as its input a pair of terms (s,t) and a theory
E � E and generates a complete set of unifiers for <s=t>E" [22]), such as those based
on narrowing or on some different rewriting technique (e.g. [17]). According to these
approaches, the theory at hand should be represented as a canonical rewrite system.
This is not the case of the theory we are interested in, since the permutativity rule for
the with operator is non-terminating. By using suitable techniques (e.g. lazy
evaluation) one can circumvent the ensuing problem of non-termination, but universal
unification algorithms seem too inefficient for our purposes.
 Therefore, we have developed a new unification algorithm that extends standard
unification so as to embody the set axioms presented in section 3. For any given
Herbrand system E involving set terms, the algorithm is able to compute through non-
determinism each element of a complete set of unifiers of E.

4.2 Complexity

Before presenting our set-unification algorithm we notice that the problem of deciding
whether two set terms are unifiable is NP-complete. The NP-hardness ensues from a
reduction of 3-SAT to the problem at hand: Given the formula
 Φ = (l(1);1

 ⁄ l(1);2 ⁄ l(1);3) &...& (l(m);1
 ⁄ l(m);2 ⁄ l(m);3)

with
 l(j);i = a(j);i or l(j);i = ¬a(j);i , where
 a(j);i � {d1,...,dk}, ∀i � {1,2,3}, ∀j � {1,...,m}, k ≤ 3*m,
find a truth-value assignment to the propositional variables d1,...,dk such that Φ × true.
 We define the transformation function f as follows:
 f(l) = { Xi if l ∫ di; Yi if l ∫ ¬di; {false, f(l1),f(l2),f(l3)}if l ∫ l1 ⁄ l2 ⁄ l3
and translate Φ into the equation
 {{X1,Y1},...,{Xk,Yk}, f(l(1);1

 ⁄ l(1);2 ⁄ l(1);3),...,f(l(1);1
 ⁄ l(1);2 ⁄ l(1);3)} = {{false,

2 Recall that: two substitutions δ, σ are T-equal (written δ =T σ) iff Xδ =T Xσ for each variable
X; a substitution δ is more general than a substitution σ (written δ ≤T σ) iff there exists a
substitution µ such that δ°µ =T σ (for instance, δ = {X♦{f(X),b}} is more general than σ =
{X♦{b,f(a)}} in the theory we are considering here); two substitutions δ, σ are T-equivalent
(written δ ∫T σ) iff δ ≤T σ and δ ≥T σ (for instance, {X♦{a}}, {X♦{a,a}}, {X♦{a,a,a}} are all
equivalent substitutions in our theory). Note that, if the set µΣT(s,t) exists, it is unique up to the
equivalence ∫T and therefore it is enough to compute just one µΣT(s,t) as a representative of the
equivalence class [µΣT(s,t)]∫T (cf. [Sie86]).
3 I.e. algorithms for special theories embodying the equality axioms of the theory itself.

true}},
which requires each of the sets {Xj,Yj} to become {false, true}, and at least one of
f(l(i);1), f(l(i);2), f(l(i);3) to become true for every i. (To stay strictly inside the realm
of pure sets, false could be replaced by {} and true by {{}} in this translation).
 It is hence clear that an algorithm for unifying two sides of such an equation in
polynomial time could also be exploited for solving 3-SAT in polynomial time.
 The NP-completeness of the set unification problem ensues from the polynomial
behaviour of standard unification. In fact, a set-set equation can be replaced by a set of
equations between the elements of the two sets. This is a non-deterministic equivalent
of the term decomposition action of standard unification algorithms (see, for instance,
[16]).

4.3 Set unification algorithm

Let E be a Herbrand system, i.e. a set of equations {ti = ti', i = 1,...,n}, where the ti's
are terms (variable or not). A Herbrand system is said to be in solved form if all
equations have the form xi = si (i = 1,...,m), and every variable xi occurs exactly once
in E. Such a system has the obvious solution {x1♦s1,...,xn♦sm}. Aim of the following
algorithm is to bring any given system E to solved form or to report a failure if E has
no solution.

