
Towards a Logic Programming tool for cancer data analysis

Alice Tarzariol Eugenia Zanazzo Agostino Dovier Alberto Policriti

Abstract

The main goal of this work is to propose a tool-chain capable of analyzing a data collection of temporally
qualified (genetic) mutation profiles, i.e., a collection of DNA-sequences that present variations with respect
to their “healthy” versions. We implemented a system consisting of a front-end, a reasoning core, and a
post-processor: the first transforms the input data retrieved from medical databases into a set of logical facts,
while the last displays the computation results as graphs. Concerning the reasoning core, we employed the
Answer Set Programming paradigm, which is capable of deducing complex information from data. However,
since the system is modular, this component can be replaced by any logic programming tool for different
kinds of data analysis. Indeed, we tested the use of a probabilistic inductive logic programming core.

1 Introduction

A very simplified view of cancer is that of a game of mutations accumulation in the genome—both genes
and regulatory regions—of an organism. Although biological data is produced by today’s technology at an
unprecedented rate, it is also extremely noisy, a fact which represents one of the most delicate aspects of this
game. More precisely, even though any collection of mutations—i.e. variations in the DNA-sequence, with
respect to what is considered the “standard” sequence—might be triggering significant biological processes
involved in cancer progression, only some of the mutations are classified as “drivers” (of the progression) by
experts in the field. The remaining (large) majority of mutations must be classified as “passengers”, as they
are probably accumulating only as a consequence of the (devastating) side-effects of more basic biological
mechanisms already independently at work.

Tackling a classification problem for the collection of detected mutations in a given tissue, requires a
multi-faceted approach. In order to work towards building reliable filters suitable for defining the blueprint of
the disease under study, different kinds of knowledge must be integrated with brute force analysis. This paper
aims at proposing the architecture of a pipeline capable of analyzing a data collection of temporally qualified
mutation profiles and synthesizing a dependency graph (see Figure 1). At a high level, the general idea of our
approach can be summarized as an attempt to infer a graph whose nodes and edges represent mutations in
genes and their causality relation, respectively, describing their most plausible temporal sequence.

When dealing with biological data, many auxiliary problems—mostly related to I/O—must be faced;
concerning this aspect, the data processing pipeline described here is interfaced with specialized languages
and file formats for the field. Our data consist of variant allele frequencies in genes, whose outstanding values
describe their mutations. Thresholds have been introduced to accept or discard a temporal dependency among
mutated genes. The combination of information inferred by cross-comparison performed “locally” on input data,
and knowledge coming from external sources, allows for deducing the output graph that should represent a set
of putative dependencies.

Figure 1: The proposed pipeline: data is retrieved from the web database and converted into ASP input facts
by a Java interface. The ASP engine elaborates the data, whose output is successively converted into graph
format.
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We aim to prove the potential of the employed programming technologies in mining data that, when analyzed
over realistically long sequences of time steps, rapidly generate (computationally) heavy collections of putative
evolution paths.

Answer Set Programming (ASP) [14] allows for encoding compactly, elegantly, and with great flexibility,
problems that belong to NP or even to ΣP2 . In our application, we implement parametrically designed strategies
that use thresholds to fix conditions on the addition and removal of edges in the inferred graph, represented by
logical predicates. However, the ASP program reported should be seen only as a possible example, since the
focus of this paper relies on the general method and its flexibility. The reasoning core can be replaced by any
other one, possibly implemented using further logic programming dialects.

To prove the generality of the approach, we have experimented with the use of probabilistic inductive logic
programming (PILP). Since PILP performs both structure and parameters learning, the input collection must
contain a considerable number of patients sampled to obtain results with reasonable confidence. Concerning the
type of analysis conducted with our ASP engine, large-sized data collections are not available yet; thus, we
decided to test PILP to conduct a different analysis on a bigger data set, comparing its preliminary results with
those produced by other existing tools rather than with our ASP tool.

The paper is organized as follows: some preliminaries and related works are discussed in Section 2,
while Section 3 presents the overall ideas of our approach. The ASP implementation, some examples of
programs, and a brief analysis of the results found are presented in Section 4. In Section 5, we present a PILP
approach, while related results and comparison are reported in Section 6. Lastly, Section 7 contains some
conclusions drawn from this work. The tool we have developed is available for free download and use from
http://clp.dimi.uniud.it/sw/.

2 Related work

Cancer data processing is, obviously, a very active and lively field in many scientific environments. This section
reports on some works using techniques stemming from the logic programming community. We assume the
reader already possess basic knowledge of logic and logic programming.

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) allows for implementing a “structured” form of machine learning, by
inferring a first-order theory that “explains” a set of input ground facts (defining extensionally, possibly partially,
some predicates). Let us briefly recall the main ideas behind ILP (see, e.g., [23] or [9] for a more general
approach to logical and relational learning).

Let us assume that O+ and O− are a set of positive and negative observations, respectively. Furthermore,
consider them as two disjoint sets of ground atoms. Suppose also that a (possibly empty) background theory P
is given, defined by a set of clauses. The general inductive problem consists in finding a set of hypotheses H
(clauses) such that P ∧H |= O+ and such that for all ` ∈ O− it holds that P ∧H 6|= `.

