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Abstract. We present a hybrid solver (called GELATO) that exploits
the potentiality of a Constraint Programming (CP) environment (Gecode)
and of a Local Search (LS) framework (EasyLocal++). GELATO allows
to easily develop and use hybrid meta-heuristic combining CP and LS
phases (in particular Large Neighborhood Search). We tested some hy-
brid algorithms on different instances of the Asymmetric Traveling Sales-
man Problem: even if only naive LS strategies have been used, our meta-
heuristics improve the standard CP search, in terms of both goodness
of the solution reached and execution time. GELATO will be integrated
into a more general tool to solve Constraint Satisfaction/Optimization
Problems. Moreover, it can be seen as a new library for approximate and
efficient searching in Gecode.

1 Introduction

Combinatorial problems like planning, scheduling, timetabling and, in general,
resource management problems, are daily handled by industries, companies, hos-
pitals and universities. Their intractability however poses challenging problems
to the programmer: ad-hoc heuristics that are adequate for one problem are of-
ten useless for others [16]; classical techniques like integer linear programming
(ILP) need a big tuning in order to be effective; any change in the specifica-
tion of the problem requires restarting almost from scratch. In the last years
many efforts have been put in the development of general techniques that allow
high-level primitives to encode search heuristics. Noticeable examples of these
techniques are constraint programming (CP—with the various labeling heuris-
tics) [12] and local search (LS—with the various techniques to choose and visit
the neighborhood). We are not dealing with the problem of finding the optimum
of a problem but with a reasonable solution to be computed in reasonable time.
The future seems to stay in the combinations of these techniques in order to
exploit the best aspect of each technique for the problem at hand (after a tuning
of the various parameters on small instances of the problem considered). This
is also witnessed by the success of the CP-AI-OR meetings [15]. In particular,
Large Neighborhood Search (LNS) can be viewed as a particular heuristic for
local search that strongly relies on a constraint solver [3] and it is a reasonable
way to blend the inference capabilities of LS and CP techniques.

In this work we develop a general framework called GELATO that integrates



CP and LS techniques, defining a general LNS meta-heuristic that can be mod-
ified, tuned and adapted to any optimization problem, with a limited program-
ming effort. Instead of building a new solver from scratch, we based our frame-
work on two state-of-the-art, existing systems: the Gecode CP environment [13]
and the LS framework EasyLocal++ [5]. We choose these two systems (among
other ones, such as [11,10,7]) because both of them are free and open, strong
and complete, written in C++, and with a growing community using them.

We show how to model a LNS algorithm combining CP and LS in GELATO:
this modeling is easy to implement and it allows efficient computations. We test
the framework on hard Asymmetric Travel Salesman Problem instances and
show its effectiveness w.r.t. the traditional use of a pure CP approach.

The results of this paper will be combined to those of [2] so as to obtain
a multi-language system able to model and solve combinatorial problems. This
tool will comprise three main parts: a modeling component, a translator, and
a solver. In the modeling component the user will be able to define in a high-
level style the problem and the instance he/she wants to solve and the algorithm
to use (CP search, possibly interleaved with LS, integer linear programming,
heuristics or meta-heuristics phases). The translation component will handle
the compilation of the model and the meta-algorithm defined by the user into
the solver frameworks, like Gecode or others. In the third phase, the overall
compiled program will be run on the problem instance specified by the user and
the various solvers will interact as set by the user in the model. A side-effect of our
work is a new library of search strategies for the Gecode system. Gecode is a free
development environment for CP; GELATO provides some primitives that allow
a Gecode user to easily develop approximate search algorithms, based on LS (in
particular, with LNS). On the other hand, GELATO can be considered also as
a plug-in for the EasyLocal++ system, a framework that allows the user to easily
develop, test and combine several Local Search algorithms. With GELATO, an
EasyLocal++ user can easily exploit the benefits of CP in its LS algorithms.