UNIFICATION ALGORITHM

Let F be a set of functional symbols, V a denumerable set of variables and T be the
set of first order terms over F ≈ V. Let X, Y be generic variables (i.e. X,Y � V), t, ti, ti' be terms in T, and r, s represent set terms.

function unify(E: Herbrand_system): Herbrand_system;
begin
 if E is in solved form
 then return E
 else select arbitrarily an equation e in E so that:
 case e of
 1) X = X: return unify(E \ {e});
 2) t = X, t � V: return unify((E \ {e}) ≈ {X = t});
 3) X = t, t is not a set term and X occurs in t: fail;
 4) X = t with tn...with t0 and X occurs in t (t � V) or in t0 or...or in tn: fail;
 5) X = X with tn...with t0 and X does not occur in t0,...,tn:
 return unify((E \ {e}) ≈ {X = N with tn ... with t0}), N new variable;
 6) X = t, X does not occur in t, X occurs somewhere else in E:
 return unify((E \ {e})σ ≈ {X = t}), where σ is the substitution {X♦t};
 7) f(t1,...,tn) = g(t1',...,tm'), f ≠ g or n ≠ m: fail;
 8) f(t1,...,tn) = f(t1',...,tn'), f/n ≠ with/2:
 return unify((E \ {e}) ≈ {t1 = t1',...,tn = tn'});
 9) r = s, where r ∫ h with tn with...with t0 and s ∫ k with tm' with...with t0',
 h, k terms with main functor ≠ with/2, using the notation r\ti
 (resp., s\ti) to denote the term obtained from r (resp. s) by taking
 away its i-th element ti:
 if h, k are not the same variable then
 9.1) choose one from among the following actions:

 a) return unify((E \ {e}) ≈ {t0 = t0', r\t0 = s\t0'})
 b) return unify((E \ {e}) ≈ {t0 = t0', r = s\t0'})
 c) return unify((E \ {e}) ≈ {t0 = t0', r\t0 = s})
 d) return unify((E \ {e}) ≈ {r\t0 = N with t0', N with t0 = s\t0'}),
 N new variable;
 else h, k � V, h ∫ k ∫ X
 9.2) select arbitrarily i from among 0,...,m;
 choose one from among the following actions:
 a) return unify((E \ {e}) ≈ {t0 = ti', r\t0 = s\ti'})
 b) return unify((E \ {e}) ≈ {t0 = ti', r = s\ti'})
 c) return unify((E \ {e}) ≈ {t0 = ti', r\t0 = s})
 d) return unify((E \ {e}) ≈ {X = N with t0,
 N with tn with...with t1 = N with tm' with...with t0'}),
 N new variable;
end.

 The following theorems state the termination, correctness and completeness of
unify(E) for any given system E of equations.
Theorem 4.1 (termination). Let E be a Herbrand system. Then unify(E)
terminates, provided a suitable strategy is adopted for selecting e across
recursive levels.
Theorem 4.2 (soundness and completeness). Given a system E, let E1,...,En be all
the systems in solved form produced by the unification algorithm. Then Soln(E)
= Soln(E1)' ≈ ...≈ Soln(En)', where Soln(X) is the set of all the ground T-unifiers of
X and Soln(Ei)' is Soln(Ei) restricted to the variables of E.
 Let us briefly comment upon action 9 of the algorithm. Its aim is the reduction of
set-set equations. In particular, cases (b), (c) and (d) take care of duplicates in the left-
hand side term, duplicates in the right-hand side term and permutativity of the set
constructor with, respectively.
 As an example, let us consider the following system
 {{a|X} = {b,a|Y}}.
The algorithm applies action 9.1 to it, requiring one of the following systems to be
solved
 a) {a=b, X={a|Y}}
 b) {a=b, {a|X}={a|Y}}
 c) {a=b, X={b,a|Y}}
 d) {X={b|N},{a|Y}={a|N}}.
The first three clearly have no solution, whereas system (d) can be further transformed
by applying again action 9.1 to its second equation, which leads to the following new
systems:
 a) {X={b|N}, Y=N},
 from which, by variable substitution, we get {X♦{b|Y}};
 b) {X={b|N}, {a|Y}=N},
 from which, by variable substitution, we get {X♦{b,a|Y}};
 c) {X={b|N}, Y={a|N}},
 from which we get {X♦{b|N}, Y♦{a|N}};
 d) {X={b|N}, Y={a|N'}, N={a|N'}}
 from which, by variable substitution, we get {X♦{b,a|N'}, Y♦{a|N'}}.
 The substitutions we have got constitute the set of unifiers for the initial system

