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Abstract

The problem of Gene Regulatory Network inference is a major concern of Systems Biology. In recent
years, a novel methodology has gained momentum, called Community Network approach. Community
networks integrate predictions from individual methods in a �meta predictor�, in order to compose the
advantages of di�erent methods and soften individual limitations. This paper proposes a novel methodology
to integrate prediction ensembles using Constraint Programming, a declarative modeling and problem solving
paradigm. Constraint Programming naturally allows the modeling of dependencies among components of
the problem as constraints, facilitating the integration and use of di�erent forms of knowledge. The new
paradigm, referred to as Constrained Community Network, uses constraints to capture properties of the
regulatory networks (e.g., topological properties) and to guide the integration of knowledge derived from
di�erent families of network predictions. The paper experimentally shows the potential of this approach:
the addition of biological constraints can o�er signi�cant improvements in prediction accuracy.

1 Introduction

In a cellular context, genes interact to orchestrate a variety of fundamental tasks, such us the response of cells
to environmental stimuli (e.g., a drug), the cell proliferation, and its apoptosis (i.e., cells death). Research in
the �eld of Systems Biology has highlighted the importance of investigating such interactions at the di�erent
levels in which they occur, in order to provide a comprehensive understanding of the behavior of a biological
system. At the cellular level, proteins are considered to be amongst the most important components to carry
out those functions which are necessary for cell regulation. In simple terms, the information needed to produce
proteins is encoded within the genes. The process used to express a protein can be abstracted as a two-step
process: �rst, the information of coding DNA (gene) is transcribed into a messenger RNA (mRNA) (Fig. 1(a)).
Next, the mRNA is translated into a sequence of amino acids, that constitute a protein (Fig. 1(b)).

The products of each of these steps may be involved in the process of gene regulation. For instance
proteins called Transcription Factors (TFs) can bind directly to meaningful regions of the DNA, leading to (1)
enhanced mRNA production associated to a gene, and possibly its translation into proteins, or (2) inhibition
of the process associated to transcription and, hence, gene expression. Some non-coding RNA fragments�i.e.,
RNA which is not translated into proteins�are also associated with regulation of gene expression. For instance
micro RNA (miRNA) may bind to mRNA, promoting its degradation or preventing it from being translated
into proteins [33].

A detailed description of the system involving each of these regulatory mechanisms would not appear a
viable option for studying cells at a system level, due to its enormous complexity. Therefore this machinery is
simpli�ed and projected onto the transcriptomic level, where only genes are considered (DNA level in Fig. 1).

The set of regulatory interactions involving genes in a cell is referred to as Gene Regulatory Network (GRN).
GRNs capture both transcriptomic and proteomic regulatory events (Fig. 1 (c)), which are implicitly encoded
in the gene regulation process and di�cult to interpret in physical terms. In turn, uncovering the nature of
gene regulatory interactions is referred to as GRN inference and it is of central importance in Systems Biology.
Its use is crucial in understanding system regulations and to devise e�ective medical interventions, and it has
been shown to be very promising in understanding some genetic diseases such as cancer [35].

GRNs can be reconstructed from manual literature curation [9], or using reverse engineering computational
approaches [17]. These two �ows have di�erent limitations. The former lacks the possibility of integrating
novel measurements, for instance, in possibly compromised signaling networks, and therefore it cannot detect
cellular responses under speci�c biological stimuli. Causal signaling links can vary depending on lineage and
(epi)genetic background, such that the same perturbation can lead to di�erent signaling responses in di�erent
backgrounds. Thus, it is important to be able to feed a prediction method with experimental data that can be
acquired for the specic biological context of interest. A biological context may, e.g., be de�ned by a combination
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Figure 1: Simpli�ed representation of the regulatory mechanisms involved in a Gene Regulatory Network. Gene X
regulates gene Y , by encoding a transcription factor which activates the transcription of gene Y . Genes X and Y
co-regulate gene Z: the proteins produced by X and Y interact to form a complex, which activates gene Z. In the Gene
Regulator Network inference problem, one aims to reconstruct the relations between genes (bottom of the �gure).

of cell line (a speci�c type of cell) and growth condition (an external stimuli which enhances the production of
some cellular product). The latter methods inherently take account of the biological context of an experiment.
On the other hand they may fail to observe well studied interactions, when the experimental data with which
they are fed only includes particular cell conditions.

The development of new technologies in molecular biology, e.g., DNA microarray or high-throughput se-
quencing, has made available a wealth of genomic data, encouraging the development of novel computational
methods for GRN inference. However, data sets are highly heterogeneous, containing information which is
limited and di�cult to analyze [53]. This impacts the performance of GRN inference methods, which tend to
be biased towards speci�c types of data [31].

To alleviate these di�culties, several alternatives have been proposed, such as methods to integrate hetero-
geneous data into the inference model [47, 20] or to integrate a collection of predictions across di�erent inference
methods�as in the Community Network (CN) approach [36]. Methods based on integration of heterogeneous
data are a promising research direction, but they face several challenges, which span from how to relate di�erent
types of data to issues of data normalization [50]. The CN method has the advantage of promoting the bene�ts
of individual methods, while smoothing out their drawbacks. CN does not exclude the use of heterogeneous
data in the initial prediction set, and has been shown to be robust across species and data sets [36]. The CN
approach poses many challenges, e.g., (i) how to account for strengths/weaknesses of individual methods�e.g.,
the di�culty of Mutual Information methods to discriminate TFs; and (ii) how to use information not handled
by the individual methods.

We propose a methodology based on Constraint Programming (CP) to combine community predictions and
integrate biological knowledge�leading to a new paradigm for community networks, referred to as Constrained
Community Networks. CP is a declarative problem solving paradigm, where logical rules are used to model
problem properties and to guide the construction of solutions. CP o�ers a natural environment where heteroge-
neous information can be actively handled. The use of constraint expressions allows the incremental re�nements
of a model. This is particularly suitable to model biological knowledge integration, when such knowledge cannot
be directly handled by individual prediction methods. CP provides an e�ective framework to model di�erent
types of network information that may become available during problem modeling or hypotheses testing, and
use such information in the inference process.

We tested our method on a set of 360 benchmarks, including large networks proposed by the DREAM3 [41]
and DREAM4 [27] challenges. We perform our experiments with three type of data obtained in two di�erent
experimental setups. We show signi�cant improvements in prediction accuracy compared to a state of the
art CN-based approach, up to 29.5%, when the integration of knowledge about target networks acquired in
biological relevant settings is applied.
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2 Background

2.1 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm commonly used to address combinatorial
search problems. It focuses on capturing properties of the problem in terms of variables (representing the
unknowns of the problem) and constraints over the variables (i.e., relations among the components of the
problem), which are satis�ed exclusively by solutions of the problem. Solutions to the problem are represented
by assignments of values to the variables. CP models are fully declarative and elaboration tolerant, enabling
the incremental integration of new knowledge and the use of sophisticated problem solving techniques (e.g.,
propagation and �ltering methods, search heuristics).

A Constraint Satisfaction Problem (CSP) is formalized as a triple 〈X,D,C〉. X=〈x1, . . . , xn〉 is an n-tuple
of variables�i.e., the unknowns of the problem. D = 〈D1, . . . , Dn〉 is a corresponding n-tuple of domains;
each Di is a set of values, speci�cally the admissible values for the variable xi. C= 〈C1, . . . , Ck〉 is a k-tuple
of constraints. Let us consider a subset Sj ⊆ X of the variables; a constraint Cj over Sj is a subset of the
Cartesian product of the domains of the variables in Sj�i.e., Cj ⊆ Πxr∈SjDr. Intuitively, a constraint over
the variables Sj restricts what are the joint assignments of values to the variables in Sj .

Given an n-tuple A=〈a1, . . . , an〉 ∈ D1 × · · · ×Dn, we denote with A|Sj
the projection of the tuple on the

variables in Sj . For example, if Sj = {x1, x2}, then A|Sj
=〈a1, a2〉. The largest (resp. smallest) value that can

be assigned to a variable xi is denoted by max(Di) (resp. min(Di)).
A solution of a CSP 〈X,D,C〉 is an n-tuple A= 〈a1, . . . , an〉 where ai ∈ Di (for 1 ≤ i ≤ n) and A|Sj

∈ Cj
(for 1 ≤ j ≤ k)�i.e., the projection of A on the set of variables involved in Cj satis�es the relation Cj . Typical
resolution algorithms for CSPs rely on e�cient search procedures, to explore the space of possible solutions, and
on consistency methods, where constraints are used to remove infeasible elements from the domains of not yet
assigned variables. This search is made by exploring a data structure called prop-labeling-tree [5] composed by
two kind of nodes: (i) nodes with as many children as the current size of the domain of a selected variable (non-
deterministic choices) and (ii) nodes with a unique child obtained deterministically by a process of constraint
propagation. Search strategies are developed for alternative visiting of the search tree (that is dynamically
computed using backtracking). Incomplete methods are used for large problems, where the search is guided by
random choices.

