
A constraint solver for discrete lattices,

its parallelization, and application to protein structure prediction∗

Alessandro Dal Palù Agostino Dovier Enrico Pontelli
Dip. Matematica Dip. Informatica Dept. Computer Science

Università di Parma Università di Udine New Mexico State University
Parco Area delle Scienze,53/A Via delle Scienze, 206 Box 30001, MSC CS

Parma, 43100, Italy Udine, 33100, Italy Las Cruces, 88003, USA
alessandro.dalpalu@unipr.it dovier@dimi.uniud.it epontell@cs.nmsu.edu

January 24, 2007

Abstract

This paper presents the design, implementation and application of a Constraint Programming frame-
work on 3D crystal lattices. The framework provides the flexibility to express and resolve constraints
dealing with structural relationships of entities placed in a 3D lattice structure in space. The paper
describes both sequential and parallel implementations of the framework, along with experiments that
highlight its superior performance w.r.t. the use of more traditional frameworks (e.g., constraints on
finite domains and integer programming) to model lattice constraints.

The framework is motivated and applied to address the problem of solving the protein folding predic-

tion problem—i.e., predicting the 3D structure of a protein from its primary amino acid sequence.
Results and comparison with performance of other constraint-based solutions to this problem are

presented.
Keywords. Constraint Programming, Protein Structure Prediction, Parallel Processing

Introduction

Constraint Programming (CP) is the “study of computational systems based on constraints” (from Refer-

ence [1]), where a constraint is a logical relation between some unknowns in a mathematical model of a

domain of interest. Thus, constraints are employed to capture dependencies between components of a prob-

lem domain, and they are employed to restrict the acceptable values that can be assigned to the variables

representing such components. The field of constraint programming has received increasing attention over

the years (see, e.g., References [2, 3, 4]); CP offers declarative languages for modeling computationally hard

problems, allowing the programmer to keep a clean separation between the model and the resolution pro-

cedures employed for searching solutions to the modeled problem. Several real-world applications of CP

technology have been developed (see Reference [4] for a survey), and constraint frameworks dealing with

different types of domains have been proposed, such as finite domains [5], reals [6], intervals [7], and sets [8].

In this paper, a constraint programming framework for discrete three dimensional (3D) crystal lattices

(COLA) is developed (e.g., see Figure i). In this type of framework, variables denote points that have to

∗Corresponding Author: Enrico Pontelli, Department of Computer Science, New Mexico State University, Box 30001/CS,
Las Cruces, NM 88003, USA, epontell@cs.nmsu.edu.

1

be placed in the crystal lattice, and constraints describe relationships between different points that have to

hold when the placement is done. These lattice structures have been adopted in different fields of scientific

computing, as discussed, for example, in References [9, 10], to provide a manageable discretization of the

3D space and facilitate the investigation of physical and chemical organization of molecular, chemical, and

crystal structures. In particular, in recent years, lattice structures have become of great interest for the study

of the problem of computing approximations of the folding of protein structures in 3D space, as reported

in References [10, 11, 12, 13, 14]. Given the molecular composition of a protein, i.e., a list of amino acids

(known as the primary structure), the problem is that of determining the three dimensional (3D) shape

(tertiary structure) that the protein assumes in normal conditions in biological environments. The problem

can be modeled as a minimization problem for an energy function, that depends on the 3D shape of the

protein. The second part of this paper shows how the proposed constraint framework on crystal lattices

contributes to the solution of protein folding problem.

Figure i: Sample Fragments of 3D Crystal Lattices

Traditional constraint solving domains (e.g., real numbers, finite domains) can be employed to model

constraints in discrete lattices. For example, one can describe the possible placements of an object in the

lattice structure through a collection of binary variables—one per lattice point—indicating whether the

object is present or absent from that particular point. Alternatively, one can encode each lattice point (i.e.,

the atomic element of the lattice) as three independent variables—representing the coordinates of the point

in the lattice. Various proposals have followed these approaches—see, for example, References [10, 13, 15].

These types of encoding lead to large constraint models, with many constraints and/or variables to be

processed. Moreover, adopting the approach based on three variables to denote a lattice point, often limits

these variables to be independent of each other. This negatively affects the propagation stage—the individual

coordinates are more “loosely” connected, making it harder to design constraints that allow changes to one

coordinate of one object to be propagated to the coordinates of a different but related object, as described

in References [16, 17]. The outcome is a poor use of constraints and the need to explore a large search

space (i.e., the possible placements of points in the lattice) due to the inability of the constraints to prune

it—leading to a generate & test solution, instead of the more desirable constraint & generate approach.

The approach proposed in this paper avoids these problems, by treating lattice points as atomic values

of the constraint domain, and by designing constraint solving and constraint propagation techniques that di-

rectly target such atomic values. The resulting solver allows the native “finite domain” variables to represent

3D lattice points (lattice variables). Primitive constraints are introduced to capture basic spatial relation-

2

ships within the lattice structure, such as relative positions, Euclidean, and lattice distances. Constraint

solving techniques in this framework are investigated, with a focus on propagation, search strategies, and

automatic exploitation of parallelism. In particular, an efficient built-in labeling strategy for lattice vari-

ables is proposed. Moreover new search techniques for specific rigid objects are considered—i.e., constraints

representing collections of points that are part of a predetermined spatial structure, such as a cylinder with

given entry and exit points and a known diameter. This last feature is essential to allow the representation

and handling of secondary structure components in the previously mentioned protein structure prediction

problem.

The constraint system is not based on any already existing constraint solving software. This choice is

justified by several needs. First of all, many of the commercial solvers have no free license and in their source

codes are not available for tuning and modifications. This last aspect is a serious drawback—previous studies

have demonstrated that canned constraint solvers do not adequately meet the needs of lattice constraints,

hampering the efficiency of the implementation. Moreover, the ideas contained in this paper require a low

level access to data structures and specific controls to support effective exploitation of parallelism. The choice

adopted for this project is to develop a specialized constraint solver tailored to the proposed constraint model.

The paper analyzes an application of the constraint solver to solve the protein structure prediction prob-

lem. The proposed constraint solver provides a natural and highly declarative encoding of the problem,

allowing for ease of modification and for simple extendibility—e.g., simple introduction of new constraints

representing additional knowledge about the modeled protein (e.g., knowledge about additional secondary

structure elements). The experimental results show a dramatic improvement in performance over comparable

encodings developed using traditional constraint logic programming over finite domains (102–103 speedups

w.r.t. SICStus 3.12.2 and ECLiPSe 5.8). The proposed solver also outperforms encodings of the same prob-

lem built using Integer Programming techniques—which are the most commonly used techniques to handle

this type of problems in the literature.

The declarative nature of the problem encoding leaves complete freedom in the exploration of alternative

search strategies, including the use of concurrent solutions to the problem. In particular, the exploration

of the solutions search space is a highly non-deterministic process, with limited interaction between distinct

branches of the search tree—each leading to a potentially distinct solution to the original problem. This

provides a convenient framework for the concurrent exploration of different branches of the search tree,

performed by distinct instances of the constraint solving engine. This paper explores the development of

a parallel version of the proposed constraint solver, addressing the complex issues of dynamic scheduling

and load balancing, and highlighting the significant improvement in performance that can be accomplished

through the use of a parallel architecture—in this paper, a Beowulf cluster.

Preliminaries: Constraint Satisfaction Problems

This section reviews some basic concepts and terminology associated to constraint satisfaction and constraint

programming—the interested reader is referred to, e.g., Reference [2, 3], for further details.

The modeling of a problem using constraint satisfaction makes use of a number of unknowns, described

by variables, and related to each other by constraints. Let ~X = X1, . . . , Xk be a list of variables. Every

3

variable Xi is associated to a set Di, called its domain. If Di is a finite subset of a totally ordered set, then

it is denoted by min(Di) and max(Di) the minimum and the maximum elements of Di. For the sake of

simplicity, if a domain Di is the interval of integer numbers {a, a+ 1, a+ 2, . . . , b}, then it is simply denoted

by a..b.

Let dom be D1 × · · · ×Dk. A (n-ary) primitive constraint C over dom is a relation C ⊆ Di1 × · · · ×Din
,

with n ≤ k and {i1, . . . , in} ⊆ {1, . . . , k}. Xi1 , . . . , Xin
are the variables used by the constraint. A tuple

〈di1 , . . . , din
〉 ∈ Di1×· · ·×Din

satisfies the constraint C iff 〈di1 , . . . , din
〉 ∈ C (denoted by 〈di1 , . . . , din

〉 |= C).

More complex constraints are often created, by composing primitive constraints via logical connectives. In

particular, let C1, C2 be constraints over dom, where C1 ⊆ Di1 × · · ·×Dik
and C2 ⊆ Dj1 × · · · ×Djh

, and let

{r1, . . . , rp} = {i1, . . . , ik, j1, . . . , jh} (indexes ia and jb are not necessarily distinct). Then

• C1 ∧ C2 is a constraint, viewed as (C1 ∧ C2) ⊆ Dr1
× · · · ×Drp

. 〈dr1
, . . . , drp

〉 ∈ Dr1
× · · · ×Drp

is a

solution of C1 ∧ C2 iff 〈di1 , . . . , dik
〉 ∈ C1 and 〈dj1 , . . . , djh

〉 ∈ C2;

• C1 ∨ C2 is a constraint, viewed as (C1 ∨ C2) ⊆ Dr1
× · · · ×Drp

. 〈dr1
, . . . , drp

〉 ∈ Dr1
× · · · ×Drp

is a

solution of C1 ∨ C2 iff 〈di1 , . . . , dik
〉 ∈ C1 or 〈dj1 , . . . , djh

〉 ∈ C2;

• ¬C1 is a constraint, viewed as (¬C1) ⊆ Di1 ×· · ·×Dik
and 〈di1 , . . . , dik

〉 ∈ Di1 ×· · ·×Dik
is a solution

iff 〈di1 , . . . , dik
〉 6∈ C1.

Observe that the composed constraints can have variables in common. Whenever it is clear from the context,

the conjunction C1 ∧ · · · ∧ Ck of constraints is denoted by the set {C1, . . . , Ck}. The constraint with no

solutions, ∅, is denoted by fail.

A Constraint Satisfaction Problem (CSP) is described by three components:

◦ a list of variables ~X = X1, . . . , Xk,

◦ a corresponding collection of variable domains D1, . . . , Dk, and

◦ a finite set of constraints C over dom = D1 × · · · ×Dk.

A CSP is denoted by P = 〈C;D∈〉, where D∈ is the formula
∧k

i=1
Xi ∈ Di—called the domain expression of

P . A tuple ~d = 〈d1, . . . , dk〉 ∈ dom is a solution of the CSP P if ~d satisfies every constraint C ∈ C—or, more

precisely, ∀C ∈ C
~d |Di1

×···×Din
|= C

where ~d |Di1
×···×Din

is the projection of ~d = 〈d1, . . . , dk〉 on the domains Di1 × · · · ×Din
of C, namely the

tuple 〈di1 , . . . , din
〉. The set of solutions of P is denoted by sol(P). If sol(P) 6= ∅, then P is consistent. Two

CSPs P1 and P2, over the same list of variables ~X , are equivalent if they admit the same set of solutions,

i.e., sol(P1) = sol(P2).

A ranking function f : sol(P) → E is often associated to a CSP P = 〈C;D∈〉, where E is a totally

ordered set—e.g., E = R or E = N. A Constrained Optimization Problem (COP) is a CSP P with an

associated ranking function f . A solution of a COP 〈P , f〉 is a solution ~d of P that minimizes the function

f on E, i.e., ∀~e ∈ sol(P).f(~d) ≤E f(~e)—where ≤E denotes the total order relation on E.

A Constraint Solver (or, simply, a solver) is a procedure that transforms a CSP P into an equivalent

CSP P ′. A solver is complete if P is transformed into an equivalent finite disjunction of CSPs that explicitly

expresses all the solution(s) to the problem in the desired format (e.g., as a direct encoding of the tuples

4

satisfying the CSP). In particular, if P is not consistent, a complete constraint solver should return the

constraint fail. Conversely, a solver is incomplete if it is not complete: P is transformed into a CSP

(possibly “simpler” according to some comparison criteria), that however may not allow the immediate

detection of (in)consistency and the extraction of the solutions.

Traditional constraint solvers are composed of two parts: a constraint propagator and a solution search

component. Constraint propagation rewrites a constraint C into an equivalent one by applying rewriting

rules, aimed at satisfying local consistency properties. The three most commonly used consistency properties

are:

◦ Node consistency: A unary constraint C with variable X is node consistent whenever C is equal to the

domain of X .

◦ Arc consistency: A binary constraint C, with variables X and Y , having domains DX and DY , is arc

consistent if for each v ∈ DX there exists v′ ∈ DY such that 〈v, v′〉 |= C, and for each v′ ∈ DY there

exists v ∈ DX such that 〈v, v′〉 |= C.

◦ Bounds consistency: Let C be a binary constraint, with variables X,Y with domains DX , DY . 〈C;X ∈
DX , Y ∈ DY 〉 is bounds consistent if 〈C;X ∈ min(DX)..max(DX), Y ∈ min(DY)..max(DY)〉 is arc

consistent.

Observe that, if the variable domains are intervals, then bounds consistency and arc consistency coincide. If

only one of the conditions for arc/bounds consistency is required, then the consistency is called directional

arc consistency. A CSP 〈C;D∈〉 is node (arc, bounds) consistent if every unary (binary) constraint in C is

node (arc, bounds) consistent. A node (arc, bounds) consistent propagator can be constructed to rewrite a

non-consistent constraint into a consistent one, e.g., removing unacceptable values from the domains of the

variables. In general, node, arc, and bounds consistency propagators are inconsistent solvers.

Constraint propagation procedures have to be combined with a search component to find solutions to a

CSP. The search component is used to explore the space of alternative assignments of values to variables.

