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Abstract 
 
An extended logic programming language embodying sets is developed in successive 
stages, introducing at each stage simple set dictions and operations, and discussing their 
operational as well as declarative semantics. First, by means of special set terms added to 
definite Horn Clause logic, one is enabled to define enumerated sets. A new unification 
algorithm which can cope with set terms is developed and proved to terminate. Moreover, 
distinguished predicates representing set membership and equality are added to the base 
language along with their negative counterparts, and SLD resolution is modified 
accordingly. It is shown that the resulting language allows restricted universal quantifiers 
in goals and clause bodies to be defined quite simply within the language itself. Finally, 
abstraction set terms are made available as intensional designations of sets. It is shown 
that also such terms become directly definable within the language, provided the latter is 
endowed with negation, which may occur in goals and clause bodies. 

  
Introduction 
 
General agreement exists about the usefulness of set abstractions in specification 
languages (e.g. the Z language [Z86]) and as high-level representations of complex data 
structures [AHU75]. However, only relatively few real (i.e. executable) programming 
languages embody sets as primitive objects in a satisfactory way. A plausible reason for 
this is the difficulty to find out a single representation of sets which supports efficiently as 
required by practical applications the most common operations on sets. One exception on 
the procedural programming side is the language SETL [SD*86] which has demonstrated 
to be a flexible rapid prototyping tool for many applications [DF89]. Other notable efforts 
along these lines but in the framework of functional programming languages are 
MIRANDA [Tur86] (in which sets are defined via the so called ZF-expressions) and ME 
TOO [Naf86]. 
 However, sets seem to fit better in the framework of a declarative style of 
programming, since the latter is  recognized as a most adequate style for rapid prototyping. 
It is well known that the logic programming paradigm well supports this programming 
style (and, as such, it is often used as a prototyping language); therefore, introducing sets 
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in logic programming looks quite promising. 
 Actually, the two built-in predicates setof and bagof of Prolog provide a 
somewhat rudimentary support for sets; however these predicates have no precise logical 
semantics at all, and no specific support (such as ad hoc representations of sets, basic 
operations on sets, etc.) is provided by the language. 
 Our aim is, on the contrary, to define an extended logic programming language (called 
{log}) which supplies special set former terms  as part of the language, and which allows 
basic operations on sets, including the setof predicate, to be defined within the language 
itself, so that a clear logical semantics can be given to them. Works along these lines are 
also reported in [BN*87] and [Kup87] (see Sect. 4).  
 The starting point of our work is a pure logic programming language, that is Definite 
Horn Clauses with no extra-logical constructs. Then, in successive steps, we add to this 
language simple set constructs (namely, enumerated set terms, set membership and 
equality and their negative counterparts) and we show that they have a well-defined 
operational and declarative semantics. Usual operations on sets, such as union, 
intersection, etc. can be defined in this extended language. Moreover we introduce  
restricted universal quantifiers and show that they can be defined quite simply within 
the language. The last step is the introduction of negation in clause bodies. It is then 
shown how intensional set formers can be interpreted in this final language. Notice that 
unlike [Sig89] we consistently restrain our investigation to finite sets only. 
 The paper is organized as follows. Section 1 introduces set terms and the predefined 
predicates ∈ and = to represent enumerated sets and the set membership and equality 
operations, respectively. Declarative and operational semantics of the resulting language 
(called {log}) are defined. This presupposes, among others, the design of a new 
unification algorithm which can deal with set terms. Section 2 enhances {log1} with the 
predicates ∉  and ≠  to represent set non-membership and inequality. In this language, 
called {log2}, are then introduced restricted universal quantifiers. Section 3 defines 
{log3}, the extension of {log2} with negation. In {log3} are then introduced  intensional 
set formers  and it is shown how our language supports this new syntactic feature. Finally, 
a comparison with some other related proposals is carried out in Section 4. 
 Due to space limitations we omit formal proofs; in particular we skip the various 
soundness and completeness theorems holding for our extended resolutions methods 
(sections 1.4, 2.1 and 3.2) as well as all model-theoretic and fixpoint results. All of these, 
together with a description of the Prolog implementation of {log}, are detailed in [DP90] 
and in a forthcoming research report. 