we were looking for. Notice that this set is not minimal even though correct and
complete. For instance, the fourth solution θ = {X♦{b,a|N'}, Y♦{a|N'}} can be
obtained, apart from duplicates, from the second solution σ = {X♦{b,a|Y}} by
applying the substitution {Y♦{a|N'} to σ. In general, the set of substitutions computed
by our unification algorithm can contain substitutions which are less general and/or
equivalent (w.r.t. the given theory) to other substitutions in the set. However, the
number of these "redundancies" is in any case finite and could be reduced by adding
suitable checks to the algorithm so as to detect cases in which not all the alternatives
of the algorithm are required.
 Equations of the form X with tn with...with t0 = X with tm' with...with t0', where
the two sides are set terms with the same variable tail element, are dealt with as a
special case by action 9.2. The problem here is how permutativity of the with operator
can be guaranteed. In fact, it is easy to check that by applying action 9.1, and in
particular case (d), to an equation of this form (e.g. {a|X} = {b|X}) the algorithm might
go into an infinite loop. The solution we have adopted is to avoid action 9.1.d of the
general case by requiring the algorithm non-deterministically considers each element
of one of the two sets involved in the given set-set equation, thus trying all possible
combinations.
 Of course, this solution opens a great (though finite) number of alternatives,
generating many redundant solutions. An alternative formulation of action 9.2 which
is less uniform with the rest of the algorithm but more efficient as for the number of
generated solutions is shown below.

9.2) X with tm with ... with t0 = X with tn' with...with t0', X variable:
 return unify((E \ {e}) ≈ T), where the set T is generated as follows:
 choose I = {(i1,j1),...,(ip,jp)} from among the subsets of {0,...,m}∞{0,...,n}
 such that either I or {(j,i)|(i,j) � I} is a single-valued map;
 T is {ti = tj' | (i , j) � I} ≈ {X = N with r1 with ... with rm + n + 2 - p}
 where the rks are all terms ti and tj' such that (∀a � {0,...,n} (i , a) � I)
 and (∀b � {0,...,m} (b , j) � I) (the ordering of the rks is immaterial).

 Finally, we want to remark that our unification algorithm is close in spirit to the
algorithm proposed by Jayaraman and Plaisted in [9] but it manages to solve a larger
number of cases. In particular the algorithm in [9] intentionally does not take into
account duplicates in a set (e.g. the equation {a,a} = {a} fails in that algorithm).
Furthermore, as far as can be drawn from the presentation of the algorithm sketched in
[9], that algorithm requires one of the terms in a set-set equation to be ground, and
accordingly is not concerned at all with the situations dealt with by action 9.2 in our
algorithm (e.g. {a|X} = {b|X}).

5 {log} Resolution Procedure
The resolution procedure developed for {log} is an extension of the usual SLD
resolution procedure, where standard unification is replaced by the set unification
algorithm presented above. In addition, some changes are required in order to properly
manage equality and membership and their negative counterparts as predicates with a
pre-assigned meaning.
 The main idea behind the management of π and � is the use of a simple
constraint logic programming scheme [10]. In our context, an atomic constraint is any
disequation of the form t1 π t2 or t1 � t2; a constraint is a conjunction of atomic
constraints. We proceed here to illustrate the basic resolution step of our constraint
handling method, based on the so-called disequation analyzer Can (a non-
deterministic algorithm complementary, in a sense, to unification).

 The main purpose of Can is to transform a given constraint into an equivalent set
of constraints in canonical form. A constraint is in canonical form if all of the atomic
constraints in it (if any) have the form:

a) X π t and X does not occur in t (X variable, t term), or
b) t � X and X does not occur in t.

 Given a constraint C, Can non-deterministically generates every element of an
equivalent finite set CCan = {<Γ1,θ1>,...,<Γδ,θδ>} where each Γi is a constraint in
canonical form, and θi is a substitution which keeps track of the bindings for the
auxiliary variables created by the canonization process. We will describe the
canonization algorithm in detail in section 5.2.