Traditional search components make use of splitting rules (e.g., domain splitting, constraint splitting). The

most used splitting rule is domain labeling. Given a domain expression X ∈ {a1, . . . , ak}, domain labeling

performs a k-way non-deterministic choice: X ∈ {ai} for i = 1, . . . , k. In this way, the variable X is non-

deterministically assigned a value drawn from its domain. The search of solutions is achieved by alternating

a propagation stage and a splitting stage. The search tree generated by this process is commonly known as

the prop-labeling tree (or, simply, search tree), as discussed in Reference [3]. Observe that each node and,

thus, the subtree rooted at that node, represents a CSP. The search terminates when all the variables have

been selected and assigned.

Example 1. Consider for instance the CSP 〈X < Y ;X ∈ {1, 2}, Y ∈ {1, 2, 3}〉. The prop-labeling tree for

this problem is reported in In Figure ii. Double-line edges represent propagation steps. In the first step, arc

consistency allows the solver to remove 1 from the domain of Y . The nodes with multiple children denote

domain labeling points; in the first one, the domain of Y is split. Note that nodes at even levels of the tree

are generated by branching (except for the root), while nodes at odd levels are computed using propagation

rules.

Given a CSP (or a COP) P , the prop-labeling tree is uniquely determined by the propagation algorithm,

5

the rule for selecting the next variable X to be labeled, and the rule for selecting the sequence of values for

X . During the computation, variables, their domains, and all the constraints are stored in a suitable data

structure, called the constraint store.

DY = 1..3, DX = 1..2

DY = 2..3, DX = 1..2

Y = 2, DX = 1..2

Y = 2, DX = 1..1

Y = 3, DX = 1..2

Y = 3, DX = 1..2

Y = 2

X = 1

Y = 3

X = 1

Y = 3

X = 2

Figure ii: Prop-labeling-tree for 〈X < Y ;DX = {1, 2}, DY = {1, 2, 3}〉

COLA—COnstraint Solver on LAttices

This section describes a framework developed to solve Constraint Satisfaction Problems (CSPs) modeled on

3D lattices. The solver allows one to define lattice variables, with their associated domains, constraints over

these variables, and to search the space of admissible solutions.

Crystal Lattice Models

Lattice models have long been used for protein structure prediction and, more in general, for representing

3D structures—a nice survey of this topic can be found in Reference [11].

Definition 1 (Lattice). A crystal lattice is a graph (P,E), where P is a set of 3D points (x, y, z) ∈ Z
3,

connected by undirected edges (E).

Given an element v ∈ P , vx, vy , and vz denote its three coordinates.

Lattices contain strong symmetries and present regular patterns repeated in the space. If all nodes have

the same degree δ (i.e., the number of edges outgoing from a node), then the lattice is said to be δ-connected.

Given A,B ∈ P , the following two notions of distance between elements of the lattice are defined:

• the squared Euclidean distance of A,B is defined as:

eucl(A,B) = (Bx −Ax)2 + (By −Ay)2 + (Bz −Az)
2

• the norm infinity of A,B is defined as:

norm∞(A,B) = max{|Bx −Ax|, |By −Ay|, |Bz −Az|}

Observe that norm∞(A,B)2 ≤ eucl(A,B).

6

In this paper, only the two types of lattices, CUBE and FCC, are considered. However, the framework can

be adapted, with minor changes, to handle other types of discrete lattices.

Definition 2 (CUBE). A cubic lattice (CUBE) (P,E) is defined by the following properties:

• P = {(x, y, z) | x, y, z ∈ Z};

• E = {(A,B) | A,B ∈ P, eucl(A,B) = 1}.

Observe that CUBE is 6-connected.

Definition 3 (FCC). A face centered cubic (FCC) lattice (P,E) is defined by the following properties:

• P = {(x, y, z) | x, y, z ∈ Z ∧ x+ y + z is even};

• E = {(A,B) | A,B ∈ P, eucl(A,B) = 2}.

The FCC model is based on cubes with sides of length 2, where the central point of each face is also an

admissible point. The practical rule to compute the points belonging to the lattice is to check whether the

sum of the points coordinates (x, y, z) is even (see Figure iii). Pairs of points at squared Euclidean distance

2 are linked and form the edges of the lattice; their distance is called lattice unit. Observe that, for lattice

units, it holds that |xi −xj |+ |yi − yj|+ |zi − zj| = 2. The FCC lattice is 12-connected. Reference [18] shows

that the Face-Centered Cubic Lattice (FCC) model is a well-suited, realistic model for 3D conformations of

proteins (see also References [10, 12, 13, 19]).

T
T

T
T

T
T

T
T

"""""

�
�
�
�
�
�
�
�
�
�
�

XXX
C
C
C
C
C
C
C
C

��������

u

u

u

u

u

u

u
u

u

u

0

1

2

0

1

2

2

1

0

Figure iii: A cube of the FCC lattice. Thick lines are edges. Dashed lines represent edges inside the cube.
On the right, the full set of edges in a unit cell.

Domains and Variables

Let (P,E) be the considered lattice. A domain D is described by a pair of points of 〈D,D〉, where D =

(Dx, Dy, Dz) ∈ Z
3 and D = (Dx, Dy, Dz) ∈ Z

3. D and D are not necessarily lattice points. D implicitly

defines a box :

Box(D) =
{

(x, y, z) ∈ P : Dx ≤ x ≤ Dx ∧ Dy ≤ y ≤ Dy ∧ Dz ≤ z ≤ Dz

}

7

Intuitively, the box represents the intersection between the lattice structure and the volume, in the 3D

space, delimited by the two points. Only the bounds of the effective domain are handled, since a detailed

representation of all the individual points in a volume of interest would be infeasible (due to the sheer number

of points involved). The approach follows the same spirit as the manipulation of finite domains using bounds

consistency (as mentioned in the introductory section). D is admissible if Box(D) 6= ∅. D is ground if it is

admissible and D = D.

The constraint system allows the following operations on domains:

• Domain intersection: Given two domains D and E, their intersection is defined as follows: D ∩ E =

〈↑ (D,E), ↓ (D,E)〉 where:

◦ ↑ (D,E) = (max{Dx, Ex},max{Dy, Ey},max{Dz, Ez})
◦ ↓ (D,E) = (min{Dx, Ex},min{Dy, Ey},min{Dz , Ez})

• Domain dilation: Given a domain D and a positive integer d, the domain dilation operation D + d,

used to enlarge Box(D) by 2d units, is defined as:

D + d = 〈(Dx − d, Dy − d, Dz − d), (Dx + d, Dy + d, Dz + d)〉

• Domain union: Given two domainsD and E, their union is defined asD∪E = (min(D,E),max(D,E)),

where

◦ min(D,E) = (min(Dx, Ex),min(Dy, Ey),min(Dz, Ez))

◦ max(D,E) = (max(Dx, Ex),max(Dy, Ey),max(Dz, Ez))

Each lattice variable V , representing one lattice point, is associated to a domain DV = 〈DV , DV 〉.
Figure iv depicts, from left to right, the domains associated to variables V and W , the dilation of domain of

variable V (i.e., DV + d), the intersection between DV + d and DW , and the union between DV and DW .

V

W

V

W
d (DV + d) ∩DW

V

DV ∪DW

W

Figure iv: Example of dilation, intersection, and union

Constraints

Given two lattice variables V1, V2, d ∈ N, B1 = Box(DV1), B2 = Box(DV2) and P1, P2 lattice points, the

following primitive constraints are defined:

△(V1, V2) ≤ d ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. norm∞(P1, P2) ≤ d
δ(V1, V2) ≤ d ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. eucl(P1, P2) ≤ d
δ(V1, V2) ≥ d ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. eucl(P1, P2) ≥ d

8

Intuitively, ∆ encodes a constraint which restricts the norm∞ distance between two points, while the δ

constraints encode lower and upper bound constraints on the Euclidean distance between points.

The constraint δ(V1, V2) = d is introduced as a syntactic sugar for the conjunction of the constraints

δ(V1, V2) ≤ d and δ(V1, V2) ≥ d. The constraint △(V1, V2) ≤ d, based on the infinity norm, is introduced to

provide an efficiently computable approximation of δ(V1, V2) ≤ d.

In this setting, a CSP is a pair 〈C;D∈〉, where C is a conjunction of constraints of the form above and

D∈ is a conjunction of domain expressions V ∈ DV .

Theorem 1. The general problem of deciding whether a CSP in the lattice framework admits solutions is

NP-complete.

Proof sketch. The problem is clearly in NP, since a witness of a solution can be represented as a list of

coordinates, containing a number of elements that has the same order as the input, and it can be verified

in polynomial time. To show the NP-hardness, the Graph 3-Colorability Problem of an undirected graph

G(V,E) is reduced to the CSP. For the sake of simplicity, the CUBE lattice is used.1 For each node ni ∈ V ,

it is introduced a variable Vi with domain DVi = 〈(0, 0, 0), (0, 0, 2)〉. Box(DVi) contains three lattice points

(0, 0, j), corresponding to the color j. For every edge e = (ni, nj), the constraint δ(Vi, Vj) ≥ 1 is added. This

constrains the points represented by the variables to be at a distance greater than 0 (i.e., have a different

color). See Figure v for an example. It is easy to see that a solution of the constraint system can be used to

determine a valid coloring of the original graph. �

3 4

1 2

Variables: V1, V2, V3, V4.
Domains: ∀i ∈ {1, 2, 3, 4} . DVi = 〈(0, 0, 0), (0, 0, 2)〉
Constraints: ∀i, j ∈ {1, 2, 3, 4} . δ(Vi, Vj) ≥ 1

Figure v: An example of a non-satisfiable graph 3-colorability problem

When dealing with lattice variables, it can be convenient to describe some of their spatial properties

by means of a global constraint. In particular, the constraint framework provides the notion of rigid block

constraint. A rigid block constraint defines a layout of points in the space that has to be respected by all

admissible solutions. Let ~V = V1, . . . , Vk be a list of lattice variables, and ~B = B1, . . . , Bk a list of lattice

points (that, intuitively, describe the desired layout of the rigid block). block(~B, ~V) is a k-ary constraint,

whose solutions are assignments of lattice points to the variables ~V , that can be obtained from ~B modulo

translations and rotations. More precisely, a rotation of a lattice point p = (px, py, pz) is defined as the

formula2 rot(φ, θ, ψ)(p) = X · Y · Z · pT , where

X =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 , Y =





cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ



 , Z =





cosψ sinψ 0
− sinψ cosψ 0
0 0 1





1For other lattices, additional δ(,) ≥ d constraints might be required, to identify 3 points in the box.
2The symbol ’·’ denotes matrix multiplication.

9

Although the rotation angles φ, θ, ψ are real valued, only few combinations of them define automorphisms

on the lattice in use. The total numbers of distinct automorphisms r depends on the lattice—e.g., for CUBE

r = 16, and for FCC r = 24. The definition of rotation is extended to lists of values, rot(φ, θ, ψ)(~B), where

~B is a list of points and the result is a list in which every element of ~B is rotated according to the previous

definition.

Given a list of points ~B, a template is defined as the set:

Templ(~B) = {rot(φ, θ, ψ)(~B) | ∃φ, θ, ψ that generate an automorphism on the lattice}

which contains the distinct 3-dimensional rotations of the points ~B in the lattice. Note that, for a given list

of points (~B), the cardinality of Templ(~B) is at most r.

The ~ℓ = (ℓx, ℓy, ℓz) is a lattice vector if the translation by ~ℓ of lattice points generates an automorphism

on the lattice. Note that, for some asymmetric lattices, it is possible that lattice vectors do not exist.

Let ~ℓ be a lattice vector; a mapping that translates a rigid block according to the vector ℓ is denoted

by Shift[~ℓ] . Formally, for each i = 1, . . . , k, Shift[~ℓ](~B)[i] = Bi + ~ℓ. Shifts are used to place a template

into the lattice space, preserving the orientation and the distances between points. A rigid block constraint

block(~B, ~V) is satisfied by a variable assignment σ of ~V to lattice points if and only if there is a lattice vector

~ℓ and a template P ∈ Templ(~B) such that Shift[~ℓ](P) = V1σ, . . . , Vkσ.

Constraint Solving

The general approach to constraint solving adopted in this work relies on a standard combination of con-

sistency techniques and systematic search. The algorithm in use attempt to extend a partial and consistent

assignment—of lattice points to variables—to an assignment that is complete and satisfies all the constraints.

The overall structure of a search algorithm that can be used is shown in Figure vi. Intuitively, the algorithm

alternates consistency enforcing (e.g., bounds consistency)—performed by the AC-3 procedure—with guess-

ing the value to be assigned to a variable. The pick steps selects a variable X such that |Box(DX)| ≥ 2.

Depending on the variable selection strategy, the variable selected is the one that satisfies the leftmost prop-

erty (i.e., the non-labeled variable with the lowest index) and/or the first-fail property (i.e., the variable with

the smallest |Box(DX)|).
The AC-3 procedure reduces domains of variables to ensure bounds consistency, and makes use of a queue

to consider only the constraints for which changes have been applied. The procedure reaches a fixpoint when

the propagation rules applied to V ars are not able to restrict any domains. The structure of the algorithm

is illustrated in Figure vii.

If the problem is a COP, then the backtracking search should be enhanced to search for an optimal

solution. If no further information is available (e.g., heuristics to guide the choice of variables and the

order in which the different values for a variable are tried), a branch and bound component can be simply

introduced in the search.

Consistency

The following rewriting rules are introduced, in order to modify the domains of variables to ensure a form

of bounds consistency for COLA constraints. Let D be the set that contains the other domains as D =

D∈ \ {A ∈ DA, B ∈ DB}.

10

procedure chrono search (Vars,C)
AC-3(Vars,C)
BT search(Vars, ∅, C)

procedure BT search(Vars, Done, C)
if (V ars = ∅) then

return Done

pick X from Vars

for each a in DX do

if (no constraint is violated by assigning a to X) then

AC-3(C ∪ Done ∪ {X = a},Vars)
R = BT search(Vars \{X}, Done ∪{X = a}, C)
if (R 6= fail) then

return R

return fail

end

Figure vi: Backtracking search

procedure AC-3 (C,V ars)

Q = {C(X, Y) ∈ C | C(X, Y) is a binary constraint and {X, Y } ∩ V ars 6= ∅}
while Q is not empty do

select C(X, Y) from Q and remove it

apply the propagation rule associated to C(X, Y)
if ((DX or DY have been modified) ∧ bounds consistent(X, Y)) then

Q = Q ∪ {C ∈ C | C is a constraint on a modified variable}
end

Figure vii: AC-3 procedure for bounds-consistency

The constraint △(A,B) ≤ d states that the variables A and B are distant no more than d in norm∞. It

can be employed to simplify domains through bounds consistency. The formal rule is:

[△(A,B) ≤ d] :
{A ∈ DA, B ∈ DB} ∪D

{A ∈ ((DB + d) ∩DA), B ∈ ((DA + d) ∩DB)} ∪D (1)

The constraint δ(A,B) ≤ d states that A and B are at squared Euclidean distance less than or equal to d.