2.2 Gene Regulatory Networks and Inference Methods

A Gene Regulatory Network (GRN) can be described by a weighted directed graph G = (V,E), where V is
the set of regulatory elements of the network and E ⊆ V × V × [0, 1] is the set of regulatory interactions.
The presence of an edge 〈s, t, w〉 ∈ E indicates that an interaction between the regulatory elements s and t is
present with con�dence value w ∈ [0, 1] ⊆ R. The number |V | is referred to as the size of the GRN. If the
GRN has no uncertainty, then each edge in E will have weight equal to 1.

In the problem of GRN inference, we are given the set of vertices V (in this paper each gi ∈ V represents
a gene) and a set of experiments, describing the behavior of the regulatory elements. The goal is to accurately
detect the set of regulatory interactions E. The observations associated to the expression pro�les of the gene
gi in a GRN are described via a random variable Gi whose values are typically normalized in [0, 1].

We provide an overview of the network inference methods adopted in our investigation. We classify methods
in �ve classes according to their main component.

2.2.1 Correlation

Correlation-based network inference methods rely on the notion of statistical dependence, a condition in which
random variables do not satisfy a requirement of probabilistic independence. The correlation between gene
expression levels is expressed by a number in [−1, 1] ⊆ R to indicate the presence of a regulatory interaction. A
positive (negative) value indicates an activating (inhibitory) interaction. We consider three standard correlation
coe�cient: Pearson, Spearman, andKendall. Pearson coe�cient relates the standard deviation of the expression
pro�les of two genes with their covariance and it is limited to capture linear dependencies. The other two relate
the ranked expression levels of genes and can capture how well two variables can be described via a monotonic
function. The correlation coe�cients considered are symmetric: i.e., for two random variables X and Y it
holds that corr(X,Y ) = corr(Y,X). Therefore, additional information is required to assign directionality to
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the inferred interactions. As our evaluation does not discriminate inhibiting from activating interactions, we
focus on the absolute value of the correlation coe�cients.1 Correlation measures are widely adopted in practice
to study the relationships among gene expressions, e.g., in [19] they have been used to reconstruct the GRN
associated to the central nervous system development in rats.

2.2.2 Mutual Information

One of the limitations of correlation-based methods is their inability to identify non-linear relationships among
variables. Mutual Information (MI) methods overcome this limitation, by measuring the common information
in two random variables X and Y . Let us assume that X (Y ) range on a �nite set DX (DY ). In a GRN
inference context these values emerges from a discretization of the expression levels of the associated genes
emerging from experimental measurements, possibly normalized in [0, 1]. This approach quanti�es to which
extent knowing one of these variables reduces the uncertainty about the other. For instance, if X and Y are
independent, no additional information about Y is produced by knowing X and vice versa; thus, their mutual
information is 0. We denote with I(X;Y ) the mutual information of variables X and Y . MI-based methods
cannot infer the direction of an interaction.

The Context Likelihood of Relatedness (CLR) [23] assigns a score zij to each interaction between genes gi, gj :

zij =
√
z2
i + z2

j , with zi = maxj 6=i

(
0,

I(Gi;Gj)−µi

σi

)
where µi and σi are respectively the mean and the standard

deviation of the empirical distribution of the MI values I(Gi;Gk) of Gi for all the variables Gk, k 6= i. This
represents the background distribution of the MI for gene gi and it plays a central role in the CLR algorithm by
aiming at reducing the prediction of false interactions�based on false correlations�and indirect interactions.
CLR has been successfully applied to decipher the E. coli transcriptional regulatory network [23].

The Algorithm for Reconstruction of Accurate Cellular Networks (ARACNE) [37] aims at �ltering out indirect
interactions by applying the Data Processing Inequality (DPI). The DPI states that if gene gi interacts with
gene gj through a gene gk then I(Gi;Gj) ≤ min(I(Gi;Gk), I(Gj ;Gk)). After computing the MI of the pair of
genes involved, ARACNE �lters out all the interactions for which their MI does not exceed a given threshold.
Then it prunes the weakest interactions within each triplet of genes if it violates the DPI test . This approach
has been validated using microarray dataset from reconstructing the GRN associated to human B cells [37].

The Conservative Causal Core (C3NET) [4] algorithm consists of two steps. First, it detects the non-signi�cant
connections among gene pairs gi, gj . This is realized by testing the statistical signi�cance of their MI I(Gi;Gj),
by assessing whether the null hypothesis H0 : I(Gi;Gj) = 0 cannot be rejected for a given signi�cance level.
For each gene gi, it selects the most signi�cant link (gi, gj) for which the null hypothesis cannot be rejected
based on their mutual information estimate.

BC3NET is an extension of C3NET in which an ensemble of datasets is generated via bootstrapping and each
of the bootstrapped dataset is fed to the C3NET network inference procedure. The inferred networks are hence
aggregated employing a binomial test [18]. A C3NET algorithm has been used to identify tumor speci�c gene
interactions in prostate cancer datasets [3].

2.2.3 Other Statistical Tests

The Generalized Logical Network (GLN) models interactions as many-to-one relationships between a set of TFs

and a target gene [49]. An interaction is ranked by its p-value in the χ2 test; in the case of ties, interactions
with lower degrees of freedom are ranked higher. The signi�cance of the χ2 statistics accounts for both linear
and non-linear interactions. GLN has been adopted to identify genes from major neuronal pathways in the
alcohol response mechanism from the brains of alcohol-treated mice [49].

2.2.4 Feature Selection

In the context of supervised learning, feature selection is the process of selecting a subset of relevant features to
be used in the model construction. This process can be viewed as an optimization problem, where the measure
to be optimized is a score of the di�erent subsets of features. Since the general problem of selecting the best

1The re�nement of interaction types (inhibiting vs. excitatory) will be a future step in our research.
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subset of features is computationally intractable, several techniques based on (incomplete) local search methods
are commonly adopted [30].

MRNET infers interactions between genes by using mutual information between expression pro�les and a
feature selection procedure called Maximum Relevance Minimum Redundancy (MRMR) [39]. For each variable
Gj , treated as a target gene, MRNET aims at selecting a set of regulators Sj of gj having high MI with Gj
(maximum relevance) and low MI between them (minimum redundancy). The selection of the set Sj is made
via a forward selection procedure, which starts by including the variable with the highest MI with the target
Gj . The other variables being selected will be the ones having high MI with Gj and low MI with the variables
already in Sj . A speci�c network can then be inferred by only keeping edges whose score lies above a given
threshold (similarly to what done in CLR).

GEne Network Inference with Ensemble of trees (GENIE3) is similar to MRNET, in that: (a) it considers
each gene individually, treating it as the target gene regulated by the other genes, and (b) it employs a feature
selection procedure to identify the best set of regulator genes. GENIE3 uses a decision tree learning approach,
where leaves nodes of the decision tree describe class labels, while each internal node represents a test on an
attribute, and each branch represents the outcome of test. A path from the root to a leaf node represents a
classi�cation rule. A decision tree can be learned by splitting the set of items into subsets based on an attribute
value test, so to create di�erent branches, and repeating this process recursively on each derived subset.

The feature selection step of GENIE3 is performed via Random Forests [14]. At each feature selection step,
GENIE3 generates an ensemble of 1, 000 trees, built using a bootstrap sample composed of p − 1 randomly
selected attributes, where p is the number of potential regulators. In each tree, each node n selected for a
split, is augmented with a score that accounts for the total reduction of the variance of the output variable
due to the split: I(n) = |S|σ(S) − |St|σ(St) − |Sf |, where S denotes the set of samples reaching node n, St
and Sf denote the subsets of S for which the test was respectively true or false, and σ(·) is the variance of the
output variable in a given set. For each target gene, the importance of a gene as its regulator is computed by
summing the tree nodes where such gene is used as a variable to split the tree, and averaging the results across
the ensemble of trees. The results of each subproblem are aggregated to get the �nal ranked list of regulatory
interactions. GENIE3 was the best performer in the DREAM 4 challenge [27].

Tigress, similarly to MRNET and GENIE3, employs a feature selection strategy to estimate a score sj(i) of
each candidate regulator gi for a target gene gj . This is determined as the solution of a regression problem,
aimed at predicting the expression level Gj from the expression level of its candidate regulators Gi ∈ Sj ⊆ G:
Gj = fj(Sj) + ε, where G is the set of all the Gi's associated to the genes of the GRN, fj is a regression
function and ε is a term modeling some noise. The algorithm does not aim to model the regression function
fj , but rather to �nd a small set of regulators Sj which are su�cient to provide a good model for Gj . The
score sj(i) is associated to each candidate regulator gi, and it assesses the likelihood of Gi to be involved in the
regression model fj ; this is computed via a Least Angle Regression (LARS) [21] with stability selection [38].
Tigress was evaluated to be the best linear regression-based method in the DREAM5 gene network inference
challenge [36] and one among the top overall performers.