2 Preliminary concepts

Discrete or continuous problems can be formalized using the concept of Con-
straint Satisfaction Problem (CSP). A CSP is defined as the problem of asso-
ciating values (taken from a set of domains) to variables subject to a set of
constraints. A solution of a CSP is an assignment of values to all the variables
so that all the constraints are satisfied. In some cases not all solutions are equally
preferable, but we can associate a cost function to the variable assignments. In
these cases we talk about Constraint Optimization Problems (COPs), and we
are looking for a solution that minimizes the cost value. The solution methods
for CSPs and COPs can be split into two categories:
− Complete methods, which systematically explore the whole solution space in

search of a feasible (for CSPs) or an optimal (for COPs) solution.
− Incomplete methods, which rely on heuristics that focus only on some areas

of the search space to find a feasible solution (CSPs) or a “good” one (COPs).



2.1 Constraint Programming basics

Constraint Programming (CP) [12] is a declarative programming methodology
parametric on the constraint domain. Combinatorial problems are usually en-
coded using constraints over finite domains, currently supported by all CP sys-
tems (e.g., [13,10,11]).

A CSP P is modelled as follows: a set X = {x1, . . . , xk} of variables; a set
D = {D1, . . . , Dk} of domains associated to the variables (i.e., if xi = di then
di ∈ Di); a set C of constraints (i.e., relations) over dom = D1 × · · · × Dk.
〈d1, . . . , dk〉 ∈ dom satisfies a constraint C ∈ C iff 〈d1, . . . , dk〉 ∈ C. A tuple
d = 〈d1, . . . , dk〉 ∈ dom is a solution of a CSP P if d satisfies every constraint
C ∈ C. The set of solutions of P is denoted with sol(P). If sol(P) 6= ∅, then P is
consistent. Often a CSP is associated to a function f : sol(P)→ E where 〈E,≤〉
is a well-ordered set (e.g., E = N or E = R). A COP is a CSP with an associated
function f . A solution for this COP is a solution d ∈ sol(P) that minimizes the
function f : ∀e ∈ sol(P)(f(d) ≤ f(e)).

This paradigm is usually based on complete methods that analyze the search
space alternating deterministic phases (constraint propagation—values that can-
not be assigned to any solution are removed by domains) and non-deterministic
phases (variable assignment—a variable is selected and a value from its domain
is assigned to it). This process is iterated until a solution is found or unsatisfia-
bility is reached; in the last case the process backtracks to the last choice point
(i.e., the last variable assignment) and tries other assignments.

2.2 Local Search basics

Local Search (LS) methods (see [1,4]) are a family of meta-heuristics to solve
CSPs and COPs, based on the definition of proximity (or neighborhood): a LS
algorithm typically moves from a solution to a near one, trying to improve an ob-
jective function, iterating this precess. LS algorithms generally focus the search
only in specific areas of the search space, so they are incomplete methods, in the
sense that they do not guarantee to find a feasible (or optimal) solution, but
they search non-systematically until a specific stop criterion is satisfied.

To define a LS algorithm for a given COP, three parameters must be defined:
the search space, the neighborhood relation, and the cost function. Given a COP
P , we associate a search space S to it, so that each element s ∈ S represents a
solution of P . An element s is a feasible solution iff it fulfills the constraints of
P . S must contain at least one feasible solution.

For each element s ∈ S, a set N (s) ⊆ S is defined. The set N (s) is called
the neighborhood of s and each member s′ ∈ N (s) is called a neighbor of s. In
general N (s) is implicitly defined by referring to a set of possible moves, which
define transitions between solutions. Moves are usually defined in an intensional
fashion, as local modifications of some part of s. A cost function f , which as-
sociates to each element s ∈ S a value f(s) ∈ E, assesses the quality of the
solution. f is used to drive the search toward good solutions and to select the
move to perform at each step of the search. For CSP problems, the cost function



f is generally based on the so-called distance to feasibility, which accounts for
the number of constraints that are violated. A LS algorithm starts from an initial
solution s0 ∈ S, and uses the moves associated with the neighborhood defini-
tion to navigate the search space: at each step it makes a transition between
one solution s to one of its neighbors s′, and this process is iterated. When the
algorithm makes the transition from s to s′, we say that the corresponding move
m has been accepted. The selection of moves is based on the values of the cost
function and it depends on the specific LS technique.

