Distributed Multi-Agent Optimization for Smart
Grids and Home Automation

Ferdinando Fioretto *

Department of Industrial and Operation Engineering,
University of Michigan, Ann Arbor, MI, USA
E-mail: fiorettoQumich.edu

Agostino Dovier
Department of Mathematics, Computer Science, and Physics,
University or Udine, Udine, Italy.
E-mail: agostino.dovier@uniud.it

Enrico Pontelli
Department of Computer Science,
New Mexico State University, NM, USA
E-mail: epontell@cs.nmsu.edu

March 4, 2019

Abstract

Distributed Constraint Optimization Problems (DCOPs) have emerged
as one of the prominent multi-agent architectures to govern the agents’
autonomous behavior in a cooperative multi-agent system (MAS) where
several agents coordinate with each other to optimize a global cost func-
tion taking into account their local preferences. They represent a powerful
approach to the description and resolution of many practical problems.
However, typical MAS applications are characterized by complex dynam-
ics and interactions among a large number of entities, which translate into
hard combinatorial problems, posing significant challenges from a compu-
tational and coordination standpoints.

This paper reviews two methods to promote a hierarchical parallel
model for solving DCOPs, with the aim of improving the performance of
the DCOP algorithm. The first is a Multi- Variable Agent (MVA) DCOP
decomposition, which exploits co-locality of an agent’s variables allowing
the adoption of efficient centralized techniques to solve the subproblem of

*Corresponding author. E-mail: fiorettoQumich.edu. The research summarized in the
paper was developed during Fioretto’s PhD program at University of Udine and New Mexico
State University

an agent. The second is the use of Graphics Processing Units (GPUs) to
speed up a class of DCOP algorithms.

Finally, exploiting these hierarchical parallel model, the paper presents
two critical applications of DCOPs for demand response (DR) program
in smart grids. The Multi-agent Economic Dispatch with Demand Re-
sponse (EDDR), which provides an integrated approach to the economic
dispatch and the DR model for power systems, and the Smart Home De-
vice Scheduling (SHDS) problem, that formalizes the device scheduling
and coordination problem across multiple smart homes to reduce energy
peaks.

1 Introduction

The power network is the largest operating machine on earth, generating more
than US$400 billion a year.! A significant concern in power networks is for the
energy providers to be able to generate enough power to supply the demands
at any point in time. Short terms demand peaks are however hard to predict
and hard to address while meeting increasingly higher levels of sustainability.
Thus, in the modern smart electricity grid, the energy providers can exploit the
demand-side flexibility of the consumers to reduce the peaks in load demand.

This control mechanism is called Demand response (DR) and can be obtained
by scheduling shiftable loads (i.e., a portion of power consumption that can
be moved from a time slot to another) from peak to off-peak hours [42, 23,
17]. Due to concerns about privacy and users’ autonomy, such an approach
requires a decentralized, yet, coordinated and cooperative strategy, with the
active participation of both the energy providers and consumers.

In a cooperative multi-agent system (MAS) multiple autonomous agents in-
teract to pursue personal goals and to achieve shared objectives. The Distributed
Constraint Optimization Problem (DCOP) model [28, 45, 12] is an elegant for-
malism to describe cooperative multi-agent problems that are distributed in
nature and where a collection of agents attempts to optimize a global objective
within the confines of localized communication. DCOPs have been applied to
solve a variety of coordination and resource allocation problems [22, 48], sensor
networks [9], and are shown to be suitable to model various DR programs in
the smart grid [36, 16, 17, 27].

DCOP resolution algorithms are classified as either complete or incomplete.
Complete algorithms guarantee the computation of an optimal solution to the
problem, while incomplete approaches trade optimality for faster runtimes.
DCOP algorithms employ one of two broad approaches: distributed search-
based techniques [28, 44, 29, 11, 20, 47, 25] or distributed inference-based tech-
niques [30, 41, 9, 33, 34]. In search-based techniques, agents visit the search
space by selecting value assignments and communicating them to other agents.
Inference-based techniques rely instead on the notion of agent-belief, describing
the best cost an agent can achieve for each value assignment of its variables.

ISource: U.S. Energy Information Administration

These beliefs drive the value selection process of the agents to find an optimal
solution to the problem.

Despite their success, the adoption of DCOPs on large, complex, instances
of problems faces several limitations, including restricting assumptions on the
modeling of the problem and the inability of current solvers to capitalize on the
presence of structural information.

In this paper, we review a multi-variable-agent (MVA) DCOP decomposi-
tion to allow agents to solve complex subproblems efficiently, and a technique
to speed up the execution of inference-based algorithms via graphic processing
units (GPUs) parallel architectures. These techniques enable us to design prac-
tical algorithms to solve large, complex, DCOPs efficiently. We review two DR,
applications of DCOPs, one where the goal is to optimize the power generator
dispatch, while taking into account dispatchable loads, and another in the con-
text of home automation, in which a home agent coordinates the schedule of
smart devices to satisfy the user preferences while minimizing the global peaks
of energy consumption.

The paper is organized as follows: Section 2 recalls the main definitions
and describes two important complete and approximated algorithms for solving
DCOPs. Section 3 briefly reviews the GPU programming model. Section 4
describes a decomposition technique that is used for solving DCOPs where each
agents is responsible of solving a complex sub-problem. Section 5 describes a
DCOPs solving technique that is accelerated through the use of GPUs. Section 6
reviews two complex multi-agent applications of DR that are solved using DCOP
techniques. The first application, presented in Section 7, is an approach to
optimize demand response at large scale, from a system operator perspective, by
acting on large electric generators and loads. The second application, illustrated
in Section 8, is an approach to minimize the energy peaks through a demand
response program that makes use of automated schedules of smart home devices.
Finally, Section 9 concludes the work.

2 Background: DCOP

Let us start by defining the theoretical framework that is used for modeling
smart grid and home automation problems.

2.1 Preliminaries

A Distributed Constraint Optimization Problem [28, 45, 12] is a tuple P =
(X,D, F, A, a), where:

o X ={x1,...,x,} is a set of variables;
e D={D,,,...,D,, }isaset of finite domains, with x; € D,, for all z; € X;

o F = {f1,...,fm} is a set of cost functions (or constraints), where f; :
ijexi D,; - Ry u{oo} and x* € X is the set of the variables relevant
to f;, called its scope.

o A={ai,...,ap} is a set of agents; and
e a: X — A maps each variable to one agent.

With a slight abuse of notation, we consider the function a : p(A) — p(X),2
where «(A) denotes the set of all variables controlled by the agents in A.

A partial assignment ox is an assignment of values to a set of variables
X € X that is consistent with the domains of the variables; i.e., it is a partial
function ox : X — |Ji—; Dy, such that, for each z; € X, if ox(z;) is defined
(i.e., z; € X), then ox(x;) € D,.

The cost
Flox)= Y, [filox)
f,;e]-',xigX

of an assignment oy is the sum of the evaluation of the constraints whose
scope falls within X. A solution is a (partial) assignment ox (written o for
shorthand) for all the variables of the problem, i.e., with X =X, whose cost is
finite: F(ox) # oo. The goal is to find a solution with minimum cost:

x* = argmin F(x).
X
Let us observe that the notion of constraint is expressed by the cost functions.
Using terminology derived from local search [35], all constraints are considered
to be “soft”. “Hard” constraints, i.e., constraints defining combinations of values
for their variables that are either allowed or violated, can be represented through
the value set {0, 00}, where oo represents an infeasible value combination.

Givena DCOP P, Gp=(X, Er), where Er ={{z,y} : (3f; € F){z,y} S x'},
is the constraint graph of P. The representation as a constraint graph cannot
deal explicitly with k-ary constraints (with k& > 2). A typical artifact to deal
with such constraints is to introduce a virtual variable that monitors the value
assignments for all the variables in the scope of the constraint and generates
the cost values [2]. One of the existing variables can take the role of a virtual
variable.