Several strategies have been investigated and implemented in ILP systems to identify the sets H consisting of
clauses as general as possible. Generality, in this context, can be defined in terms of logical entailment: if clauses
r1 and r2 are such that P ∧ r1 |= r2, then r1 is more general than r2 w.r.t. P .1 Of course, this implies that if
P ∧ r2 |= B (for some B ⊆ O+), then P ∧ r1 |= B. Therefore, r1 is preferable to r2 in the set of hypotheses H
(unless it introduces errors, namely, unless there is ` ∈ O− s.t. P ∧ r1 |= ` and P ∧ r2 6|= `).

In presence of large amounts of data possibly affected by errors (very common in medical data), the working
set H might be neither complete, namely H “explains” only a (proper) subset G (good) of O+, nor correct,
namely such that P ∧H |= ` for ` in a subset W (wrong) of O−. In this case, of course, the ILP algorithm aims
at maximizing the size of G and minimizing the size of W .

An extension of ILP is PILP (probabilistic inductive logic programming) [31] where facts (observable) and
rules (background theory) can be annotated by a probability estimate. In this case, a semantics based on
probabilistic inference rules is adopted (distribution semantics); the inherent forms of uncertainty are therefore
handled in a natural way. There are several dialects of probabilistic logic programming in the literature (see,
e.g., [30]). We use probabilistic rules of the form A : π :−Body, meaning that if the Body is true, then the atom
A is true with a probability π.

1For definite clause programs, |= is the standard logical consequence operator. For programs with negation, its meaning becomes
instead “if in every stable model of P ∧ r1, the clause r2 holds.”
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Inductive Logic Programming has been successfully applied to analyze big data and, in particular, cancer
databases: for instance, in [34] the authors participated in a world-wide carcinogenicity prediction competition
(organized by the National Toxicology Program in the USA) using the ILP system Progol [24]. In the first round
of the competition Progol produced the highest predictive accuracy of any automatic system participating in
the test.

Furthermore, Progol has been also applied in [27] to infer general properties on pancreatic cancer as well as
to allow its early diagnosis. For instance, one of the inductively computed predicates (quantitatively) confirms
that measurements of CEA and Elastase I are very useful to detect pancreatic cancer. In this study, data
was collected from 438 cases and the classification was based on the observation of the lymph node metastatic
status and tumor differentiation status. Available data was provided by lab test (e.g., CEA, CA19-9, Glucose,
Elastase I, Serum Amylase, . . . ). After having identified the most promising features using standard feature
selection criteria, data was divided into three groups (low, normal, and high), proceeding similarly to domain
experts. Each patient record in the database represented an abnormality of a patient and the records were split
into positive and negative. Data was translated into a set of facts, and Progol executed to rank rules by their
capability of explaining the database.

In [2] the authors proposed an ILP approach to the problem of modeling evolution patterns for breast cancer.
Data was obtained from a cohort of 124 patients at different progression stages. Data and background knowledge
were expressed in logic programming. Then, a set of hypotheses built on this knowledge was computed using
refinement, least general generalization, inverse resolution, and most specific corrections.

2.2 Answer Set Programming

Answer Set Programming (ASP) has been exploited for myriads Bioinformatics applications (for an overview,
see [6, 7]). Among them, we would like to point out the approaches for the phylogenetic reconstruction
(see, e.g., [11]). Indeed, the origin of this work comes from the desiderata, presented in the 2016 edition of
the conference CILC [5], of extending the ASP tools for phylogenetic reconstruction to build a phylogenetic
reconstruction of cancer progression. If a specific form of cancer is related to a mutation of a gene presents both
in a human and in another species (e.g. rat), this may justify a deeper study of the development of cancer,
carried on using the individuals from the other species as models. It can also explain why a specific drug working
for the other species does not work in a human. However, in general, in order to perform such type of analyses
large amounts of temporal data (among other things) is needed.

There are further approaches to biological data analysis based on ASP. For instance, in [19] the authors use
ASP to compute an over-approximation of the set of Boolean networks which best fit with experimental data
and provide the corresponding encodings. That approach can be used to explain the experimental data in a
similar way as made by ILP systems, but using a purely logical approach (this is also what we do in the first
part of this paper).

2.3 Cancer data analysis

Cancer research in recent years has witnessed the proliferation of cancer progression models. A comprehensive
survey on the methods and tools developed for phylogenetic studies of tumour evolution can be found in [33]. It
classifies the tumour phylogeny methods in three groups, according to the design of the study: cross-sectional,
regional bulk, and single-cell. The first method aims to build trees describing the common progression pathways
across a population, using sample tissues belonging to a number of different patients. Instead of using data
from multiple patients, both regional bulk and single-cell methods use input derives from a single individual to
build a model. The former uses subregions of a tumour or distinct tumour sites (i.e., bulk genomic samples)
while the latter uses single cells in one or more tumour sites.

For the purpose of our study, we focused on two cross-sectional methods that are close to the current state of
the art in the field of tumour phylogenetic: TRONCO and BML. Other tools are surveyed in [33], for example,
the cross-sectional model TO-DAG [20] or the regional bulk model BitPhylogeny [36]. Concerning single-cell
tools, some examples are OncoNEM [32] and SCITE [18] (for which analysis and comparison can be found in
[8]), or more recently SiFit [37].
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TRONCO

TRONCO (TRanslational ONCOlogy Package) [3] is an R package that, given a dataset of tumour samples,
infers either a DAG (Directed Acyclic Graph) or a tree depending on the inference algorithm used. We briefly
illustrate the inference algorithm CAPRI [28] that produces as output a DAG. CAPRI associates a node to
each gene while the edges represent the causal and temporal relations occurring between two genes. After the
input preprocessing phase, CAPRI selects the candidate edges to be inserted in the model based on Suppes
Theory of selective influence [35]. The basic aspect of a selective influence theory states that given two events i
and j, the event i has selective influence on j if the two following properties hold:

Temporal Priority p(i) > p(j)
Probability Rising p(j|i) > p(j|¬i)

CAPRI performs a non-parametric bootstrap with rejection resampling to obtain the estimates p̂(i), p̂(j), p̂(j|i), p̂(j|¬i).
At the end of the testing phase, two p-values are obtained, if their value is below a chosen threshold (usually
0.05 or 0.01) an edge is entered in the model, otherwise, it is discarded. The presence of any loop is avoided by
removing an edge with the highest p-value within the loop. Finally, in the last phase, CAPRI finds the optimal
solution given by a subset of the edges.