2.2.5 Meta approaches

The Inferelator pipeline is a meta approach based on re-sampling combining median-corrected z-scores (MCZ),
to rank edges based on a z-score derived from TF-deletion data, time-lagged CLR (tlCLR), for the analysis of
time-series data, and a linear ordinary di�erential equation (ODE) model constrained by Lasso [27]. The kernel
of the Inferelator is based on a ODE model which governs the time evolution of a gene product accounting for
both RNA production and degradation rates for each gene (see [11] for details).

The Inferelator was used to predict a large portion of the regulatory network of the archaeon Halobacterium
NRC-1 under speci�c perturbations [11].

2.2.6 Community Inference as Committees

Combining di�erent models for solving classi�cation problems has been an active topic of research in machine
learning [10, 43]. The use of multiple trained models in combination often results in improved performance and
enhanced robustness with respect to merely using a single model in isolation [43]. A widely adopted aggregation
strategy is that of committees, a meta predictor where multiple models are combined by averaging the results
of each individual predictor.
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Figure 2: Community Network generation via committee models integration.

Consider a simple regression problem where we want to predict the value of a continuous function t(x).
The committee prediction for an input x is given by averaging the predictions of the M committee members:
t̂(x) = 1

M

∑M
i=1fi(x), where fi(x) is the prediction of the i-th method in the committee at input x. If

the prediction errors made by the individual predictors are all uncorrelated and have 0 mean, the average
error of a model could be reduced by a factor of M simply by averaging M members. Even though typically
errors are highly correlated and the performance gain could be small, the work of Perrone [40] shows that even
when committee members are correlated and biased, the squared prediction error of the committee (obtained
through an averaging process) is no worse than the mean squared prediction error of the individual committee

members, i.e., (t̂(x)− t(x))2 ≤ 1
M

∑M
i=1(fi(x)− t(x))2. Informally, this means that an averaging process can

only improve the results, provided that the committee members make better than random predictions.
In a binary classi�cation problem, t(x) could be interpreted as the probability of belonging to one class

(e.g., the presence of a regulatory relation), and 1− t(x) as the probability of belonging to the other class (e.g.,
the absence of a regulatory relation); fi(x) represents the prediction of the i-th method for t(x).

In the context of GRN inference, committees are referred to as Community Networks (CNs) and are used to
integrate multiple inference methods to obtain a common consensus prediction, as illustrated in Fig. 2, where
the Pi's represent the GRN predictions obtained by di�erent methods. CNs have been shown to achieve better
average con�dence across di�erent datasets and produce more robust results with respect to the individual
methods being composed [36]. A simple scheme for combining predictions in a community network has been
proposed by Marbach et al. where each interaction is re-scored by averaging the ranks it obtained within each
of all the employed predictions: we will refer to this method as CN rank.

The inference methods adopted in this study is listed in Tab. 1.

Pearson Spearman Kendall MRNET Aracne CLR
C3Net BC3Net Tigress Genie3 Inferelator GLN

Table 1: The Community Network prediction methods adopted.

3 Constrained Community GRN inference

Constraint Technologies and Constraint Programming (CP) have been recently successfully applied in the �eld
of System Biology [52]. For example, Answer Set Programming has been adopted to address problems in
network inconsistencies detection [26] and in metabolic network analysis [48]. CP has been used to investigate
discrete network models, under the Thomas' GRN Model [51], where GRNs are modeled using multi-valued
variables and transition rules [16]. In particular, CP is used to represent GRNs' possible dynamics and to
test, for a given structure of a GRN, the consistency of a set of hypotheses�allowing the relaxation of the
constraints imposed on the network behavior when inconsistencies arise [15]. The Biocham platform [22] makes
use of temporal and other classes of constraints to support modeling and simulation of regulatory networks.
Concurrent constraint programming has also been used to support modeling of biological systems [13], where
interacting molecules are viewed through the lenses of communicating processes.

The CN approach adopted in this work is built by combining multiple GRN inference procedures and
creating an inference ensemble. The methods used to create the ensemble have been selected based on their
performance, popularity and availability.

The methods selection process used to build an ensemble starts from a set of 12 methods from the classes
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described in Sect. 2.2. While building the �nal ensemble, we impose the constraint that exactly one represen-
tative methods from each class should be an ensemble component; the only exception is when two methods
in a class are distinguished by a secondary component. This choice provides robustness and diversity, while
avoiding redundancies that could potentially bias the inference ensemble.

A preliminary version of the research described in this paper has been presented in [24]. The work presented
in this paper provides a more detailed model description and formalization of the CN-based GRN inference
problem, introducing a new set of constraints, more general and e�ective of those originally discussed in [24].
The present work also removes several restrictive assumptions used in our previous work, by limiting, analyzing
and automatically tuning the constraints' parameters. In addition, while our previous work restricted the
constraint solver to integer �nite domains (and therefore creating the potential for discretization errors), the
constraint solver introduced in this paper is capable of handling real values. The present manuscript introduces
a comprehensive assessment of the CN-based GRN inference schema. It includes an extensive evaluation of a
broad set of individual prediction methods and their combination in committees, and analyzes the proposed
method on a wide set of large GRNs and three di�erent datasets.

3.1 Problem Formulation

Given a set of n genes, we describe a GRN inference problem as a CSP 〈X,D,C〉, where:
• X is a set of n2−n variables, each of them referred as Xi→j , with i, j ∈ {1, . . . , n}, i 6= j. These variables
describe regulatory relations (excluding self regulations);

• D is the set of domains for the variables in X. Each Di→j is a �nite set of elements in [0, 1] ⊂ R,
describing the possible con�dence values associated with the regulatory relation modeled by Xi→j . Values
close to 0 indicate high con�dence about the absence of a regulatory relation (with 0 denoting the highest
con�dence), whereas values close to 1 indicate high con�dence about the presence of a regulatory relation
(with 1 denoting the highest con�dence);

• C is a k-tuple of constraints 〈C1, . . . , Ck〉. Each Cj is a constraint over a set of variables Sj ⊆ X.
Constraints expressing restrictions of peculiar network topologies will be discussed in Sect. 3.3.

A variable Xi→j is said to be assigned when its associated domain Di→j is a singleton. We adopt the notation
d(Xi→j) to indicate the value of an assigned variable Xi→j . A solution to the above CSP de�nes a GRN
prediction G = (V,E), with V = {1, . . . , n} and E = {〈i, j, d(Xi→j)〉 | i ∈ V, j ∈ V, d(Xi→j) > 0}.

3.2 Ensemble Analysis and Initial Domains Construction

The proposed CSP solution leverages the collection of GRN predictions within the prediction ensemble by:
(1) tightening the size of the solution search space2 and (2) taking into account the discrepancies among the
community predictions. These objectives are achieved by mapping the edge con�dence levels of each prediction
to the corresponding CSP variable domain. The greater the agreement in the inference ensemble, the smaller
is the set of values in the domain of the variable representing the relation being considered. Thus, the size of
each domain captures the degree of uncertainty expressed by an edge prediction within the inference ensemble.

Let us consider a set of J predictions P of a GRN G = (V,E). For j ∈ {1, . . . , J}, let us denote with
Pj = (V,Ej) the j-th prediction, where Ej are the edges that have been identi�ed by Pj . For a labeled edge

(s, t, w) ∈ Ej we identify w as the con�dence assigned for the presence of that edge in the GRN, and ω#
j (s, t)

as its rank�its position in the descending ordered list of con�dence values of Ej�normalized in [0, 1], where 0
is associated to the last position, and 1 to the �rst one. Furthermore, let θd (0 ≤ θd ≤ 1) be a given threshold,
referred to as disagreement threshold.

The procedure described in Algorithm 1 populates the domains in D with at most three values. For each
edge (s, t), we calculate (line 4) the average con�dence value w_rank, according to the Borda count election

method, as presented by Marbach et al. [36]. This method averages the ranked edge con�dence values (ω#
j (s, t))

assigned by each prediction Pj . Line 4 also determines the discrepancy value w_d within P. The discrepancy
value captures the ensemble prediction disagreement for a given edge, averaging the pairwise di�erences of the
edge ranks associated to each prediction of the ensemble. If the discrepancy value exceeds the discrepancy
threshold θd and the average con�dence value is not strongly informative�that is, it lies between values
L ∈ [0, 1] and U ∈ [0, 1] (line 6)�then we force the domain Ds→t to account for the prediction disagreement by

2For domains having all size b the search space of a GRN inference problem of size n is bn
2−n.
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ALGORITHM 1: Initialization of the Domains of the Variables.