Following [15], we introduce the concepts of local variables for an agent
a;: Ly = {z; € X | a(z;) = a;}, and the set of its interface variables B; =
{z; € L;|qz, € X A3fs € F: alxy) # a; A {zj,zr} S x°}. This concept
defines a clear separation between an agent’s local problems and the agents’
problem dependencies. The former is the set of functions involving exclusively
the variables controlled by the agent. The latter is defined through the functions
whose scope involves variables controlled by some other agent. Such separation
allows us to give a structure to the constraint graph as follows:

e For each agent a; € A, its local constraint graph G; = (L;, Ex,) is a
subgraph of the constraint graph Gp, where Er, = {{zq, 2} | (3f; €
FY{za, 2} S xI AXI C L)},

20(S) is the power set of a set S.

e The agent interaction graph Ap = (A, E,4) is the graph where F4 =
{{ai a;} | Afr € F)({ai a5} € a(x*))}.

e For each a;, we denote with N,, = {a; € A|{a;,a;} € E4} the set of its
neighbors.

A widespread assumption in the communication model of a DCOP algorithm
is that each agent can communicate exclusively with its neighboring agents in
the agent interaction graph.

A DFS pseudo-tree arrangement of Ap is a subgraph Tp = (A, Er) of Ap
such that Ep is a spanning tree of Ap and for each f; € F and x,y € x', a(x)
and a(y) appear on the same branch of Tp.

Edges of Ap that appear in Tp are referred to as tree edges,while the re-
maining edges of Ap are referred to as back edges. Figure 1 (right) shows an
example of a pseudo tree for the constraint graph in Figure 1 (left).

Example 1 Suppose there are three agents, named agent 1, agent 2, and agent
8. Agent 1 controls three variables: x1,x2, and x3; agent 2 controls two vari-
ables: x4 and x5, and agent 3 controls one variable: xg. In this example, the
variables xa, x5, xg will be used to represent power generators, with xg being the
generator with the highest capacity. The variables x1,x4 represent two lamps,
and r3 a reading device that requires some amount of light to be used. The do-
mains for the variables are: D,, ={0,1}, fori=1,...,5, and D,, = {0,1,2,3}.
Finally, the constraints between the problem’s variables are described by the fol-
lowing cost tables:

Lo [B fon | [@a]@s [fosas | [22] @5 [26] farmss |
0]0] o 0]0] 0 0]0]0 ©
01| o 01| 5 11| -— 0
110/ 10 10| 10 10| - 5
1]1] 0 11/ 0 0| | |106+7)

The leftmost table models the cases with (x1, B) where B = x5 or B = x3. The
value o0 is used to ensure that the lamp x1 cannot be off. If x1 is switched on,
but it does not use energy from generator xo, a penalty of 10 is enforced. To be
able to read, T3 must be active (i.e., it must take on value 1), otherwise (when
its value is 0) a penalty will be enforced. The middle table describes the case in
which the combination of lamp x4 switched on with generator x5 active is allowed
without any penalty (i.e., it has cost 0). If generator x5 is working it’s a pity to
keep x4 switched off; costs are computed accordingly. These constraints generate
the local constraint graphs. Let us focus now on agent’s interactions (rightmost
table). The case where all generators are inactive represents the worst situation
(with cost). The ideal scenario is represented when the “local” generators xo
and x5 are both active (inducing a cost of 0). xs can supply energy to agent 2
with a low cost if needed. Agent 1 can use energy from xg, but this is costly.
Price depends on the requirements of agent 2 (x5) as well (—means “any”).

AGENT 1 AGENT 1

AGENT 3 AGENT 3

AGENT 2 AGENT 2

Figure 1: Constraint Graph (left) and Pseudo Tree (right) of the DCOP of
Example 1. zs, x5, x¢ are the interface variables. Boldface edges are tree edges.
{x9, x5} is a back edge.

In the following, we describe two popular DCOP algorithms: a complete
inference-based algorithm and an incomplete search-based algorithm. These
algorithms were originally proposed in the context in which each agent controls
a single variable. We thus restrict our attention to this special case and describe
a generalization technique to handle multiple-variable agents in Section 4.

2.2 DPOP

The Distributed Pseudo-tree Optimization Procedure (DPOP) [30] is one of the
most popular DCOP resolution algorithms. DPOP is a complete, inference-
based algorithm, consisting of three phases.

In the first phase, the variables are ordered through a depth-first search visit
of Gp into a DFS pseudo-tree. A pseudo-tree construction is achieved through
a distributed algorithm (e.g., [1]). A set of variables, called the separator set
sep(z;) is computed for each node x;. sep(x;) contains all ancestors of z; in the
pseudo-tree that are connected with via tree edges or back edges to x; or one
of the descendants of x; in the pseudo-tree.

In the second phase, called the UTIL propagation phase, each agent, starting
from the leaves of the pseudo-tree executes two operations: (1) It aggregates
the costs in its subtree for each value combination of variables in its separator
and the variables it controls, and (2) It eliminates the variables it controls
by optimizing over the other variables (i.e., for each combination of values for
the variables in its separator, it selects the one with the smallest cost). The
aggregated costs are encoded in a UTIL message, which is propagated from
children to their parents, up to the root.

In the third phase, called the VALUF propagation phase, each agent, start-
ing from the root of the pseudo-tree, selects the optimal value for its variables.
The optimal values are calculated based on the UTIL messages received from
the children and the VALUFE message received from its parent. The VALUE
messages contain the optimal values of the variables and are propagated from
parents to their children, down to the leaves of the pseudo-tree.

The time and the space complexities of DPOP are dominated by the UTIL

propagation phase, which is exponential in the maximum number of variables
in a set sep(x;). The other two phases require a polynomial number of linear
sized messages (in the number of variables of the problem), and the complexity
of the local operations is at most linear in the size of the domain [30].

2.3 MGM

Mazimum Gain Message (MGM) [26] is an incomplete, search-based algorithm
that performs a distributed local search to solve a DCOP. Each agent a; starts
by assigning a random value to each of its variables. The agent then sends
this information to all of its neighbors in Gp. Upon receiving the values of its
neighbors, each agent calculates the maximum gain (i.e., the maximum decrease
in cost) if it changes its values and sends this information to all of its neighbors
as well. Upon receiving the gains of its neighbors, it changes its values if its gain
is the largest among its neighbors. This process is repeated until a termination
condition is met. MGM provides no quality guarantees on the returned solution.

Let us indicate with [= maxg,ea |Ng,|, where N,, is the set of neighbors
of a; in the constraint graph. Let us denote with d = max,,cx |Dy,|. MGM
agents perform O(ld) number of operations in each iteration, as each agent
needs to compute the cost for each of its values by taking into account the
values of all its neighbors. The memory requirement per MGM agent is O(I)
since it needs to store the values of all its neighboring agents. In terms of
communication requirement, each MGM agent sends O(l) messages, one to each
of its neighboring agents and each message is of constant size O(1) as it contains
either the agent’s current value or the agent’s current gain.

3 Background: GPU

Modern Graphics Processing Units (GPUs) are massive parallel architectures,
offering thousands of computing cores and a rich memory hierarchy to support
graphical processing. NVIDIA’s Compute Unified Device Architecture (CUDA) [37]
aims at enabling the use of the multiple cores of a graphics card to accel-
erate general purpose (non-graphical) applications by providing programming
models and APIs that enable the full programmability of the GPU. The com-
putational model supported by CUDA is Single-Instruction Multiple-Threads
(SIMT), where multiple threads perform the same operation on multiple data
points simultaneously.