BML

Bayesian Mutation Landscape [22] infers a tree that represents the set of possible evolutionary paths of the
tumour. In order to do so, BML calculates the evolutionary probability P (g), which is the probability of
observing the genotype g starting from the non-mutated (normal) genotype g0. In the first phase, BML builds a
Bayesian network consisting of a DAG G and a set of parameters Θ that represent the conditional probabilities
P (C = c |ΠC = π). These values indicate the probability that a variable (a gene) would find itself in a state
c, conditioned to the fact that its parents find themselves in state π. The value nc,π, which is the number of
samples in which C = c and ΠC = π, is computed for every pair (C,ΠC) using input data. The score BIC
(Bayesian Information Criterion) is used for selecting the optimal DAG.

To obtain the evolutionary probabilities P , a dataset containing both tumor genotypes and unobserved
ancestral genotypes is necessary; from these sets, BML builds binary trees that have the genotype g0 as root, the
tumour genotypes as leaves, and ancestral genotypes as internal nodes. In this phase, BML finds the tree T∗ and
the Bayesian network B∗ that maximize the BIC score. This maximization is performed by an ordering-based
search. In this search, after initializing an ordering of the variables, every variable is constrained to choose
its parents among preceding variables in the ordering only. The algorithm performs its search in the space
of all possible variable ordering. Once a tree is found, the solution gets perturbed using Nearest Neighbour
Interchange and the BIC score is re-computed. This loop—perturbations plus re-computation—continues until
a local maximum is found. The last phase consists in the reconstruction of the most likely evolutionary paths.
Starting from all genotypes with k mutations (default k is 3), the algorithm deduces recursively the most likely
ancestral states (i.e., the ones with the largest evolutionary probability P ), terminating when the root is reached.

3 Data-sets and general approach

In this section, we describe the format of the analyzed data, contained in the online repository cBioPortal. Given
the peculiarity of the input used with ASP, we will describe the study analyzed explaining how we interpreted
its data. Lastly, we outline the structure of our system, excluding the reasoning engine that is examined in
more details in the following sections.

3.1 Cancer data repository

The open source platform cBioPortal provides data from many cancer genomics data-sets (by now there
are 150 of them) allowing their download, analysis, and visualisation [4, 12] (see Panel 1). It was originally
developed at Memorial Sloan Kettering Cancer Center (MSK) and now its software is available under an
open source license via GitHub at https://github.com/cBioPortal. The portal is conceived to bring cancer
researchers near to the complexities of human genome data, allowing a quick, intuitive, and precise visualization
of expression profiles as well as clinical attributes from large-scale cancer genomics projects. A brief tutorial
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Panel 1 Data download from cBioPortal.

From the cBioPortal website it is possible to download the entire archive, or to query and/or
download data from one or more studies satisfying given criteria (for instance, studies related
to specific values of gene). From the home page, it is also possible to query databases specified
within studies, select the genetic profile, the single patient or a group of them and then specify
collections of genes of interest. Users can submit even more specific queries by using the Onco
Query Language (OQL), for which a brief guide is available on the website. The same information
can be obtained through web API and library in R and Matlab. However, the faster way to
visualize all genes from a study, consists in downloading directly the whole study database from
https://github.com/cBioPortal/datahub/tree/master/public, containing all complete archives
available from the portal. Once unzipped the archive, a series of file is at hand, among which
data mutations extended written in MAF that will be our input.

Panel 2 The MAF fields used by our tool.

In this panel, we briefly report the Mutation Annotation Format (MAF) fields used in our program,
redirecting the interested reader to the official page for a full-fledged description of the format: https:
//wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification.
Mutations are detected by alignment and comparison between DNA sequences relative to biopsies and
a human genome reference (without mutations) available at NCBI (National Center for Biotechnology
Information) [25]. A MAF file identifies mutations, reports their type (SNPs—Single Nucleotide
Polymorphisms, deletions, or insertions) and if they are somatic (originated in the specific tissue—and
therefore more interesting) or belong to the germinal line. These information are recorded with further
annotations, provided by the format. The format of a MAF file is tab-delimited columns; the first
row contains the version used, while the second reports the fields headers, the first 34 of which are
mandatory.
Concerning the Variant Allele Frequency, it is given by the reads depth on cancer’s sample, referring
to an altered allele t alt count, with respect to total reads t depht.

of the tools provided by cBioPortal is available on the web site; further documentation is available at https:

//www.cbioportal.org/tutorials.