   
1 {log1} 
 
1.1 Syntax of {log1} 
 
To begin with, we introduce in this section only the extensional representation of finite 
sets. All that is presupposed is the availability of: 

- an interpreted constant, {}, for the empty set; 
- a binary function symbol, set_cons, to be interpreted as follows: set_cons(t,s) 

stands for the set that results from adding t as a new element to the set s. 
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 Apart from these two symbols, our first language, {log1}, contains the usual 
equipment of clausal Horn logic (cf. [Llo87]) and two infix predicates, ∈ and =, endowed 
with their usual  set-theoretic meaning. The extensional notation for sets referred to above 
is provided by a collection G of ground terms: this is the smallest collection such that 
 - the constant {} belongs to G; 
 - set_cons(t,s) belongs to G for  any  ground  term t, when  s  belongs  to G. 
 In view of the intended interpretation, any s in G will be called a set term. A non-
ground term t is called a set term if there exists an instantiation σ of the variables in t such 
that  tσ belongs to G; in particular a variable is a set term. If t is a set term, this is 
witnessed by the particular substitution σ that replaces every variable in  t  by  {}. 
 
 Using the syntactic conveniences {t1,...,tn|s} for set_cons(t1,set_cons(t2,..., 
set_cons(tn,s)) and {t1,...,tn} for set_cons(t1,set_cons(t2,...,set_cons(tn,{})), where t1,...,tn 
are arbitrary terms and s is a set term, we have, for instance: 
 - f(a,{5}), i.e. f(a,set_cons(5,{})), is a term, but not  a set term; 

-  {2,g(3),a}, i.e. set_cons(2,set_cons(g(3),set_cons(a,{}))) 
 is a ground  set term; 
- {}, {1,X,Y,2}, {1,1,{2,{}},f(a,{b})} and any term {t1,...,tn|R} with 

a 'tail' variable R, are set terms. 
 For the rest of this paper, we will freely exploit the syntactic features available in 
Edinburgh Prolog in addition to the constructs discussed above. Two sample {log1} 
clauses are: 
 - q(X) :- X ∈ {a,b,c,d} & p(X) 
 - singleton(X) :- X = {Y}. 
  
1.2 Declarative semantics of {log1} 
 
To conveniently interpret the language {log1} introduced so far, a richer semantical 
structure than the one ordinarily associated with definite Horn Clauses is needed. Basically 
the focal point of this extension - which will now be discussed - is the interpretation of the 
functional symbol set_cons, which must be interpreted as a set constructor.  
  Since set_cons is assumed, in our intended interpretation, to fulfill the identities 
    -  set_cons(t1,set_cons(t2,s)) = set_cons(t2,set_cons(t1,s)), 
    -  set_cons(t1,set_cons(t1,s)) = set_cons(t1,s), 
the classical definitions of Herbrand universe and interpretation (see [Llo87] for 
instance) need some recasting. 
 We might proceed to consider the coarsest equivalence relation ≡ over an ordinary 
Herbrand universe H (generated, as usual, by a collection F of functors containing at least 
one constant) which satisfies these two assumptions (with ≡ in place of =), and then define  
UH = H / ≡  to be the desired domain. As a taste matter, however, we prefer our enriched 
Herbrand universe UH  to be constructed as   
                   UH  =  ∪ Ui   
                             i ≥ 1 
where the Ui s form the following hierarchy: 
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  -    U0   =  {ground terms (in H)  where neither {} nor  set_cons  occurs}  

 -    Ui+1= Ui ∪ Pfin(Ui) ∪ {f(TH(t1),..,TH(tn)): f ∈ F \ {set_cons} and t1,...,tn∈Ui} 
where Pfin(Ui) is the set of all finite subsets of Ui.  
 The construction of our modified Herbrand term interpretation function TH is 
interleaved with this definition of the Uis so as to fulfill: 
  TH(c) = c if c is a constant, c ≠ {}; 
  TH({}) = ∅; 
  TH(f(t1,..,tn))= f(TH(t1),..,TH(tn)); 
  TH(set_cons(t,s)) = {TH(t)} ∪ TH(s). 
It is worthwhile observing that since the last of these identities yields no value for 
TH(set_cons(t,s)) unless s is a ground set term, TH  is only partially defined over UH.1  
  