/* Require normalized Pj ∈ P, θd, G = (V,E) */

1 J ← |P|
2 for (s, t) ∈ E do

3 Ds→t ← ∅

4 (w_rank, w_d)←

(
1

J

J∑
j=1

ω#
j (s, t),

1(
J
2

) J∑
j=1

J∑
i=j+1

∣∣ω#
j (s, t)− ω#

i (s, t)
∣∣)

5 Ds→t ← {w_rank}
6 if w_d ≥ θd ∧ L < w_rank < U then

7 Ds→t ← Ds→t ∪
{
max

(
0, w_rank− w_d

2

)
, min

(
1, w_rank+

w_d

2

)}
8 end

9 end

adding a variation of w_d/2 to the average con�dence value. Line 5 ensures the presence of the value w_rank

in Ds→t. All the parameters of the algorithm�i.e., θd, L and U�are automatically tuned, and they depend
entirely on the prediction ensemble (see Sect. 4.3.1 for details).

3.3 Constraints

3.3.1 Sparsity constraints

It is widely accepted that the GRN machinery is controlled by a relatively small number of genes. Several
state-of-the-art methods for predicting GRNs encourage sparsity in the inferred networks [36]. Nevertheless,
when combining predictions in a community based approach, no guarantees on the sparsity of the resulting
prediction can be provided. To address this issue, we introduce a sparsity constraint which is built from
two more general constraints: atleast_k_ge and atmost_k_ge. They both enforce a relation among a set of
variables, to ensure that at least (resp. at most) k of the variables have values exceeding a given threshold:

atleast_k_ge(k,S, θ) ≡
∣∣{Xi ∈ S | d(Xi) > θ}

∣∣ ≥ k (1)

(1) enforces a lower bound (k ∈ N) on the number of variables in S ⊆ X whose con�dence value is greater than
θ (with 0 ≤ θ ≤ 1). The constraint atmost_k_ge is de�ned in the same way where ≥ k is replaced by ≤ k.

These constraints are used to �lter the domains of the variables involved, through a propagation process.
The propagation of the atmost_k_ge constraint is exploited during solution search to enforce its semantics and
performed by the following rewriting rule:3

atmost_k_ge(k,S, θ) :
T = {Xi ∈ S | min(Di) > θ}, |T| = k∧

Xi∈S\T

Di=Di ∩ [0, θ]
(2)

Intuitively, if there are already k variables in S whose possible values are greater than θ, then all other variables
should have θ as an upper bound to their admissible value.

For the atleast_k_ge constraint, early failures can be detected during the solution search, by checking
the upper bound on the number of variables not yet instantiated which satisfy property (1). The associated
propagation rule is:

atleast_k_ge(k,S, θ) :
T = {Xi ∈ S | max(Di) ≤ θ}, |S \T| = k∧

Xi∈S\T

Di=Di ∩ (θ, 1]
(3)

The sparsity constraint ranges over the variables in X. It enforces lower and upper bounds on the number of

edges whose con�dence value is outside a given threshold. Formally, given kl, km, θl, θm (these parameters are
discussed in Sect. 4.3.1) :

sparsity(X, kl, θl, km, θm) ≡ atleast_k_ge(kl,X, θl) ∩ atmost_k_ge(km,X, θm) (4)

3 condition
consequence

indicates that the domain transformation consequence is applied whenever condition is satis�ed
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Figure 3: Values for Xt→s

3.3.2 Edge orientation constraint

Given two variables Xs→t and Xt→s the edge orientation constraint (orient) exploits the con�dence value
assigned to Xs→t to impose an upper bound on the values that can be assigned to Xt→s. This constraint
imposes an orientation for an edge between two given nodes and it is described as follows:

orient(Xs→t, Xt→s) ≡ Xt→s ≤ min(Xs→t, 1−Xs→t). (5)

This constraint bounds the variable Xt→s to the con�dence value of Xs→t and, if the existence of the edge
(s, t) is predicted with a high con�dence (> 0.5), by a factor which is inversely proportional to Xs→t. Figure 3
depicts the upper bound for the con�dence values of the variable Xt→s (the solid line) at the varying of the
values of the variable Xs→t (x-axis).

The propagation of the orient constraint is exploited during the solution search to enforce property (5)
and implemented by the rule:

orient(Xs→t, Xt→s) :
v=d(Xs→t), l=min(v, 1−v)

Dt→s=Dt→s ∩ [0, l)
(6)

3.3.3 Redundant edge constraints

Several state-of-the-art inference methods rely on mutual information or correlation techniques. The community
approach adopted in this work employs methods that use both correlation and mutual information as principal
components for the inference process. One of the disadvantages of such methods is the di�culty in speculating
on the directionality of a given prediction. We de�ne a constraint that can aid in detecting the edge directionality
based on the collective decisions of the CN predictions, among the non MI- or correlation-based methods.

Let us consider a collection of predictions P = {P1, . . . , PJ} for a GRN G = (V,E), and a non-empty set of
predictions H ⊆ P derived from MI-based or correlation-based methods. An edge (t, s) is said to be redundant
if:

∀Pi ∈ P \ H . ωi(s, t) > ωi(t, s) + βi (7)

where ωi(s, t) : V ×V → [0, 1] expresses the con�dence value of the edge (s, t) in the prediction Pi, and βi ∈ R is
a real value associated to each prediction method in H. Similarly, we de�ne a variable Xs→t to be redundant if
the corresponding edge (s, t) is redundant. We use the proposition red-e(t, s) to denote a redundant edge (t, s),
and given a redundant edge (t, s) we call the edge (s, t) the required edge. The redundant_edge constraint
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enforces a relation between two variables Xs→t and Xt→s by imposing an edge orientation constraint on the
redundant variable and the required variable. Let XR be the set of all the required and redundant variables.4

For a pair of variables Xs→t, Xt→s ∈ XR we express a redundant edge constraint as:

redundant(Xs→t, Xt→s) ≡ red-e(t, s)→ orient(Xs→t, Xt→s).

which naturally translates to the propagation rule:

redundant(Xs→t, Xt→s) :
v=d(Xs→t), l=min(v, 1−v), red-e(t, s)

Dt→s=Dt→s ∩ [0, l)
(8)

3.3.4 Transcription Factor constraint

GRN-speci�c information, e.g., sequence DNA-binding TFs or functional activity of a set of genes, is often
available from public sources (e.g., DBD [32] or Gene Ontology [29]). Moreover, several studies show that
similar mRNA expression pro�les are likely to be regulated via the same mechanisms [1]. On the other hand,
not every method may be designed to handle such information, or this information may be only partially
available, and hence not suitably usable by prediction methods. We propose constraints to incorporate such
information in the CN model.

The property that a TF regulates the production of other genes is described by a condition on the out-
degree of the involved gene�for those edges with an adequate con�dence value. The t-factor constraint over
a gene s requires the condition: atleast_k_ge(k,Xs, θ), with Xs = {Xs→u ∈ X | u ∈ V }, and k represents
the co-expression degree, i.e., the number of genes targeted by the TF. In addition, we impose a directionality
constraint between each variable Xs→u and Xu→s whenever u has not been identi�ed as a TF:

t-factor(s, k, θ) ≡ atleast_k_ge(k,Xs, θ) ∩
⋂

u∈XsrTF

orient(Xs→u, Xu→s) (9)

where TF is the set of all the putative transcription factors for the predicted GRN.

3.3.5 Co-regulator constraint

Multiple TFs can cooperate to regulate the transcription of speci�c genes; these are referred to as co-regulators.
When this information is available, it can be expressed by a co-reg constraint. This constraint involves two
TFs, s′ and s′′. The constraint enforces a relation on a set of variables XS, to guarantee the existence of at
least k elements that are co-regulated by both s′ and s′′, for which an interaction is predicted with con�dence
values greater than θ (0 < θ ≤ 1).

Given two distinct TFs s′, s′′ and a threshold θ, the set of all elements co-regulated by both s′ and s′′ is
de�ned as follows:

CR〈s′,s′′,θ〉 = {t | t ∈ V, t 6= s′, t 6= s′′, d(Xs′→t) > θ, d(Xs′′→t) > θ}.