3.2 Raw input processing

A pre-processing phase is required to use data correctly. A Mutation Annotation Format (MAF) file [21] (see
Panel 2) is taken in input and the HUGO (HUman Genome Organization nomenclature) [17] gene symbols are
extracted. In addition, the experiment code (identifier), sequencing depth—of the tumour sample in support
of the variable allele—and total sequencing depth of tumour sample, are uploaded. The ratio of the last two
values is then computed, obtaining the Variant Allele Frequencies (VAF) for each sample gene. Concretely, we
will use this ratio in ASP to describe the mutation level, leaving the possibility of more elaborated/precise
measurements open in our code. These numbers are rounded to integers in order to make them more easily
manageable by the ASP engine.

3.2.1 Breast cancer xenograft

We tested our ASP program over the—real and publicly available—data set Breast cancer patient xenografts [10]
downloadable from http://www.cbioportal.org/. This particular study was chosen as it provides different
temporal analysis of the same patient’s cancer. The temporal information relative to the order of findings is
extracted from the experiment identification, along with data that allow for classifying cases—in our main
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sample case, different organoid2 tissues.
For each patient, there is an average of seven temporally-qualified samples. In addition, data provided from

human biopsy xenotransplantation allows for observing and collecting further information from cancer cells
grown in different tissues, called xenograft.

The study shows the clonal dynamics of initial engraftment and subsequent serial propagation of primary
and metastatic human breast cancers in immunodeficient mice. Among its results, it appeared that similar
clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating
that genomic aberrations can be reproducible determinants of evolutionary trajectories. So we can see that
measurement of genomically defined clonal population dynamics will be highly informative for functional studies
using patient-derived breast cancer xenoengraftment.

The study, employing single-cell sequencing, was able to analyze and provide data on three different tissues:
subcutaneous, subrenal capsule, and mammary fat pad. In the article, we can find pictures showing that,
concerning the same patient, several analyses were carried out over different xenograft tissues, that present
mutations with independent developments. Therefore, since different situations have been studied for the same
patient, we adapt our ASP code in order to discriminate across the genotype analyzed on the xenograft.

3.2.2 Breast Invasive Carcinoma

We tested our PILP implementation, TRONCO, and BML on the dataset relative to the study Breast Invasive
Carcinoma [26]. For clarity, we reduced the size of the original dataset (that tracks the mutations of 321 genes
in 507 patients) to the ten most frequently mutated genes, inferring relations occurring among them only.
Although the input for our PILP implementation, too, originates from a MAF file, we used the an already
pre-processed plain text file. Said file is available, alongside other 4 sample files, in the data folder of BML.

The file consists in a matrix M whose rows and columns contain the patients and the observed genes,
respectively; the element M [a, b] will be equal to 1 if patient a presents a mutation in gene b, and 0 otherwise.

3.3 Interface

The cBioPortal repository—as well as many other similar sites—is currently adding new case studies every year.
Therefore, in order to facilitate their usage, we also implemented a (simple) graphical user-interface in Java
providing functionalities to automate data extraction, instances creation, as well as Clingo ASP execution [13].
Subsequently, the ASP solver output is processed to display results by using the open source program GraphViz
(Graph Visualization Software) [16].

Figure 2 shows the first screenshot of the GUI that we named Mutations Evolution Analyzer. It contains
a menu with four items: Download, Create, Run, and Help.

The Download command sends a query to the web interface of the Cancer Genomic Data Server (CGDS)
and, if available, it returns an updated list of the studies, allowing the download over the site
https://github.com/cBioPortal/datahub/tree/master/public

of one or more of them in a user specified directory—see Figure 3.
Once the archive has been unzipped, we find a data mutations extended file. By clicking on Create and then

on Selected fields the program allows for extracting the values of the selected fields belonging to a MAF file
(see Figure 4). To speed up selection, there is a checkbox called Select standard field, that automatically selects
the fields used for our analysis: Hugo Symbol, tumour Sample Barcode, t alt count, and t depth. In particular,
for Breast cancer patient xenografts, the identification field called tumour Sample Barcode is obtained by the
union of the patient ID, the type of the sample (tumour or xenograft), the position in temporal order of the
sample, the genotype studied, and whether it is relative to the whole genome or if it is targeted. For instance,
sample SA429X1A-targeted is relative to patient SA429, it has been obtained over a xenograft (X), is the first
sample of this type (1)—as samples have a sequential number that identifies their temporal order—, applies to
the genotype A3, for which it has been analyzed a particular subsequence of the genome (targeted). Selecting
the checkbox named Extract data from identifier, each information contained in tumour Sample Barcode
becomes a new field, together with the selected ones; their headers are respectively: patientID, Type, Time,
Genotype, and Wide.

2In-vitro produced, simplified version of an organ.
3For our usage it is sufficient to know that different letters correspond to different types. Refer to [10] for a full (and cleaner)

explanation.
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Figure 2: Analyzer of Mutations’ Evolution.

Subsequently, our program creates a new file containing the selected fields, as well as a new one called
V alGene, obtained by normalizing the variant allele frequency—namely the ratio between t alt count e t depth—
, and then multiplies it by a reasonable value (we choose 107 in order to consider the first six digits after decimal
point) rounding the result. We perform these additional operations to cast variant allele frequencies to integers,
as it is easier to work with them in ASP with respect to the numbers in floating point.

Once the file containing the necessary fields is created, by clicking on Create -> ASP file, a graphical
interface will appear asking the number k of genes that we want analyze. In Figure 5, the reader can see the
default value for k. On click, data are sorted according to the most frequent genes and then the first k elements
are selected. Among the genes, the term Unknown is discarded by our program, since it refers to a set of genes
whose sequence is not known. Therefore, there not exist necessarily a correlation between different unknown
genes.