A GPU is constituted by a series of Streaming MultiProcessors (SMs), whose
number depends on the specific class of GPUs. For example, the Fermi archi-
tecture provides 16 SMs, as illustrated in Figure 2 (left). Each SM contains a
number of computing cores, each containing an ALU and a floating-point pro-
cessing unit. Figure 2 (right) shows a typical CUDA logical architecture. A
CUDA program is a C/C++ program that includes parts meant for execution
on the CPU (referred to as the host) and parts meant for parallel execution on
the GPU (referred as the device). A parallel computation is described by a col-

GRID

Block Block

DRAM

Shared
memory

NG (E:
=
EREEE
vost %a{ JGLOBAL MEMOH\{]
«»[CONSTANT MEMORY]

Shared
memory

S|[s|s|S|s|s
MIM[M|M|M|M

B
B

H
&
i
&
L2 Cache —1
i
&
H
&

o | st e

WARP
schedulg

Instruction Cache

‘Shared Memory
L1 Cache (64KB)

[e e |

WARP
scheduler
Reg

g8

core | core | core | core | core | core [core [core

Figure 2: Fermi Hardware Architecture (left) and CUDA Logical Architecture
(right)

lection of GPU kernels, where each kernel is a function to be executed by several
threads. When mapping a kernel to a specific GPU, CUDA schedules groups of
threads (blocks) on the SMs. In turn, each SM partitions the threads within
a block in warps® for execution, which represents the smallest work unit on
the device. Each thread instantiated by a kernel can be identified by a unique,
sequential, identifier (7T;4), which allows differentiating both the data read by
each thread and the code to be executed.

3.1 Memory Organization

GPU and CPU are, in general, separate hardware units with physically distinct
memory types connected by a system bus. Thus, for the device to execute some
computation invoked by the host and to return the results to the caller, a data
flow needs to be established from the host memory to the device memory and
vice versa. The device memory architecture is entirely different from that of
the host, in that it is organized in several levels differing to each other for both
physical and logical characteristics.

Each thread can utilize a small number of registers,® which have thread
lifetime and visibility. Threads in a block can communicate by reading and by
writing a common area of memory, called shared memory. The total amount
of shared memory per block is typically 48KB. Communication between blocks
and communication between the blocks and the host is achieved through a large
global memory. The data stored in the global memory has global visibility and
lifetime. Thus, it is visible to all threads within the application (including the
host) and lasts for the duration of the host allocation.

Apart from lifetime and visibility, different memory types have also different
dimensions, bandwidths, and access times. Registers have the fastest access
memory, typically consuming within a clock cycle per instruction, while the

3A warp is typically composed of 32 threads.
4In modern devices, each SM allots 64KB for registers space.

. Global i
Memory
: Aligned ..
L y, segment |~ e w7 |
(M Warp of (R
L of1] 2| --- 30|31 321T.Threads L of{1(2| --- (30|31 32)

id

Figure 3: Coalesced (left) and scattered (right) data access patterns

global memory is the slowest but largest memory accessible by the device, with
access times ranging from 300 to 600 clock cycles. The shared memory is parti-
tioned into 32 logical banks, each serving exactly one request per cycle. Shared
memory has a minimal access latency, provided that multiple thread memory
accesses are mapped to different memory banks.

3.2 Bottlenecks and Common Optimization Practices

While it is relatively simple to develop correct GPU programs (e.g., by incremen-
tally modifying an existing sequential program), it is nevertheless challenging to
design an efficient solution. Several factors are critical to gaining performance.
In this section, we discuss a few common practices that are important for the
design of efficient CUDA programs.

Memory bandwidth is widely considered to be a critical bottleneck in the
performance of GPU applications. Accessing global memory is relatively slow
compared to accessing the shared memory in a CUDA kernel. However, even
if not cached, global accesses that cover a segment of 128 contiguous Bytes
data are fetched at once. Thus, most of the global memory access latency
can be hidden if the GPU kernel employs a coalesced memory access pattern.
Figure 3 (left) illustrates an example of coalesced memory access pattern, in
which aligned threads in a warp accesses aligned entries in a memory segment,
which results in a single transaction. Thus, coalesced memory accesses allow
the device to reduce the number of fetches to global memory for every thread
in a warp. In contrast, when threads adopt a scattered data accesses (Figure 3
(right)), the device serializes the memory transaction, drastically increasing its
access latency.

Data transfers between the host and device memory are performed through
a system bus, which translates to slow transactions. In general, it is convenient
to store the data in the device memory. Additionally, batching small mem-
ory transfers into a large one will reduce most of the per-transfer processing
overhead [37].

The organization of the data in data structures and data access patterns
plays a fundamental role in the efficiency of the GPU computations. Due to the

computational model employed by the GPU, it is important that each thread in
a warp executes the same branch of execution. When this condition is not sat-
isfied (e.g., two threads execute different branches of a conditional construct),
the degree of concurrency typically decreases, as the execution of threads per-
forming separate control flows has to be serialized. This is referred to as branch
divergence, a phenomenon that has been intensely analyzed within the High
Performance Computing (HPC) community [19, 6, 8].

The line of work in this paper focused on using GPUs to improve the per-
formance of DCOP solvers, extends recent approaches to make use of GPUs to
enhance performance of constraint solvers [5, 10, 4, 7, 14].

4 DCOP Applications Challenge: Agents with
Multiple Variables

The vast majority of the DCOP resolution algorithms have been proposed in
a restrictive setting, in which each agent controls exactly one variable. While
this assumption simplifies the algorithm description and its development, it
does not hold in many of the applications of our interest. For instance, micro-
grids are self-sustainable and autonomous organizations composed of generators
and loads within an electric smart grid; this can be modeled as agents whose
variables represent the amount of energy to dispatch, transmit, and withdraw
from the grid. In a smart home, multiple devices can be coordinated by a
single autonomous home assistant, which, too, has to control a large number of
variables.

There are two commonly used reformulation techniques to cope with DCOP
in which agents control multiple variables [3, 46]: (i) Compilation, where each
agent creates a new pseudo-variable, whose domain is the Cartesian product of
the domains of all variables of the agent; and (i) Decomposition, where each
agent creates a pseudo-agent for each of its variables. While both techniques are
relatively simple, they can be inefficient. In compilation, the memory require-
ment for each agent grows exponentially with the number of variables that it
controls. In decomposition, the DCOP algorithms will treat two pseudo-agents
as independent entities, resulting in unnecessary computation and communica-
tion costs.

To overcome these limitations, the following subsections discusses the Multi-
Variable Agent (MVA) DCOP decomposition, originally proposed in [15]. It
enables a separation between the agents’ local subproblems, which can be solved
independently using centralized solvers, and the DCOP global problem, which
requires coordination of the agents. The decomposition does not lead to any ad-
ditional privacy loss and enables the use of different centralized and distributed
solvers in a hierarchical and parallel fashion.

10

L \

msg,, ‘ Wait ‘ o(xi, k) € msg,, No Global

P msg,,

e
New for some xj, € B; Optimization
Messages

I — |

—» sy,

\ msg,,

Yes k=k+1

Local Optimization
Check Yes minimize 3" £,(x')
(Vo € B ai=o(ank) O P
subject to:
1 mi=ownk), Ve € B |

Figure 4: MVA Execution Flow Chart.

4.1 The MVA Framework

In the MVA decomposition, a DCOP problem P is decomposed into |.A| sub-
problems P; =(L;, B;, Er,), where P; is associated to agent a; € A. In addition
to the decomposed problem P;, each agent receives: (1) the global DCOP algo-
rithm Pg, which is common to all agents in the problem and defines the agent’s
coordination protocol and the behavior associated with the receipt of a message,
and (2) the local algorithm Py, which can differ between agents and is used to
solve the agent’s subproblem.