 With the above definitions, the usual results regarding model-theoretic semantics in 
the standard case (namely, existence of an Herbrand model, model intersection property, 
least Herbrand model, equivalence between the least Herbrand model and logical 
consequences) can be proved to be still valid in the case of our language. As usual, given a 
program P, it is possible to define also the immediate consequence operator TP: 
TP(I) = {p(TH(t1),...,TH(tn)): t1,...,tn are ground terms and there exists a ground   
 instance p(t1,..,tn):-L1&...&Lk of a clause in P so that  I |= Li for each i, 1≤i≤k}, 
for every interpretation I of the language. The deviation  from the standard definition of TP 
here is the presence of TH (the Herbrand term interpretation function), which allows us to 
abstract from the syntactic representation of sets. 
 It is then possible to prove the main result regarding the fixpoint semantics, which 
expresses  - as usual - the equivalence between the least fixpoint of TP and the least 
Herbrand model. 
  
1.3 Unification 
 
The development of a procedural semantics for {log1} requires first that the unification 
algorithm is refined in order to deal with sets, and second that the SLD procedure is 
modified in such a way as to include set unification and proper management of the 
equality and membership relations. 
 We assume the definitions (Herbrand system, substitution, solution, etc.) given in 
[LMM86]. 
 First of all it is interesting to point out a new situation created by sets: the inherent 
lack of order inside a set causes the decay of the main result about standard unification, 
that is the 'uniqueness' of the most general unifier. This is clear from the following 
                                     
1En passant, we notice that an entirely analogous interpretation universe based on a domain D of 
constants instead of on H, could be defined by replacing the base induction clause by U0 = D and by 
replacing the inductive step of the definition by  Ui+1 = Ui  ∪ Pfin(Ui). We will not explicitly 
resort to structures of this kind in this paper, although they lie in the background. 
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example: consider the singleton Herbrand system  E = {{X,Y} = {1,2}}; there are only 
two solutions, namely σ1 = {X → 1,Y → 2} and σ2 = {X → 2,Y → 1}, neither of which is 
more general than the other. 
 In this connection, the following definition, referring to a Herbrand system E and a set 
Γ of idempotent substitutions on the variables of E, will prove helpful. Γ is said to be a 
minimal exaustive set of mgus if: 

- the unifiers of E are precisely all substitutions of the form µ°σ with µ ∈ Γ; 
- no µ ∈ Γ is more general than any other unifier σ ∈ Γ. 

 
 A Γ with these properties can be computed, for any given E, via the non-deterministic 
algorithm below. The latter is indeed able to produce through suitable choices, any µ ∈ Γ 
(harmless additional unifiers could also be produced, as we will see). It is convened here 
that each idempotent substitution be represented as a Herbrand system E* in solved form. 

 
SET UNIFICATION ALGORITHM  
 
function unify (E: Herbrand_system): Herbrand_system; 
begin  
  if E is in solved form 
  then return E 
  else  select arbitrarily an equation e in E; 
 case e of 
 1)  X = X: return unify(E \ {e}); 
 2)  t = X, t is not a variable: return unify({X = t} ∪ (E \ {e}))); 
 3)  X = t, t is not a set term and X occurs in t: fail; 
 4)  X = {t0,...,tn|Y}, X ≠ Y and X occurs in t0 or in t1 or ... or   in tn: fail; 
 5)  X = {t0,...,tn|X} and X does not occur in t0,...,tn: 

return unify({X = {t0,...,tn|N}} ∪ (E \ {e})σ) where σ is the substitution 
{X → {t0,...,tn|N}}  and  N is a new variable; 

6)  X = f(t1,...,tn), f ≠ set_cons and X is marked as a set-variable (see below for an  
explanation): fail; 

7)  X = t, X does not occur in t , X occurs somewhere else in E and case 6) does not 
apply: 

        return unify({X=t} ∪ (E \ {e})σ)  where σ is the substitution {X → t}; 
 8)  f(t1,...,tm) = g(s1,...,sm), f ≠ g: fail; 
 9)  f(t1,...,tn) = f(s1,...,sm), f ≠ set_cons: 
       return unify({t1 = s1,...,tn = sn}  ∪ (E \ {e})); 
     10)  {t0,...,tn|R} = {s0,...,sk|S}: 

set_expansion(e,Leaves); 
select a system E' in Leaves; 
return  unify(E'' ∪ ((E' \ E'')  ∪ (E \ {e}))σ),  where   E''  is  the  set   of equations 
for R  and/or S and σ is the corresponding substitution 

end. 
 