As for the t-factor constraint, a directionality constraint is imposed between the transcription regulators s′

and s′′ and each of their targets u ∈ Xs rTF. Given a co-regulation degree k, a real value θ ∈ (0, 1] and a set
of variables XS = {Xs′→t, Xs′′→t}, for some s′, s′′, t ∈ V di�erent among each other and such that whenever
both Xs′→t and Xs′′→t are in XS, then Xt→u /∈ XS, for all u ∈ V , the co-regulator constraint is expressed by:

co-reg(s′, s′′, k,XS, θ) ≡
|{〈Xs′→t, Xs′′→t〉 |Xs′→t ∈ XS, Xs′′→t ∈ XS, t ∈ CR〈s′,s′′,θ〉}| > k ∩ (10)⋂
u∈XsrTF

orient(Xs′→u, Xu→s′) ∩
⋂

u∈XsrTF

orient(Xs′′→u, Xu→s′′) (11)

We call the (10) coregulation(s′, s′′, k,XS, θ) and its associated propagation rule is described by the
following:

T = |{(s′, s′′, t) | max(Ds′→t) ≤ θ ∧max(Ds′′→t) ≤ θ}|, |S \T| = k∧
Xi∈S\T

Di=Di ∩ (θ, 1]
(12)

4Xs→t is required/redundant if the corresponding edge (s, t) is required/redundant.
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Expressing biological hypotheses and network properties as constraints may assist the phase of experimental
design for GRN inference. The solver veri�es the existence of a set of solutions consistent with the hypotheses,
and its size can be related to con�dence strength of the answer w.r.t. the collective prediction decisions. Consider
the case where a gene is inaccurately identi�ed as a transcription factor, or if none of its targets is identi�ed
among its putative target genes Xs. In such a case, the CSP will return no valid models.5 In order to revise
the model and generate valid solutions, a relaxation of the tf constraint is required. This can be achieved by
either removing such constraint from the model or by changing the putative target set Xs. In the case where
Xs includes the entire set of genes in the network, and the model is still unsatis�able, then, it can be claimed
that, w.r.t. the knowledge leveraged by the CN prediction ensemble, such transcription factor has no direct
e�ects on the genes analyzed, and the associated tf constraint can be removed. When performing inference on
gene expression data, analysis of gene sub-networks may hide known global properties. It is crucial to test the
biological value of a model prior generating the GRN prediction.

3.4 Solution Search

The proposed modeling of GRN prediction allows a signi�cant degree of �exibility in exploring the solution
space. We implement an incomplete search strategy, that explores the prop-labeling tree (i.e., the search space
of assignments to the variables�see Sect. 2.1) making use ofMonte Carlo (MC) methods, via a left-most (�xed)
variable selection strategy or prioritizing the variables Xs→t, with s ∈ TF, when the TF set is known. We
visit the prop-labeling-tree executing a random choice (i.e., a random value selection) when non-deterministic
choices occur. After every non-deterministic choice is done, the propagation rules described earlier are applied
to possibly reduce the non-determinism of unlabeled variables. The search stops after a given number of trials
or a when a given number solutions have been found.

3.5 GRN Consensus

A challenge in GRN inference is the absence of a widely accepted objective function to drive the solution
search. We decided to generate an ensemble of m solutions and propose three criteria to compute the �nal GRN
prediction. Given a set of m solutions S = {S1, . . . , Sm}, where each Si = 〈ai1, . . . , ain2−n〉, let S|Xk

=
⋃m
i=1{aik}

be the set of values assigned to the variable Xk
6 in the di�erent solutions, and freq(S, a, k) be the function

counting the occurrences of the value a among the assignments to Xk in the solution set S. The consensus
value a∗k associated with the variable xk is computed by:

• Mode: a∗k = arg maxa∈S|Xk
(freq(S, a, k)). This estimator rewards the edge con�dence value

appearing with the highest frequency in the solution set. The intuition is that edge-speci�c con�dence
values appearing in many solutions may be important for the satisfaction of the constraints.

• Average: a∗k = 1
m

∑m
i=1 a

i
k. It computes the average edge consensus among all solution in order

to capture recurring predictive trends.

• Hamming distance: a∗k = ahk , where: h = mini
∑
j HD(Si, Sj),HD(Si, Sj) =

∑
k |l(Xi

k)− l(Xj
k)|,

and l(Xi
k) is the position of the value aik in the domain Dk, whose elements are listed in increasing order.

This measure is a global measure, that acts collectively on the prediction values of all edges, returning
the solution which minimizes the Hamming distance among all edge prediction values.

3.6 A Case Study

We provide an example to illustrate our approach. We extract a subnetwork of ten nodes from the E. coli
regulatory network (Fig. 4 (a)) and simulate its dynamics using GeneNetWeaver (GNW) [44]�a standard
software for GRN inference evaluation. The target network has two transcription factors (leuO and bglJ )
which are in turn co-regulators for genes bglG, bglF, bglB, and it has 11 interactions.

Phase 1: CN Predictions. The prediction methods employed to construct the �nal community network are: (i)
BC3NET, (ii) CLR, (iii) GENIE3, (vi) GLN, (v) Inferelator, (vi) Pearson Correlation, and (vii) Tigress. The
prediction ensemble is obtained by feeding a multi-factorial expression dataset composed of 10 measurements to
each of the methods aforementioned. The data is generated via GNW. In addition, we generate a Community

5Accordingly to the interaction patterns detected by the prediction methods employed in the committee.
6For readability we write here Xk rather than Xi→j .
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Network prediction, CN rank (Fig. 4 (b)), by averaging the ranks obtained within each individual prediction, as
done in [36], and use it as baseline to build the domain variables (see Algorithm 1) and for evaluation.

Phase 2: Modeling the CSP. The execution of Algorithm 1 for the prediction disagreements analysis reduces
the initial domain sizes to 1 for 21 cases, and to 3 for the others. We automatically tuned the parameters of
the algorithm, as described in Sect. 4.3.1.

A sparsity constraint is imposed at the global level:

atleast_k_ge(kl,X, θl) ∩ atmost_k_ge(km,X, θm) (sp)

where X are the variables describing all possible interactions of the network.
As the inference ensemble adopted employs methods that may su�er from the edge redundancy problem, we

impose a redundant constraint for all the edge pairs (s, t), (t, s) that satisfy the redundant property (see (7))
as:

red-e(t, s)→ orient(Xs→t, Xt→s). (re)

This constraint is able to reduce the value uncertainty for 12 additional variables�only one element in their
domains can possibly satisfy the conditions above for any value choice of the required edge variable.

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

cadC bglB

leuO

leuA
bglJ

bglF

bglG

leuL

leuD

leuB

a.

b.

c.

d.

e.

f.

Figure 4: An extract of 10 node E.coli GRN (a) (from [25]) and its the CN rank consensus prediction (b). The CCN
predictions after the integration of the sparsity constraint (c), the redundant constraint (d), the t-factor constraints
(e) and co-reg (f).

Phase 3: Generating the Consensus. We perform 1, 000 Monte Carlo trials producing a set of solutions which
we refer to as Constrained Community Networks (CCNs).

To illustrate the e�ects of constraints integration on the CCNs, we consider the best prediction returned
by each CSP exhibiting a di�erent combinations of the imposed constraints. We plot it as a graph containing
all and only the edges of highest con�dence necessary to make such graph weakly connected. These resulting
predictions are illustrated in Fig. 4 (c�d), together with the CN rank (b). In each network, the thick edges
denote the true positive predictions, the dotted edges denote the false positive predictions, and the gray edges
with white arrows denote the false negatives. The results are also summarized in Table 2, where we report
the AUROC and AUPR scores [7] for the best prediction (CCNbest) generated and for each CCN generated by
the evaluation criteria presented in in Sect. 3.4: Mode (CCNmode), Average (CCNavg) and Hamming distance
(CCNhd).

7

7AUROC and AUPR are popular measures from the machine learning literature�see Sect. 4.2.
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Phase 4: Employing network speci�c information. Let us now model some speci�c information about the
target network. The target network includes two TFs: leuO and bglJ, which can be modeled via two t-factor

constraints as:

atleast_k_ge(k,XleuO, θ) ∩
⋂

u∈XleuOr{leuO,bglJ}

orient(XleuO→u, Xu→leuO),

atleast_k_ge(k,XbglJ , θ) ∩
⋂

u∈XbglJr{leuO,bglJ}

orient(XbglJ→u, Xu→bglJ), (tf)

with Xi = {Xi→j ∈ X | j ∈ V } for i = leuO, bglK, and the parameters k and θ set as described in Sect. 4.3.1.
Fig. 4 and Table 2 show the improvements using this �nal formalization. Finally, speculation about the activity
of genes leuO and bglJ as co-regulators can be captured via a co-reg constraint expressed by:

coregulation(leuO, bglJ, k,XS, θ)∩
⋂

u∈Xsr{leuO,bglJ}

orient(XleuO→u, Xu→leuO)∩

⋂
u∈Xsr{leuO,bglJ}

orient(XbglJ→u, Xu→bglJ), (cr)

where XS = {Xs→t | s ∈ {leuO, bglJ}, t ∈ V } is the set of all candidate regulations having leuO or bglJ as
TF, and k and θ set as described in Sect. 4.3.1. The application of this additional constraint produces further
improvements (Fig. 4 and Table 2).