Figure 4 shows a flowchart illustrating the four conceptual phases in the
execution of the MVA framework for each agent a;:
Phase 1—Wait: The agent waits for a message to arrive. If the received message
results in a new value assignment o (.., k) for an interface variable x,. of B;, then
the agent will proceed to Phase 2. If not, it will proceed to Phase 4. The value
k € N establishes an enumeration of the interface variables’ assignments.
Phase 2—Check: The agent checks if it has performed a new complete assign-
ment for all its interface variables, indexed with ke N. If it has, then the agent
will proceed to Phase 3. Otherwise, it will return to Phase 1.
Phase 3—Local Optimization: When a complete assignment is given, the agent
passes the control to a local solver, which solves the following problem:

minimize Z fi(x%)
fi€Fi
subject to: x, = o(x,, k) Vo, € B;

where F; = {f; € F | x* € L;}. Solving this problem results in finding the best
assignment for the agent’s local variables given the particular assignment for its
interface variables. Notice that the local solver Py, is independent of the DCOP
structure and it can be customized based on the agent’s local requirements. For
example, agents can use GPU-optimized solvers, if they have access to GPUs,
or use off-the-shelf Constraint Programming (CP), Mixed Integer Programming
(MIP), or Answer Set programming (ASP) solvers. Once the agent solves its
subproblem, it proceeds to Phase 4.

Phase 4—Global Optimization: The agent processes the new assignment as
established by the DCOP algorithm Pg, executes the necessary communications

11

and returns to Phase 1. The agents can execute these phases independently of
one another because they exploit the co-locality of their local variables without
any additional privacy loss, which is a fundamental aspect of DCOPs [18].

In addition, the local optimization process can operate on m = 1 combina-
tions of value assignments of the interface variables, before passing control to
the next phase. This is the case when the agent explores m different assignments
for its interface variables in Phases 2 and 3. These operations are performed
by storing the best local solution and their corresponding costs in a cost table
of size m, which can be visualized as a cache memory. The minimum value
of m depends on the choice of the global DCOP algorithm Pg. For example,
for common search-based algorithms such as asynchronous forward-bounding
(AFB), it is 1, while for common inference-based algorithms such as DPOP, it
is exponential in size of the separator set.

Correctness, completeness, asymptotical complexity, and an extensive eval-
uation of the MVA decomposition are presented in [15].

5 DCOP Applications Challenge: Scalability through
Hierarchical Parallel Models

As mentioned in Section 2.2, the aggregation and elimination operations within
the UTIL propagation phase of DPOP are the most expensive operations of the
algorithm. In this section, we review the GPU-based Distributed Bucket Elimi-
nation (GpuBE) framework [13], which extends DPOP by exploiting GPU par-
allelism within the aggregation and elimination (i.e., UTIL) operations to speed
up these operations. The key observation that allows us to parallelize these
operations is that the computation of the cost for each value combination in
a UTIL message is independent of the computation of the other combinations.
The use of a GPU architecture allows us to exploit such independence, by con-
currently exploring several value combinations of the UTIL message, computed
by the aggregation operator, as well as concurrently eliminating variables.

5.1 GPU Data Structures

To fully utilize the parallel computational power of GPUs, the data structures
need to be designed in such a way to limit the amount of information exchanged
between the CPU host and the GPU device, minimizing the accesses to the slow
device global memory while ensuring that the data access pattern enforced is co-
alesced. To do so, we store in the device global memory exclusively the minimal
information required to compute the UTIL functions, which are communicated
to the GPU once at the beginning of the computation. This allows the GPU
kernels to communicate with the CPU host exclusively to exchange the results
of the aggregation and elimination processes.

We introduce the following concept: An UTIL-table is a 4-tuple, T =
(S, R, x, <), where:

12

e SC X, is a list of variables denoting the scope of T'.

e R is alist of tuples of values, each tuple having length |S|. Each element in
this list (called row of T') specifies an assignment of values for the variables
in S that is consistent with their domains. We denote with R[¢] the tuple
of values corresponding to the i-th row in R, for i = {1,...,|R|}.

e x is a list of length |R| of cost values corresponding to the costs of the
assignments in R. In particular, the element x[i] represents the cost of
the assignment R[7] for the variables in S, with i = {1,...,|R|}.

e < denotes an ordering relation used to sort the variables in the list S.
In turn, the value assignments, and cost values, in each row of R and ¥,
respectively, obey the same ordering.

As a technical note, a UTIL-table T is mapped onto the GPU device to store
exclusively the cost values y, not the associated variables values. We assume
that the rows of R are sorted in lexicographic order—thus, the i-th entry x[¢]
is associated with the i-th permutation R[i] of the variable values in S, in
lexicographic order. This strategy allows us to employ a simple, perfect hashing
to efficiently associate row numbers with variables’ values. Additionally, all the
data stored in the GPU global memory is organized in mono-dimensional arrays,
to facilitate coalesced memory accesses.

5.2 GPU-based Constraint Aggregation

The constraint aggregation takes as input two UTIL-tables: T; and T,, and
aggregates the cost values in x; to those of x, for all the corresponding assign-
ments of the shared variables in the scope of the two UTIL-tables. We refer to
T; and T, as to the input and output UTIL-tables, respectively.

Consider the example in Figure 5, the cost values x; of the input UTIL-
table T; (left) are aggregated to the cost values y, of the output UTIL-table T,
(right)—which were initialized to 0. The rows of the two tables with identical
value assignments for the shared variables x5 and x3 are shaded with the same
color.

To optimize the performance of the GPU operations and to avoid unneces-
sary data transfers to/from the GPU global memory, we only transfer the list
of cost values y for each UTIL-table that needs to be aggregated and employ a
simple, perfect hashing function to efficiently associate row numbers with vari-
ables’ values. This allows us to compute the indexes of the cost vector of the
input UTIL-table relying exclusively on the information of the thread ID and,
thus, avoid accessing the scope S and assignment vectors R of the input and
output UTIL-tables. We refer the interested reader to [13] for the complete
details.

To exploit the highest degree of parallelism offered by the GPU device, we:

1. map one GPU thread T4 to one element of the output UTIL-table, and

13

3

=
N
glﬂ

Y;d ’Xle Xg‘ Xo ‘
0ifo 0] 2 @%0 0 0] 0+2 |10
milo 1l o —@®~0 01| 0+0|"
BT AN @?—»010 0+1 |1
5 L 3 @0 1oz

\G)%»J 00| 0+2 |4
101|040 |/

21 10| 041 |1

1L 0+3

Figure 5: Example of aggregation of two tables on GPU.

2. adopt the ordering relation <7 for each input and output UTIL-table
processed.

Adopting such techniques allows each thread to be responsible for performing
exactly two reads and one write from/to the GPU global memory. Additionally,
the ordering relation enforced on the UTIL-tables allows us to exploit the locality
of data and to encourage coalesced data accesses. As illustrated in Figure 5,
this paradigm allows threads (whose IDs are identified in red by their T;;’s)
to operate on contiguous chunks of data. Thus, it minimizes the number of
actual read (from the input UTIL-table, on the left) and write (onto the output
UTIIL-table, on the right) operations from/to the global memory performed by
a group of threads with a single data transaction.’

As a technical detail, the UTIL-tables are created and processed so that the
variables in their scope are sorted according to the order <. This means that
the variables with the highest priority appear first in the scope list, while the
variables to be eliminated always appear last. Such detail allows us to efficiently
encode the elimination operation on the GPU, as explained next.