Large Neighborhood Search (LNS) is a LS method that relies on a particular
definition of the neighborhood relation and of the strategy to explore the neigh-
borhood. Differently from traditional LS methods, an existing solution is not
modified just by making small changes to a limited number of variables (as is
typical with LS move operators), instead a subset of the problem is selected and
searched for improving solutions. The subset of the problem can be represented
by a set FV of variables, that we call free variables, which is a subset of the
variables X of the problem. Defining FV corresponds to define a neighborhood
relation.

For example, a LS move could be to swap the values of two variables, or, more
generally the permutation of the values of a set of variables. Another possibility
for a neighborhood definition is to keep the values of some variables and to leave
the other variables totally free, constrained only by their domains.

Three aspects are crucial in LNS definition, w.r.t. the performance of this
technique: (1) which and (2) how many variables have to be selected (i.e., the
definition of FV ), and (3) how to perform the exploration on these variables.
Let us briefly analyze these three key-points, starting from the third one.

(3) Given FV , the exploration can be performed with any searching tech-
nique: CP, Operation Research algorithms, and so on. We can be interested in
searching for: the best neighborhood; the best neighborhood within a certain
exploration timeout; the first improving neighborhood; the first neighborhood
improving the objective function of at least a given value, and so on. (2) De-
ciding how many variables will be free (|FV |) affects the time spent on every
large neighborhood exploration and the improvement of the objective function
for each exploration. A small FV will lead to very efficient and fast search, but
with very little improvement of the objective function. Otherwise, a big FV can
lead to big improvement at each step, but every single exploration can take a
lot of time. This trade-off should be investigated experimentally, looking at a
dimension of FV that leads to fast enough explorations and to good improve-
ments. Obviously, the choice of |FV | is strictly related to the search technique
chosen (e.g., a strong technique can manage more variables than a naive one)
and to the use or not of a timeout. (1) The choice of which variables will be
included in FV is strictly related to the problem we are solving: for simple and
not too structured problems we can select the variables in a naive way (ran-
domly, or iterating between given sets of them); for complex and well-structured
problems, we should define FV cleverly, selecting the variables which are most
likely to give an improvement to the solution.



2.3 Hybridization of CP and LS

Two major types of approaches to combine the abilities of CP and LS are pre-
sented in the literature [6,8]:
1. a systematic-search algorithm based on constraint programming can be im-

proved by inserting a LS algorithm at some point of the search procedure, e.g.:
(a) at a leaf (i.e., on complete assignments) or on an internal node (i.e., on a
partial assignment) of the search tree explored by the constraint programming
procedure, in order to improve the solution found; (b) at a node of the search
tree, to restrict the list of child-nodes to explore; (c) to generate in a greedy
way a path in the search tree;

2. a LS algorithm can benefit of the support of constraint programming, e.g.:
(a) to analyze the neighborhood and discarding the neighboring solutions that
do not satisfy the constraints; (b) to explore a fragment of the neighborhood of
the current solution; (c) to define the search of the best neighboring solution
as a problem of constrained optimization (COP).

In these hybrid methods one of the two paradigms is the master and the
second one acts as a slave, supporting the master at some point of the search
algorithm. Paradigms not based on the master-slave philosophy have also been
proposed. In [9] LS and constraint propagation are split in their components,
allowing the user to manage the different basic operators (neighborhood explo-
ration, constraint propagation and variable assignment) at the same level. In [7]
CP and LS are combined in a programming language (COMET), that supports
both modeling and search abstractions, and where constraint programming is
used to describe and control LS.

LNS is a LS strategy that can be naturally implemented using CP, leading
to hybrid algorithms that involves the approaches 2(a), 2(b) and 2(c) of the
above enumeration. CP can manage and exhaustively explore a lot of variables
subjected to constraints, so it is a perfect method for the exploration of large
neighborhoods.