For the ASP syntax, we use lowercase letters for all literal values, and replace characters “-” and “.” by “ ”.
Then our system creates the instances and adds them to the main ASP program under construction. Next, we

perform further modifications to adapt the analysis to the specific considered data. For instance, we discriminate
sample refereed to the same patient, but with different genotypes: for each sample, we add a fact for the type,
wide, and genotype, in particular we consider the last one. As example, we report below the predicates deduced
from sample SA429X1A-targeted:

1 sample(sa429,sa429x1a_targeted,1).

2 type(sa429x1a_targeted,x).

3 wide(sa429x1a_targeted,targeted).

4 genotype(sa429x1a_targeted,a).

Once the ASP program is created, the command Run -> Clingo and GraphViz allows the user for selecting
and solving it with Clingo (see Section 4 for the ASP implementation, while Section 5 contains the the alternative
PILP engine). The result is then redirected to a temporary text file, from which the inferred ASP predicates
that represent the edges are selected and converted in the dot format. Then, a post-processing of the output
based on GraphViz [16] is implemented in order to depict the computation results as a direct graph.

Finally with the last item of the menu, Help, we can open links to the documentation of the resources used.

4 ASP engine

In this section, we describe the ASP engine in some detail and we show how it works over some example
instances.
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Figure 3: Download of one ore more studies.

Figure 4: Create → Selected fields.

The predicate representing the direct edges in the deduced graph will be maybePrecede; in order to
understand how it is computed, we start illustrating the auxiliary predicates.

Once filtered, input data is stored by two predicates defined extensionally by facts. Each patient can be
involved in more than one experiment; the ternary predicate sample relates the patient to its IDs and their
times (given the experiments ordering), while the ternary predicate val reports each instance of mutated gene
in any experiment and its value:

1 sample(pat-A,exp-A1,1). sample(pat-A,exp-A2,2). sample(pat-A,exp-A3,3).

2 sample(pat-A,exp-A4,4). sample(pat-B,exp-B1,1). sample(pat-B,exp-B2,2).

3 sample(pat-B,exp-B3,3). sample(pat-B,exp-B4,4). sample(pat-C,exp-C1,1).
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Figure 5: Create → ASP file.

4 sample(pat-C,exp-C2,2). sample(pat-C,exp-C3,3). sample(pat-C,exp-C4,4).

5 sample(pat-C,exp-C5,5).

6 val(exp-A1,a,3027). val(exp-A1,b,3027). val(exp-A2,a,1245).

7 val(exp-A2,c,3245). val(exp-A3,b,1245). val(exp-A3,c,1234).

8 val(exp-A4,a,2555). val(exp-A4,b,1324). val(exp-A4,c,1254).

9 val(exp-A4,d,1092). val(exp-B1,d,3027). val(exp-B1,e,3027).

10 val(exp-B2,d,1245). val(exp-B2,a,3245). val(exp-B3,a,1245).

11 val(exp-B3,b,1234). val(exp-B4,a,1334). val(exp-B4,b,1334).

12 val(exp-C1,b,3027). val(exp-C2,a,1245). val(exp-C2,b,3245).

13 val(exp-C3,a,1415). val(exp-C3,z,1415). val(exp-C4,z,9145).

14 val(exp-C4,d,9145). val(exp-C5,d,145).

In the first five rows we define the values of the samples of three patients pat-A, pat-B and pat-C, with the
(temporal) order of samples. Subsequently, starting at row six, we indicate mutated genes values. For the sake
of simplicity we named values a,b,c . . . .

In order to limit grounding, the “domain” predicates are computed from the input data as follows:

1 gene(G) :- val(_,G,_).

2 patient(P) :- sample(P,_,_).

3 value(V) :- val(_,_,V).

4 time(0..T) :- sample(_,_,T), not sample(_,_,T+1).

The predicate gene(G) forces value G to appear as second parameter of val and, therefore, will hold for
each gene uploaded in our samples. Analogous considerations hold for patient(P) and value(V). Moreover,
time(T) is instanciated with a list that goes from a maximum temporal value contained in the predicates
sample(P,E,T) to 0.

The following predicates allow retrieving information from the data.

1 variationConsec(P,G,T2) :-

2 sample(P,E1,T1),sample(P,E2,T2),T2=T1+1,

3 val(E1,G,V1),val(E2,G,V2),variation(V1,V2).

4 variation(A,B) :-

5 value(A),value(B),|A-B|>10.

6 precedes(P,G1,G2) :-

7 firstVariation(P,G1,T1),firstVariation(P,G2,T2),T1<T2.

8 firstVariation(P,G,T) :-

9 variationConsec(P,G,T), not varPrec(P,G,T).

10 varPrec(P,G,T) :-

11 variationConsec(P,G,T1), variationConsec(P,G,T),T1<T.

12 precedeKTimes(G1,G2,K) :-

13 gene(G1),gene(G2),K=#count{patient(P):precedes(P,G1,G2)}.

14 reachable(G1,G2) :-

15 maybePrecede(G1,G2).

16 reachable(G1,G2) :-

17 maybePrecede(G1,G3), reachable(G3,G2).

18 maybePrecede(G1,G2) :-

19 precedeKTimes(G1,G2,K1),precedeKTimes(G2,G1,K2),K1>K2,

20 not reachable(G2,G1).