CCNs CN rank CCN best CCN avg CCNmode CCN hd

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
sp 0.716 0.302 0.831 0.4 0.789 0.328 0.671 0.283 0.745 0.291

+re 0.716 0.302 0.855 0.396 0.814 0.341 0.73 0.304 0.773 0.326
+tf 0.716 0.302 0.942 0.551 0.848 0.415 0.777 0.366 0.824 0.421
+cr 0.716 0.302 0.95 0.659 0.902 0.498 0.777 0.366 0.781 0.299

Table 2: The prediction accuracy of the CN rank and CCNs on the 10-node "E.coli" GRN.

4 Performance evaluation

We systematically assessed the ability of the Constrained Community Network schema to accurately reconstruct
GRNs both in an ab-initio scenario (only datasets information available) and in presence of prior information
in biologically relevant settings. We started by conducting experiments to select a subset of methods to be
used in the committee schema to construct a Community Network. We assess the power of each constraint
individually and how the constraint interaction a�ects the performance predictions. Finally, we evaluate the
performance of the CCNs predictions against the CN schema. Performance is validated against the set of gold
standard GRNs.

4.1 Benchmark networks & datasets

The benchmark networks adopted to asses the performance of our method were produced extracting sub-
networks from the Escherichia coli [2, 25] and Saccharomyces cerevisiae [28, 42] regulatory networks. The
datasets used to simulate the dynamics of such networks were generated in GeneNetWeaver [44], a tool com-
monly adopted for the generation of synthetic GRN benchmarks, and used to generate the synthetic datasets
for the DREAM3 [41] and DREAM4 [27] competitions.

We adopt two type of steady-state expression data8:
(1) Multifactorial : these are measurements obtained by (slightly) perturbing all genes simultaneously. Multi-
factorial data might correspond, for example, to expression pro�les obtained from di�erent patients or biological

8Experiments where the mRNA expressions are observed once when at a steady state.
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replicates. Such type of data is simpler and less expensive to obtain than other types of data, such as knock-
out/knockdown or time series data, and is thus more common in practice; however, it is also less informative
for the prediction of edge directionality [8] and therefore makes the regulatory network inference task more
challenging.
(2) Knockout : these are steady-state levels of a single-gene knockout (deletion). The datasets are built by
performing an independent knockout for a subset of genes. A knockout experiment is simulated by setting the
gene's transcription rate to zero.

The complete benchmark network set adopted in this work is composed of 20 large GRNs, each described
by 3 datasets: one containing multi-factorial data, one containing knockout data, and another one containing
both data types. We will refer to these three datasets as mf, ko, and all, respectively. The benchmark set is
composed of:
(1) FDP Networks: 5 networks of sizes 100 extracted from the E. coli and other 5 networks of the same size
from the S. cervise regulatory networks, denoted respectively by Ei and Si with i= 1, . . . , 5. The associated
datasets are generated via GNW, by setting the value of Seed to random and the Neighbor selection to 20%.
The model was generated by producing 100 microarray datasets, enabling both the ODE and the Stochastic
Di�erential Equation options, with the SDE value equal to 0.05. The noise level was set to simulate the
microarray standard noise with default parameters.
(2) D3: 5 networks from the DREAM3 competition [41], denoted by D31, . . . , D35 and consisting of 100
genes, built by extracting modules from the E. coli and from a yeast genetic interaction network [42]. Data
normalization was made by the competition organizers.
(3) D4: 5 GRNs from the DREAM4 competition [27], denoted by D41, . . . , D45 and consisting of 100 genes. The
network topologies have been extracted from the transcriptional regulatory networks of E. coli and S. cerevisiae.
The data corresponds to noisy measurements of mRNA levels based on SDEs (Langevin equations) and has
been normalized to values in [0, 1].

Figure 5: Gene regulatory networks with IDs E2 (left), D33 (center) and D35 (right).

The GRNs adopted in this study are representative of a diverse range of heterogeneous network topologies,
varying properties such as sparsity, number of hubs and local connectivity�as illustrated in Fig. 5. A summary
of the network topologies used in the performance assessment is given in Table 3, where we report the network
ID, the transcription regulatory network from where the network has been extracted, the total number of gene-
gene interactions (edges) and the number of bidirectional regulatory interactions (in parenthesis), the number
of TFs, and the number of network hubs�de�ned as the number of nodes whose out-degree exceeds the average
TFs out-degree for the same GRN.

We adopt the datasets associated to the FDP GRNs to asses the individual methods prediction performance
and to train the construction of the community network prediction under the Borda rank election schema
(CN rank). This results in 4, 320 individual predictions and 360 CN predictions. We use the complete collection
of datasets to assess the performances of the CCNs against the CN predictions.

4.2 Performance assessment

To measure prediction accuracy we evaluate each prediction as a binary classi�cation task�where interactions
are predicted as either being present or absent. The ranked list of interactions is compared against a gold
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ID GRN Edges TFs Hubs ID GRN Edges TFs Hubs
E1 E. coli (*) 148 (4) 17 8 S1 S. cerevisiae (**) 174 (0) 17 9
E2 E. coli (*) 151 (6) 19 7 S2 S. cerevisiae (**) 205 (0) 18 9
E3 E. coli (*) 218 (6) 18 7 S3 S. cerevisiae (**) 207 (0) 18 6
E4 E.coli (*) 159 (4) 17 7 S4 S. cerevisiae (**) 168 (0) 18 9
E5 E. coli (*) 171 (10) 20 5 S5 S. cerevisiae (**) 202 (0) 20 7

D31 E. coli (***) 125 (0) 26 11 D41 Synthetic (*,**) 176 (14) 40 8
D32 E. coli (***) 119 (0) 19 7 D42 Synthetic (*,**) 249 (14) 35 7
D33 Yeast (****) 166 (0) 59 26 D43 Synthetic (*,**) 195 (6) 44 17
D34 Yeast (****) 389 (0) 70 25 D44 Synthetic (*,**) 211 (8) 40 14
D35 Yeast (****) 551 (0) 80 30 D45 Synthetic (*,**) 193 (4) 34 15

Table 3: Properties of the benchmark network topologies. (*) [25], (**) [6], (***) [46], (****) [42].

standard via two measures largely adopted in machine learning: the area under the precision vs. recall curve
(AUPR) and the area under the receiver operating characteristic curve (AUROC)�true positive rate vs. false
positive rate [7]. To compute the AUROC and the AUPR curves, we express the measures of true positive
rate (TPR), false positive rate (FPR), precision and recall as functions of a cuto� threshold (k), which denotes
the number of ranked edges to be considered. Let us denote with P the number of interactions in the gold
standard, with N the number of negatives (absent interactions), and with T = P + N the total number of
putative edges.

The true/false positive rates and precision and recall are de�ned as follows:

TPR(k) = TP (k)
P FPR(k) = FP (k)

N precision(k) = TP (k)
TP (k)+FP (k) recall(k) = TP (k)

P

where TP (k) (FP (k)) is the number of true correct (incorrect) predictions among the �rst k elements in the
interaction list. An AUROC value of 0.5 (1.0) corresponds to a random (perfect) prediction. AUPR values
close to 0 indicate the predominance of erroneous predictions, while a value of 1.0 denotes a prediction with no
errors.

4.3 Settings

We performed the various experiments using the R language and a generic CSP solver, capable of handling
real valued variables and of exploring the search space using a prop-labeling tree with random value selection
(Sect. 3.4). We use R to generate the GRN predictions for each method presented in Sect. 2.2 and to assess
their individual performance and the performance as committees in ranked-based community networks. The
parameters associated to each prediction method have been set to the default values, and the predictions
generated are fed to the constraint solver. The constraint solver generates the constrained community networks.
Our CSP solver explores the queue of constraints using techniques based on the notion of event (a change in
the domain of a variable) [45] and is implemented in C++.

For each experiment, we perform 10,000 Monte Carlo trials and generate the CCNs using all of the solutions
found. We generate four CCN consensus solutions, one for each estimator described in Sect. 3.4 (CCNmode,
CCNavg, CCNhd) and CCNbest, as the best prediction with respect to the AUROC score. We notice that
the CCN produced via the mode and avg estimators may outperform the CCNbest, as they generate a new
solution, starting from those found during the search phase, which may not be part of such ensemble. All the
experiments have been performed on an Intel Core i7 3770 machine, 3.4GHz with 16 GB of RAM, equipped
with the SuSE Linux operative system.

4.3.1 Automatic parameter tuning

Let us now discuss the algorithms and constraints parameters tuning adopted by default by the system. In
what follow, we will assume that the edge predictions in CN rank are sorted from the most likely one to the least
likely one, and we will refer to CN rank[i] as the con�dence value assigned to the highest ith edge prediction
in CN rank. We will denote by n and e = n2 − n the size of a GRN and the number of putative regulators,
respectively.