2.4 The Solvers used

There are several tools commonly used by the community to solve CSPs and
COPs with the CP and LS paradigms. We focused on Gecode , for the CP aspects,
and EasyLocal++, for the LS algorithms, for three main reasons: goodness of
the solvers (they both are very strong, complete and efficient); guarantee of
maintenance during time (they have a growing user community and they are
actively maintained by their developers); ease of integration (they are free, open
and written in C++, so they can be employed as C++ libraries). Moreover,
all these characteristics ensure the possibility in the future of easily integrating
these solvers with other C++ libraries. Here we can give only a short explanation
of these two solvers, suggesting the reader to take a look at [13] for Gecode and
[5] for EasyLocal++.

Gecode It is an open, free, portable, accessible, and efficient environment for
developing constraint-based systems and applications. It is implemented in C++



and offers competitive performances w.r.t. both runtime and memory usage. It
implements a lot of data structures, constraints definitions, and search strategies,
allowing also the user to define his own ones.

In the Geode philosophy, a model is implemented using spaces. A space is the
repository for variables, constraints, objective function, searching options. Being
C++ an object-oriented language, the modeling approach of Gecode exploits the
inheritance: a model must implement the class Space, and the subclass construc-
tor implements the actual model. In addition to the constructor, a model must
implement some other functions(e.g., performing a copy of the space, returning
the objective function, . . . ).

A Gecode space can be asked to perform the propagation of the constraints,
to find the first solution (or the next one) exploring the search tree, to find the
best solution in the whole search space.

EasyLocal++ It is an object-oriented framework that allows to design, imple-
ment and test LS algorithms in an easy, fast and flexible way. The basic idea
of EasyLocal++(briefly EL) is to capture the essential features of most LS meta-
heuristics, and their possible compositions. This allows the user to address the
design and implementation issues of new LS heuristics in a more principled way.

The frameworks are characterized by the inverse control mechanism: the
functions of the framework call the user-defined ones and not the other way
round. The framework thus provides the full control structures for the invariant
part of the algorithms, and the user only supplies the problem specific details.

Modeling a problem using EL means to define the C++ classes representing
the basic concepts of a LS algorithm: e.g., the structure of a solution (or State, in
the EL language), the neighborhood (or Move), the cost function, the strategy to
navigate the neighborhoods (NeighborhoodExplorer). Once these basic concepts
are defined (in C++ classes that inherit from EL base classes and implement
their characteristics), the user selects the desired LS algorithm and run it. EL
provides a wide range of LS heuristic and meta-heuristic (Hill Climbing, Steepest
Descent, Tabu Search, Multi Neighborhood, . . . ), allowing also the development
of new ones.

3 A Hybrid Solver for Large Neighborhood Search

In this section we describe the hybrid solver we have developed to implement
LNS algorithms that exploit a CP solver in the exploration of the large neighbor-
hoods; we called it GELATO (Gecode+EasyLocal = A Tool for Optimization).
We first define the basic elements of this tool, in a general way, without any
implementation detail. Then we explain the choices we made to integrate these
tools in a unique framework.

3.1 The key ingredients of the solver

GELATO is made-up of five main elements (see Fig. 1): a constraint model, a
move enumerator, a move performer, a CP solver, and a LS framework. The con-



Fig. 1: A UML class diagram of the main components of GELATO

straint model specify the problem we want to solve, according with the definition
given in Section 2.1. The move enumerator and the move performer define the
LNS characteristics (definition of the neighborhood and how to explore it, as in
2.2). The CP solver takes care of exploring the neighborhood. The LS framework
manages all these element together into a LS algorithm. We briefly analyze each
element.