The sphere of radius
√
d, that contains the admissible values defined by the constraint, can be approximated

by the minimal surrounding box that enclose it (a cube with side 2⌈
√
d⌉). The formal propagation rule is:

[δ(A,B) ≤ d] :
{A ∈ DA, B ∈ DB} ∪D

{A ∈ ((DB + ⌈
√
d⌉) ∩DA), B ∈ ((DA + ⌈

√
d⌉) ∩DB)} ∪D

(2)

Performing propagation in the context of the δ(A,B) ≥ d constraint is considerably harder, due to the

coarse resolution of the box representation of the domain. A simple form of bounds consistency that can be

applied in this case is described by the following rule:

[δ(A,B) ≥ d] :
{A ∈ DA, B ∈ DB} ∪D,DA ∪DB = 〈u, v〉, δ(u, v) < d

{A ∈ ∅, B ∈ ∅} ∪D (3)

which is used to detect domains that do not contain points that are sufficiently far apart to satisfy the

constraint.

11

Theorem 2. The propagation rules (1), (2), and (3) are correct—i.e., if CS1

CS2

holds , using rule (1), (2), or

(3), then CS1 and CS2 are equivalent.

Proof. The correctness proof is composed of two parts: first the proof shows that the rules do not introduce

any new solutions, and then it shows that the rules do not remove any solutions.

Introduction of new solutions: The introduction of new solutions is obviously impossible, since the operations

performed by the three rules are based on a domain reduction, by means of the intersection operator (or by

completely emptying the domain, as in rule (3)), and thus there is no possibility to add new points to the

domains.

No removal of solutions: For the rule (1), the semantics of the constraint is △(V1, V2) ≤ d ⇔ ∃P1 ∈
DV1 , ∃P2 ∈ DV2 s.t. norm∞(P1, P2) ≤ d. It suffices to show that the points removed by R1 from DV1 and

from DV2 are such that norm∞(P1, P2) > d. This requires proving the following two (symmetric) cases: (i)

each point removed from DV1 has distance larger than d, in norm∞, from any point in DV2 , and (ii) each

point removed from DV2 has distance larger than d, in norm∞, from any point in DV1 . The first and the

last case can be proved in a similar manner. The latter case can be proved as follows. The set R of removed

points is defined as the difference between the original domain and the resulting domain, i.e., R = DB \DB ′
.

This leads to:

R = DB \DB ′
iff R = DB \ (DA + d) ∩DB iff R = DB \ (DA + d)

By definition of dilation, the points in (DA + d) are the ones in the Box:

〈 (DA
x − d,DA

y − d,DA
z − d), (DA

x + d,DA
y + d,DA

z + d) 〉.

It follows that for each point P 6∈ (DA + d) and each point Q ∈ DA it holds that norm∞(P,Q) > d.

By contradiction, if there is a P = (Px, Py, Pz) such that norm∞(P,Q) ≤ d, by definition of norm∞,

max{|Qx − Px|, |Qy − Py|, |Qz − Pz |} ≤ d. This is a contradiction, since P 6∈ (DA + d) implies that

|Qx − Px| > d or |Qy − Py| > d or |Qz − Pz | > d for any point Q. Therefore, the points removed from DB

are certainly not admissible according to the semantics of the rule (1).

The proof for rule (2) follows from the previous one. Recall that norm∞(A,B)2 ≤ eucl(A,B). The

propagation rule R2 uses the norm∞ with distance ⌈
√
d⌉ to approximate the eucl distance of d. Since the

points maintained by the rule (the box surrounding the sphere of radius
√
d) are more than the correct ones

(the sphere of radius
√
d), it follows that (2) is correct as well.

The proof for rule (3) is straightforward. �

Solution Search

As shown in the general algorithm in Figure vi, the consistency phase is activated whenever the domain of

a variable is modified.

Consider a situation where the variables G = {V1, . . . , Vk−1} have been bound to specific values, Vk is

the variable to be assigned next (as result of the pick step of the backtracking search algorithm), and let

NG = {Vk+1, . . . , Vn} be all the remaining variables. The first step, after the labeling of Vk, is to check the

consistency of the constraints of the form C(Vk, Vi), where Vi ∈ G (node consistency check). For efficiency

reasons, the successive propagation phase is divided in two steps, that are equivalent to the AC-3 procedure

12

in Figure vii. First, all the constraints of the form C(Vk, Vj) are processed, where Vj ∈ NG. This step

propagates the new bounds of Vk to the variables not yet labeled. Thereafter, bounds consistency, using the

same outline of AC-3, is applied to the constraints of the form C(Vi, Vj), where Vi, Vj ∈ NG. The system

proposed here implements a constant-time insertion for handling the set of constraints to be revisited, using

a combination of an array to store the constraints and an array of flags for each constraint. This leads to

the following result:

Theorem 3. Each propagation phase has a worst-case time complexity of O(n+ed3), where n is the number

of variables involved, e is the number of constraints in the constraint store, and d the maximum domain size.

Proof sketch. The proof considers the case where the variable Vi is labeled. Each propagation for a

constraint costs O(1), since only arithmetic operations are performed on the domain of the second variable.

Assume that for each pair of variables and type of constraint, at most one constraint is deposited in the

constraint store (this can be guaranteed with an initial simplification). In the worst case, there are O(n)

constraints of the form C(Vi, Vj , d) for a given i, where Vj is not ground. Thus, the algorithm propagates the

new information in time O(n), since each constraint costs constant time. The worst-case time complexity of

AC-3 procedure is O(ed3), where e is the number of constraints in the constraint store and d is the maximum

domain size. �

Theorem 4. The exclusive use of CSP rewriting based on consistency routines is, in general, incomplete.

Proof sketch. Since it is possible to encode NP-complete problems (as shown in Theorem 1), and since the

rewriting procedures described earlier are polynomial, the existence of a complete solver based only on such

procedures would imply that P=NP.

It is possible to find a non-satisfiable instance of the graph 3-coloring problem that cannot be resolved

using only application of the consistency procedures. For example, the following graph (also show in Figure v)

leads to an unsatisfiable instance:

G = ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}})

The problem is encoded into a CSP as follows. For each i = 1, . . . , 4, the variables Vi and the corresponding

domains are defined as follows: DVi = 〈(0, 0, 0), (0, 0, 2)〉. Finally, for every i, j = 1, . . . , 4, the constraints

δ(Vi, Vj) ≥ 1 are added to the problem. Clearly, the application of constraint consistency to this CSP has no

effect in reducing the domains, since the constraints δ(,) ≥ d, in this case, do not allow any simplification

of domains. �

To gain completeness, it is necessary to incorporate a backtracking search (as in Figure vi), which

guarantees detection of solutions—possibly with an exponential worst-case time complexity.

An Example

This section reports a specific CSP and its encoding in COLA: the problem of connecting pins of a multi-layer

hardware chip. The pins are located in specific positions in the 3D space, and the goal is to determine the

possible connections by means of wires that can be physically arranged in the space without overlapping

each other. The problem is discretized in the cubic lattice—even though it is possible to adapt it to other

kinds of lattices.

13

The input of the problem consists of a set of lattice points (P), used to model the pins’ positions, and a

set of pairs of pins to be connected (C ⊆ P ×P). For each connection ci = (pbi, pei) ∈ C, there is a wire Wi,

i ∈ {0, . . . , |C| − 1}, that is modeled as a list of lattice points Wi = [pi
0, . . . , p

i
k−1], where k is the number of

points modeling each wire. The problem using a collection of constraints, stating that:

• The first and last lattice points of each wire Wi are equal to pbi and pei, respectively.

• For each pair of consecutive points pi
j and pi

j+1, the distance between them is less or equal than 1.3

Note that each wire is composed of k points. For solutions that require less than k points, the same

model is maintained and allows some of the k points to overlap (thus, certain consecutive points have

distance 0).

• For each i 6= j and l,m ∈ {0, . . . , k − 1}, if (l 6= 0 ∧ l 6= k − 1) ∨ (m 6= 0 ∧m 6= k − 1), then the points

pi
l and pj

m cannot overlap, i.e., they are at distance greater than or equal to 1. This states the non-

overlapping constraint, except for those cases in which two extremes of two wires are selected—since

the pins could be involved in more than one connection, the non-overlapping constraint is not applied.

Technically, this CSP can be encoded in COLA as follows:

• ∀i ∈ {0, . . . , |C| − 1}. Wi = [pi
0, . . . , p

i
k−1] (Variables);

• ∀i ∈ {0, . . . , |C| − 1}. pi
0 = pbi, p

i
k−1 = pei;

• ∀i ∈ {0, . . . , |C| − 1}, 0 ≤ j ≤ k − 1. δ(pi
j , p

i
j+1) ≤ 1;

• ∀i, j ∈ {0, . . . , |C| − 1}, i 6= j, ∀l,m ∈ {0, . . . , k − 1}.

(l 6= 0 ∧ l 6= k − 1) ∨ (m 6= 0 ∧m 6= k − 1) ⇒ δ(pi
l , p

j
m) ≥ 1.

The complete encoding of this problem can be seen in Figure viii.

Sequential Implementation

This section describes some of the design choices adopted in the development of a sequential implementation

of the COLA framework.

Variables and Constraint Representation

The set of variables adopted in the problem encoding (Allvariables) is represented by a static array, created

during the problem definition phase. Each variable (see Figure ix) is a record that contains an identifier (ID,

i.e., the record’s position in the array), the flags telling whether the variable is labeled, ground, failed

and changed, the size of Box(D) (i.e., the integral volume of the box, used for variable selection strategies)

and the points D and D that represent the domain D. The possible states of each variable are:

◦ labeled indicates that the variable has been selected—through the pick operation of the algorithm in

Figure vi—labeled, and included in the search tree,

◦ ground indicates that the variable has a domain size equal to 1—either because of an explicit assignment

or because of application of consistency techniques,

3in the case of cubic lattice; for FCC it is
√

2

14

int wires=6;

int bounds=4;

int plugs[wires][4]; // inx iny outx outy

plugs[0][0]=1;plugs[0][1]=1;plugs[0][2]=1;plugs[0][3]=3;

plugs[1][0]=1;plugs[1][1]=1;plugs[1][2]=3;plugs[1][3]=1;

plugs[2][0]=3;plugs[2][1]=3;plugs[2][2]=1;plugs[2][3]=3;

plugs[3][0]=3;plugs[3][1]=3;plugs[3][2]=3;plugs[3][3]=1;

plugs[4][0]=1;plugs[4][1]=3;plugs[4][2]=2;plugs[4][3]=5;

plugs[5][0]=3;plugs[5][1]=3;plugs[5][2]=2;plugs[5][3]=5;

plugs[6][0]=1;plugs[6][1]=1;plugs[6][2]=2;plugs[6][3]=5;

////// NECESSARY (1): define n = number of variables (global variable)

n=wires*bounds;

////// NECESSARY (2): variables initialization

AllVariables* vars=(AllVariables*)malloc(sizeof(AllVariables));

allvar_init(vars);

///// set domains for variables (default is 0..MAXVAL)

int point[3],point2[3];

point[0]=0;point[1]=0;point[2]=0;

point2[0]=255;point2[1]=255;point2[2]=255;

for (int i=0;i<n;i++)

var_init_bounds(vars->variables+i,point,point2);

////// NECESSARY (3): init constraint store

cstore_init(STORE_AC3);

///////////// constraints posting //////////////////////////////////////

//// NOTE: each constraint has to be inserted: C(v1,v2) and C(v2,v1)

/// wire

for (int i=0;i<wires;i++)

for (int j=0;j<bounds-1;j++){

cstore_add(CONSTR_EUCL_LEQ,i*bounds+j,i*bounds+j+1,1);

cstore_add(CONSTR_EUCL_LEQ,i*bounds+j+1,i*bounds+j,1);}

/// link io/outs

for (int i=0;i<wires;i++){

point[0]=plugs[i][0];point[1]=plugs[i][1];point[2]=1;

var_init_point(vars->variables+i*bounds,point);

point[0]=plugs[i][2];point[1]=plugs[i][3];point[2]=1;

var_init_point(vars->variables+i*bounds+bounds-1,point);}

///non overlap

/// skip plug-plug intersection

for (int i1=0;i1<wires;i1++)

for (int j1=0;j1<bounds;j1++)

for (int i2=0;i2<wires;i2++)

for (int j2=0;j2<bounds;j2++)

if (i1!=i2){

if ((j1!=0 && j1!=bounds-1) || (j2!=0 && j2!=bounds-1))

cstore_add(CONSTR_EUCL_G,i1*bounds+j1,i2*bounds+j2,1);}

///////////// end of constraints posting//////////////////////////////////////

////// NECESSARY (4): start search

search(vars,SEARCH_SIMPLE, SEARCH_FF);

Figure viii: An example of CSP encoding in COLA

15

◦ failed indicates that the domain of the variable has become empty, and

◦ changed indicates that the variable is not in any of the other states, and its domain has just been

modified.

Each binary constraint over variables Vi and Vj is represented by a record that stores the identifiers of the

variables (var1, var2, shown with dashed pointers in Figure ix), the type of binary constraint and the

Euclidean distance associated to the constraint.

The collection of constraints present in the CSP is represented by a constraint store. The constraint

store is realized as a dynamic array. Although all the constraints considered here are symmetric, for the

sake of simplicity in the implementation, they are treated as directional constraints, using the information

of the first (leftmost) domain to test and/or modify the second domain (bounds consistency). Consequently,

every time a constraint over two variables has to be expressed, a pair of directional constraints is introduced

in the constraint store. E.g., the constraint δ(V1, V2) ≤ d is actually implemented as δ(V1, V2) ≤ d and

δ(V2, V1) ≤ d.