5.1 Extended SLD Resolution Procedure

Let P be a {log} program and G be a goal :- C1&...& Cn & B1 &...& Bk (where the Cis,
are atomic constraints and the Bjs are {log} atoms). The goal G' is derived from G
with substitution σ if the following conditions hold:

 • if k = 0 then µ is the empty substitution ε and C' is Ø;
 • if k > 0 then
 - Bi (i � {1,...,k}) is the selected atom;
 - µ and C' are computed as follows:
 case Bi of
 a) p(t1,...,tk), with p an ordinary predicate and there exists a clause
 p(t1',...,tk') :- C1' &...& Cm' & B1' &...& Bh' in P:
 µ is an mgu of the system {t1 = t1',...,tk = tk'}; C' is {C1',...,Cm'};
 b) t = t': µ is an mgu of the system {t = t'}; C' is Ø;
 c) t � {t1,..,tn|h}: µ is an mgu of one of the systems {t = t1},...,{t = tn} or,
 alternatively, if h is a variable X not occurring in t, µ is the
 substitution {X♦{t|N}}, N new variable; C' is Ø;
 • <{D1,...,Dd},θ> is one of the pairs generated by applying Can to
 ({C1,...,Cn} ≈ C')µ;
 • G' is :- D1 &...& Dd& (B0 &...& Bi-1 & B1'&...& Bh' & Bi+1 &...& Bk)σ,
 where σ is µ°θ.

 A derivation of P ≈ {G} is a (finite or infinite) sequence G0 = G, G1, G2,... of
goals such that Gi+1 is derived from Gi. A refutation of P ≈ {G} is a finite derivation
of P ≈ {G} such that the last derived goal Gn only contains canonical atomic
constraints.
 Finally, a computed answer for a refutation G, G1,...,Gn of P ≈ {G} is a pair
<C,σ> where C is the constraint (in canonical form) occurring in Gn and σ is the
substitution σ1°σ2°...°σn restricted to the variables of G where σ1, σ2,...,σn are the
substitutions generated at consecutive steps of the refutation.
 It is interesting to notice that such a resolution algorithm involves four kinds of
non-deterministic choice:

- which atom in the goal to select (don't care non-determinism);
- which clause in the program to select (don't know non-determinism);
- which mgu in the set of unifiers computed by the unification algorithm

to select (don't know non-determinism)
- if the selected atom has the form t � {t1,...,tn|X}, which one of the n+1

systems {t = t1},...,{t = tn}, {X = {t|N}} to solve first (don't know non-
determinism).

5.2 Constraint canonization algorithm

In this section we describe a non-deterministic algorithm which is able to compute, for
any given constraint C, the corresponding set of constraints in canonical form CCan.
The algorithm starts with the pair <C,ε> and generates, through non-determinism,
each element of CCan. Notice that a constraint is represented here as a set of atomic
constraints; in particular, Ø is a constraint in canonical form.

CONSTRAINT CANONIZATION ALGORITHM

Let t, t', ti, ti' be first order terms, X, Y be generic variables (i.e. X, Y � V), and r, s
be set terms.

function Can(<C: constraint, σ: substitution>): <constraint,substitution>;
begin
 if C is in canonical form
 then return <C,σ>
 else select arbitrarily an atomic constraint c in C;
 case c of
 1) t � s with t': return Can(<(C \ {c}) ≈ {t π t', t � s}, σ>);
 2) t � f(t1,..,tn), f π with: return Can(<(C \ {c}), σ>);
 3) t � X, X variable, and X occurs in t: return Can(<(C \ {c}), σ>);
 4) f(t1,...,tn) π g(t1',...,tm'), f π g: return Can(<(C \ {c}), σ>);
 5) f(t0,...,tn) π f(t0',...,tn'), f π with: choose i from among 0,...,n;
 return Can(<(C \ {c}) ≈ {ti π ti' }, σ>);
 6) f π f or X π X, X variable: fail;
 7) t π X and t is not a variable: return Can(<(C \ {c}) ≈ {X π t }, σ >);
 8) X π t, t is not a set term and X occurs in t, or t is
 h with tn...with t1, h kernel or variable, and X occurs in t1 or...or tn:
 return Can(< (C \ {c}), σ >);
 9) X π X with tn...with t0: choose i from among 0,...,n;
 return Can(<(C \ {c}) ≈ {ti � X}, σ >);
 10) r with t π s with t': choose one from among the following actions:
 a) δ is member_solve(Z � r with t);
 return Can(<(C \ {c}) ≈ {Z � s with t'})δ, δ ∞σ >), Z new variable;
 b) δ is member_solve(Z � s with t');
 return Can(<(C \ {c}) ≈ {Z � r with t})δ, δ ∞σ>), Z new variable;

where member_solve is a function which is able to solve set membership atoms (in the
same way they are solved within the extended resolution procedure presented above)

function member_solve(M: membership atom): substitution;
begin
 case M of
 1) Z � s with t: choose one from among the following actions:
 a) return {Z♦t};
 b) return member_solve(Z � s);
 2) Z � X, X variable:
 return {X♦N with Z}, N new variable;
 3) Z � f(t1,..,tn), f π with: fail
end.