5.3 GPU-based Variable Elimination

The variable elimination takes as input a UTIL-table T, and a variable x; € S,.
It removes z, from the UTIL-table’s scope by optimizing over its cost rows. As
a result, the output UTIL-table rows list the unique assignments for the value
combinations of S,\{«;} in the input UTIL-table R, which minimizes the costs
values for each d € D,,. Figure 6 illustrates this process, where the variable x5 is
eliminated from the UTIL-table T,,. The column being eliminated is highlighted

5 Accesses to the GPU global memory are cached into cache lines of 128 Bytes, and can be
fetched by all requiring threads in a warp.

=
[©)
Y
>
Q
~
Y

(0]
[1]
/2

[3]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

=~ ~c oo ok

NN O O N~ O O

Figure 6: Example of variable elimination on GPU.

yellow in the input UTIL-table. The different row colors identify the different
assignments for the remaining variables x1, x2, and exposes the high degree of
parallelization that is associated with such an operation. To exploit this level of
parallelization, we adopt a paradigm similar to that employed in the aggregation
operation on GPU, where each thread is responsible for the computation of a
single output element.

The variable elimination is executed in parallel by a number of GPU threads
equal to the number of rows of the output UTIL-table. Each thread identifies
its row index 7, within the output UTIL-table cost values x,, given its thread
ID. It hence retrieves an input row index r; to the value of the first x, input
UTIL-table row to analyze. Note that, as the variable to eliminate is listed last
in the scope of the UTIL-table, it is possible to retrieve each unique assignment
for the projected output bucket table, simply by offsetting 7, by the size of D,,.
Additionally, all elements listed in x,[r;], ..., Xo[7; +|Ds,|] differ exclusively on
the value assignment to the variable z; (see Figure 6). Thus, the GPU kernel
evaluates the input UTIL-table cost values associated to each element in the
domain of z;, by incrementing the row index r;, |Dy,| — 1 times, and chooses
the minimum cost value. At last, it saves the best cost found to the associated
output row.

Note that each thread reads | D,,| adjacent values of the vector x,, and writes
one value in the same vector. Thus, this algorithm (1) perfectly fits the SIMT
paradigm, (2) minimizes the accesses to the global memory as it encourages a
coalesced data access pattern, and (3) uses a relatively small amount of global
memory, as it recycles the memory area allocated for the input UTIL-table, to
output the cost values for the output UTIL-table.

For additional details on these operations, and on the theoretical and exper-
imental results of the GPU parallel version of DPDOP, we refer the reader to

15

13].

6 Applications to the Smart Grid

With the growing complexity of the current power grid, there is an increasing
need for intelligent operations coordinating energy supply and demand. A key
feature of the smart grid vision is that intelligent mechanisms will coordinate
the production, transmission, and consumption of energy in a distributed way,
guaranteeing sustainability, reliability, and resilience. The distributed nature of
the grid makes cooperative multi-agent based solutions a natural fit. A critical
problem in this domain is that of minimizing the peak load demands, as these
are expensive from both a system operational perspective and for the risk as-
sociated with power failure due to overload. Demand response (DR) strategies
allow customers to make autonomous decisions on their energy consumption
and have been shown to improve various power system operations, including
load balancing and frequency regulation.

From a large scale, power generation perspective, the economic dispatch
(ED) of power generators is applied to allocate the power to be produced by
each generator minimizing the production costs while satisfying the physical
constraints of the power system. Demand response programs enable customers
to make informed decisions regarding their energy consumption and can be used
to reduce the total peak demand, reshape the demand profile, and thus increase
grid sustainability. Maintaining a constant balance between generation and
consumption of power is critical for effective power system operations. Section
7 proposes a proactive DCOP approach to the economic dispatch which includes
demand response and can quickly respond to the dynamic changes of the grid
loads (within a few minutes).

At a smaller scale, from a consumer perspective, demand response can be
used to reduce the residential electricity spending by designing smart buildings
capable of making autonomous decisions to control power loads, production,
and transmission. Through the proliferation of smart devices (e.g., smart ther-
mostats, smart washers) in our homes and offices, the buildings’ automation
within the broader smart grid is becoming crucial. Home automation is defined
as the automated control of the buildings electrical devices with the objective of
the improved comfort of the occupants, improved energy efficiency, and reduced
operational costs. Section 8 focuses on the scheduling of smart devices in a
decentralized way. In the proposed model, each household is responsible for the
schedule of the devices in her building under the assumption that each user has
personal preferences and comforts levels. The DR model enables users to act
cooperatively to reduce the global energy peaks.

16

7 Multi-agent Economic Dispatch with Demand
Response (EDDR)

In traditional operations, ED and DR are implemented separately, despite the
strong inter-dependencies between these two problems. Fioretto et al. [17] pro-
posed an integrated approach to solve the ED and DR problems to simultane-
ously maximize the benefits of customers and minimize the generation costs.
We survey such approach next.

7.1 The EDDR Model

A power grid can be viewed as a network of nodes (called buses in the power
systems literature) that are connected by distribution cables and whose loads
are served by (electromechanical) power generators. Typically, a group of such
power generators is located in a single power station, and a number of power
stations are distributed in different geographic areas. Such a power grid can be
visualized as an undirected graph (V,), in which buses (in V) are modeled as
graph nodes and transmission lines (in £ € V x V) as edges. This representation
captures the ability of the current to flow in both directions in a circuit.

An n-bus power system is considered where each bus injects and withdraws
power through a generator ¢ € G and a load [€ L, respectively, where G and
L are, respectively, the set of generators and loads in the problem. Load buses
can be dispatchable or non-dispatchable, based on whether it is possible to defer
a portion of the load.

We model each bus as an agent, capable of making autonomous decisions
on its power consumption and generation. We assume that there is exactly one
generator and one load in each bus. The case with multiple loads and generators
per bus can be easily transformed into this simpler model by precomputing the
best operational conditions for each output combination of loads and generation
power. In other words, each amount p of power that can be injected by the
aggregated action of the generators within a bus will take cost c¢,. The latter,
is the value minimizing the sum of the costs of the individual generators when
their aggregated power injected equals p. The cost for the aggregated loads at
a bus-level follows a similar procedure.

When a load difference is revealed to the power system, the ED problem is to
regulate the output of the appropriate units so that the new generation output
meets the new load and the generators are at economic dispatch (i.e., they are
running efficiently according to some objective function). Near real-time power
consumption monitoring from smart meters allows short-term load prediction,
which can supply the smart grid with predictions on power consumption levels.

DR resources can be planned to be dispatched at different time scales, from
supporting frequency regulation (requiring DR loads to respond in the order
of few seconds) to correcting phase imbalance on the feeders (which requires
responses in intervals of several minutes) and supporting cold load operations
by restraining load demand—every several minutes to an hour intervals. The

17

D-EDDR problem with a time horizon H is presented in [17].

Due to a rippling effect on the generators’ power-cost curve, the generators’
cost functions contain nonlinear terms, which makes the optimization problem
non-convex. Additionally, due to the non-linearity of the transmission lines ca-
pacity constraints, Fioretto et al., consider a relaxation of the D-EDDR problem
in which the transmission lines capacities constraints are modeled as soft con-
straints with a penalty on the degree of their violation. This approach is similar
to the one used by researchers in the power systems community [39, 43].

The D-EDDR problem has been modeled as a Dynamic DCOP [31], which is
a sequence of DCOPs (P, Ps, .. .), where each P, is associated with a particular
time step t. Each DCOP P, in the Dynamic DCOP has the same agents A of
the network buses, each agent a € A controls two variables: a.xf] and a.:rf, for a
generator and a load. The domains of these variables correspond to the possible
power that can be injected by generator g, or withdrawn by load [, respectively.
In addition to the cost functions associated with the generators’ costs and the
loads’ utilities, the problem includes hard constraints that represent the physical
constraints of the energy flow conservation and the generators’ ramp constraints
and soft constraints that represent the transmission lines capacities.