Domain construction: The domains analysis and reduction phase, described in Algorithm 1 is used to assess the
community prediction disagreements on a given edge. Recall that the bounds L and U are used to discriminate
whether the con�dence for the presence/absence of an interaction is strong within the community network
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prediction. Their values are selected to be, respectively, the highest con�dence value in the last CN rank decile
and the lowest con�dence value in the �rst CN rank decile. The disagreement threshold θd is set to the average
of the discrepancy values w_d across all the edges of the network. A summary of the parameters values is
reported below:

L = CN rank[0.9 e] U = CN rank[n] θd =
1

|E|
∑

(s,t)∈E

( 1(
J
2

) J∑
j=1

J∑
i=j+1

∣∣ω#
j (s, t)− ω#

i (s, t)
∣∣)

We also tried to populate domains in a non symmetric way, e.g., by looking at how many methods lie inside
which quantile and by assigning a value representative of each quantile. This method led to worst results w.r.t.
the one adopted in our experiments.

Sparsity constraint: To guide the parameter selection for the sparsity constraint, we set the values kl and km
(see Eq. (4)) to be, respectively, n and n log(n), since the number of edges in a sparse network is considered
to be O(n log(n)).

To identify the thresholds θl and θm, we select for each gene the minimum (resp. maximum) weight w̄,
such that the number of outgoing edges in the CN rank predicted with con�dence greater than w̄ is greater
than (resp. less than or equal to) 1 (resp. log(n)) and average these values. By doing so, we try to impose
a restrictive condition for the satisfaction of the atleast_k_ge and atmost_k_ge constraints. The sparsity

constraint values are summarized next:

kl = n θl = 1
n

∑
s∈V θ

s
l km = n log(n) θm = 1

n

∑
s∈V θ

s
m

θsl = minw̄ |{(s, t, w) ∈ CN rank | t ∈ V,w ≥ w̄}| > 1
θsm = maxw̄ |{(s, t, w) ∈ CN rank | t ∈ V,w ≥ w̄}| ≤ log(n)

Redundant edge constraint: The parameters βi introduced in Eq. (7) for the redundant edge de�nition are set
to the mean of all the di�erences of the con�dence values of the pairs of edges (s, t) and (t, s) in each CN
ensemble prediction Pi ∈ P \ H (see Eq. (7)):

βi =
1

|E|
∑

(s,t)∈E

(wis→t − wit→s),

where wis→t is the con�dence value associated to the edge (s, t) reported by Pi.
We also tried to learn the values of the βi of Eq. 7 using a set of 10 training networks. In our study we

compare the con�dence values assigned to the true edges ws→t�present in the gold standard�against the
con�dence assigned to the opposite edges wt→s�true negatives�for each individual prediction Pi in P \H and
estimate the βi ≥ 0 solving the following linear program:

maximize |{(wis→t − wit→s) > βi | (s, t) ∈ EGS ∧ (t, s) 6∈ EGS}|
subjected to : |{(wis→t − wit→s) > βi | (s, t) 6∈ EGS ∧ (t, s) ∈ EGS}| = 0,

where EGS is the set of edges in the gold standard. Applying the determined βi to Eq. (7) in our experiments
resulted in almost all cases in detecting no redundant edges.

Transcription factor constraint: The atleast_k_ge constraint parameters k and θ employed to express a
t-factor constraint are automatically set so that k = log(n) and θ = CN rank[k]. To guarantee the constraint
satisfaction, we add the value θ in the domains of those variables Xi involved in the tf constraint, having
max(Di) < θ.

Co-regulator constraint: The values for the co-reg constraint parameters k and θ (see Eq. (7)) are the same as
those used in the tf constraint. Also in this case, we expand the domain of the variables involved as described
in the previous paragraph.

To guarantee the satisfaction of the constraints orient(Xs→t, Xt→s), we introduce a value 0 in the domains of
the variables Xt→s if min(Dt→s) ≥ max(Ds→t).

4.4 Analysis of individual methods and Community Network construction

To construct the CN schema, we evaluate each individual prediction over the complete collection of datasets
associated to the FDP networks. For each dataset (mf, ko and all) we assess the performance of the prediction
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methods from Sect. 2.2, by averaging the AUROCs and AUPRs values associated to each prediction of the FDP
benchmark networks. In Table 4, we report, for each dataset, the list of the methods sorted according to the
quality of their performance. The �nal community network schema results in a selection of 7 of the 12 GRN
prediction methods. We consider both the methods GENIE3 and Tigress because of their di�erent approaches
in performing the feature selection step: GENIE3 relies on Random Forests while Tigress uses a regression
step. We also discriminate the method BC3NET from the other MI-based models, as it employs an additional
bagging step. For each data type (mf, ko and all), the �nal methods ensemble selected to form the community
network includes: Tigress, GENIE3, Pearson Correlation, GLN, BC3Net, Inferelator and CLR�these appear
underlined in Table 4. All other methods fall in a category already represented in the ensemble. A report of
the performance of the individual methods is provided in the Appendix, in Tables I�IV.

mf data ko data all data
# met AUROC AUPR met AUROC AUPR met AUROC AUPR

1 tigr 0.710 0.141 tigr 0.797 0.109 tigr 0.789 0.164
2 geni 0.725 0.120 geni 0.770 0.070 geni 0.802 0.143
3 clr 0.690 0.107 pear 0.770 0.069 pear 0.754 0.089
4 pear 0.694 0.097 gln 0.693 0.057 infe 0.707 0.103
5 mrne 0.688 0.102 bc3n 0.627 0.063 bc3n 0.653 0.112
6 kend 0.684 0.097 infe 0.672 0.045 gln 0.667 0.072
7 bc3n 0.636 0.112 clr 0.557 0.024 clr 0.659 0.077
8 spea 0.683 0.094 spea 0.553 0.024 spea 0.657 0.067
9 infe 0.639 0.091 kend 0.553 0.024 kend 0.657 0.067
10 gln 0.653 0.082 mrne 0.553 0.024 mrne 0.655 0.067
11 arac 0.597 0.086 arac 0.532 0.026 arac 0.574 0.058
12 c3ne 0.589 0.085 c3ne 0.520 0.027 c3ne 0.564 0.056

Table 4: Ranked method lists for the multi-factorial dataset (left) the knockout dataset (center) and the combined dataset
(right).

4.5 Analysis of individual constraint in the CCN

In this section, we analyze the construction of the CCNs by measuring the impact of the application of individual
constraints on the quality of the resulting solution ensemble. The tests are performed over the datasets
associated to the FDP networks and, for each experiment, we report the median predictions found with respect
to the AUROC score. Fig. 6 illustrates the impact of each constraint on the AUROC score for each network
of the FDP multi-factorial dataset. The plot reports the median of a set of 10, 000 solutions associated to the
CCNs generated exploiting only the redundant constraint (re), the sparsity constraint (sp), the t-factor

constraint (tf), and the co-reg constraint (cr), together with the trace of all the solutions generated via an
unconstrained problem with same settings (grey stripe). The results for the datasets based on ko and all data
follow the same trend.

We observe that the median values of the solutions generated using the sparsity constraint are close to the
best solutions generated in the unconstrained problem; this con�rms the e�ectiveness of the constraint. The
biological information encoded by the t-factor and co-reg constraints enhances the quality of the solutions
beyond the capabilities of the unconstrained search. As for the redundant constraint, the median solutions
returned are slightly better that the median solutions found by the unconstrained problem. To validate the
e�ectiveness of such constraint, we examine the number of redundant edges correctly identi�ed via the red-e
property (tf→tg and tg→tg)�where tf denotes a TF gene and tg a gene targeted by some TF, but not itself
a TF�and the number of edges wrongly predicted as redundant (tf→tf and tg→tf). In Table 7, we report
the extended results for the multi-factorial dataset (top) and we summarize the results for all the 3 datasets
in the bottom part of the table. Observe that the constraint is more e�ective in the mf dataset, where fewer
errors occur.

Let us analyze the impact of combining two constraints. We adopt the same settings as in the previous
experiments. The results are reported in Fig. 8. The plots illustrate the median of a set of 10,000 solutions
associated to the CCNs generated via a combination of the sparsity constraint (top-left), the redundant

constraint (top-right), the t-factor constraint (bottom-left), and the co-reg constraint (bottom-right) with all
the others. As for Fig. 6, we mark with a grey stripe the scores for the solutions generated by the unconstrained
CCNs. The knockout and the combined datasets follow the same trend as those in Fig. 8. Observe that the
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Figure 6: The impact of each constraint on the AUROC score for the multi-factorial dataset in the FDP networks.

interaction among constraints is important to improve the quality of the solutions. An evaluation of the impact
of each constraint combination on the FDP networks is reported in the Appendix, Fig. I(a)�(m).