Whenever a constraint is added to the store, a new constraint object is generated and introduced in the

constraint store array. The constraint data type stores the information about the variables involved in the

constraint (this description here refers to binary constraints), the type of constraint, and the distance param-

eter present in the constraint. In order to allow an efficient implementation of the consistency procedures,

an additional data structure is introduced in order to provide direct access to constraints that involve a

specific variable Vi. The data structure is composed of a set of dynamic arrays, one for each variable Vi, that

contain pointers to each constraint C(Vi, Vj) (see the solid pointers in Figure ix). During the consistency

phase, after the modification of a domain Vi, the set of constraints involved in possible further propagation

operations are retrieved from the indexes contained in the array for Vi, without the need of repetitive scans

of the complete constraint store.

ID=0

labeled

ground

failed

changed

size

D, D

ID=1

labeled

ground

failed

changed

size

D, D

. . .

ID=N-1

labeled

ground

failed

changed

size

D, D

Constraint Store

type

var1 =

var2 =

dist

type

var1 =

var2 =

dist

. . .

Figure ix: Constraint solver data structures

16

Rigid block constraints are handled with a different method to achieve high speed and reduce the overhead.

For each constraint block(~B, ~V), each allowed rotation in the lattice for the pattern ~B is precomputed and

stored in a vector of lists of points—namely the set Templ(~B) defined in the earlier section. During the

search phase, the block constraint is analyzed whenever the first variable Vi in ~V is labeled—and, thus, all

the remaining variables ~V \ {Vi} are not labeled. Let L be the lattice point associated to Vi. This choice

uniquely determines the Shift[~ℓ] for a template P ∈ Templ(~B), in order to correctly place the block in the

lattice. In particular, ~ℓ = L − Pi, i.e., the shift operator translates the rotated pattern in such a way that

the pattern point associated to Vi is shifted to the lattice point L. For each rotation, and corresponding ~ℓ,

the whole block is instantiated and consistency with other constraints is enforced. Future work will consider

these constraints as global ones, i.e., a specific filtering algorithm will be provided.

Search Space

The evolution of the computation can be depicted as the construction of a search tree, where the internal

nodes correspond to guessing the value of a variable (labeling) while the edges correspond to propagating

the effect of the labeling to other variables, through consistency procedures.

Two system makes use of two variable selection strategies. The first is a leftmost strategy, where the

collection of variables is viewed as a list, and the strategy selects the leftmost uninstantiated variable for the

next labeling step. The second strategy is a first-fail strategy, that selects the variable with labeled= 0 and

the smallest domain size, i.e., the box with the smallest number of lattice points. The process of selecting

the value for a variable V relies on DV , on the structure of the underlying lattice, and on the constraints

present.

For example, if the selected variable V is known to have a distance of one lattice unit from a known point

in the lattice (a frequent occurrence in practical uses of lattice constraints), then the complete exploration

of the box Box(DV) can be replaced by a direct exploration of the lattice neighbors of the given point

(e.g., 12 points in the case of the FCC lattice and 6 points in the case of the CUBE lattice). This pruning

can be further extended following the same principle: if three variables X,Y, Z are known to occupy three

contiguous points in the lattice, and X,Y have already been placed in the lattice, then (in the FCC lattice)

there are only 11 possible placements that can be explored for Z.

It is also possible to collapse levels of the search tree, by assigning a set of (related) variables in a single

step. This operation is particularly useful when dealing with variables that belong to a rigid block constraint

block(~B, ~V). When the first variable X of V is labeled, then all the other variables in V are assigned as well,

according to the precomputed templates. In particular, a new branch of the search tree is opened for each

rotation template selected out of Templ(~B).

At the implementation level, the current branch of the search tree is stored in an array; the i-th element

of the array represents the i-th level of the current branch. Each level is associated to the corresponding

variable chosen by the selection strategy. The variable is labeled with domain values and each choice creates

a distinct branch in the search tree. A convenient enumeration of the domain elements is defined on every

branch: each domain element is identified by a unique index. Each specific labeling choice and branch

selection can thus be summarized by an extra counter. Storing this information on each level, allows an

efficient handling of the array in case of backtracking and expansion of siblings (that are mapped on the

same array element). The use of counters for each level allows an efficient detection of the completion of

17

branching on a level and, at the same time, it avoids the maintenance of an explicit search tree (i.e., every

sibling is recorded implicitly), with a significant benefits in terms of memory consumption.

As illustrated in Figure vi, backtracking is employed to explore different assignments of values to the

variables (i.e., to move between branches of the search space). Since each step of propagation and of

consistency leads to modifications of the data structures (e.g., modification of the domains), it is important

to ensure that, during backtracking, the modifications to such data structures are properly undone, restoring

the correct state of computation to restart with a different alternatives. A value-trail stack is introduced to

support this activity. The trail keeps track of the variables modified during propagation, and it is used to

undo modifications during backtracking. This process is performed in a fashion similar to the way a trail

stack is used in a Warren Abstract Machine for Prolog, as described in Reference [20].

Bounded Block Fails heuristic

The Bounded Block Fails (BBF) heuristics for searching solution as been originally introduced in Refer-

ence [14]. The heuristic involves the concept of block. Given a list of variables and constants V = [V1, . . . , Vn],

a block Bi is a sublist of V of size k composed of unbound variables. The concatenation of all the blocks

B1B2 . . . Bℓ gives the ordered list of unbound variables present in V , where ℓ ≤ ⌈n
k
⌉. The blocks are selected

dynamically, and they could exclude some of the original variables, that have already been instantiated due

to constraint propagation. The number of blocks, thus, could be less than ⌈n
k
⌉ and it could be not constant

during the whole search. Figure x depicts a simple example for k = 3, with a list of 9 variables. The dark

boxes represent ground assignments.

V1 V3 V5 V6 V7 V9

V1

V3

V5

V6

V7

V9

B1

B2

Figure x: The BBF heuristics

The heuristics consists of splitting the search among the ℓ blocks. Internally, each block Bi is individually

labeled according to the desired labeling strategy. When a block Bi has been completely labeled, the search

moves to the successive block Bi+1, if any. If the labeling of the block Bi+1 fails, the search backtracks to the

block Bi. At this point, two options are available: if the number of times that Bi+1 completely failed is less

than a given threshold ti, then the process continues, by generating one more solution to Bi and re-entering

Bi+1. Otherwise, if too many failures have occurred, then the Bounded Block Fail heuristic will generate a

failure for Bi and backtrack to a previous block. Observe that the count of the number of failures includes

both the regular search failures as well as those caused by the Bounded Block Failure strategy. The list

t1, . . . , tℓ of thresholds determines the behavior of the heuristic. The Figure assumes t1 = 3 and shows that,

after the third failure of B2, the search on B1 fails as well.

18

The BBF heuristic is effective whenever:

• Suboptimal solutions are spread sparsely in the search tree;

• For each admissible solution, there are many others with small differences in variables assignments and

quality of the solution.

In these cases, solutions can be skipped when generating block failure, because some others are going to be

discovered following other choices in some earlier blocks.

The high density of admissible solutions allows one to exclude some solutions, depending on the threshold

values, and pruning the explored search space,without running the risk of not being able to find the optimal

solution.

Parallelizing COLA

Although the sequential implementation of COLA is fairly effective, the performance of the implementation

can be further improved, to enhance the applicability of the system to more time-consuming problems. This

section explores the use of parallelism to enhance performance.

Overall Organization

The parallel version of COLA is based on the exploitation of search parallelism (also known as or-parallelism)

from the prop-labeling tree. Intuitively, the exploitation of parallelism is accomplished by allowing separate

agents to concurrently explore different parts of the prop-labeling-tree in search of (optimal) solutions. Each

agent can be implemented by a distinct process (or thread), possibly executed by a distinct processor, and

each searching for a different solution to the problem. The general notion of search parallelism has been

explored in various domains, as discussed in the References [21, 22].

The focus is on the inherently non-deterministic stage of domain labeling (splitting rule) for a CSP (or

COP). If two or more choices are generated in the prop-labeling-tree (see, e.g., the dark nodes in Figure ii),

each subtree rooted at the choice nodes is solved independently and in parallel—e.g., see Figure xi. Note

that the choice of subtrees is limited to roots on even levels: due to the definition of the prop-labeling-tree,

odd levels contain nodes generated by propagation rules that do not involve branching.

In the context of resolution of a CSP, exploration of the different subtrees are independent, and as such

they can be performed concurrently without the need of communication. In the context of the resolution of

a COP, communication might be required, e.g., to propagate bound information during a branch and bound

execution.

The framework is based on a fully decentralized scheme to handle parallel scheduling of tasks and load

balancing. Each agent can alternate between active computation—i.e., exploration of parts of the prop-

labeling-tree—and scheduling—i.e., trying to acquire new subtrees of the prop-labeling-tree for exploration.

The general scheme is not dissimilar from traditional distributed approaches to the parallelization of discrete

optimization (see References [23, 24, 25]).

19

P 1: DY = 1..3, DX = 1..2
P 2: DY = 1..3, DX = 1..2

P 1: DY = 2..3, DX = 1..2
P 2: DY = 2..3, DX = 1..2

P 1:Y = 2, DX = 1..2

P 1:Y = 2, DX = 1..1

P
1 P

2
P 2:Y = 3, DX = 1..2

P 2:Y = 3, DX = 1..2

P 1: Y = 2, X = 1 P 2: Y = 3, X = 1 P 2: Y = 3, X = 2

Figure xi: Intuitive view of search parallelism

Tasks

Given a CSP P , the search of solutions is performed by traversing a prop-labeling tree. If the variable

selection rules and labeling rules are set, each node ν of this tree can be described in two, equivalent, ways:

as a CSP P ′, or as a pair, consisting of the initial CSP P and the variable assignments performed in the

path of the computation leading from the root of the tree (P) to the the node ν. A task is a subtree of a

prop-labeling-tree for P , whose root lies at an even distance from the root of the tree. The root node of a

task is called the task root. The current node is the node µ of the prop-labeling-tree that is being processed

at a specific moment in the computation. The path leading from the root of the prop-labeling-tree to the

current node is called the current path.

Similarly, it is possible to define the concept of processed nodes : under the assumption of a depth-first,

left-to-right recursive search, the processed nodes are those nodes of the prop-labeling-tree which are located

to the left of the current path, while the subtasks are the nodes on the right of the current path and at an

even distance from the root. Some of the subtasks can be communicated and transferred to an idle agent,

as a new task.

In the example of Figure xii, the task root (node 0) coincides with the root of the tree, and the current

node is node 8. The dark nodes (2 and 3) represent the processed nodes; the shaded nodes (0, 1, 4, 7 and 8)

represent the current path, while the white nodes (5, 6 and 9) are the subtasks.

Tasks Scheduling and Communication

Let n be the number of agents (i.e., concurrent constraint solving engines) available. The parallel exploration

of the prop-labeling-tree relies on assigning distinct tasks to the agents. The key idea behind the use of a

decentralized scheme is the notion of dynamic rescheduling of tasks among the agents. The rationale is that,

every time an agent A terminates its task, it queries the other agents to obtain a new task. If an agent B has

an unexplored subtask, it can communicate such task back to A, allowing A to restart active computation on

the newly received task. The need for dynamic rescheduling arises from the potentially unbalanced structure

of the prop-labeling-tree, and the difficulty of estimating a-priori the size of a subtask.

A careful design has been adopted in order to reduce the communication traffic in the system during the

search process. In this parallel version, the communication is of the type all-to-all and thus it is essential to

20

P

1

0

2 3 4 5 6

7

8µ 9

Figure xii: The search tree in the Parallel COLA system. Double lines mean propagation

devise a convenient protocol for efficient message handling.

There are four types of messages that can be sent for handling task management:

◦ The message REQ is sent from agent i to agent j whenever agent i requests a new task from agent j.

◦ The message TASK is sent by agent j when an unexplored subtask has been found and it can be given

to the requesting agent i. The message contains a description of the new task, in the form of a list of

variable assignments encountered on the branch, from the global root to the root of the subtask (e.g.,

corresponding to the nodes 0, 1, 4, 7, 9 in Figure xii if the subtask is rooted at 9).

◦ The message WAIT is sent by agent j to agent i if j itself is idle, it has requested a task and is awaiting

for a reply. The WAIT message is used to indicate to agent i that no subtasks are currently available.

◦ Finally, the message BUSY is sent by agent j if the unexplored subtasks available in the agent j are

considered too small for sharing.

Some preliminary tests—using a number of agents equal to the number of available processors—indicated

that many concurrent communications between distinct pairs of agents lead to significant communication

bottlenecks. Moreover, tasks fragmentation—i.e., production of small tasks—degrades the performance, due

to the cost of frequent communication of tasks. To cope with these problems, the system introduces a strict

policy for handling messages, with a special care to load balancing. The following list summarizes the main

items considered in the design of the policy:

• Limited channels: The agent i ∈ {0, . . . , n − 1} can request tasks only to a subset of agents

Si ⊆ {0, . . . , n − 1}. In particular, we found that |Si| = n/2 is sufficient to guarantee an accept-

able communication delay and a good balancing of work.

• Sequential task requests: each agent i, after sending a task request to j ∈ S, must wait for an

answer from j before sending a new task request. When j receives a task request, j has to answer

either with a task or with a message with no task.

21

• Requests addressing: the set Si is sorted and processed according to a simple round-robin scheme.

When a task is needed, an index that spans the set is updated and used to contact the corresponding

agent.

• Progress: to avoid deadlocks, while waiting for a reply to a task request, an agent is expected to

answer every task request received.

• Reduced traffic: a minimum delay (REQ DELAY) is imposed between two task requests sent to the

same agent. This is necessary to avoid overloading an agent with task requests and to avoid delaying

critical communication tasks. In the current experiments, the REQ DELAY parameter is set to 0.01

seconds.