7.2 R-Deeds

The Relazed Distributed Efficient ED with DR Solver (R-DEEDS) [17] is a multi-
agent solver for solving the (relaxed) D-EDDR problem which is based on the
dynamic DCOP model described above. R-DEEDS bears similarities with DPOP
(Section 2.2) and it is composed of four phases: (1) Pseudo-tree Generation, (2)
UTIL Initialization, (8) UTIL Propagation, and (4) VALUE Propagation.

The first and last phases of R-DEEDS are identical to that of DPOP. In the
UTIL Initialization phase, each agent initializes its UTIL-tables by computing,
for all the possible combinations of loads and generators outputs within the
bus controlled by the agent, and for each time in the horizon, their costs and
their effect on each of the transmission lines of the network. Finally, the UTIL
Propagation phase is similar to that of DPOP: R-DEEDS agents propagate the
UTIL-tables up to the root agent analogously to agents in DPOP. However,
differently, from DPOP, when an agent aggregates the UTIL-tables of its chil-
dren, it also updates the effect on the congestion of the transmission lines of the
network. Finally, when the root agent checks for satisfiability of some “global”
constraints:

e If none of the values in its UTIL-table satisfies all the constraints, it sug-
gests that the problem is insufficiently relaxed. Thus, it increases a pa-
rameter w by a factor of 2 based on the difference with respect to its value
in the last iteration,® propagates this information to all agents and informs
them to reinitialize their UTIL tables with the new updated w, and solve
the new relaxed problem in a new iteration.

6The larger the value of w, the more relaxed the problem. The relaxed problem is identical
to the original one if w=0.

18

SIMULATED RUNTIME (SEC) NORMALIZED QUALITY
GPU Implementation -) .

CPU Implementation
2 3 4

1 4 1 2 3 4

511 0.010 0.044 344 1275 | 0.025 (0.4x) 0.038 (1.2x) 0.128 (26.9x) 2.12 (60.2x) 0.8732 0.8760 0.9569 1.00
14]| 0103 509.7 0.077 (13x) 3.920 (130x) 61.70 (n/a) 0.6766 0.8334 1.00
30 || 0.575 9084 0.241 (2.4x) 7951 (114x) 0.8156 1.00
57 || 4.301 0.676 (6.4x) 585.4 (n/a) 08135 1.00

us || 144 - - - | 4971 (35.%) - - - 1.00 - - -

IEEE Buses

Table 1: R-DEEDS CPU and GPU Runtimes, Speedups (in parenthesis), and
Normalized Solution Qualities.

o If there is a row satisfying all the constraints, then the problem may be
overly relaxed. Thus, it decreases w by a factor of 2 based on the difference
with respect to its value in the last iteration, and this new relaxed problem
is solved in a new iteration.

This process repeats itself until some criteria is met (e.g., a maximum number
of iterations, convergence in the solution).

A number of the operations of the algorithm can be sped up through par-
allelization using GPUs. In particular, the initialization and consistency checks
of the different rows of the UTIL-table can be done independently from each
other. Additionally, the aggregation of the different rows of the UTIL-tables can
also be computed in parallel, fitting well the SIMT processing paradigm. Thus,
R-DEEDS adopts a scheme similar to that described in Section 5 to implement
a GPU version of the UTIL Initialization and UTIL Propagation phases.

7.3 Empirical Evaluation

We evaluate the proposed algorithms on 5 standard IEEE Bus Systems,’ all
having non-convex solution spaces, and ranging from 5 to 118 buses.

All the generators are set with a 5SMW ramp rate limit. We use a 1MW dis-
cretization unit for each load and generators. Thus, the maximum domain sizes
of the variables are between 100 and 320 in every experiment. The horizon H
is set to 12, with each step defining a one hour interval. Additionally, we define
a parameter H,,; that denotes the number of time steps that are considered by
R-DEEDS agents at a time. Thus, it first solves the subproblem with the first
H,p time steps. Next, it solves the following subproblem with the next H,,;
time steps, and so on, until the entire problem is solved. The satisfiability of
the constraints between the subsequent H,,; subproblems is ensured in Phase
2 of R-DEEDS .

We generate 30 instances for each test case. The performance of the algo-
rithms are evaluated using the simulated runtime metric [38], and we imposed
a timeout of 5 hours. Results are averaged over all instances. These experi-
ments are performed on a AMD Opteron 6276, 2.3GHz, 128GB of RAM, which
is equipped with a GeForce GTX TITAN GPU device with 6GB of global mem-
ory. If an instance cannot be completed, it is due to runtime limits for the CPU
implementation of the algorithm, and memory limits for the GPU implementa-
tion. We set the number of iterations to 10.

"http://publish.illinois.edu/smartergrid/

19

60.02

60.01-
N
= 60.00
>
2 59.99
s

Deployment of

559.98 / pEg_DR

59.97

59.96 : S ‘

0 120 240 360 480 600 720
Time (sec)

Figure 7: Dynamic Simulation of the IEEE 30 Bus with heavy loads.

We do not report evaluation against existing (Dynamic) DCOP algorithms
as the standard (Dynamic) DCOP models cannot fully capture the complexities
of the D-EDDR problem (e.g., environment variables with continuous values).

Table 1 tabulates the runtimes in seconds of R-DEEDS with both CPU and
GPU implementations at varying H,,:. It also tabulates the average solution
quality found normalized with the best solution found (at varying H,,) for each
IEEE bus. We make the following observations:

e The solution quality increases as H,,; increases.

e For the smaller test case with H,, =1, the CPU implementation is faster
than the GPU one. However, for all other configurations, the GPU imple-
mentation is much faster than its CPU counterpart, with speedups up to
130 times. The reported speedup increase with increasing complexity of
the problem (i.e., bus size and Hop).

e The GPU implementation scales better than the CPU implementation.
The latter could not solve any of the instances for the configurations with
H,p: = 3 for the 14-bus system and H,,; = 2 for the 57-bus system.

e We observe that the algorithms report satisfiable instances within the first
four iterations of the iterative process.

To validate the solutions returned by R-DEEDS , we tested the stability of the
returned control strategy for the IEEE 30-Bus System on a dynamic simulator

20

(Matlab SimPowerSystems) that employs a detailed time-domain model and
recreates conditions analogous to those of physical systems. Figure 7 shows
the dynamic response of the system frequency, whose nominal value is 60 Hz.
The system frequency is at the nominal value when the power supply-demand
is balanced. If more power is produced than consumed, the frequency would
rise and vice versa. Deviations from the nominal frequency value would damage
synchronous machines and other appliances. Thus, to ensure stable operating
conditions, it is important to ensure that the system frequency deviation is
confined to be within a small interval (typically 0.1 Hz).

In our experiment, the first 60 seconds of the simulation are tested enforcing
the ED solution in a full load scenario (100% of full load) using the same setting
as in [24]. The rest of the simulation deploys the D-EDDR solution returned
by R-DEEDs . Notice that this is a challenging scenario, in terms of system
stability, whose difficulty is independent on the size of the benchmarks.

While the resolution of the simulation is in microseconds, R-DEEDS agents
send only desired power injected and withdrawn (schedules), computed offline,
in one-minute intervals; the simulator interpolates the power generated between
such intervals. This scenario reflects real-life conditions, where control signals
are sent to actual generators at intervals of several minutes. As expected, the
frequency deviation is more stable when the load predictions are accurate. Cru-
cially, the deviation in both cases is within 0.05 Hz, thereby ensuring system
stability. In addition, we observe, during simulation, that the D-EDDR solution
can reduce the total load up to 68.5%, showing the DR contribution in peak
demand reduction. Finally, the frequency response of the D-EDDR solution
converges faster than that of the ED only, with smaller fluctuations. The rea-
son is that the supply-demand balance is better maintained by coordinating the
generators and loads in the system simultaneously.