 Aim of the function set_expansion is the reduction of set-set equations. This function 
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produces a set  of Herbrand systems, each representing one of the several ways in which 
the elements of the two given sets can be matched. We will not provide here a full 
description of this function, due to space limitations; just the flavor of it will be conveyed 
through a quick informal presentation (see [DP90] for details).  
 Given the set-set equation {t0,...,tn|R} = {s0,...,sk|S}, for example {A,f(X)|R} = 
{f(1)|S}, a certain number of parallel computations are opened by the set_expansion 
function (actually a tree of systems is generated; the leaves of the tree are returned as the 
result of the set_expansion function). The set-set reductions performed by these 
computations can be classified into five classes: 

a)  t0 is compared with one of the elements of the second set and the rest of the first 
set is compared with the rest of the second one; in the example, A = f(1) and 
{f(X)|R} = S; 

b)  same as a), but the rest of the first set is compared with the entire second set; in 
the example, A = f(1) and {f(X)|R} = {f(1)|S}; 

c)  same as a), but the whole first set is compared with the rest of the second set; in 
the example, A = f(1) and {A,f(X)|R} = S; 

d)  t0 is supposed to belong to S, so S becomes {t0|N}, with N a new variable, and 
the rest of the first set is compared with the rest of the second set; in the example, 
S = {A|N} and {f(X)|R} = {f(1)|N}; 

e)  same as d) but the rest of the first set is compared with the whole second set; in 
the example, S = {A|N} and {f(X)|R} = {f(1),A|N}. 

In the last two cases, if R and S are the same variable, the reduction step must be modified 
by substituting R with N in the first set term. 
 Then, in each computation, the set-set reduction is repeatedly applied until a system 
with no set-set equations in it is obtained; from here on it is easy to compute an 
appropriate substitution for the variables R and S. In the example, applying a reduction of 
type d) we get: 
   {S = {A|N}, {f(X)|R} = {f(1)|N}}. 
Then, by applying a reduction of type a) to the second equation we get: 
   {S = {A|N}, f(X) = f(1), R = N}. 
This system of equations is one of the systems returned by set_expansion. 
 
 A remark on the set variable marking mentioned in rule 6 of the set unification 
algorithm. Variables which appear as the tail of a set can only be instantiated as set terms  
(for this reason, we call them set variables). Set variables could be distinguished from 
other variables by associating to them a (static) type specification (perhaps implicit in a 
special naming convention syntax). However we have preferred not to burden the language 
with such a type specification, assuming that set variables can easily  be identified (and 
marked) at run time. In particular we assume that before the function unify  is called all the 
variables appearing as the rest of a set in the system E are marked as set variables; 
moreover, any new variable  created during the unification process is marked in the same 
way.  
 
 It has been proved (see [DP90]) that for any given system E of equations, unify(E) 
terminates. Furthermore, the set of substitutions computed by the unification algorithm is 
exhaustive and correct even though possibly not minimal. However, the number of 
redundancies (i.e. substitutions that are less general than other unifiers of E) is in any case 
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finite  and the output of the algorithm could be 'filtered' in order to obtain the desired 
result. We have also proved that the problem of deciding whether two set terms are 
unifiable is NP-complete. This ensues from a reduction of 3-SAT to the the problem at 
hand.  
 
 An algorithm for unifying set expressions is presented in [JP89]. However as the 
algorithm is only sketched there, not all cases appear to have been covered equally well. 
For instance, given the equation {a|X} = {b|X} the algorithm in [JP89] does not terminate. 
Our understanding, based on [JN84], is that the purpose there was simply to unify two 
terms one of which was supposed to be ground. 
 