 Let us see how the {log} resolution procedure works on a simple example
involving also a negative answer.

 in_difference(X,Set1,Set2) :-
 X � Set1 &
 X � Set2.

 Given the goal
 :- in_difference(X,{1,2},{1,3})

the only clause of the program is selected as a possible resolvent of the goal. Solving
the set membership goal in the body of the selected clause generates (see the
definition of derived goal above) the two alternative substitutions {X♦1}, {X♦2}; then
Can is applied non-deterministically to either the constraint {1 � {1,3}} or {2 � {1,3}}.
The first generates (action 1 of Can) the new constraint {1 ≠ 1, 1 � {3}} that clearly
fails; the second generates the constraint {2 ≠ 1, 2 � {3}} from which, after few
iterations of Can, we get the pair <Ø,ε>. So the final computed answer is

 --> X = 2.
 If the following goal is given instead

 :- in_difference(X,Set1,{1,3})
solving the set membership atom in the body of the selected clause generates the
following substitution {Set1♦{X|N}}, whereas applying Can to the constraint {X �
{1,3}} generates the pair <{X ≠ 1, X ≠ 3},ε>. So the final computed answer is

 --> Set1 = {X|N}, X π 1, X π 3.
 The following theorems state the termination, correctness and completeness of
the canonization algorithm for any given constraint C (formal proofs of these
theorems and of those of the following section can be found in [7]).
Theorem 5.1 (termination). Let C be a constraint; then Can(C) always terminates.
Theorem 5.2 (soundness). Let C be a constraint such that
CCan = {<C1,θ1>,...,<Cn,θn>}. Then
1) if n =1, C1 = C, and θ1 is empty, then C admits a solution;
2) if θ is a solution of Ci (i � {1,...,n}) then θ is a solution of Cθi.
Theorem 5.3 (completeness). Let C be a constraint such that CCan =
{<C1,θ1>,...,<Cn,θn>}. If θ is a solution of C then there exists an i among 1 and n and
a solution σ of such Ci such that θ = θi°σ.
 Actually, a specific ground substitution γ, such that Cγ is provable from the
axioms can be exhibited in case 1 of theorem 5.2. In consequence of this fact, one has:
Theorem 5.4. The axiomatic set theory specified in Section 3.1 makes it possible to
prove either C or � C for any constraint C.

5.3 Soundness and completeness of the resolution procedure

Theorem 5.5 (soundness). Let P be a {log} program and G be a goal. If G has a
refutation in P with computed answer <C,θ> and σ is a solution for C then we have P
|=Set Gθ°σ.
Lemma 5.1 (lifting lemma for {log}). Let P be a {log} program, G be a non empty
conjunction of {log} atoms, C be a constraint, and σ be a substitution for the variables
in (C,G). If :- (C & G)σ does have a refutation in P with computed answer <C',θ'>
then :- (C & G) has a refutation in P with computed answer <C",θ"> such that

(i) θ" is more general than σ°θ' and
(ii) for each α solution of C' there exists β such that β°(α|vars(C)) is a solution of

C".
Lemma 5.2. Let B be an atom of the form
 (i) t = s or (ii) t � s.
If |=Set Bσ for some σ ground then there exists a refutation for {:- Bσ} in any program
P.
Lemma 5.3. Let Succ(P) = {τ(a) | Pred(a) � {=,� ,π,� } and there exists a refutation
for P ≈ {:- a}}. Then Succ(P) = MP, for each {log} program P.
Lemma 5.4. Let P be a {log} program, G = (:- C & L1 & ... & Lh) be a goal such
that P ≈ {� C ⁄ � L1⁄...⁄� Lh} is unsatisfiable in the set theory; then there is a refutation
for G in P.
Theorem 5.6 (Completeness). Let P be a {log} program, G be a goal and P |=Set
(Gσ)∀; then G has a refutation in P.