• Enhanced load balancing: subtasks are sent by an agent according to an ordering, constructed

using the position of the subtask roots in the tree. In particular, nodes that are closer to the root of

the task are considered first for sharing. Since the structure of the task changes dynamically (as new

nodes are dynamically created and added to the task), a special procedure is in charge of retrieving the

“highest” subtask available (a white node in Figure xii). The intuition is that nodes closer to the root

of the tree have a greater likelihood of being the root of large subtasks. Observe that the actual size

of a task—i.e., the number of nodes in it—cannot be precisely predicted, thus the depth of the root of

the task is only an estimate of the granularity of the task. This choice has been shown to reduce the

amount of fragmentation.

• Optimized interaction: if agent j receives a REQ message from agent i, and j has no subtasks

available, then agent j will keep exploring its own task (expanding it), until there is a new subtask

that can be returned to i. This choice is better than returning a failure message to i, since the ratio of

subtask generation is very high (every node expansion, usually generates more than one new subtask).

In particular, this approach is cheaper than forcing agent i to start a new communication session for

a new task request with some other agent.

• Light message checks: due to the above mentioned subtask generation ratio, it is convenient to insert

a test for pending REQ messages every x nodes expansions performed by the agent. Excessively frequent

tests for messages (e.g., x = 1) would degrade the performance of the normal task computation, while

a too infrequent test (e.g., x = 256) would cause a prolonged wait for the agents that sent the requests.

In the current implementation, this parameter (called ANSWER EVERY NODES) has been fixed to x = 16.

Figure xiii and Figure xiv provide the pseudocode that describes the behavior of each agent. In particular,

Figure xiii shows the code that defines the outer loop (search handler) of the agent, in charge of obtaining a

task and submitting it to the search procedure—described in Figure xiv.

In Figure xiii, the procedure prepare initial task (Line 1) produces an initial task for each processor,

whose structure is dependent on the shape of the search tree—this construction is discussed in more detail

in the next subsection. Lines 6–16 are part of the loop executed by the agent while waiting for a new task

to arrive. At each iteration, termination of the loop is detected in Line 4. A boolean variable, ask task,

is true if and only if the agent can issue a task request (REQ) to agent i (Lines 7–9). After a task request,

22

ask task is set to false, and can be reset to true only if a reply from agent i is received. Before ending the

loop (Lines 15–16), the agent needs to update the address of the next agent to contact for a task request,

according to the round-robin scheme. This update is performed whenever the previous request has already

been answered or it could not be issued due to time reasons (Line 7).

Finally, Line 17 is reached only if a new task to be explored has been received or a termination signal

has arrived. In the case of a new task (Line 18), the procedure search is called, the task is processed, and a

new iteration of loop 2–21 is executed.

search handler(D)
1 task = prepare initial task()
2 while !terminated
3 do

4 while task 6= nil ∨ terminated

5 do

6 terminated = handle termination()
7 if ask task ∧ last request to i older than REQ DELAY

8 then send REQ to i

9 ask task = false

10 if i returned a message ∧ message = TASK

11 then task = get task(i)
12 if received REQ from j

13 then send WAIT to j

14 if i returned a message ∨ ask task

15 then ask task = true

16 i = next process ∈ S

17 if !terminated

18 then search(task)
19 task = nil

20 ask task = true

21 endwhile

Figure xiii: Pseudocode of Parallel Process Manager

Figure xiv describes the overall structure of the search routine—a modification of the sequential search

routine developed for COLA. The main novelty of this routine is in Lines 5–9, where we introduce the check

for task requests. If the request arrives when there are some subtasks available, the highest one is sent

back (Line 8). If no subtasks are available, then the request is kept pending until new adequate subtasks

are generated (and Line 8 will be activated). In this way, the answer to agent i is delayed to avoid further

communications. Note that, in Line 6, the check for communication is executed every ANSWER EVERY NODES

task expansion steps, where the counter is local to the current agent. Lines 11–13 represent the normal

exploration of the search tree.

The Initial Tasks

Specialized actions are performed, at the beginning of the computation, to assign an initial task to the

different agents. In Reference [22], a simple implementation, which follows the more traditional model of

assigning the root task to an initial agent and letting the other agents obtain subtasks from there, revealed

23

search(Lev)
1 if leaf

2 then return

3 expand a level

4 for each node to process on current level

5 do

6 if explored ANSWER EVERY NODES nodes ∧ subtask available

7 then

8 if received REQ from i

9 then reply i with a new task

10 update available subtasks

11 pick an expanded node (if not given as subtask)

12 propagation

13 search next level

Figure xiv: Pseudocode of Parallel Search

to be highly inefficient, due to the immediate saturation of the communication channels generated by task

requests of the n− 1 idle agents.

A more effective choice for this phase (see also Line 1 in Figure xiii) is to devise a method to assign a

task to each process to begin with. Given n agents, the idea is to produce an initial partition of the whole

search tree into n subtrees, that are balanced as much as possible, requiring no communications between

agents.

Since a task is represented by the branch leading from the root of the search tree to the root of the task,

the goal is to create a parallel, coordinated and communication-free exploration of the tree that leads each

agent along a different branch. At the end of this parallel step, each agent is mapped to a distinct node,

guaranteeing at the same time that the assigned nodes are as high as possible in the search tree (to enhance

the likelihood of a large grain task).

This initial exploration of the search tree is concurrently performed by the different agents, following

a modified depth-first strategy. Whenever one node u is expanded with its children, the group of agents

working on u is partitioned between the children to continue the exploration. The distribution scheme is

realized in a simple manner, by defining a mapping from agents to nodes of the search tree. A node u can

be explored by [i..j] agents, meaning that the agents having id in the range from i to j will expand the node

u. The expansion of u generates nodes u1, u2, . . . , uk. Each agent that is assigned to u selects one of these k

nodes, according to a common partitioning strategy, and continues the exploration of the search tree. The

partition is made in such a way that the same number of agents is assigned to each node. If there are fewer

agents than nodes, then each agent is assigned to a node, and the nodes without any association are gathered

and assigned to an arbitrary agent as additional subtasks. If there are more agents than nodes, the interval

[i..j] is partitioned uniformly in k sets, one for each expanded node, and each agent follows the depth-first

descent on the node that has an interval containing its agent id. Figure xv depicts this phase. Nodes are

represented by circles, and the agent associated to them are represented by boxes. In this representation,

for the sake of simplicity, the nodes produced by constraint propagation are collapsed into the parent, i.e.,

the double lines of Figure ii have been omitted.

24

As soon as agent i moves to a node which is assigned the agent ids interval [i..i], the agent is ready to

begin the task exploration, since it is guaranteed to be the only one to handle such task. If, for propagation

reasons, a node cannot generate any children, the agents assigned to that node will start in idle state and

begin to request tasks in the usual manner. This event depends on the structure of the CSP problem, but

it is relatively infrequent.

i jj-1

jj-1

j-1 j

1

2 3 4 5

6 7

Figure xv: Initial Task Parallel Assignment

Some Implementation Details

The parallel system described has been developed on a Beowulf cluster—using C++ and mpicxx. Each

agent is implemented as an MPI process, and communication is explicitly realized using message passing.

The MPI-1 framework allows static process structure—i.e., agents are created at the moment of launching

the program, and no agent can be added or removed from the system during the execution.

Agents are assigned linear ids, directly obtained from the corresponding MPI process ids. Access to the

CSP/COP problem description is concurrently performed by all the agents, to avoid additional communica-

tion.

The distributed scheduling structure introduces the need for a termination detection mechanism. A stan-

dard token ring termination detection, as described in Reference [26], has been implemented. In particular,

a black/white token is passed every time the agent is in the search handler loop (Line 4 of Figure xiii) and the

agent has received a token from the preceding agent—viewing the agents as part of a ring, where agent n−1

out of n is followed by agent 0. Note that, while processing a task, the token passing activity is suspended,

thus making the token traffic very light.

An Example: the Protein Structure Prediction Problem

This section reports some results deriving from the implementation and testing of the framework described

above on a challenging application coming from the Bioinformatics area: the Protein Structure Prediction

Problem. A brief mathematical formulation of the problem is reported here (see also References [13, 27]).

25

The Protein Structure Prediction Problem

The Primary structure of a protein is a sequence of linked units, called amino acids. The amino acids can

be identified by an alphabet A of 20 different symbols, associated to specific chemical-physical properties.

The protein tends to reach a 3D conformation with the minimal value of free energy (native conformation),

also called its tertiary structure. Native conformations are largely built from secondary structure elements,

namely some local rigid structures (e.g., α-helices and β-sheets) that involve some short sequences of amino

acids arranged in a predetermined fashion. Some of these local structures can be predicted accurately using

neural networks and/or homology. This information can be incorporated in the model. Moreover, it is

possible to predict that two atoms are close in the native state, e.g., thanks to disulfide bonds (SS-bonds).

This problem can be encoded as a COP on the FCC lattice, which has been considered suitable to model

proteins in discrete representations of the 3D space by various researchers, as discussed in References [10,

12, 13, 28]. Given a primary sequence S = s1 · · · sn, with si ∈ A, let ω(i) be the position of the amino acid

si in the FCC. It is assumed that two consecutive amino acids are always separated by a fixed distance

(typically, 3.8Å). Given two lattice points ω1, ω2, next(ω1, ω2) states that they are contiguous in the lattice.

In the FCC lattice,

next(ω1, ω2) ⇔ δ(ω1, ω2) = 2

The energy of the protein is given by the sum of the energies generated by all the pairs of amino acids.

These local energies depend on their distances and their types. The energy contribution is 0 if the two amino

acids are at a distance greater than a given threshold. In particular, the binary (boolean) function contact

is used to state that two amino acids si and sj are sufficiently close to be able to interact, and thus they

contribute to the energy function. For FCC it holds that

contact(A,B) = 1 ⇔ δ(A,B) = 4

Given an FCC lattice (P,E) and a primary sequence S = s1 · · · sn, with si ∈ A, a folding of S in (P,E)

is a function ω : {1, . . . , n} → P such that:

1. next(ω(i), ω(i+ 1)) for i = 1, . . . , n− 1, and

2. ω(i) 6= ω(j) for i 6= j (namely, ω introduces no loops).

Every time a contact between a pair of amino acids is detected, a specific energy contribution, dependent

on the specific pair of amino acids (and drawn from a 20 × 20 table) is applied (see Reference [29]). The

notation Pot(si, sj) is associated to the energy contribution provided by the amino acids si and sj (the order

does not matter).

The protein structure prediction problem (PSP) can be modeled as the problem of finding the folding ω

of S such that the following energy cost function is minimized:

E(ω, S) =
∑

1≤i<n

∑

i+2≤j≤n

contact(ω(i), ω(j)) · Pot(si, sj).

In the FCC, each point is adjacent to 12 neighboring points, and the angle between three adjacent residues

may assume values 60◦, 90◦, 120◦, and 180◦. Volumetric constraints and energetic restraints in proteins make

the values 60◦ and 180◦ infeasible. Therefore, in the model, only the 90◦ and 120◦ angles are retained, as

discussed in References [30, 31].

26

As already mentioned, a contact between two non-adjacent residues in FCC occurs when their separation

is two lattice units. At this distance the interaction effect between them occurs. This effect is a contribution

to the whole energy and it is approximated by the function Pot(si, sj). For some pairs the contribution is pos-

itive, for other it is negative. Since the conformation of minimum energy is searched, negative contributions

are favorable, and thus the energy values of the predicted structures are negative.

Physically, two amino acids in contact cannot be at the distance of a single lattice unit, because their

volumes would overlap. Consequently, two non-consecutive residues si and sj are constrained to be separated

by more than one lattice unit. This is achieved by adding, for the pair i and j, the constraint: δ(si, sj) ≥ 4.

Moreover, as explained in Reference [13], it is reasonable to bound the maximum distance between two amino

acids using a compact factor.

Modeling PSP on COLA

Given S = s1 · · · sn, with si ∈ A, the lattice variable Vi represents the lattice position of amino acid si. The

modeling leads to the following constraints:

• For each i ∈ {1, . . . n− 1}, δ(Vi, Vi+1) = 2: adjacent amino acids in the primary sequence are mapped

to lattice points connected by one FCC lattice unit (next property).

• For each i ∈ {2, . . . n − 1}, δ(Vi−1, Vi+1) ≤ 7: three adjacent amino acids may not form an angle of

180◦ in the lattice (bend property (i)).

• For each i, j ∈ {1, . . . n} and |i − j| ≥ 2, δ(Vi, Vj) ≥ 4: two non-consecutive amino acids must be

separated by more than one lattice unit (non overlapping property), and angles of 60◦ are disallowed

for three consecutive amino acids (bend property (ii)).

• For each known ssbond present between amino acids si and sj, △(Vi, Vj) ≤ 4 (ssbond property).

• For each i, j ∈ {1, . . . n}, △(Vi, Vj) ≤ cf · n, where cf is the compact factor, expressed as a coefficient

in [0..1] ⊂ R (see Reference [13]).

An ad-hoc Branch and Bound Strategy

This section presents a branch and bound (BB) strategy, adapted to the specific needs of the PSP problem.

In the case of the protein fold problem, a generic branch and bound scheme, based on the estimation of

the energy of the conformation, proved to be rather ineffective with large input sizes. The intuition is that

the cost function can collect many contributions at the very end of a branch and drastically change its

value. This behavior is particularly evident when processing large proteins. As a result, the prediction of

the bounds for the energy function, computationally expensive, reveals to be potentially inaccurate.

This work proposes the use of a more coarse and constant time cost estimation. The strategy implements

branch and bound using the number of contacts generated by the given conformation as the information to

perform pruning. In general, the global energy and the number of contacts are strongly related. Nevertheless,

since the energy function is composed of weighted contributions of amino acids in contact, the two values

may occasionally diverge. The estimation of the number of contacts is facilitated by the peculiar properties

27

of the FCC lattice; e.g., each amino acid can form at most 3 contacts with other ones. When a new best

conformation is found, its number c of contacts realized is determined. Assuming that, in the worst case,

the last amino acids to be labeled generate 3 contacts each, at c/3 levels before the leaves, each subtree can

be safely pruned whenever the number of contacts is less than c. This heuristic can be computed in constant

time since, given a partial assignment, an upper bound to the number of possible contacts is immediately

known. Since the energy is not precisely expressed by the number of contacts, there is no guarantee of

completeness for this heuristic function. Nevertheless, empirical tests show that this is not a significant

problem; the experiments conducted indicate also that the pruning of the last levels of the tree provides

significant speedup during the search process.