4.6 Constrained Community Networks vs Community Networks

To assess the ability of the CCN approach to accurately reconstruct GRNs, we focus on two subproblems: (1)
We examine the predicted CCNs using only general network topological information, such as the sparsity and
the redundant constraints, to leverage community-method features and networks properties; (2) We integrate
network speci�c biological knowledge available. Due to the observations made in the previous section, we
opt not to involve the redundant constraint for the datasets containing knockouts data. We categorize the
benchmarks by datasets (mf, ko and all) and networks (FDP, D3 and D4), and average their respective AUROC
and AUPR scores. Tables 5, 6 and 7 report the average AUROC and AUPR improvements (as a percentage)
for the networks inferred from the mf, ko and all datasets, respectively, of the CCNbest, CCNavg, CCNhd and
CCNmode with respect to CNrank. We �rst focus on the results of the CCNs obtained when only the sparsity
(sp) and the redundant (re) constraints are active, given the restrictions aforementioned (�rst row of each
Table).

For the mf datasets (Table 5), the CCNs outperform the community network schema in every benchmark
network. For the datasets that include knockout data (ko and all in Tables 6 and 7, respectively), the CCNs
increase the prediction accuracy with respect to the CNs for the the FDP and the D4 networks; the only
exception is the mode estimator, which produces a slight performance degradation in the ko dataset. The
AUROC measures for the D3 networks result in a performance degradation ranging from 0.52% to 0.78%. On
the other hand, the precision vs. recall score produces an enhancement of the prediction accuracy up to 2.8%
for the best estimator.

As showed in [24], the prediction accuracy for the CCNs is consistent and often better than that of a CN
schema in the ab-initio scenario.

It is interesting to observe that the CCNs consistently outperform the CNs prediction in the multi-factorial
datasets. This result is appealing, as such type of data has been shown to be less informative than knockout
or time-series data, while it is substantially cheaper to produce and more abundant.

The next experiment extends the set of constraints adopted to model the GRNs to include speci�c knowledge
about individual networks. We enable the t-factor (tf) and the co-reg constraints (cr) over the set of genes
which are known to be TFs or co-regulators in the target networks. The results are reported in Tables 5, 6 and
7 in second and third row for the addition of the tf and cr constraints, respectively. The integration of such
additional knowledge results in signi�cant improvements of the GRN predictions, both in terms of AUROC (up
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Net Data tf→tg tf→tf tg→tf tg→tg

E1 mf 4 0 0 6
E2 mf 4 0 0 16
E3 mf 0 1 0 6
E4 mf 5 1 1 10
E5 mf 3 0 0 11
S1 mf 4 0 1 13
S2 mf 6 0 1 11
S3 mf 6 0 0 20
S4 mf 7 0 1 17
S5 mf 4 0 0 13

Average
FDP mf 4.30 0.2 0.4 12.30
FDP ko 2.5 0.1 0.90 16.60
FDP all 7.1 0.2 1.20 17.4

Figure 7: Summary of the type of edges detected by the redundant constraint.

FDP DREAM3 DREAM4
AUROC best avg hd mode best avg hd mode best avg hd mode

sp (+re) 1.163 1.083 1.033 0.963 1.108 1.028 1.028 1.108 0.859 0.839 0.839 0.839
+tf 17.543 18.883 13.623 5.483 18.948 18.108 15.308 9.648 24.939 24.799 21.539 12.919
+cr 18.333 21.223 16.203 5.483 20.888 22.148 17.768 9.648 27.459 29.479 24.559 12.919

AUPR
sp (+re) 1.173 0.434 0.273 0.189 0.296 0.046 0.040 0.050 0.053 0.029 0.025 0.027

+tf 9.488 8.568 6.291 4.658 2.716 1.542 1.570 0.732 3.307 1.699 2.089 0.627
+cr 5.658 12.238 1.878 4.658 4.936 2.448 2.866 0.732 5.715 2.585 3.969 0.627

Table 5: AUROC and AUPR % improvements for the CCN with best, average (avg), hamming distance (hd) and mode

estimators w.r.t. the CN rank in multi-factorial data.

to 29.5%) and AUPR scores (up to 15.2%). This result supports our hypothesis that the addition of biological
knowledge can better guide the predictions, even when the same inference ensemble is used.

Let us also observe that the best improvements in terms of AUROC and AUPR scores can be found in the
CCN with the average estimator, and this is true for all the network considered and every dataset, including
the ones with knockout data.

5 Conclusions

In this paper, we introduced the Constrained Community Networks (CCNs) paradigm to solve the gene reg-
ulatory network inference problem. CCNs use constraint programming techniques to guide the integration of
predictions in a community network.

The use of constraints to model topological and biologically relevant prior information of a regulatory
network provides several advantages in the creation of community networks. Our approach does not impose
any hypothesis on the datasets adopted nor on the type of inference methods. Furthermore, constraints can
naturally handle heterogeneous knowledge, facilitating the balancing of the strengths and weaknesses of the
individual inference methods composing the inference ensemble.

We introduced a class of constraints able to (1) guarantee GRNs' speci�c properties and (2) take into
account the community prediction collective agreements on each edge, and the limitations of each speci�c
method. Experiments performed over a set of more than 300 benchmarks, including large networks proposed
in the DREAM challenges, show that our approach can consistently outperform the consensus networks con-
structed by averaging individual edges ranks, as proposed in [36].

We have shown how the integration of knowledge about target networks acquired in biological relevant
settings can provide signi�cant improvements in terms of GRN prediction quality when compared to a state
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Figure 8: The impact on the AUROC scores for the multi-factorial dataset in the FDP networks when combining 2
constraints �xing the sparsity (top-left), the redundant (top-right), the t-factor (bottom-left) or the co-reg (bottom-
right) constraints.

of the art CN approach (up to 29.5% and 15.2% for AUROC and AUPR measures respectively). This was
possible as our model encourages the modular integration of biological knowledge, in form of logical rules.

As part of our future work, we plan to investigate new optimization measures that take into account local
and global network properties, e.g., the number of speci�c network motifs in a target GRN region or the scale
free degree in a given a portion of the graph. This can be achieved by including soft constraints in our model.
We plan to use this information to address method-speci�c biases towards di�erent connectivity patterns. On
the CP side, we will extend existing constraints, for instance by studying the most likely set where a t-factor

constraint could be targeted, and model new constrains and propagators to capture di�erent type of biological
knowledge, such us information about cell line and conditions at the time of the experiment, or the information
encoded in functional modules�groups of TFs which regulate a particular biological process. Moreover we plan
to employ path-based constraints, e.g., acting on the cascade e�ects resulting in a reward or penalty of an edge
con�dence value.
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FDP DREAM3 DREAM4
AUROC best avg hd mode best avg hd mode best avg hd mode

sp (+re) 0.529 0.409 0.369 0.319 -0.517 -0.577 -0.777 -0.677 0.261 0.201 0.161 0.021
+tf 11.159 13.459 8.669 3.719 1.843 6.763 -0.577 3.123 6.801 11.021 4.181 5.401
+cr 11.889 15.179 9.819 3.719 2.223 8.023 0.783 3.123 7.201 12.721 5.341 5.401

AUPR
sp (+re) 0.981 0.129 0.187 -0.077 2.000 0.120 -0.516 -0.740 1.004 0.140 0.374 -0.202

+tf 4.990 5.715 2.858 1.208 2.940 5.140 -0.220 2.520 3.130 5.790 0.414 2.970
+cr 7.248 9.038 3.822 1.208 -1.180 8.320 -4.016 2.520 1.300 8.530 -1.416 2.970

Table 6: AUROC and AUPR % improvements for the CCN with best, average (avg), hamming distance (hd) and mode

estimators w.r.t. the CN rank in the knockout data.

FDP DREAM3 DREAM4
AUROC best avg hd mode best avg hd mode best avg hd mode

sp (+re) 1.266 1.136 1.106 1.026 -0.599 -0.639 -0.779 -0.779 0.707 0.527 0.507 0.467
+tf 13.106 14.936 10.206 4.526 2.061 6.361 -0.479 2.941 22.947 21.987 19.607 11.967
+cr 13.796 16.636 11.796 4.526 2.361 7.801 0.761 2.941 24.087 24.907 20.347 11.967

AUPR
sp (+re) 1.282 0.400 0.464 0.161 2.178 0.118 0.338 -0.802 0.251 0.075 0.033 0.047

+tf 8.394 8.454 4.827 4.008 3.338 4.598 -0.902 2.038 3.433 2.303 2.051 1.057
+cr 5.064 12.514 1.794 4.008 -0.614 7.458 -2.880 2.038 5.961 3.303 3.131 1.057

Table 7: AUROC and AUPR % improvements for the CCN with best, average (avg), hamming distance (hd) and mode

estimators w.r.t. the CN rank in the combined (all) data.
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