8 Smart Home Device Scheduling

Residential and commercial buildings are progressively being automated
through the introduction of smart devices (e.g., smart thermostats, circula-
tor heating, washing machines). Besides, a variety of smart plugs, which allow
users to control devices by remotely switching them on and off intelligently,
are now commercially available. Device scheduling can, therefore, be executed
by users, without the control of a centralized authority. This schema can be
used for demand-side management in a DR program. However, uncoordinated
scheduling may be detrimental to DR performance without reducing peak load
demands [40]. For an effective DR, a coordinated device scheduling within a
neighborhood of buildings is necessary. Privacy concerns arise when users share
resources or cooperate to find suitable schedules. This section surveys the Smart
Home Device Scheduling (SHDS) problem, which formalizes the problem of co-
ordinating smart devices schedules across multiple smart homes as a multi-agent
system, presented initially in [16].

21

Figure 8: Illustration of a Neighborhood of Smart Homes

8.1 The Problem

A Smart Home Device Scheduling (SHDS) problem is defined by the tuple
MH,Z,L, Py, Py, H, 0) where:

e H = {h1, hs,...} is a neighborhood of smart homes, capable of communi-
cating with one another.

o Z = Up,enZ; is a set of smart devices, where Z; is the set of devices in
the smart home h; (e.g., vacuum cleaning robot, smart thermostat).

o L = up,erl; is a set of locations, where L; is the set of locations in the
smart home h; (e.g., living room, kitchen).

e Py is the set of the state properties of the smart homes (e.g., cleanliness,
temperature).

e P is the set of the devices state properties (e.g., battery charge for a
vacuum cleaning robot).

e H is the planning horizon of the problem, and T = {1,..., H} denotes
the set of time points.

e 0 : T — R™' represents the real-time pricing schema adopted by the energy
utility company, which expresses the cost per kWh of energy consumed
by consumers.

Finally, ©, is used to denote the set of all possible states for state property
p € Py uPy (eg., all the different levels of cleanliness for the cleanliness
property). Figure 8 shows an illustration of a neighborhood of smart homes
with each home controlling a set of smart devices.

22

8.1.1 Smart Devices

For each home h; € H, the set of smart devices Z; is partitioned into a set of
actuators A; and a set of sensors S;. Actuators can affect the states of the
home (e.g., heaters and ovens can affect the temperature in the home) and
possibly their states (e.g., vacuum cleaning robots drain their battery power
when running). On the other hand, sensors monitor the states of the home.

A tuple (£, A, vE,~Z) defines each device z € Z; of a home h; , where £, €
L; denotes the relevant location in the home that it can act or sense, A, is the
set of actions that it can perform, and v : A, — p(Pg) and 7% : A, — p(Py)
map the actions of the device to the relevant state properties of the home and
to those of the device, respectively.

Example 2 Consider a wvacuum cleaning robot z, with location £, =
living_room. The set of possible actions is A,, = {run,charge,stop} and the
mappings are:

'yg : run— {cleanliness}; charge— J; stop— &,

fyzZU : run— {charge}; charge— {charge}; stop— &,

where & represents a null state property.

8.1.2 Device Schedules

To control the energy profile of a smart home, we need to describe the behavior
of the smart devices acting in the smart home during the time horizon. We
formalize this concept with the notion of device schedules. We use &8 € A, to
denote the action of device z at time step ¢, and &5 = {£! | z € X} to denote
the set of actions of the devices in X € Z at time step t.

A schedule §£§“_)tb] =<§§g, . ,§§§> is a sequence of actions for the devices in
X C Z within the time interval from t, to t.

Consider the illustration of Figure 9. The top row shows a possible schedule
{(R,R,C,C,R,R,C, R) for a vacuum cleaning robot starting at time 1400 hrs,
where each time step is 30 minutes. The robot’s actions at each time step are
shown in the colored boxes with letters in them: red with ‘S’ for stop, green
with ‘R’ for run, and blue with ‘C’ for charge.

At a high level, the goal of the SHDS problem is to find a schedule for each
of the devices in every smart home that achieves some user-defined objectives
(e.g., the home is at a particular temperature within a time window, the home
is at a particular cleanliness level by some deadline) that may be personalized
for each home. We refer to these objectives as scheduling rules.

8.1.3 Scheduling Rules

The SHDS introduces two types of scheduling rules:

o Active Scheduling Rules (ASRs) that define user-defined objectives on a
desired state of the home (e.g., the living room is cleaned by 1800 hrs).

23

S R R C C Device Schedule
T Lo 1o Tl o] - [
65 ‘ 40 ‘ 15 ‘ 35 ‘ 55 ‘ 30 ‘ ‘ 25 ‘ Battery Charge (%)
A
Goal 75— — 75
—~ 60— —60 ¥
& 45— —45 <
£ Q
T 30— —30 3
2)
© 45— = —15 &
0] 1
1400 1500 1600 1700 1800
Time Deadline

Figure 9: Smart Home Device Scheduling Example

e Passive Scheduling Rules (PSRs) that define implicit constraints on de-
vices that must hold at all times (e.g., the battery charge on a vacuum
cleaning robot is always between 0% and 100%).

Example 3 The following ASR defines a goal state where the living room floor
is at least 75% clean (i.e., at least 75% of the floor is cleaned by a vacuum
cleaning robot) by 1800 hrs:

living_-room cleanliness = 75 before 1800,

and the following PSRs state that the battery charge of the vacuum cleaning
robot z, needs to be between 0% and 100% of its full charge at all the times:

Zycharge = Oalways A z,charge< 100always

We denote with R,[,t‘ﬁtb] a scheduling rule over a state property p € Py u Py
and time interval [t,, tp].

Each scheduling rule indicates a goal state at a home location or on a device
lr, € L; U Z; of a particular state property p that must hold over the time
interval [tq,ty] € T. The scheduling rule’s goal state is either the desired state
of a home if it is an ASR (e.g., the cleanliness level of the room floor) or a
required state of a device or a home if it is a PSR (e.g., the battery charge of
the vacuum cleaning robot).

Each rule is associated with a set of actuators ®, = A; that can be used
to reach the goal state. For instance, in our Example (3), ®, correspond to

24

the vacuum cleaning robot z,, which can operate on the living room floor.
Additionally, a rule is associated with a sensor s, € S; capable of sensing the
state property p. Finally, in a PSR, the device can also sense its own internal
states. The ASR of Example 3 is illustrated in Figure 9 by dotted red lines on
the graph. The PSRs are not shown as they must hold for all time steps.

8.1.4 Feasibility of Schedules

To ensure that a goal state can be achieved across the desired time window, the
system uses a predictive model of the various state properties. This predictive
model captures the evolution of a state property over time and how this state
property is affected by a given joint action of the relevant actuators.

A predictive model T',, for a state property p is a function I' : €, x
X eq, AzU{L} = Q,U{L}, where L denotes an infeasible state and L+(-) = L.
In other words, the model describes the transition of state property p from
state w, € (), at time step ¢ to time step ¢ + 1 when it is affected by a set of
actuators @, running joint actions {fbp: Tt (wp, Eé,p) = wp +Ap(wp, fft,p) where
Ap(wp, §fbp) is a function describing the effect of the actuators’ joint action ffbp
on state property p.

We assume here, without loss of generality, that the state of properties is
numeric—when this is not the case, a mapping of the possible states to a numeric
representation can be easily defined.

Example 4 Consider the charge state property of the vacuum cleaning robot
2y. Assume it has 65% charge at time step t and its action is g;v at that time
step. Thus:

Ll e (65,68) =65 + Acharge(65,L)

Acha?“ge (wafiv) =
min(20,100—w) if &£ =charge A w <100

—25 if € =run Aw > 25
0 if & =stop
L otherwise

In other words, at each time step, the charge of the battery will increase by 20%
if it is charging until it is fully charged, decrease by 25% if it is running until it
has less than 25% charge, and no change if it is stopped.