Table i shows some experimental tests of enumeration of the complete search tree, with and without

the pruning heuristic presented above. The experiments have been conducted on an Intel Centrino 2.0GHz

machine, with 1GB RAM, and running Windows XP. Each known protein has an official ID assigned in

the Protein Data Bank (see Reference [32]), reported in the first column in the table. The second column

(N) denotes the number of amino acids in the protein. The Enumeration column reports the execution

time, number of nodes explored, and best energy found using a complete exploration of the search tree.

The BB Heuristic column reports the same information using the BB heuristic. In all cases, the heuristic

improves time and reduces the number of nodes explored, without significantly changing the optimal solutions

discovered.

Table i: Effectiveness of contact pruning heuristic

Enumeration BB Heuristic
ID N Energy Nodes Time Energy Nodes Time
1kvg 12 -6,881 318,690 0.250s -6,881 124,722 0.187s
1le0 12 -4,351 1,541,107 1.125s -4,351 487,105 0.703s
1le3 16 -5,299 1,544,830 1.515s -5,299 439,969 0.969s
1pg1 18 -10,352 56,934 0.047s -10,352 7,908 0.016s
1zdd 34 -12,315 234,314 1.609s -12,097 34,748 1.390s

Sequential Performance

This section describes the results obtained from running a collection of tests using the sequential imple-

mentations of COLA. In particular, the experiments are related to the use of COLA to solve instances of

the PSP problem. The focus is not only on proving the practical effectiveness of COLA as a constraint

solver on (FCC) lattice structures, but also on demonstrating the effectiveness of using COLA to address

the PSP problem on FCC, compared to other solutions to this problem presented in the literature—e.g.,

using traditional finite domain constraints (specifically, using SICStus Prolog and ECLiPSe Prolog, resp.

in Reference [33] and [34]). Discussion of the parallel results and comparison with integer programming

solutions (as in Reference [10]) are presented in the successive subsections.

All the experiments described in this section have been obtained on an Intel Centrino 2GHz platform

with 1GB RAM. The operating system is Windows XP and the compiler is MinGW32 v. 3.1.1 with the

28

expensive optimization flags enabled. The COLA source, other Prolog programs and some results cited in

this Section are available at www.dimi.uniud.it/dovier/PF.

Efficiency: The first test discussed is designed to benchmark the speed of the solver. The goal is to

compare the solution to the protein folding problem using the lattice solver with the solution obtained by

mapping the problem to finite domain constraints—using SICStus 3.12.2 (clpfd) and ECLiPSe 5.8 (ic).

Complete enumerations of the search tree are obtained using the first-fail strategy and only the best solution

computed is retained, i.e., the handling of the cost function is included in these tests. To perform a fair

comparison, there is no use of branch and bound strategies in any of the implementations.

Table ii: Complete Search

ID COLA SICStus ECLiPSe

1edp 0.031s 5.28s (170x) 34.1s (1,100x)
1pg1 0.079s 10.37s (131x) 58.1s (735x)
1kvg 0.281s 26.69s (95x) 138.9s (494x)
1le0 1.469s 271.2s (184x) 1044s (711x)
1le3 2.219s 392.3s (177x) 1898s (855x)
1zdd 2.062s 8520s* (4131x) > 6h. (>10,000x)

,

The PSP problem is encoded in SICStus and ECLiPSe using the formalization described in Refer-

ence [14]—which is equivalent to the formalization presented earlier in this paper. In Table ii, we compare

the running times required to explore the whole search space. The first column reports the selected protein,

the second column the time (in seconds) required by the COLA solver to explore the search tree, while

the last two columns report the corresponding running times using SICStus and ECLiPSe (in brackets the

speedups of COLA w.r.t. the finite domain CLP solvers). The proteins used in these tests have been selected

to ensure that the complete search tree can be explored within a reasonable amount of time. The (*) reports

that an instantiation error occurred. Table ii shows that the choices made in the design and implementation

of the new solver allow one to gain speedups in the order of 102–103 times w.r.t. standard general-purpose

FD constraint solvers. Moreover, the implementation is robust and scales to large search trees with a limited

use of memory. E.g. in SICStus, the set of admissible elements that form the domain is maintained as a

disjunction of intervals, which experimentally causes an average of 10 times more memory consumption than

COLA.

Heuristics tests: The next set of experiments has been used to explore the flexibility of the constraint

solver in handling ad-hoc search heuristics. These experiments have been conducted using proteins with

lengths ranging from 12 to 104, using the Bounded Block Fails heuristic, presented earlier, and the branch

and bound strategy.

Table iii reports the results of the executions. The Table indicates the PDB protein identifier (ID), the

protein length (n) in terms of amino acids, the compact factor parameter (CF), the BBF threshold values

assigned to t1 = · · · = tℓ (BBF, i.e., the number of allowed failures for each block), the time to complete

the search (Time), the measure of the quality of the best solution computed (Energy). The next column

29

Table iii: BBF experimental results (Windows, Intel Centrino 2GHz, 1GB RAM).

ID n CF BBF Time Energy PDB on FCC PDB

1kvg 12 0.94 50 0.06s -18,375 -17,964 -28,593
1edp 17 0.76 50 0.03s -46,912 -38,889 -48,665
1e0n 27 0.56 50 1.75s -52,558 -51,656 -60,728
1zdd 34 0.49 50 0.094s -63,079 -62,955 -69,571
1vii 36 0.48 50 4.93s -76,746 -71,037 -82,268
1e0m 37 0.47 30 16m12s -72,434 -66,511 -81,810
2gp8 40 0.45 50 0.25s -55,561 -55,941 -67,298
1ed0 46 0.41 50 7.62s -124,740 -118,570 -157,616
1enh 54 0.37 50 49.5s -122,879 -83,642 -140,126
2igd 60 0.35 20 3h51m -167,126 -149,521 -201,159
1sn1 63 0.18 10 22m2s -200,404 -242,589 -367,285
1ail 69 0.32 50 2m53s -220,090 -143,798 -269,032
1l6t 78 0.30 50 1.12s -360,351 -285,360 -446,647
1hs7 97 0.20 50 36m19s -240,148 -246,275 -367,687
1tqg 104 0.15 20 10m24s -462,918 -362,355 -1,242,015

(column PDB on FCC) reports an estimate of the quality of a solution that can be obtained by discretizing

the structure of the protein, extracted from the protein data bank, on the FCC lattice. The last column

(column PDB) reports the value of energy for the protein conformation in 3D space without the spatial

constraints imposed by the use of a lattice.

For BBF, the block size is equal to 3 for n ≤ 30 and equal to 5 for larger proteins. The number of allowed

failures within each block is selected as expressed in the Table in BBF column. Empirically, larger block

sizes provide less accurate results, due to the larger amount of pruning when failing on bigger blocks.

Proteins with more than 100 amino acids can be handled by the solver. This result is significantly

better than what reported in the literature for the solution of this problem (using CLP(FD) or Integer

Programming)—e.g., using CLP(FD) it is possible to handle proteins of up to 80 amino acids. This improve-

ment is non-trivial, because of the NP-completeness of the problem at hand. The new heuristics provide

more effective pruning of the search tree, and they enable to collect better quality solutions. The tradeoff

between quality and speed is controlled by the BBF threshold: higher values provide a more refined search

and higher quality solutions.

For large proteins, it is an open problem in the literature how to precisely estimate the errors arising

from discretizing the protein structure in a lattice space. In the estimates, the best arrangement found is

retained out of a set of enumeration of some of the possible arrangements of a PDB protein on the FCC
lattice (10,000 structures). The application of the energy function on that candidate provides an idea of

the possible energy that can be reached by the FCC optimization. The quality comparison between the

folding and the mapping of PDB on FCC and the PDB itself, reveals that COLA’s solutions, even for large

proteins, are comparable to foldings of PDB on FCC. Note also that, for large proteins, the size of the pool

of the selected solutions for PDB on FCC mappings becomes insufficient. This causes an underestimation of

the possible best energy that can be obtained. This confirms that the BBF search heuristic tends to retain

meaningful conformations associated to suboptimal energy values.

30

Scalability on bigger instances: The next set of experiments is used to show the power of the solver

on large size instances. The proteins used in these experiments are artificial proteins, having a structure

of the type XY Z, i.e., composed of two known subsequences (X and Z), while Y is a short connecting

sequence. This reflects a common practice when dealing with large proteins—where the structure of various

subsequences is known (e.g., determined by homology) and the problem is to place these large rigid blocks

(e.g., linked together by short coils). The framework can easily handle proteins of size up to 1, 000 amino

acids. The tests are performed launching complete enumerations, varying the length of Y and of the proteins

used as pattern for X and Z.

Table iv: Processing proteins XY Z

X Z |X| |Y | |Z| Time

1e0n 1e0n 27 4 27 3.53s
1e0n 1e0n 27 5 27 19.4s
1e0n 1e0n 27 6 27 106s
1ail 1ail 69 4 69 10.1s
1ail 1ail 69 5 69 54.5s
1ail 1ail 69 6 69 290s
1hs7 1hs7 97 4 97 17.5s
1hs7 1hs7 97 5 97 94.6s
1hs7 1hs7 97 6 97 507s

1e0n 1e0n 27 3 27 0.64s
1e0n-2 1e0n-2 57 3 57 2.48s
1e0n-4 1e0n-4 117 3 117 2.79s
1e0n-8 1e0n-8 237 3 237 1.17s
1e0n-16 1e0n-16 477 3 477 4.87s

Table v: Ratios sphere/box approach

ID Nodes Time

1pg1 1.00 1.34
1kvg 1.95 2.39
1le0 1.00 1.06
1le3 1.02 1.16
1edp 2.96 2.00
1zdd 1.30 2.18

Proteins X and Z are loaded with the structures predicted in Table iii. They are linked by a coil of

amino acids with length |Y | (leaving X and Z free of moving in the lattice as rigid objects). The search is

a simple enumeration using leftmost variable selection. Table iv shows that the execution time is low, and

dominated by the size of Y , instead of the size of XY Z. Note that, for each increase of the length of Y from

4 to 6 amino acids, the computation time roughly increases 6 times, i.e., the number of admissible lattice

points for a variable, when the previous ones have been assigned.

The second part of the Table considers proteins constructed as follows: at the beginning X and Z are

equal to the 1E0N protein (whose folding can be optimally computed), and every successive test makes use of

X ′ = Z ′ = XY Z—i.e., at each experiment exploits the results from the previous experiment. This approach

allows one to push the search to sequences of size up to 1, 000 amino acids. In these experiments, the concern

is not only the execution time, but the ability of the solver to make use of known structures to prune the

search tree. As the results show, COLA is able to efficiently handle short connecting sequences (the Y part

of the protein).

Spherical representation of domains: A different formalization of the variable domains, where domains

are represented as spheres instead of using Box, has been explored. In this alternative approach, the domain

description of a variable is in terms of a center and a radius (with discrete coordinates), and the intersection

31

of spheres is defined as the smallest sphere that includes them. The intuition behind this alternative approach

is that a sphere should be more suitable to express the propagation of Euclidean distance constraints.

Unfortunately, the results reported in Table v show that this idea is not successful. The Table reports

in the first column the test protein used, in the second the ratio of visited nodes in the search tree between

the sphere-based and the box-based implementations. The last column provides the ratio of computation

time between the two implementations. In particular, observe that many more internal nodes are expanded

in the sphere implementation. There are two reasons for this:

◦ Computing spheres intersection is more expensive than intersecting boxes.

◦ Often, two intersecting spheres are almost tangent. In this case the correct intersection is approximated

by another sphere that includes a great amount of discarded volume.

Parallel Performance

The previously described parallel model has been implemented by means of a distributed implementation

using the MPI library. This version is, thus, highly portable. The implementation has been tested on a

Linux-based Beowulf cluster (Intel Xeon 1.7GHz processors, Myrinet-2000 interconnection network).

The implementation uses non-blocking receive calls (MPI Test and MPI Wait), in order to allow the

computation to proceed while waiting for messages from other agents. For efficiency reasons, the program

is based on user-defined buffers for supporting communication (using MPI Attach and MPI BSend routines).

Some experiments have been performed to test the quality and scalability of the system. The experiments

involve the complete enumeration of the foldings of two real proteins (1LE0 and 1ZDD), selected because

of the relatively small number of admissible conformations (in the order of millions). These tasks are small

and it is interesting to analyze the performance of the parallel system when handling high fragmentation

and load balancing in a light work condition. Moreover, a bigger protein (1E0N) has been tested. Since

the whole protein would require days to be completely computed, it has been reduced by the last 2 and 3

amino acids (that are not essential in the determination of the shape). These proteins are named 1E0N2

and 1E0N3, respectively, since it is actually a subsequence of the original protein. Additionally, COLA has

been tested with a sequence made of 13 consecutive Alanines (a type of amino acid), without any secondary

structure imposed (the solution space is roughly O(6n)). These last three examples are useful to show the

behavior of the system in heavy load conditions, which is the typical situation for protein application.

Figure xvi shows the speedups achieved using different numbers of processors. In the plot, the solid

line represents the theoretical linear speedup; the speedups are high and very close to the linear one. These

results are possible thanks to the scheduling policy adopted. It is important to stress that, in this framework,

there is no prior knowledge of the size of each task. In this sense, the need of a decentralized scheduling with

load balancing is essential, since the interaction of constraint propagation and search is unpredictable. As

expected, smaller tasks (1LE0 and 1ZDD) scale slightly worse, due to the frequent balancing of small tasks,

while for the bigger protein, this effect is more contained.

Figure xvii plots —in a logarithmic scale—the fraction of time spent to receive new tasks (idle time). It

is even more evident how the communication becomes a bottleneck for small tasks, since most of the time is

spent in waiting for a new task to process. For larger problems, the degradation is significantly smaller.