1.4 The resolution procedure 
 
The resolution procedure developed for {log1} is an extension of the usual SLD 
resolution, where standard unification is replaced by the set unification algorithm 
presented above. In addition, some changes are required in order to properly manage 
equality and membership as predicates with a pre-assigned meaning. 
 
a)  An equality t = s is solved by unifying the two terms by the new unification 
 algorithm. 
b)  A membership literal t ∈  s is transformed into a set of equations  in accordance  
 with the following algorithm: 

1)  if s is not a set term or s = {} then FAIL; 
2)  if s is a variable X then replace t ∈ s by s = {t |R} where R is a new variable; 
3)  if s is of the form {t1,...,tn|R}  then  open n+1  new  computations replacing t 

∈ s by the following n+1 equations: t = t1,...,t = tn,R = {t |S}, where S is a 
new variable. 

  
2 {log2} 
 
The expressive power of the language {log1} is not high enough yet as to represent many 
common situations in a truly declarative way, a major obstacle being the impossibility to 
use negative information in defining sets, in order - say - to specify that an item does not 
belong to a set. To make an example, if  disj(D,S1,S2) is to state that D is a subset  
of  S1 \ S2, the straightforward definition 
 disj({},X,Y) 
 disj({A|R},X,Y):- (A ∈ X) & (A ∉ Y) & (A ∉ R) & disj(R,X,Y) 
is not viable in {log1}.1 
 Let us therefore proceed to extending {log1} into {log2} by addition of the new 
relators ≠  and ∉ .  From the semantical point of view, it is just necessary to modify the 
notion of interpretation in order to constrain ∉ and ≠ to their intended meaning. Proving 
the existence of an Herbrand model and the intersection property in the resulting richer 

                                     
1 As will turn out from section 2.1, the order of the two last subgoals is immaterial.  
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framework is not more problematic than before; the other model-theoretic and fixpoint 
semantics results that hold for {log1} can also be transferred to {log2} with no need of 
special adaptations. 
 
2.1 Procedural semantics of {log2} 
 
The main idea behind the development of the new resolution algorithm for {log2} is the 
use of a simple constraint logic programming scheme [JL87].  
 In our context, a constraint is a disequation of the form t ≠ s or t ∉ s. The structure of 
the {log2}-resolution process stands to {log1}-resolution as the CLP scheme proposed in 
[JL87] stands to ordinary SLD-resolution. We proceed here to illustrate the basic 
resolution step of our constraint method, based on the so-called disequation analyzer Can 
(a nondeterministic algorithm complementary, in a sense, to unification). Given a system Γ 
of disequations, Can generates a set {<Δ1,θ1>,...,<Δδ,θδ>} of systems Δi in canonical 
form, each paired with a substitution θi which keeps track of the meaning of auxiliary 
variables created by the canonization process. Can  is proved to always converge; also, Γ 
admits solutions if and only if δ ≠ 0 and some Δi has solutions. 
  
 Assume  
  G = (:- C1&...& Cn & B1 &...& Bk) is a goal  
 (the Ccs are constraints, the Bbs are {log1}-atoms); 
 Let 
  Bi  (i ∈ {1,...,k}) be the selected atom,   

R = (H :- C1'&...& Cm' & B1'&...& Bh') be the selected clause. 
 Choose  

a unifier µ of Bi = H (cf. section 1.3); 
  <{D1,...,Dd}, θ> from Can({C1,...,Cn,C1',...,Cm'}µ) (fail if empty);  
 Then 
   G' = :- D1 &...& Dd& (B1 &...& Bi-1 & B1'&...& Bh' & Bi+1 &...& Bk)σ, 
  with σ = µ°θ, is a resolvent of G w.r.t. R in our sense. 

 
 Let us see how the disequation analyzer works on the simple example 

 day(X) :- X ∈ {monday,...,sunday} 
 holy(X):- X ∉ {monday,...,saturday} & day(X). 