6 Restricted Universal Quantifiers
Restricted Universal Quantifiers (RUQs) are formulas of the form (∀X � s) F, F
formula, which stand for the quantified implication ∀X ((X � s) ∅ F). Usefulness of
providing RUQs as part of the representation language has been demonstrated by
several authors (e.g. [4,11]). In fact, RUQs allow basic set-theoretic operations (such
as subset, union, intersection and so on) to be expressed in a clear and concise way. In
what follows we will show how the language presented so far can be extended so as to
encompass RUQs.
 An extended Horn clause is a formula:
 p(t1,...,tn) :- B1 & ... & Bn where each Bi can either be an atom or an RUQ formula of the form (∀X1 � t1)...(∀Xn
� tn)G, G atom, satisfying the following properties:

- the variables X1,...,Xn can occur only in G;
- if i π j then Xi π Xj.

These two restrictions ensure that a Bi of the form (∀X1 � t1)...(∀Xn � tn)G is logically
equivalent to ∀X1...∀Xn(X1 � t1 &...& Xn � tn ∅ G). (Note that the first restriction,
motivated (cf. [20]) by our set finiteness requirement, is implicitly present in [11]
since nesting of sets is not allowed there.)
 For example, using RUQs, it is easy to define the following set-theoretic
operations:

(A) subset(S1,S2) :-
 (∀X � S1)(X � S2)

(B) disj(D,S1,S2) :-
 (∀Z � D)(Z � S2 & Z � S1)

where the second clause is intended to state that D is a subset of S1 \ S2.
 One might proceed as in [11], by enhancing resolution so as to deal directly with
RUQs. However, both for conceptual simplicity and for soundness concerns we prefer
to transform extended Horn clauses into equivalent {log} clauses without RUQs (hints
about a similar idea can be found in [12]). We have proved that such a transformation
is always possible, and have developed an algorithm to perform it.

RUQs ELIMINATION ALGORITHM

Let C = H :- B1 &...& Bk & Bk+1 &...& Bn be an extended Horn clause, where
B1,...,Bk (k ≤ n) are {log} formulas and Bk+1,...,Bn are formulas containing RUQs.

1) Replace C by the set of clauses
 I = {H :- B1 &...& Bk & D1 &...& Dn-k,
 D1 :-Bk+1,
 ...,
 Dn-k :- Bn}

where each Dj is obtained by taking a new predicate symbol (different from
all the others in the program) and applying it to all variables in Bk+j which are
not quantified by an RUQ of Bk+j.

2) Replace each element of I of the form
 p(t1,...,tn) :- (∀X1 � s1)(∀X2 � s2) G

by the two clauses:
 p(t1,...,tn) :- (∀X1 � s1) r(Y1,...,Yk)
 r(Y1,...,Yk) :- (∀X2 � s2) G,

where Y1,...,Yk are all variables (different from X2) occurring in s2 or free in
G, and r is a new predicate symbol; repeat this step as long as possible.

3) Replace each extended Horn clauses of the form
 p(t1,...,tn) :- (∀X � {t1',...,tm'|h})G.
 by
 p(t1,...,tn) :- G{X♦t1'} & ... & G{X♦tm'}
 if h is a term whose main functor differs from with/2, or by
 p(t1,...,tn) :- G{X♦t1'} & ... & G{X♦tm'} & D
 D :- (∀X � h)G
 if h is a variable, where D is put together in the same way as in step 1).
4) Replace each simple extended Horn clause
 p(t1,...,tn) :- (∀X � Y)G[X,Z1,...,Zm],

where Y is a variable and X, Z1,...,Zm (m ≥ 0) are all variables occurring in G,
by the following three {log} clauses:

 p(t1,...,tn) :- r(Y,Z1,...,Zm)
 r(K,Z1,...,Zm) :- K ≠ _ with _ (i.e., K is a set kernel)
 r({A | R},Z1,...,Zm) :-
 (A � R) & G{X♦A} & r(R,Z1,...,Zk),
 with r a new predicate symbol.

 For example, the extended Horn clause (A) for the subset operation given at the
beginning of the section gets transformed into the equivalent three {log} clauses
(action 4 of the algorithm is applied):

 subset(S1,S2) :- r(S1,S2)

 r(S1,_) :- S1 ≠ _ with _
 r({A|R},S2) :-
 (A � R) & (A � S2) & r(R,S2).

Similarly, clause (B) for the predicate disj/3 gets transformed into:
 disj(D,S1,S2) :- r(D,S1,S2)

 r(K,S1,S2) :- K ≠ _ with _
 r({A|R},S1,S2):-
 (A � S1) & (A � S2) & (A � R) &
 r(R,S1,S2).