In conclusion, the system is capable of producing excellent speedups using up to 56 processors. For

32

 10

 20

 30

 40

 50

 10 20 30 40 50

Sp
ee

du
p

N. Processors

Linear
1LE0

1ZDD
1E0N3
1E0N2
13ALA

Figure xvi: Parallel Speedup

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60

Id
le

 %

N. Processors

1LE0
1ZDD

1E0N3

Figure xvii: Parallel Idle Time

Table vi: Parallel Experimental Results

N 1LE0 1ZDD 13ALA
proc Time % Idle P.S. Time % Idle P.S. Time % Idle P.S.

1 13.511 0.00 1.00 18.028 0.00 1.00 1001.781 0.00 1.00
2 6.836 0.11 1.98 9.195 0.05 1.96 504.258 0.00 1.99
4 3.461 0.10 3.90 4.630 0.23 3.89 255.981 0.00 3.91
6 2.320 0.21 5.82 3.115 0.35 5.79 170.784 0.01 5.87
8 1.764 0.31 7.66 2.368 0.72 7.61 129.977 0.01 7.71

12 1.197 0.61 11.29 1.591 1.10 11.33 88.238 0.03 11.35
16 0.921 1.24 14.67 1.220 2.40 14.78 67.671 0.06 14.80
24 0.635 1.50 21.28 0.826 3.54 21.83 46.643 0.11 21.48
32 0.497 3.02 27.19 0.645 5.59 27.95 36.266 0.16 27.62
48 0.362 6.33 37.32 0.453 8.51 39.80 25.789 0.21 38.85
56 0.322 6.61 41.96 0.404 10.49 44.62 22.949 0.35 43.65

N 1E0N3 1E0N2
proc Time % Idle P.S. Time % Idle P.S.

1 1831.609 0.00 1.00 7980.564 0.000 1.00
2 932.983 0.00 1.96 3980.610 0.013 2.00
4 460.594 0.00 3.98 1965.987 0.047 4.06
6 308.834 0.00 5.93 1323.383 0.064 6.03
8 232.621 0.01 7.87 997.069 0.107 8.00

12 155.756 0.03 11.76 671.106 0.164 11.89
16 117.846 0.04 15.54 505.641 0.190 15.78
24 80.381 0.07 22.79 346.162 0.193 23.05
32 60.513 0.09 30.27 268.844 0.379 29.68
48 41.794 0.33 43.82 189.069 0.999 42.21
56 36.292 1.25 50.47 164.519 0.565 48.51

33

completeness, Table vi, reports the detailed results from these experiments. The first column reports the

number N of processors employed (i.e., the ’-np’ parameter used with the mpirun command) and for each

protein reports the parallel time in seconds (Time), the percentage of idle time (% Idle) and the Parallel

Speedup achieved (P.S.).

Comparing COLA to IP

The goal of the investigation presented in this section is to compare COLA with state-of-the-art Integer

Programming (IP) and Constraint Logic Programming solvers.

Simplified versions of the PSP problem have been presented and studied in References [10, 35]. The

simplified version relies on the use of the HP model, where amino acids are classified in two classes (H ,

hydrophobic, and P , hydrophilic). The goal is to search for a conformation produced by an HP sequence,

such that most HH pairs are neighboring in a predefined lattice. The problem has been studied on 2D square

lattices (References [36, 37]), 2D triangular lattices (Reference [19]), 3D square models (Reference [10]), and

face-centered cubic lattices (FCC) (References [18, 35]). For the sake of simplicity, this section considers a

lattice composed of a subset of N
2. These simplifications exclude from the tests some technicalities generated

by using a refined energy model and the FCC lattice. However, this model is sufficient to offer the sources

of complexity that are typical of the more general versions of the PSP problem.

These tests show the performance of the process of finding an optimal conformation, given the constraints

(encoded as linear disequalities in IP) and the associated cost function. In particular, the focus is on

measuring the execution time, being the only factor that can be related between the different frameworks—

other parameters, such as the number of branch points and the number of nodes explored, are not as easily

comparable across frameworks.

The guideline for comparing the frameworks is to use equivalent constraints, and to provide the most

natural implementation. Optimizations and heuristics in all the frameworks are deliberately avoided, in order

to test the power of the native solvers. Clearly, specific heuristics and specialized encodings can improve

performance within each framework, but they would not be portable across frameworks.

An Integer Programming model: In Integer Programming, it is convenient to deal with many variables,

each with a small domain, instead of having fewer variables with large domain. Thus, the domains used to

represent the coordinates and used in the previously described model, are converted into a set of boolean

variables. This model introduces a set of boolean variables Xℓ (layer) for each amino acid ℓ. Each layer Xℓ

contains boolean variables Xℓ[i, j], where (i, j) represent a specific coordinate of a position of amino acid ℓ. If

Xℓ[i, j] = 1, then the amino acid ℓ occupies the position (i, j) in the map. Linear constraints are introduced

to model the same relationships described earlier. In particular,

• For each ℓ,
∑

i,j Xℓ[i, j] = 1, stating that each amino acid has a unique placement (in its layer).

• For each i, j,
∑

ℓXℓ[i, j] ≤ 1, stating that, for every position i, j, at most one amino acid is present in

such location—i.e., there are no loops.

• For each 0 ≤ ℓ ≤ n− 1, Xℓ[i, j] ≤ Xℓ+1[i+ 1, j] +Xℓ+1[i− 1, j] +Xℓ+1[i, j+ 1] +Xℓ+1[i, j− 1], stating

that, if the amino acid ℓ is assigned to the position (i, j), then the amino acid ℓ + 1 has to occupy

34

a position in space which has distance 1 from (i, j). Note that similar constraints are introduced to

constrain amino acid ℓ− 1 as well.

Finally, to compute the energy contributions, the following AND implementation is used: if A,B,C are

boolean variables, the relation C = A ∧ B is expressed using the linear constraints: C ≤ A, C ≤ B and

A+B − 1 ≤ C.

An energy contribution is produced every time there are two amino acids at distance 1. There are two

cases, where the amino acids are at distance 1 along the horizontal axis (h) and along the vertical axis (v).

For the first case, the constraints are expressed by

Ai,j,h =
∑

ℓ

Xℓ[i, j], Bi,j,h =
∑

ℓ

Xℓ[i+ 1, j]

for every i, j. The other case is similarly handled (Ai,j,v and Bi,j,v are defined). By implementing Ci,j,h =

Ai,j,h ∧ Bi,j,h as described above, Ci,j,h can be defined as an energy contribution; the coexistence of two

amino acids in contact (Ai,j,h and Bi,j,h equal to 1) forces the corresponding Ci,j,h boolean value to assume

the value 1. The cost function can be computed as the sum of the Ci,j,h and Ci,j,v values, for every pair i, j,

with i+ 1 < j (to exclude consecutive amino acids).

A Model for COLA: Defining the same constraints for COLA is simple, and it is equivalent to the ones

used for the CLP(FD) model of this problem (as described, for example, in Reference [38]). In COLA,

variables represent three dimensional points as native objects. The encoding, using only 2D coordinates for

each point, is even simpler than a CLP(FD) program:

/// next constraint for consecutive amino acids

for (int i=0;i<n-1;i++)

cstore_add(EUCL_EQ,i,i+1,1);

/// non occupancy constraints

for (int i=0;i<n;i++)

for (int j=i+2;j<n;j++)

cstore_add(EUCL_GEQ,i,j,1);

An interesting component of the problem is to observe how the branch and bound strategy has been re-

alized. Bound estimation strategies are effective at the last levels of the prop-labeling-tree. In this case,

the estimation is activated for the last 2 levels of the search tree and provides a pruning of 50% of nodes.

The estimate evaluates the contributions between labeled pairs, and it considers the maximal contacts that

a non-completely specified pair can provide. The estimation process involves domain analysis, to establish

whenever two domains could generate a contribution. Other considerations help in tightening the bound.

For n amino acids, there are n− 1 contributions that are independent from the specific conformation (con-

secutive pairs). Moreover, each amino acid i, 1 < i < n, can form at most 2 extra contacts (max contribs)

since, out of the 4 neighbors, two of them are already occupied by i − 1 and i + 1. For i = 1 and i = n,

35

the number of extra contacts is 3, since there is only one linked neighbor (i.e., 2 and n − 1, respectively).

Figure xviii provides the pseudocode for the estimation.

D is the domain of variables (partially assigned)

s is the number of contacts provided by ground pairs

p is the number of possible contacts (at least one variable is non ground)

estimate(D)
1 s← 0
2 p← 0
3 for i = 0 to n− 2
4 do max contribs = 2;
5 if i = 0
6 then max contribs = 3
7 possible = 0
8 known contribs = 1
9 avail spots = 0

10 for j = i + 3 to n− 1
11 do if i%2 6= j%2
12 then avail spots = avail spots + 1
13 if var(i), var(j) are ground

14 then if contrib hp(i, j) 6= 0
15 then known contribs = nown contribs + 1
16 max contribs = max contribs− 1
17 else if i and j domains could generate a contribution

18 then possible = possible + 1
19 s = s + known contribs

20 p = p + min(availspots, max contribs, possible)
21 return s + p

Figure xviii: The branch and bound estimation for the constraint solver

Experimental Results: The model described in this section has been implemented using different solvers.

In particular, the solvers tested in the experiments are:

◦ CLP systems, using built-in branch and bound (SICStus clpfd Ref. [33] and GNU Prolog CLP(FD)

Ref. [39]);

◦ Integer Programming (IP) systems (GLPK, Ref. [40], CPLEX, Ref [41], and PICO, Ref. [42]);

◦ The COLA solver.

An additional version has been tested with COLA: the exact lower bound is computed and provided. This

is to show that most of the time spent during the search with constraint systems is used to guarantee the

optimality of the solution.

Table vii reports the experimental results. For licenses and practical reasons, CPLEX code is run on

a Sun (Sun columns), 64-bit dual-processor Ultrasparc machine, with 300 MHz clock and 512MB RAM,

while the PICO code (Linux columns) is run on a Linux-based machine, Athlon 1.5GHz, 1GB of RAM. The

remaining results are computed with a Windows 2Ghz Centrino, 1GB Ram laptop (Win columns). In order

to relate the results among different machines, the same version of COLA is run on each architecture.

The columns of the table are: the length of the input sequence (n); the execution times under Win-

dows using COLA, COLA with lower bound information (COLA LB), GNU Prolog (GNU), SICStusProlog

36

(SICStus) and GLPK; the execution times under Sun using COLA and CPLEX; the execution times under

Linux using COLA and PICO. All execution times reported are in seconds, with 3 significant digits. Empty

fields denote the fact that the test has not been performed. In the Table, the performance results for each

solver are intended to give an overview of the different systems. The rigorous comparison between each pair

of systems is not possible, because of the different architectures used; however, these results can be used to

compare the performance of other systems w.r.t. the COLA solver.

Table vii: Summary of execution times

n Win Sun Linux

COLA COLA LB GNU SICStus GLPK COLA CPLEX COLA PICO

5 0.00 0.00 0.01 0.00 0.10 0.00 0.23 0.000 0.8
6 0.00 0.00 0.01 0.00 0.10 0.00 0.61 0.001 6.2
7 0.00 0.00 0.02 0.02 1.80 0.01 1.23 0.001 19.1
8 0.00 0.00 0.02 0.03 2.60 0.03 2.36 0.001 31.6

9 0.00 0.00 0.05 0.09 5.30 0.04 11.8 0.002 60.9
10 0.00 0.00 0.09 0.24 83.4 0.12 91.5 0.003 260
11 0.00 0.00 0.19 0.52 134 0.25 94.6 0.006 285
12 0.02 0.00 0.34 1.11 206 0.55 16.7 0.012 483
13 0.02 0.00 1.90 2.38 1010 1.26 163 0.024 2350
14 0.03 0.00 4.18 5.06 2.42 254 0.049 4840
15 0.06 0.00 9.47 10.2 4.79 263 0.090 3900

16 0.38 0.01 20.4 62.5 28.6 79.8
17 0.88 0.00 45.6 145 65.2 3040
18 1.95 0.01 99.6 319 154 2070
19 3.84 0.02 399 727 323 3590
20 7.96 0.04 460 1550 625 4840
21 18.8 0.01 2590 1490 3020
22 41.2 0.01 3230 4700
23 84.8 0.02 6630 4020
24 179 0.05 14100 8050
25 1120 6.23 >86400 7520

26 2720 0.18 >86400 >86400

Figure xix combines the Table vii results into a single overview. The Figure is obtained by scaling the

performances with different architectures using COLA performances as the common denominator.

In Figure xix, the y axis is logarithmic, in order to better show how an increase in the protein size

translates to an exponential growth of the execution time (roughly linear plot). The only exception is

represented by CPLEX. In this case, the growth increases significantly when the length n reaches a full

square core (i.e., k2). This behavior suggests that protein lengths between k2 and (k+1)2, k ∈ N, offer some

properties, e.g., a common core of amino acids of type h composed of a square of side k, that provide some

bounds to the search.

It is interesting to note that the performance of SICStus and CPLEX are very different. SICStus shows

an exponential behavior, while CPLEX has a step like function. For n = 26 (i.e., the next expected jump

in the step function for CPLEX) it is expected that the two execution times are again comparable. Note

that, for n = 26, CPLEX did not produce the optimal solution within 24 hours. For COLA, it is expected

an exponential growth similar to the one computed using the Windows machine and depicted in the graph.

37

10-2

10-1

100

101

102

103

104

105

106

 5 10 15 20 25

T
im

e
(i

n
Se

c.
)

Protein length

COLA
COLA LB

SICStus
GNU Prolog

GLPK
PICO

CPLEX

Figure xix: Comparison between CLP(FD), IP solvers, and COLA

Comparing the two CLP(FD) frameworks reveals that GNU Prolog performs roughly 3 times better than

SICStus.

It is important to observe that the implementation of COLA is between 2 and 3 orders of magnitude

faster than SICStus Prolog. This also translates into a competitive alternative to CPLEX. The introduction

of the exact lower bound (which is harder to compute in constraint systems than in IP systems), reduces

dramatically the search. This could suggest that importing some ideas of IP into the constraint frameworks

could provide a great benefit.