  
 :- holy(Day) 
  Can({Day ∉ {monday,...,saturday}) =   
  {<{Day ≠ monday,...,Day ≠ saturday},∅>}  
 :- Day ≠ monday &...& Day ≠ saturday & day(Day) 
  Can({monday ≠ monday &...& monday ≠ saturday}) = {} 
  --> Fail 
  . . . 
  Can({sunday ≠ monday &..& sunday ≠ saturday})={<{},∅>} 
  --> Day = sunday. 
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2.2  Restricted Universal Quantifiers 
 
It has been shown by several authors (e.g. [Kup87], [CFO89]) that  Restricted Universal 
Quantifiers (RUQs) are an useful feature of the representation language in many 
applications, in particular to express in a clear and concise way basic set-theoretic 
operations (such as subset, union, intersection and so on). A RUQ formula has the form 
                     (∀X ∈ s) F   
and stands for the quantified implication 
                    ∀X ((X ∈ s) → F). 
 An extended Horn clause is a formula of the following form: 
              p(t1,...,tn) :- B1 & ... & Bn  
where each Bi can either be an atom or a RUQ (∀X1 ∈ t1...∀Xn∈ tn)G, G atom, satisfying 
the following properties: 
1) if Bi is of the form (∀X1∈ t1...∀Xn∈ tn)G, then the variables X1,...,Xn can occur only 

in G; 
2) if i ≠ j then Xi ≠ Xj. 
Note that the first restriction, motivated (cf. [PP91]) by our set finiteness requirement, is  
not present in [Kup87] since nesting of sets is not allowed there. 
 For example, using RUQs, it is easy to define: 
 1) subset(A,B) :- (∀X ∈ A)(X ∈ B) 
 2) disj(D,X,Y) :- (∀Z ∈ D)(Z ∉ Y & Z ∈ X). 
 
 One might proceed as in [Kup87] by enhancing resolution so as to deal directly with 
RUQs. However, both for conceptual simplicity and for soundness concerns (which do not 
seem entirely fulfilled in [Kup87]) we prefer to transform extended Horn clauses into 
equivalent {log2} clauses without RUQs (hints about a similar idea can be found in 
[Kup88]). We have proved that such as transformation is always possible, and have 
developed the algorithm to perform it. For example 1) gets transformed into the equivalent 
two clauses 
 subset({},Y) 
 subset({A|R},Y):- (A ∉ R) & (A ∈ Y) & subset(R,Y) 
while  2) clearly corresponds to the {log2} definition given in the previous sections; note 
that in {log1 } it is impossible to introduce RUQs: in the example, the constraint A ∉ R is 
necessary to avoid answers like  {1,1,1,..} (a totally unpractical  way  to describe the set 
{1} !). 
 In conclusion, restricted quantifiers are introduced in {log2} only at a syntactic level, 
as a convenient notation, with  no extension at the semantic level.  

     
3 {log3}. Why is negation necessary?  
 
So far we have only considered extensions to definite Horn clause logic. A limited form of 
negative information has been introduced in {log2} by the inclusion of the predefined 
predicates ≠ and  ∉. However, it is easy to realize that the full power of negation (i.e. 
negation in both goals and clause bodies) is required in order to define other important 
operations on sets, without disrupting a declarative programming style. 
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 In particular, negation in clause bodies is required to define a setof predicate, as 
the following example shows: 
 setof_p(S) :- ((∀Y ∈ S) p(Y)) & not r(S) 
 r(S) :- (Y ∉ S) & p(Y). 
In turn, setof predicates can be exploited (see below) as the fundamental tool to define a 
set by specifying the properties of its elements, that is in an intensional way. 
 The intensional representation of sets is a common and very useful feature of a set-
based language; therefore we want the final version of our language (called {log3}) to 
supply the necessary machinery (both at the syntactical and at the semantical level) to 
support this feature (however, still restricting our attention to finite sets). 
 To this purpose not only we must introduce in the language suitable intensional set 
formers but also we must extend Horn clause logic with some form of negation in goals 
and clauses which will be used in the evaluation of the set formers. 
  