 Note that it is impossible to implement RUQs in a usable manner without
resorting to ≠ and � . In particular, the constraint A � R in the last step of the algorithm
is needed to avoid that the program may loop forever trying to generate a set with
infinite many occurrences of the same element (e.g. {1,1,1,...} instead of {1}).
 In conclusion, RUQs are introduced in {log} only at a syntactic level, as a
convenient notation, with no extension at the semantic level. The same approach can
be adopted to introduce intensional set formers and the setof predicates by which such
abstractions are implemented (see [6]). However, it turns out that in this case the
language must be extended so as to provide either a built-in set collection mechanism
(see [3]) or some form of negation in goals and clause bodies.

7 Related work
In this paper we have addressed the problem of introducing sets in a logic
programming language. The approach we have adopted is that of a deep integration
between simple set designations and operations and the usual logic programming
machinery. This has required primarily the development of a suitable semantical
extension of Horn clause logic.
 Among the proposals that have addressed this problem with a similar approach
we briefly recall [3], [11] and [23].
 The first paper defines LDL, a logic based language oriented to the manipulation
of deductive databases. The main differences between LDL and {log} are:

- the procedural semantics: bottom-up in LDL, top-down (with set unification)
in {log};

- in LDL the set manipulators (union, intersection etc.) are built-in predicates,
while in {log} they are programmer-defined;

- the 'collector capability' is expressed in different ways: via set-grouping in
LDL, using the with + negation combination in {log}.

It is interesting to note that the syntactic restrictions enforced in LDL are very similar
to those necessary to introduce classical negation by failure in {log} (see [7]).
 Kuper's proposal [11] basically consists in extending logic programming with
RUQs (see section 6 above). Kuper shows the usefulness of this extension, but does
not offer a full-blown semantics for the language.
 Quite interesting is a comparison between our proposal and Sigal's work [23]
which outlines, from a theoretical point of view, a complete logic language with sets,
where set-theoretic operations are built-in. A model-theoretic semantics is developed
for a subset of this language which bears some resemblance to {log}. Sigal's proposal
copes with the rather intriguing task of manipulating infinite sets (even repeatedly
nested one inside another). Although theoretically appealing, this approach leads to
difficulties that are hard to surmount: whence the lack of a realistic procedural
semantics for the proposed language.

8 Future developments of {log}
The interpreted operator ker, which helped us in keeping the form of our set axioms
simple (cf. section 3.1), has not been included among the symbols of {log}. Adding
ker to the language would be useful, enabling one e.g. to define the subset predicate as

 subset(S1,S2) :-
 ker(S1) = ker(S2) &
 (∀X � S1)(X � S2),

instead of in the less satisfactory way seen in section 6. Similarly one could define the
element removal operation by the clause

 less(A,X,B) :-
 ker(A) = ker(B) &
 (∀Y � B)(Y � A & Y ≠ X) &
 (∀Y � A)(Y = X ⁄ Y � B).

 This extension calls for a modification of the unification algorithm which ought
to produce along with each substitution a conjunction of atomic constraints of the new
form ker(X) = t. Our extended SLD resolution procedure ought to be modified too, to
take into proper charge the new kind of constraints.
 We have already announced a couple of times in this paper that {log} will be
extended with intensional set formers. This extension poses problems of various
kinds, one of the most obvious being that infinite sets can easily be described by
means of intensional set formers, e.g.

 natS({X : nat(X)})

 nat(0)
 nat(succ(X)) :- nat(X).

Suitable criteria could be adopted for rejecting expressions (such as {X:nat(X)} in
the example) that denote (or might denote) infinite sets. Unfortunately such criteria
must be, out of necessity, very conservative, and prone to refuse useful set formers
together with dangerous ones. Alternatively infinite sets could be accepted as part of
the language. In this case, however, a coherent attitude should be taken to deal with
infinite sets at all levels: by having an explicit infinity axiom, by accordingly
enriching the privileged interpretation, by enhancing the procedural semantics, etc.
(cf. [23]).
 We also envisage generalizations of {log} for the treatment of non-standard sets:
for instance, non-well-founded sets (cf. [1]) among which membership can form
cycles of all kinds.