A direct translation of the constraint model into IP is about 2 orders of magnitude slower than the IP

version presented (tested on GLPK). This result is somehow expected, since IP performs better with simple

domain variables (boolean) rather than variables with large domains. It is also interesting to note that the

commercial version (CPLEX) is several orders of magnitude faster than the free version (GLPK). Moreover

the IP formalization, once encoded using constraints, performs several orders of magnitude slower than

SICStus. These facts suggest that the encodings used for both programming styles are the most reasonable

ones.

Finally, the results of PICO system are significantly worse than COLA. Moreover a coarse comparison

among the other solvers shows that the performance of PICO is similar to the performance of GLPK, and

several orders of magnitude worse than CPLEX.

It is very hard to develop general conclusions, since the execution times rely heavily on the structure of

the constraints and on the search strategies employed. A highly specific program for a framework can save

great amount of time, thanks to the effort in coding the problem. This last parameter is usually hard to

evaluate, especially since human skills and tricks used are often problem and paradigm dependent. Here, the

best way to test these paradigms on this problem is to code it in the most natural and simple way in each

framework (i.e., CLP(FD) and IP). In particular, in CLP(FD) Finite Domains are expected to produce good

performances when propagating interval arithmetic information. On the other side, in IP a great amount of

boolean variables usually are better managed by the Linear Programming solving techniques.

38

These results are based on implementations without optimizations and heuristics. In this sense, both

paradigms allow one to introduce many search heuristics and directives for the exploration of the search

space. In IP, usually, the most effective strategy is on the splitting of variables’ domain after a cycle of

LP. Usually bisection is the most common choice, while many alternatives are possible in the selection of

the variable. In CLP(FD), a popular choice is the first fail variable selection, where the variable with the

smallest domain is selected for labeling.

It seems that, in the context of this example, domain propagation, which is not present in IP, is the

key to achieve a good performance. Moreover, CLP(FD) allows the presence of non linear constraints, that

are more difficult to handle in other frameworks. Nonetheless, non-linear constraints can propagate some

information, and thus be effective in pruning the search tree.

Related Work

To the best of our knowledge, very limited work has been conducted in the field of generic constraint solving

in lattice structures.

The constraint programming model adopted is similar in spirit to the model used in Reference [16]—

as it also makes use of variables representing 3D coordinates and box domains. The problem addressed

there is significantly different, as the authors make use of a continuous space model, they do not rely on an

energy model, and they assume the availability of rich distance constraints obtained from NMR data, thus

leading to a more constrained problem—while in the context discussed in this paper the search space has

O(6n) conformations in the FCC lattice for proteins with n amino acids. Every modification of a variable

domain, in the COLA version of the problem, propagates only to a few other variables, and every attempt

to propagate refined information (i.e., the good/no good sub-volumes discussed in Reference [16]) when

exploring a branch in the search tree, is defeated by the frequent backtracking. Thus, this approach is based

on a very efficient and coarse bounds consistency. The ideas of Reference [16], i.e., restricting the space

domains for rigid objects is simply too expensive in the COLA framework. Here a direct grounding of rigid

objects is preferred, since in lattices there are few possible orientations. In COLA , the position of objects

has great variability, due to the lack of strong constraints. The techniques of Reference [16] would be more

costly and produce a poor propagation.

The approach adopted in COLA is also related to the various proposals on spatial constraints, e.g., the C3

system (implemented using CPLEX, in Reference [43]), and the various algorithms for consistency checking

of (2D) Euclidean constraints as in References [44, 45].

The bibliography on the protein folding problem is extensive (see Reference [46] for a survey); the problem

has been recognized as a fundamental challenge in Reference [47], and it has been addressed with a variety

of approaches (e.g., comparative modeling through homology, fold recognition through threading, ab-initio

fold prediction).

The abstraction of the problem in the HP model has been discussed earlier in the paper. Backofen and

Will have extensively studied this version of the problem in the face-centered cubic lattice; the References [12,

15, 35] provide a good overview of their main results. The approach is suited for globular proteins, since

the main force driving the folding process is the electrical potential generated by Hs and P s, and the FCC

39

lattices are one of the best and simplest approximation of the 3D space. Compared to the work of Backofen

and Will, the approach used in COLA refines the energy contribution model, extending the interactions

between classes H and P to interactions between every possible pair of amino acids (see Reference [29]).

Moreover, in this model it is possible to model secondary structure elements, that cannot be reproduced

correctly using only a simple energy model as the one adopted by other researchers.

The use of constraint programming technology in the context of the protein folding problem has been

fairly limited. In Reference [15] constraints over finite domains are used in the context of the HP problem .

In Reference [48], Prolog is employed to implement heuristics in pruning a exhaustive search for predicting

α-helix and β-sheet topology from secondary structure and topological folding rules. In Reference [49]

distributed search and continuous optimization have been used in ab-initio structure prediction, based on

selection of discrete torsion angles for combinatorial search of the space of possible protein foldings .

Conclusion

This paper presented a formalization of a constraint programming framework on crystal lattice structures—a

regular, discretized version of the 3D space. The framework has been realized into a concrete solver (COLA),

with various search strategies and heuristics. The solver has been applied to the problem of computing the

minimal energy folding of proteins in the FCC lattice, providing high speedups and scalability w.r.t. previous

solutions. The speedups derive from a more direct and compact representation of the lattice constraints,

and the use of search strategies that better match the structure of the problem. A branch and bound and

problem-specific heuristics are proposed, showing how they can be integrated in our constraint framework

to effectively prune the search space.

The parallel version of COLA, presented in this paper, proved to be robust and highly scalable. In

particular, this version can be run on a generic cluster supporting MPI, and thus it is suitable for distributed

computing and large-scale parallelism. Compared to the parallel implementation on a shared memory ma-

chine, and using CLP(FD), as presented in Reference [14], there are two main benefits to highlight. The first

is the use of the COLA solver as core engine. The ability to directly access the data structures of the solvers

allows COLA to effectively distribute tasks during the construction of the search tree. In CLP(FD), on the

other hand, each task sent to the CLP(FD) solver, is solved as a whole, and this denies any possibility to

interact at a finer granularity. The results show an improved efficiency and scalability. The second benefit

is a greater portability across parallel platforms, thanks to the use of generic MPI code.

As future work, it is planned to investigate the possibility of using alternative forms of consistency, that

will provide greater propagation and more effective reduction of the search space. Moreover, the definition

of global constraints and relative propagation algorithms could bring major benefits, e.g., rigid structures.

Acknowledgments

The authors would like to thank Federico Fogolari and Giuseppe Lancia for their suggestions and comments.

The work is partially supported by NSF grants CNS 0544373, CNS 0454066, HRD 0420407, and CNS0220590,

and by MIUR projects FIRB RBNE03B8KK and PRIN 2005015491.

40

References

[1] R. Barták. Constraint programming: in pursuit of the holy grail Proceedings of the Week of Doctoral

Students (WDS99), Part IV, MatFyzPress, Prague, June 1999, pp. 555-564.

[2] R. Dechter. Constraint processing. Morgan Kauffman, 2003.

[3] K. R. Apt. Principles of constraint programming. Cambridge University press, 2003.

[4] K. Marriott and P. J. Stuckey. Programming with constraints. MIT Press, 1998.

[5] P. Van Hentenryck. Constraint satisfaction in logic programming. MIT Press, 1989.

[6] J. L. Lassez and J. Jaffar. Constraint logic programming. In Principles of Programming Languages

(POPL), ACM Press, pp. 111–119, 1987.

[7] F. Benhamou, L. Granvilliers, and F. Goualard. Interval constraints: results and perspectives. In New

Trends in Constraints, Springer Verlag, pp. 1–16, 1999.

[8] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming. ACM Trans-

actions on Programming Languages and Systems, 22(5):861–931,2000.

[9] Center for Computational Materials Science, Naval Research Labs, Crystal lattice structures, cst-www.

nrl.navy.mil/lattice/.

[10] W. E. Hart and A. Newman. The computational complexity of protein structure prediction in simple

lattice models. Handbook on Algorithms in Bioinformatics, CRC Press, 2003.

[11] J. Skolnick and A. Kolinski. Reduced models of proteins and their applications. Polymer, 45:511–524,

2004.

[12] R. Backofen. The protein structure prediction problem: a constraint optimization approach using a new

lower bound. Constraints, 6(2–3):223–255, 2001.

[13] A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach to protein structure

prediction. BMC Bioinformatics, 5(186), 2004.

[14] A. Dal Palù, A. Dovier, and E. Pontelli. Heuristics, optimizations, and parallelism for protein structure

prediction in CLP(FD). Principles and Practice of Declarative Programming, ACM Press, pp. 230–241,

2005.

[15] R. Backofen and S. Will. A constraint-based approach to structure prediction for simplified protein

models that outperforms other existing methods. International Conference on Logic Programming,

Springer Verlag, pp. 49–71, 2003.

[16] L. Krippahl and P. Barahona. Applying constraint propagation to protein structure determination. In

Principles and Practice of Constraint Programming, Springer Verlag, pp. 289–302, 1999.

41

[17] C-G. Quimper and T. Walsh. Beyond finite domains: the all different and global cardinality constraints.

In Principles and Practice of Constraint Programming, Springer Verlag, pp. 812–816, 2005.

[18] G. Raghunathan and R. L. Jernigan. Ideal architecture of residue packing and its observation in protein

structures. Protein Science, 6:2072–2083, 1997.

[19] R. Agarwala, S. Batzoglou, V. Danč́ık, S. Decatur, S. Hannenhalli, M. Farach, S. Muthukrishnan, and

S. Skiena. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the

HP model. J. of Computational Biology, 4:275–296, 1997.

[20] H. Ait Kaci. Warren’s abstract machine: a tutorial reconstruction. MIT Press, 1991.

[21] L. Perron. Search procedures and parallelism in constraint programming. In Principles and Practice of

Constraint Programming (CP), Springer Verlag, pp. 346–360, 1999.

[22] G. Gupta, E. Pontelli, M. Carlsson, M. Hermegildo, and K. Ali. Parallel execution of prolog: a survey.

ACM Transactions on Programming Languages and Systems, 23(4):472–602, 2001.

[23] V. Kumar, A. Grama, and V. Rao. Scalable load balancing techniques for parallel computers. In Journal

of Parallel and Distributed Computing, 22(1):60–79, 1994.

[24] R. Finkel and U. Manber. DIB – a distributed implementation of backtracking. In ACM Transactions

on Programming Languages and Systems, 9(2):235–256, 1987.

[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to parallel computing (2nd Ed.). Addison

Wesley, 2003.

[26] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations. In Information

Processing Letters, 11:1–4, 1980.

[27] P. Clote and R. Backofen. Computational molecular biology: an introduction. John Wiley & Sons, 2001.

[28] D. A. Hinds and M. Levitt. A lattice model for protein structure prediction at low resolution. Proc.

Natl. Acad. Sci. USA, 89:2536–2540, 1992.

[29] M. Berrera, H. Molinari, and F. Fogolari. Amino acid empirical contact energy definitions for fold

recognition in the space of contact maps. BMC Bioinformatics, 4(8), Epub, 2003.

[30] L. Toma and S. Toma. Folding simulation of protein models on the structure-based cubo-octahedral

lattice with contact interactions algorithm. Protein Science, 8:196–202, 1999.

[31] F. Fogolari et al. Modeling of polypeptide chains as C-α chains, C-α chains with C-β, and C-α chains

with ellipsoidal lateral chains. Biophysical Journal, 70:1183–1197, 1996.

[32] H. M. Berman et al. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

[33] SICStus Prolog User’s Manual, Release 3.12. Swedish Institute of Computer Science, 2005.

42

[34] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: a platform for constraint logic programming. IC-Parc,

Imperial College, 1997.

[35] R. Backofen and S. Will. Fast, constraint-based threading of HP sequences to hydrophobic cores.

Principles and Practice of Constraint Programming, Springer Verlag, pp. 494–508, 2001.

[36] P. Crescenzi, D. Goldman, C. Papadimitrou, A. Piccolboni, and M. Yannakakis. On the complexity of

protein folding. Proc. of Symposium on Theory of Computing (STOC), ACM Press, pp. 597–603, 1998.

[37] A. Newman. A new algorithm for protein folding in the HP model. In Symposium on Discrete Algorithms.

ACM Press, pp. 876–885, 2002.

[38] A. Dal Palù, A. Dovier, and F. Fogolari. Protein folding in CLP(FD) with empirical contact energies.

Recent Advances in Constraints, Springer Verlag, pp. 250–265, 2003.

[39] D. Diaz. GNU Prolog: a native Prolog compiler with constraint solving over finite domains. gnu-prolog.

inria.fr/manual/index.html, 2005.

[40] GLPK: GNU linear programming kit. www.gnu.org/software/glpk/glpk.html, 2003.

[41] ILOG. ILOG CPLEX: high performance software for mathematical programming. www.ilog.com/

products/cplex, 2006.

[42] J. Eckstein, C.A. Phillips, and W.E. Hart. PICO: an object-oriented framework for parallel branch-

and-bound. In Inherently Parallel Algorithms in Feasibility and Optimization and their Applications,

North Holland, pp. 219–265, 2001.

[43] A. Brodsky, V.E. Segal, J. Chen, and P.A. Exarkhopoulo. The CCUBE constraint object-oriented

database systems. Constraints, 2(3/4):279–304, 1997.

[44] X. Liu, S. Shekhar, and S. Chawla. Maintaining spatial constraints using a dimension graph approach.

In International Journal of Artificial Intelligence Tools, 10(4):639–662, 2001.

[45] J. Allen. Maintaining knowledge about temporal intervals. In Communications of the ACM, 26(11):832–

843, 1983.

[46] J. Skolnick and A. Kolinski. Computational studies of protein folding. Computing in Science and

Engineering, 3(5):40–50, 2001.

[47] Committee on Mathematical Challenges from Computational Chemistry. Mathematical challenges from

theoretical-computational chemistry. National Research Council, 1995.

[48] D. Clark, J. Shirazi, and C. Rawlings. Protein topology prediction through constraint-based search and

the evaluation of topological folding rules. Protein Engineering, 4:752–760, 1991.

[49] S. Forman. Torsion Angle Selection and Emergent Non-local secondary structure in protein structure

prediction. PhD thesis, University of Iowa, 2001.

43