Constraint model Here we define the variables, the domains, the constraints
and objective function of the problem we want to solve. At these level we do
not specify neither the instance input characteristics, that will be passed to
the model as a parameter at run time, nor the search options (variable and
value selection, timeout, . . . ), that will be specified by the move performer
when the model will be actually solved. In GELATO, the constraint model is
specified using the Gecode language, but in general it can be expressed using
any high-level modeling language (SICStus Prolog, Minizinc, OPL) or low level
language, according to the CP solver that will be used. This model will be
actually instantiated and solved by the CP solver during the exploration of a
large neighborhood. It can be also used to find good starting solution for the
main LS algorithm (hybrid approach 1(a) in the enumeration of section 2.3).

Move enumerator (m.e.) It deals with the definition of the set FV for the
LNS, specifying which variable of the constraint model will be free in the explo-
ration of the neighborhood. According with the LS framework, we can specify
several kind of move enumerator: e.g., a random m.e., that randomly selects a
specified number of variables of the problems; an iterative m.e., that iterates
among all the N combination on the variables of the problem; a sliding m.e.,
that considers sliding window of K variables (i.e., FV = {X1, . . . , X1+k}, then
FV = {X2, . . . , X2+k} and so on).



Move performer (m.p.) A move performer collects all the information about
how to search a large neighborhood, like searching timeout, variable and value
selection, constraint propagation policy, branching strategies and so on. It in-
stantiates the constraint model, according to the definition of the problem, the
instance, the move (given by the m.e.), and the CP solver. It invokes the CP
solver passing all these information and obtain the result of the exploration.

CP solver It is attached to a m.p. and must be able to recognize the constraint
model specified and to perform an exploration on the neighborhoods, with
the searching parameters given by them m.p.. It is expected to return the
best neighborhood found (according to the m.p. policy) and the value of the
objective function for it. In GELATO the CP solver used is Gecode, but in
principle, there is no restriction about what kind of solver to use: a solver that
can be easily interfaced with the other components could be a good choice.

LS framework It defines the high level interaction between the above compo-
nents, building up a real LS algorithm: it navigates the searching space through
the neighborhoods defined by the m.e., exploring them using the m.p.. Any
traditional LS search algorithm can be used at this step (e.g., Hill Climbing,
Steepest Descent, Tabu Search). Also meta-heuristic LS algorithm are allowed
(e.g., Multi-Neighborhood, Token Ring Search), if different kinds of m.e. and
m.p. are defined for the same problem. The LS framework used in GELATO
is EasyLocal++.

3.2 Mixing Gecode and EasyLocal++

Gecode and EasyLocal++ are two frameworks that differs in many ways: they have
different aims, use different data structures, and of course implement different
algorithms. However, they have some architectural similarities: they both are
written in C++; they both have base classes for the basic concepts and ask the
user to define his problem implementing these base classes; they provide general
algorithms (for CP and LS) that during executions call and use the derived
classes developed by the user.

To define a hybrid tool for LNS, the natural choice is to use the EL framework
as a main algorithm and Gecode as a module of EL that can be invoked to perform
large neighborhood explorations.

According to the architecture of Gecode and EL and to the main components
of the tools described in section 3.1, we have defined a set of classes (described
below) that make possible the integration between the two frameworks. Only
the first two (ELState and GEModel) must be implemented by the user (with
derived class), because they contain the problem specific information; the other
ones are provided by our tools and the user has only to invoke them (but he is
also allowed to define his own ones).
ELState It is an EL state, that derives from the base class State of the EL frame-

work. It typically contains a vector of variables that represents a solution, and
an integer that contains the value of the objective function of the state.



GEModel It is the Gecode model, and it implements the methods requested to
work with the Gecode language and the EL framework. It inherits methods and
properties from the Gecode Space class.

LNSMove Base abstract class for the LNS moves of our framework. An actual
move must implement the method bool containsVar(Var) that says if a given
Var is free w.r.t. the move. We have defined two actual derived classes: District-
Move and NDifferentMove. DistrictMove is made up by several sets of variables
and of an active set: at a given time t only the variables of the active set are
free; the active set can be changed by the move enumerator. NDifferentMove is
made up by a single set of variables and a fixed integer N : at a given time t
only N variables of the set are free (they can be chosen randomly or iterating
between the variables in the set).