3.1 Intensionally defined sets  
 
In {log3} we allow set terms to take the form of set abstraction terms (also called 
intensional or abstract set formers). The following three different abstract set dictions 
(derived from SETL) are allowed: 

- {X : p[X]} 
- {X : p[X] | G} 
- {X ∈ set term | G}  

where X is a variable, p[X] denotes a positive atomic formula (including the predefined 
predicates =, ≠, ∈, ∉) where p is the predicate name and X occurs in one of its arguments, 
and G is a {log3} goal (i.e. a conjunction of either positive or negative atoms). Notice that 
the scope of the variable X in the set term is the term itself. 
 Set abstraction terms have the usual well-known  semantics of naive set theory. 
Actually, in our approach, they exist only at the syntactic level  since they are translated at 
compile time into the corresponding set terms (extensionally defined). Thus, for instance, 
unification between two abstract set formers is not required at all, since set expressions are 
always first evaluated so that the corresponding extensional representation of a set is built 
and the set unification algorithm presented in Sect. 1 is used. For example, the goal 
  :- {X : p(X)} = {X : q(X)} 
is first translated into the equivalent goal 
  :- setof_p(S1) & setof_q(S2) & S1 = S2 
where setof_p and setof_q are defined in the same way as shown above. 
 Notice that the goal G in an abstract set former can be as complex as necessary. For 
example 
 {Z : Z = [Obj,People] | (∀X ∈ People) (X likes Obj)} 
defines a set of pairs of the form [Obj,People] where Obj is an object and People 
is a set of people who like that object. 
 
 As another example let us consider the traditional 'goat-and-cabbage' problem adapted 
from [LM86,Pol90]. The world is represented by quadruples: [Farmer, Goat, 
Cabbage, Wolf] where each variable can take the value 0 or 1 depending on the side 
of the river we are considering. 
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 transitions: {[[0,G,C,W],[1,G,C,W]],% farmer goes alone 
         [[0,0,C,W],[1,1,C,W]], % farmer and goat 
       [[0,G,C,0],[1,G,C,1]], % farmer and wolf 
       [[0,G,0,W],[1,G,1,W]]} % farmer and cabbage 
 riskyStates: {[1,0,0,_],[0,1,1,_],[1,0,_,0],[0,1,_,1]}. 
 
Note that <name>:<set> is just a "sugared" notation which allows the programmer to 
associate a constant name to a set. 
 trips({X∈ transitions | (X = [Y,Z]) & (Z ∉ riskyStates)}) 
 plan(X,Y,[[Z,Y]|R]) :- trips(S) & [Z,Y] ∈ S & plan(X,Z,R) 
          & flat(R,T) &  Y ∉ T 
 flat([],{}) 
 flat([[A,B]|R],{A,B|S}) :- flat(R,S). 
 
It is easy to transform the clause defining trips into the equivalent {log3} clauses using 
negation: 
 setof_trips(S) :- (∀X ∈ S) tr(X,S) & not r(S) 
 r(S) :- (X ∉ S) & tr(X,S) 
 tr(X,S) :-  (X ∈ transitions) & (X = [Y,Z]) &  
     (Z ∉ riskyStates).  
 
 Of course, some syntactic restrictions must be imposed on the predicate p and on the 
goal G which occur in an abstract set former, due to the set finiteness requirement and to 
the use of negation in clauses. Initial experimentation suggests that the class of predicates 
which can be accepted is nevertheless large enough to be still useful in practice.  
Restrictions induced by negation will be hinted at in the next section (a more detailed 
analysis of this issue, along with a discussion of the set finiteness problem can be found in 
[DP90]). 
  
3.2  Negation 
 
Negation has been introduced in our language in order to be able to define predicates (such 
as setof) which can be used to eliminate abstract set formers. A general form of 
programs (called normal programs in [Llo87]) is required in which negation can occur also 
in clause bodies.  
 From among the many approaches concerning negation in logic programming (see 
[Kun90] for a review of the main proposals that have been put forward in recent years), we 
have first chosen adapting to {log} the classical negation by failure [Cla78]. The extension 
of SLD-resolution with this kind of negation (SLDNF) is complete only for a restricted 
class of programs: those satisfying a number of syntactic restrictions, which are known in 
the literature (cf. [ABW87], [CL89]) as stratification, allowedness  and strictness. 
 Completeness of {log}+NF-resolution has been proved by adapting the analogous 
results for the standard SLDNF-resolution to our language, in particular to deal properly 
with the notions of set terms and constraints as defined in the previous sections. 
 