21 #show maybePrecede/2.
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The predicate variationConsec(P,G,T2) holds whenever for patient P there exist two consecutive samples
(the second one with time T2) with the same gene G with two values V1 e V2 that satisfy variation, namely,
such that their difference in absolute value is greater than 10. This threshold is the variation sensibility and
is related to the normalization of the variant allele frequency. For this simple example, we choose a low fixed
value in order to take always the consecutive variation of the mutated gene. However, the system can be easily
extended to consider it as a parameter, e.g., testing different values according to the considered form of cancer.
In our example we can infer that:

variationConsec(pat-A,a,2). variationConsec(pat-A,c,3).

variationConsec(pat-A,b,4). variationConsec(pat-A,c,4).

variationConsec(pat-B,d,2). variationConsec(pat-B,a,3).

variationConsec(pat-B,a,4). variationConsec(pat-B,b,4).

variationConsec(pat-C,b,2). variationConsec(pat-C,a,3).

variationConsec(pat-C,z,4). variationConsec(pat-C,d,5).

Before defining the predicate precedes(P,G1,G2), let us examine the rule varPrec(P,G,T) at row 10: it
holds if a gene G of a certain patient P exhibits variations in the sample at time T and also in the previous samples—
and therefore it is not the first variation detected. This predicate is used in the body of firstVariation(P,G,T):
the predicate inferring the minimum time T for which we have a variation of gene G in P.

At this point, we can illustrate precedes(P,G1,G2) in row 6: it is true if, for a given patient, the first
variation of G1 happens before the first variation of G2. Notice that it is not necessary to force that the two
genes are different as it is implicit in the fact that the time of their first variation is different. So from the
previous example we can infer:

precedes(pat-A,a,c). precedes(pat-A,a,b). precedes(pat-A,c,b).

precedes(pat-B,d,a). precedes(pat-B,d,b). precedes(pat-B,a,b).

precedes(pat-C,b,a). precedes(pat-C,b,z). precedes(pat-C,a,z).

precedes(pat-C,b,d). precedes(pat-C,a,d). precedes(pat-C,z,d).

Predicate precedeKTimes(G1,G2,K) stores in K the number of patients for which the gene G1 precedes the
gene G2, while maybePrecede(G1,G2) is inferred if G1 precedes G2 more frequently than G2 precedes G1. We
report below the inferred instances of precedeKTimes in which the guard K is greater than zero, namely there
is at least one case in which G1 precedes G2.

precedeKTimes(b,a,1). precedeKTimes(d,a,1). precedeKTimes(a,b,2).

precedeKTimes(c,b,1). precedeKTimes(d,b,1). precedeKTimes(a,c,1).

precedeKTimes(a,d,1). precedeKTimes(b,d,1). precedeKTimes(z,d,1).

precedeKTimes(a,z,1). precedeKTimes(b,z,1).

For a and b, there are two patients that exhibit variation of the former before the latter, while just one
exhibits the opposite variation. Therefore, we deduce maybePrecede(a,b); on the other hand, we do not infer
any most likely order with genes a and d.

The final result in our example is:

maybePrecede(a,b). maybePrecede(a,c). maybePrecede(a,z).

maybePrecede(b,z). maybePrecede(c,b). maybePrecede(z,d).

In order to guarantee that the direct graph resulting from maybePrecede is acyclic, we check that the
number of times the variation of the first gene precedes the second is strictly greater than the opposite order.
Moreover, we impose the absence of the predicate reachable, which states that there exists already a path
between the two genes in the inferred graph.

The visualisation of the identified edges is shown in Figure 6, where the pairs highlighted in the table
represent the variations revealed. For simplicity, the variant allele frequency value has been omitted. The result
automatically produced by GraphViz is shown in Figure 7 (right), which is obtained after the conversion of the
Clingo output in the dot edges format (see Figure 7 (left)).

4.1 ASP Results

Since the data-set Breast cancer patient xenografts (described in Section 3) contains data derived from both
humans and xenograph on different genotypes, the ASP program requires an adaptation. Running the Mutation
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Figure 6: Summarising table.

digraph G {
a -> b;

a -> c;

a -> z;

b -> z;

c -> b;

z -> d;

}

Figure 7: Graph from maybePrecede, in dot edges format (left), and as visualized by GraphViz (right).

Evolution Analyzer generates the previous predicates, with the exception of a subset that is substituted with
the following elements:

1 variationConsec(P,GT,G,T2) :-

2 sample(P,E1,T1), sample(P,E2,T2),T2=T1+1,

3 val(E1,G,V1), val(E2,G,V2), variation(V1,V2),

4 genotype(E1,GT),genotype(E2,GT).

5 precedes(P,GT,G1,G2) :-

6 firstVariation(P,GT,G1,T1),firstVariation(P,GT,G2,T2),T1<T2.

7 firstVariation(P,GT,G,T) :-

8 variationConsec(P,GT,G,T), not varPrec(P,GT,G,T).

9 varPrec(P,GT,G,T) :-

10 variationConsec(P,GT,G,T1), variationConsec(P,GT,G,T),T1<T.

11 precedeKTimes(G1,G2,K) :-

12 gene(G1),gene(G2),

13 K=#count{patient(P),genotype(GT):precedes(P,GT,G1,G2)}.

The arity of those first four predicates is increased by one w.r.t. the examples of the previous Section, in
order to discriminate different genotype variations. Moreover, we infer variationConsec if genotypes in the
same sample turn out to be equal. The predicate precedeKTimes has the same arity but the function count
works with different pairs of patient-genotype rather than just with patients.