MoveEnumerator Base abstract class for m.e., that cycles between a particular
kind of LNSMove. MoveEnumerator actual classes must implement the func-
tions RandomMove(), FirstMove() and NextMove(). RandomMove(), given a
LNSMove, selects randomly the set of free variables, according to the specific
LNSMove definition (e.g., selecting randomly an active set of a DistrictMove).
FirstMove() and NextMove() are used to cycle on all the possible moves (e.g.,
cycling on all the active neighborhoods of a DistrictMove, or cycling on all the
N-combinations of the variables contained in a NDifferentMove). Our tool pro-
vides an actual MoveEnumerator for each LNSMove: a DistrictMoveME and a
NDifferentME.

MovePerformer This module apply a given move to a given state, returning the
new state reached. We define the GecodeMovePerformer, that takes a ELState
and a LNSMove and, according to the defined GEModel class, builds up a Gecode
Space and solves it.

LNSNeighborhoodExplorer It is the main class that EL uses for neighborhood
explorations. It wraps together a MoveEnumerator and a MovePerformer.

LNSStateManager It provides some basics functionalities of an ELState, such as
calculating the objective function of a state, and finding an initial state for the
search. This last task is performed using CP: an instance of the GEModel of the
problem is instantiated and explored until a first feasible solution is reached.

4 A simple experiment

We tested GELATO on instances of growing sizes of the Asymmetric Travel
Salesman Problem, taken from the TSPLib [14]. In this section we describe the
problem, the solving algorithms we used, the experiment we have performed,
and the results obtained.

The Asymmetric Travel Salesman Problem (ATSP) is defined as follows:
given a complete directed graph G = (V,E) and a function c that assigns a cost
to each directed edge (i, j), find a roundtrip of minimal total cost visiting each
node exactly once. We speak of asymmetric TSP if there exists (i, j) such that
c(i, j) 6= c(j, i) (imagine a climbing road).



4.1 CP Model, LNS Definition and LS algorithm for ATSP

The CP Model we used is chosen from the set of examples in the Gecode package.
We used an existing model in order to point out the possibility of using GELATO
starting from existing CP models, adding only some little modifications to them
(e.g., changing the class headings and a couple of statements in the constructor).

The first state is obtained by a CP search over the same model, without any
pre-assigned value of the variables, and without a timeout (because we need an
initial feasible solution to start the LS algorithm).

The Large Neighborhood definition we have chosen is the following: given a
number N < |V | and given a solution (a tour on the nodes, i.e. a permutation
of |V |), N variables are randomly selected and left free, while the other ones re-
main fixed. Therefore, the exploration of the neighborhood consists in exploring
the N free variables and it is regulated by the following four parameters: (1)
the variables with the smallest domain are selected, (2) the values are chosen
randomly, (3) a timeout is set, and (4) the best solution found before reaching
the timeout is returned.

The LS algorithm used is a traditional Hill Climbing, with a parameter K. At
each step it selects randomly a set of N variables, frees them and searches on them
for the best neighborhood, until the timeout expires. If the best neighborhood
found is better or equal than the old one, it becomes the new current solution;
otherwise (i.e., the value is worse), another random neighborhood is selected and
explored (this is said idle iteration). The algorithm stops when K consecutive
idle iterations have been performed (i.e., stagnation of the algorithm has been
detected). Every single large neighborhood is explored using CP.

4.2 Experiments

The experiments have been performed on the following instances, taken from
the TSPLib [14]: br17 (that we call instance 0, with |V | = 17), ftv33 (instance
1, |V | = 34), ftv55 (instance 2, |V | = 56), ftv70 (instance 3, |V | = 71), kro124p
(instance 4, |V | = 100), and ftv170 (instance 5, |V | = 171).