 What is important to consider here is how these syntactical restrictions affect the 
expressive power of our language. It turns out that the main problem is the treatment of 
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RUQs, since their translation may produce some non-allowed clauses. To manage this 
difficulty we have tried to find out syntactic restrictions on RUQs which assure that 
clauses generated by their translation do not cause problems with completeness even 
though some of them may be non-allowed. To this purpose the definition of  confined 
variable is modified so as to cover the case of extended Horn clauses. Ordinarily, a 
variable is said to be confined in a clause if it occurs in a positive literal in the body of the 
clause itself. When a RUQ of the form (∀X∈S) G occurs, essentially three new cases must 
be considered:  
a) X is confined in the clause if S is confined in the rest of the clause or if X is 
 confined in G; 
b) if S is a variable, then it must be confined in the rest of the clause or X must be 
 confined in G; 
c) each variable that occurs in G must be confined outside the RUQ. 
 
 With these restrictions it is possible to introduce negation as failure in {log} without 
losing completeness. Unfortunately certain {log} definitions are no longer viable. For 
instance, the definition of  the predicate disj shown in section 2.2 does not satisfy the 
allowedness conditions given above and should be rejected.  
  
 Other approaches to negation in logic programming are under exploration at present. 
In particular constructive negation ([Cha88], [BM*90]) seems to be very attractive, 
especially because it does not require allowedness for the completeness result to hold. 

  
4 Related work 
 
Not many proposals exist about how to deal with the introduction of sets in a logic 
programming language along lines such as those we have considered in this paper (i.e. by 
a 'deep' integration of the two paradigms, based on a semantical extension of Horn clause 
logic). We can mention [BN*87], [Kup87] and [Sig89] as strongly related to our work. 
 The first paper defines LDL, a logic based language oriented to the manipulation of 
deductive databases. The main differences between LDL and {log} are: 

-  the procedural semantics: bottom-up in LDL, top-down (with set unification) in 
{log}; 

- in LDL the set manipulators (union, intersection etc.) are built-in predicates, 
while in {log} they are programmer-defined;  

- the 'collector capability' is expressed in different ways: via set-grouping in LDL, 
using the combination  set_cons + negation in {log}. 

It is interesting to note that the syntactic restrictions enforced in LDL are very similar to 
those necessary to introduce classical negation by failure in {log} (see Sect. 3). 
 
 Kuper's proposal basically consists in extending logic programming with RUQs (see 
Sect. 2.2 above). Kuper shows the usefulness of this extension but does not offer a full-
blown semantics for the language. 
 
 Quite interesting is a comparison between our proposal and Sigal's work [Sig89]  
which outlines, from a theoretical point of view, a complete logic language with sets, 
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where set-theoretic operations are built-in. A model-theoretic semantics is developed for a 
subset of this language which bears some resemblance to {log}. Sigal's proposal copes 
with the rather intriguing task of manipulating infinite sets (even repeatedly nested one 
inside another). Although theoretically appealing, this approach leads to difficulties that 
are hard to surmount: whence the lack of a realistic procedural semantics for the proposed 
language. 

 
 
Conclusions 
 
In this paper we have presented {log}, a logic programming language supplying finite sets 
(both extensionally and intensionally defined), restricted universal quantifiers (RUQs) and 
basic operations on sets. As regards enumerated sets and RUQs, it has been shown that 
their introduction only presupposes extending Horn clause logic with set terms and a few 
distinguished predicates dealing with sets, namely =, ∈, ∉, ≠. The resolution method and 
unification have been modified accordingly. As regards intensionally defined sets, their 
introduction requires negation in goals and clause bodies. 
 {log} has been fully implemented in Prolog and tested on simple examples. RUQs and 
abstract set formers are translated via preprocessing into equivalent {log2} clauses which, 
in their turn, are executed by a Prolog metainterpreter. Nondeterminism in the unification 
algorithm and in the extended resolution procedure are taken into charge by Prolog's 
backtracking mechanism. 
 Much work still awaits to be done in the direction of effective implementations of the 
{log} language. As a first step, the unification algorithm should be implemented in a lower 
level language than Prolog (e.g. in C), and further investigations should be devoted to 
detecting special cases (ground set terms, flat set terms, etc.) in which set unification can 
be performed more efficiently .  
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