Once the maybePrecede predicates are deduced and subsequently processed into edges, GraphViz displays
the result—see Figure 8. This picture shows the variations detected over 100 genes, with the predicate
variation that identifies variations with a value above 1000.

Figure 8: Graph for 100 genes.
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Despite the presence of an average of seven samples for each of the fifteen individuals, in practice, at most
(only) three temporal values are available for each of them: since data refer to different genotypes, they represent
parallel evolution paths for the same patient. Therefore, the number of “samples to analyse” increases, resulting
in a significant reduction in the quantity of relations found. For this reason, the height of the graph is just one.

The situation described above is typical in this field nowadays: for a certain patient, very few and short
sequences of temporal snapshots are publicly available. E.g., after cancer diagnoses, if possible, a surgery follows
immediately in order to remove the tumor. This phenomenon is going to change dramatically in the near future,
due to the drop in costs and technological simplifications available for data production in xenograph analysis.

5 PILP engine

In this section, we will use the tools/libraries available in PILP in order to learn causal relations between gene
mutations. To do so, we performed structure learning through the algorithm SLIPCOVER [1] that given a
language bias and a set of positive and negative examples returns a probabilistic logic program (hereinafter
referred to as theory) such that the probability of positive examples is maximized and the probability of negative
examples is minimized [29]. The algorithm first performs a beam search in the space of clauses to find the set
of candidate (promising) clauses, then, guided by the log likelihood, performs a greedy search in the space of
theories.

The input file given to the algorithm is a Prolog file divided into three parts: a preamble, some language
bias information and a set of example interpretations. The preamble includes the definition of the parameters
given to the algorithm. In this section we set the value of the seed that will be used by the algorithm in its
greedy search phase with the fact set_sc(c_seed,1518110625).

In the language bias section we associate a predicate of arity 0 to each gene observed and we put some loose
constraints on the form of the output theory. In practice this section is a sequence of facts:

output(<predicate>/<arity>).

modeh(<recall>/<predicate>).

modeb(<recall>/<predicate>).

determination(<predicate>/<arity>,<predicate>/<arity>).

The definition output indicates the predicates for which the score of the output theory is optimized. In our case
we considered every predicate as an output predicate. The definition modeh specifies the atoms that can appear
in the head of clauses while modeb specifies the predicates that can appear in the body of clauses. In our model
every predicate can appear either in the head or the body of clauses. Finally, the definition determination

states that the second predicate can appear in the body of clauses for the first predicate.
In the interpretation section each sample in our database is converted into a model as follows, if a gene is

mutated we have a positive example otherwise we have a negative example. A model example is given below:

begin(model(2)).

neg(’APC’).

’TP53’.

neg(’KRAS’).

end(model(2)).

Finally it is necessary to indicate how the models are divided into folds with facts

fold(<fold\_name>,<list of model identifiers>).

We decided to divide the models equally into five sets and to use the first four of them as our training set, while
the last one is used as a test set. The output produced after the execution of SLIPCOVER is the list of clauses
that make up the theory:4

[ (APC:0.9998437800170417;:0.00015621998295833883:-TP53,KRAS),

(APC:0.4892755480369245;:0.5107244519630755:-TP53),

(TP53:0.763403270990247;:0.23659672900975304:-APC).]

4The output of SLIPCOVER has a syntax slightly different from the one used throughout the paper. The clause A : π :−B is
written as A : π; : 1− π :−B (actually this is an instance of a more complex form of clause with disjunctive head).
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In addition to the theory SLIPCOVER might return At the end of the learning phase we refine the theory to
produce a weighted graph according to the following criteria. Firstly we do not take into consideration the
clauses with a probability lower than 0.5, such threshold might seem high but given that the theory is the result
of structure learning we decided to keep in knowledge base only the clauses learned with a sufficiently high
degree of certainty. This decision was taken after the initial testing phase showed that the graphs produced using
either no threshold at all or a lower threshold (0.1,0.3) were almost complete graphs and thus not sufficiently
informative. Secondly, as opposed to the standard deductive interpretation, we give an abductive interpretation
to clauses in the theory. In such an interpretation, for each clause we insert in the graph as many edges as there
are predicates in the body of the clause, such edges will go from the gene in the head of the clause to the genes
in the body of the clause with weight equal to the (positive) probability of the clause—by convention if the
(positive) probability is greater than 0.995 the weight of the edge to be inserted is rounded up to 1. Finally if in
the output theory both clauses A : π1 :−B and B : π2 :−A are present, we insert in the graph only the edge (or
edges) belonging to the clause with the highest (positive) probability. If, however, both clauses have probability
1, then both edges are inserted in the graph. The heuristics just introduced, unlike the other methods presented
above, do not guarantee the absence of loops.

It should be noted that our current interpretation does not give an exact representation of the information
learned. Let us consider, as an example, the clause A : πi :−B,C. In our interpretation two edges are added to
the output graph, one from A→ B and the other one from A → C ,both with weight πi. Our assumption is that
if there is a relation between B and C then another clause—with one of the genes in its head and the other in
its body—must be present in the output theory. However, in order to give a proper inductive interpretation, it
would be more accurate to insert a single edge from A→ B ∧ C introducing the AND port to our representation.
Moreover, it is possible to have two (or more) clauses with the same atom in their head in the output theory:

A:π1 :− B,C

A:π2 :− C,D

In this case, in order to make the two clauses completely independent, in addition to AND ports we would need
to introduce and use a XOR port: a single edge A →((B∧C) ⊕ (C∧D)) would then be inserted in the revised
model.