The instances has been solved either using a pure constraint programming
approach in Gecode or using different LNS approaches encoded in GELATO.
The LNS approaches differs for the number of variables of the neighborhood
(|FV |): 5,10,15 for instance 0; 10,20,30 for instance 1; 10,20,30,40 for instances 2
and 3; 10,20,30,40,50 for instances 4 and 5. We tested different timeouts for the
exploration of a single large neighborhood: one is 0.5N sec, the other is 0.25N
sec. For instance 4 and 5 we also tested shorter timeouts. The number K of
consecutive idle iteration before stop has been fixed to 50.

The pure Gecode CP uses the following parameters: (1) the leftmost variable
is selected, and (2) the values are chosen increasingly. We run it only once,
since it is deterministic, with a timeout of one hour. We also tried a first-fail
strategy (the variable with the smallest domain is selected), but its performance
are slightly worse than the leftmost one. This is probably due to the regular
structure of the problem.



Since LNS computations uses randomness, we repeated each of them 20 times.
During each run, we stored the values of the objective function, that corresponds
to improvements of the current solution, together with the running time spent.
These data have been aggregated in order to analyze the average behavior of
the different LNS strategies on each group of 20 runs. To this aim we perform
a discretization of the data on regular time intervals (with a step of 0.01s for
instance 0 and 1s for the others); subsequently, for each discrete interval we
compute the average value of the objective function on the 20 runs.

4.3 Results

Here we collect the results obtained in the experiments. Every picture shows the
comparison of different algorithms on a single instance: in Fig. 2, the pure CP
approach is compared with LNS with a timeout of 0.5|FV |s for the exploration
of a single large neighborhood; in Fig. 3, the CP approach remains the same,
but the timeout for LNS is set to 0.25|FV |s. In Fig. 4 we concentrate on larger
instances (4 and 5), analyzing three different timeouts for the exploration of a
single neighborhood; we also considered a LNS with |FV | = 50, which has been
experimentally proved to be effective for instance 5. We also tried neighborhoods
with |FV | = 60 but they turned out to be computationally intractable (with too
many variables the explorations of the neighborhood is not effective).
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Fig. 2: Comparison between CP and GELATO (timeout for LNS is 0.5|FV |s)
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Fig. 3: Comparison between CP and GELATO (timeout for LNS is 0.25|FV |s)

4.4 Discussion

Let us add some consideration about the results obtained, that can be summa-
rized as: as instances grow, GELATO definitely outperforms Gecode (if we are
happy with an approximate solution).

For the two small instance (instance 0 and 1), the two approaches are quite
similar. In fact exploring a neighborhood of big dimension, very close to the whole
search space (that with these instance is still tractable), is quite equivalent to
solve the initial CP model. From instance 2 to the last, the trouble of CP in
optimizing large search spaces comes out, and LNS gives better results.

The behavior of the CP algorithms is similar for all the instances: in the
first seconds of the execution, CP finds some improving solutions, but from that
moment it starts an exhaustive exploration of the search space without finding
any other significant improving solution (the line of the objective function be-
comes quite horizontal). On the other hand, LNS algorithms have a more regular
trend: the objective function is permanently improved during time, since a local
minimum is found and then the algorithm is stopped (after 50 idle iterations).

Except for the LNS of 10 variables (too few), all the other LNS strategies find
solutions improving the CP ones. They are also very competitive in time: some
LNS algorithms overcome a lot the CP approach since the first seconds of the
search (e.g. LNS with |FV | = 20 in instances 2,3,4,5, and LNS with |FV | = 30 in
instances 3,4,5). This is due to the efficiency of LNS, that continuously explores
different short parts of the search space, but in an exhaustive way, exploiting
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Fig. 4: Comparison between different LNS timeouts on big instances

the constraint programming approach in any single neighborhood. On the other
hand, the CP approach explores the whole search tree, but it remains bordered
on a limited portion of it, so any improving solution outside this portion cannot
be reached in acceptable time.

Some comparison between the different LNS parameters (number of variables
involved and timeout) can also be done: small LNS algorithms (“small” stands for
LNS with few free variables) are very fast, and can make very big improvements
in some seconds. Larger LNS algorithms are slower (they have bigger spaces
to analyze), but they can reach better solutions: in fact they optimize a larger
number of variables, so their exploration of the search space is more “global”;
it could also happen that a neighborhood is too big to allow CP to perform
an effective exploration. This trade-off must be investigates experimentally: e.g.,
from our tests it comes out that for instance 4, neighborhoods of size 40 are the
best ones, while the ones of size 50 are too big, so ineffective.