Acknowledgments
This work originates from a project, named AXL, funded by ENI and ENIDATA.
Partial support came from MURST 60%. We have enjoyed useful discussions with
Alberto Policriti, in particular concerning the axiomatization in section 3 and the proof
of termination of our unification algorithm.

References
 1. P.Aczel. Non-well-founded sets. Vol.14, Lecture Notes, Center for the study of

Language and Information, Stanford, 1988.
 2. A.Aho, J.Hopcroft, J.Ullman. The design and analysis of computer algorithms.

Addison-Wesley, 1975.
 3. C.Beeri, S.Naqvi et al. Set and negation in a Logic Database Language (LDL1).

Proceedings 6th ACM SIGMOD Symposium, 1987.
 4. D.Cantone, A.Ferro, E.G.Omodeo. Computable set Theory. Oxford University

Press, International Series of Monographs on Computer Science, 1989.
 5. E.E.Doberkat, D.Fox. Software Prototyping mit SETL. B.G.Teubner Stuttgart,

1989.
 6. A.Dovier, E.G.Omodeo, E.Pontelli, G.F.Rossi. {log}: A Logic Programming

Language with Finite Sets, in Logic Programming: Proceedings of the Eighth
International Conference (K.Furukawa, ed.), The MIT Press, 1991.

 7. A.Dovier, E.G.Omodeo, E.Pontelli, G.F.Rossi. {log}: A Language for
Programming in Logic with Finite Sets, Research Report, in preparation.

 8. H.B.Enderton. A mathematical introduction to logic. Academic Press, 2nd
printing, 1973.

 9. B.Jayaraman, D.A.Plaisted. Programming with Equations, Subsets and
Relations. Proceedings of NACLP89, Cleveland, 1989.

10. J.Jaffar, J.L.Lassez. From Unification to Constraints. Proceedings Fifth
Conference on Logic Programming, Tokyo, 1987.

11. G.M.Kuper. Logic Programming with Sets. Proceedings 6th ACM SIGMOD
Symposium, 1987.

12. G.M.Kuper. On the Expressive Power of Logic Programming with Sets.
Proceedings 7th ACM SIGMOD Symposium, 1988.

13. B.Legeard, E.Legros. CLPS: A Set Constraints Logic Programming Language.
Research Report, Laboratoire d'Automatique de Besançon, Institut de
Productique, Besançon, France, Feb. 1991.

14. J.W.Lloyd. Foundations of logic programming. Springer Verlag, 2nd edition,
1987.

15. J.L.Lassez, M.J.Maher, K.Marriot. Unification revisited. Lecture Notes in
Computer Science, Vol. 306, Springer Verlag, 1986.

16. A.Martelli, U.Montanari. An efficient unification algorithm. ACM TOPLAS, 4,
April 1982.

17. A.Martelli, C.Moiso, G.F.Rossi. Lazy Unification Algorithms for Canonical
Rewrite Systems, in Resolution of Equations in Algebraic Structures, vol II
(H.Ait-Kaci and M.Nivat, eds), Academic Press, 1989.

18. M.Naftalin. An experiment in practical semantics. ESOP 86 - Lecture Notes in
Computer Science, Vol. 213, Springer Verlag, 1986.

19. F.Parlamento, A.Policriti. Decision procedures for elementary sublanguages of
set theory. IX. Unsolvability of the decision problem for a restricted subclass of
Δ0-formulas in set theory. Comm. of Pure and Applied Mathematics, 41, 1988.

20. F.Parlamento, A.Policriti. Expressing infinity without foundation. Journal of
Symbolic Logic, 56(3), 1991.

21. J.C.Shepherdson. Negation in Logic Programming. In Foundations of deductive
databases and Logic Programming (J.Minker, ed). Morgan Kaufmann, Los
Altos, CA, 1987.

22. J.H.Siekmann. Unification Theory. Journal of Symbolic Computation, 7, 1989.
23. R.Sigal. Desiderata for Logic Programming with sets. Proceedings GULP89:

Fourth National Conference on Logic Programming, Bologna, 1989.
24. J.T.Schwartz, R.B.K.Dewar, E.Dubinsky, E.Schonberg. Programming with sets,

an introduction to SETL. Springer-Verlag, 1986.
25. D.Turner. An overview of Miranda. SIGPLAN Notices, Vol.21, n.12, 1986.
26. Z handbook, Oxford University Computing Laboratory, Oxford 1986.