5.1 Input/output specification

The matrix described in section 3.2 is the input of our tool. This type of representation of the dataset can be
used as input for a number of other methods develop to study tumour evolution, including TRONCO and BML.
The input matrix was initially reduced to take into consideration only the ten most frequently mutated genes
removing the samples that did not present any of the selected mutations accordingly. This reduced matrix was
then used to generate the interpretation section of the Prolog file to be given to SLIPCOVER. Additional code
was used to suitably fill the preamble and language bias sections of the Prolog file. The complete Prolog file was
then given as input to SLIPCOVER. The resulting theory produced at the end of SLIPCOVER’s computation
was refined accordingly with the criteria previously underlined in this section. At the end of this process the
graph associated to the refined theory was represented in form of a .dot file. Finally the .dot file was given as
input to GraphViz in order to produce as output a graphical representation of the refined theory.

6 Experimental Results and Comparison

We first run some initial tests on the web site server of CPLINT (http://ml.unife.it/cplint/), then we
downloaded the tool, interfaced with the “7.7.9 development” version of SWI Prolog (http://www.swi-prolog.
org/) and run on a Linux desktop machine.

Given the partially greedy nature of the learning algorithm we decided to run our method 50 times on the
same dataset to assess stability of results. In order to do so, before every test the value of the seed given to the
algorithm was changed. As mentioned before, the first four sets of folds were used to train the model while
the fifth set was used to test the success of the model on previously unseen data. The results obtained were
generally not stable and the results of the algorithm never yielded the same output graph(/model) twice. The
main issues with our model were overfitting of data—a common issue in learning problems—and a serious
computation time problem, with computation/running times of over an hour on our dataset. As a remark, a
comparison with [15] would be unfair since this proposal requires trees while TRONCO and our tool generates
DAGs that are not necessarily rooted trees.
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Figure 9: The result of the PILP engine analysis.

Figure 10: The result of TRONCO analysis.

Figure 11: The result of BML analysis.
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The graph presented in Figure 9 is the output of the theory that yielded the best testing results (i.e., the
one that returned the highest score on the test set). Overfitting is clearly evident and results in a model that
is overly complex to deduce any clear information from it. We notice that all genes observed have a node
associated and two loops are present. Moreover, the graph does not have a root, while MAP3K1, GATA3,
MUC16 are its sinks. It should be noted that the subgraph constituted by the edges with weight one only
(blue in the picture) is a DAG. The output returned after the execution of TRONCO is a DAG with three
roots (Figure 10): TP53, PIK3CA, GATA3. While the mutations of genes/proteins TP53 and PIK3CA have
influence on a number of other mutations, the mutation of gene/protein GATA3 has a much lower frequency
and has influence exclusively on a single other mutation. As in the case of our model all the genes observed
in the dataset are represented in TRONCO’s output graph. Lastly (Figure 11) BML returns a tree that is
somewhat similar to the model returned by TRONCO, with genes TP53,PIK3CA central to most of the possible
mutation paths while the gene GATA3 is much less relevant to the progression of the tumour. In this case two
of the genes observed (CDH1 and ENSG00000245549 ) are not present in any of the paths found.

We quantified the degree of similarity between the different graphs using two measures reflecting two different
notions of similarity. Given two graphs, the first measure computes the percentage of edges that the graphs
share. Computing this measure we see that BML and TRONCO have in common 0.571 percent of edges, while
our model shares 0.200 percent of edges with BML and 0.129 percent of edges with TRONCO. The second
measure, on the other hand, represents the percentage of pairs of genes (x,y) connected by a path in both
graphs. As before the comparison between BML and TRONCO returns the highest score (0.47), while our
model shows a slightly higher degree of similarity with TRONCO (0.354) compared to BML (0.32).

The computation of the two measures confirms that the results obtained with our method are significantly
different from the ones obtained with TRONCO and BML. We can identify two main reasons to explain such
differences. The first is that, contrary to TRONCO and BML where the model selection criteria is performed
using the BIC score, SLIPCOVER uses the log-likelihood as a selection criteria thus explaining the complexity
of the graph obtained. Secondly, one of the main assumption that both TRONCO and BML make is that
the graph obtained cannot contain a loop. Such assumption however represents somewhat a reduction of the
underlying cancer process, so while the clarity and readability of the graphs is increased, it is questionable how
much they reflect the reality of the process observed. In contrast our tool allows the presence of loops and,
while in principle the model is more realistic, it’s more difficult to identify precisely the evolutionary paths.

Moreover our tool makes, by design, as few assumptions as possible on the process observed and does not rely
on any field-specific knowledge thus testing the limits of the learning process when the background knowledge
available is very limited.

7 Conclusions

In this paper we report on a new system capable of dealing with data retrieved from carcinome analysis. The
system comes equipped with a front-end that pre-processes/filters standard-format data and transform them
into a logic program, as well as with a post processor that allows for visualising the results in a graph. The
reasoning core is based on ASP solving—the Clingo system is used. The predicates implemented for the data
analysis reported in the paper are just simple examples and the expressivity of ASP can be exploited by more
complex queries/analyses. In particular, one of our future work will be trying to reconstruct phylogenetics of
cancer (using the ideas presented in [5]). For doing that we need access to much more data—and, in particular,
of several stages per patient. Data sources of this type are not yet easily available. We also repeated the analysis
with a tool based on PILP, showing the modularity of the approach. The paper shows the potentiality of Logic
Programming for clinical data analysis.
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