The choice of the timeout for the exploration of a single large neighborhood
is strictly connected to the dimension of the neighborhood: with small LNS (10,
20 or 30 variables) a long timeout seems to be better, because it can explore the
whole (small) neighborhood and hopefully return the best neighbor. With bigger
LNS (40,50 variables) it is the opposite: exploring the whole large neighborhood
becomes a waste of time (at some point, constraint programming stops to find
improvements), so it is better to stop earlier the search on the large neighborhood
and continue quickly with another large neighborhood exploration.



A possible meta-heuristic that comes out from all these considerations could
be the following:

1. start with small LNS with a short timeout(in this way we try to get the best
improvement in the shortest time);

2. when no better solutions can be found, increase the timeout then launch
Large Neighborhood Search (in this way an exploration has more time to
explore the neighborhood and could fine better improvements);

3. iterate 2 since a big timeout value is reached;
4. increase the neighborhood’s dimension, set the timeout the initial short

value, then launch Large Neighborhood Search;
5. points 2–4 are iterated since the neighborhood’s dimensions increases to

intractable/ineffective ones.

This Multi-Neighborhood meta-heuristic should find large improving solu-
tions in very short time (that can be quickly output to the user), and then run
progressively deeper searches (even if more time expensive). Source codes and
other technical details are in http://tabu.diegm.uniud.it/EasyLocal++/.

5 Conclusions and Future works

In this paper we showed that: using our GELATO hybrid framework, it is possi-
ble to combine a given CP model into a LS framework in a straightforward way;
in particular, we can use a Gecode model as a base to define every kind of neigh-
borhood, using the functionality provided by EasyLocal++ to execute competitive
Large Neighborhood Search algorithms. We tested GELATO on several instances
of the ATSP, and showed that performances of the hybrid LNS algorighms are
very faster w.r.t. the pure CP approach, on all the non-trivial ATSP instances,
even if the LS strategy is naive (Hill Climbing with random neighborhood se-
lection). We also proposed a general Multi Neighborhood hybrid meta-heuristic
that should improve the results we obtained so far.

We wish to extend the research pursued in this paper along two lines: de-
veloping and testing new hybrid algorithms; extending GELATO into a more
general modeling framework. First of all we want to develop and test the Multi
Neighborhood meta-heuristic proposed and other hybrid algorithms (e.g., based
on Tabu Search, Steepest Descent, . . . ). We will implement these algorithms us-
ing GELATO and test them on a set of benchmark problems, more structured
than the ATSP, also trying new problem-specific neighborhood definitions.

Concerning the second research line, we want to simplify the class hierarchy
of GELATO (some classes and functionality must be added, other ones need
to be cleaned up and refactored). Once GELATO has a more simple and clear
interface, it will be integrated into a more general modeling tool to easily model
and solve CSPs and COPs, that we already presented in [2]. In this tool, the user
will be able to model a problem in a high-level language (e.g., Prolog, Minizinc,
OPL), and specify the meta-heuristic he want to use to solve the problem; the
model and the meta-algorithm defined will be automatically compiled into the



solver languages, e.g. Gecode and EasyLocal++, since we use GELATO; at the
end, the overall compiled program will be run and the various tools will interact
in the way specified by the user in the modeling phase, to solve the instance of
the problem modeled. We have already implemented two compilers from declar-
ative languages to a low-level solvers (the Prolog-Gecode and MiniZinc-Gecode
compilers presented in [2]). We want to extend the functionalities of the com-
pilers already realized and develop the modeling-translating-solving framework
described above. Once this high-level modeling framework is well tested and reli-
able, developing hybrid algorithms will be flexible and straightforward and their
executions will benefit from the use of low level efficient solvers.
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