The predictive model of the example above models a device state property.
Notice that a recursive invocation of a predictive model allows us to predict the
trajectory of a state property p for future time steps, given a schedule of actions
of the relevant actuators ®,,.

Given a state property p, its current state w, at time step t,, and a schedule
fc[lf;‘_)tb] of relevant actuators ®,, the predicted state trajectory Wp(wp,fg:_'tb])
of that state property is defined as:

1 a a ty—
ri (=1 (... (T (wp,ggp),...), s,) gp).

25

Consider the device scheduling example in Figure 9. The predicted state
trajectories of the charge and cleanliness state properties are shown in the
second and third rows. These trajectories are predicted given that the vacuum
cleaning robot will take on the schedule shown in the first row of the figure. The
predicted trajectories of these state properties are also illustrated in the graph,
where the dark gray line shows the states for the robot’s battery charge and the
black line shows the states for the cleanliness of the room.

Notice that, to verify if a schedule satisfies a scheduling rule, it is suffi-
cient to check that the predicted state trajectories are within the set of feasible
state trajectories of that rule. Additionally, notice that each active and passive
scheduling rule defines a set of feasible state trajectories. For example, the ac-
tive scheduling rule of Example 3 allows all possible state trajectories as long as
the state at time step 1800 is no smaller than 75. We use R,[t] € €, to denote
the set of states that are feasible according to rule R, of state property p at
time step t.

More formally, a schedule §<[If;’_)tb] satisfies a scheduling rule R,[,t“_'t”] (written

as el RUZ0l) i Ve [ta,t] 0 mp(wle, €897 € R [f], where wie s
the stpate of state property p at time step t,. !

A schedule is feasible if it satisfies all the passive and active scheduling rules
of each home in the SHDS problem.

8.1.5 Cost of Schedules

In addition to finding feasible schedules, the goal in the SHDS problem is to
optimize for the aggregated total cost of energy consumed.

Each action £ € A, of device z € Z; in home h; € H has an associated en-
ergy consumption p, : A, — RT, expressed in kWh. The aggregated energy
EX([ZlfH]) across all devices consumed by h; at time step ¢t under trajectory

1-H] .
ST

ENeL My =t 4+ D) pa(el)

ZEZi

where ¢! is the home background load produced at time ¢, which includes all
non-schedulable devices (e.g., TV, refrigerator), and sensor devices—which are
always active, and ¢! is the action of device z at time ¢ in the schedule §[ZlfH].

The cost ¢;([ZliH]) associated to schedule 5[217[{] in home h; is:

ciley ™) = 3 (BHEL M) - 0(t) (1)

i
teT

where 6(t) is the energy price per kWh at time ¢.

26

8.1.6 Optimization Objective

The objective of an SHDS problem is that of minimizing the following weighted
bi-objective function:

min o C5"™ 4+ - EPeak (2)
5[Z1v—>H]
st: €5~ = B2t (vh; e HLRU-0 e Ry) (3)
where CS"™ = EhieH ci([ZliH]) is the aggregated monetary cost across all

homes h;; and EP®k = % . ZHjeH ZhieHJ (Ef(f[zli_)H]))2 is a quadratic
penalty function on the aggregated energy consumption across all homes h;,
and a., a. €R are weights. Additionally, H is a partition set of H defining a set
of homes coalitions, into each of which homes may share their energy profile with
each other so to optimize the energy peaks. These coalitions can be exploited by
a distributed algorithm to (1) parallelize computations between multiple groups
and (2) avoid data exposure over long distances or sensitive areas.

Finally, constraint (3) defines the valid trajectories for each scheduling rule
r € R;, where R; is the set of all scheduling rules of home h;.

8.2 DCOP Representation

A DCOP mapping of the SHDS problem is as follows:
e AcENTS: Each agent a; € A in the DCOP is mapped to a home h; € H.
e VARIABLES and DoMAINS: Each agent a; controls:

— For each actuator z € A; and time ¢t € T, a variable z{ , whose
domain is the set of actions in A,. The sensors in S; are considered
always active, and thus not directly controlled by the agent.

— An auxiliary interface variable i§ whose domain is
[0, .z, plargmax,c 4 p.(a))] and represents the aggregated
energy consumed by all the devices in the home at each time step t.

e CONSTRAINTS: There are three types of constraints:

— Local soft constraints (i.e., constraints that involve only variables
controlled by one agent) whose costs correspond to the weighted sum-
mation of monetary costs, as defined in Equation (1).

— Local hard constraints that enforce Constraint (3). Feasible schedules
incur a cost of 0 while infeasible schedules incur a cost of co.

— Global soft constraints (i.e., constraints that involve variables con-
trolled by different agents) whose costs correspond to the peak energy
consumption, as defined in the second term in Equation (2).

The neighbors N,, of agent a; are defined as all the agents in the coalition H
that contains h;.

27

8.3 MVA-based MGM

The SHDS problem requires several homes to solve a complex scheduling sub-
problem, which involves multiple variables, and to optimize the resulting energy
profiles among the neighborhood of homes. The problem can be thought of as
each agent solving a local complex subproblem, whose optimization is influenced
by the energy profiles of the agent’s neighbors, and by a coordination algorithm
that allows agents to exchange their newly computed energy profiles. We thus
adopt the multiple-variable agent (MVA) decomposition [15] to delegate the
resolution of the agent’s local problem to a centralized solver while managing
inter-agent coordination through a message-passing procedure similar to that
operated by MGM, described in Section 2.3. The resulting algorithm is called
Smart Home MGM (SH-MGM). SH-MGM is a distributed algorithm that oper-
ates in synchronous cycles. The algorithm first finds a feasible DCOP solution
and then iteratively improves it, at each cycle, until convergence or time out.
We leave the details out and refer the interested reader to [16].

8.4 Empirical Evaluation

Our empirical evaluations compare the SH-MGM algorithm against an uncoor-
dinated greedy approach, where each agent computes a feasible schedule for its
home devices without optimizing over its cost and the aggregated peak energy
incurred.

Each agent controls nine smart actuators to schedule—Kenmore oven and
dishwasher, GE clothes washer and dryer, iRobot vacuum cleaner, Tesla electric
vehicle, LG air conditioner, Bryant heat pump, and American water heater—
and five sensors. We selected these devices as they can be available in a typical
(smart) home and they have published statistics (e.g., energy consumption pro-
files). The algorithms take as inputs a list of smart devices to schedule as well
as their associated scheduling rules and the real-time pricing scheme adopted.
Each device has an associated active scheduling rule that is randomly gener-
ated for each agent and a number of passive rules that must always hold. To
find local schedules at each SH-MGM iteration, each agent uses a Constraint
Programming solver® as a subroutine. An extended description of the smart de-
vice properties, the structural parameters (i.e., size, material, heat loss) of the
homes, and the predictive models for the homes and devices state properties is
reported in [21]. Finally, we set H = 12 and adopted a pricing scheme used by
the Pacific Gas & Electric Co. for its customers in parts of California,® which
accounts for seven tiers ranging from $0.198 per kWh to $0.849 per kWh.

In our first experiment, we implemented the algorithm on an actual dis-
tributed system of Raspberry Pis. A Raspberry Pi (called “PI” for short) is a
bare-bone single-board computer with limited computation and storage capabil-
ities. We used Raspberry Pi 2 Model B with quadcore 900MHz CPU and 1GB

8We adopt the JaCoP solver (http://www.jacop.eu/)
9https://goo.gl/v0eNqj/

28

750
L

/o

700
L

L
/0

50 200 1000
.
d
|
s
/
3
7
|
4
>or
s
N Ao

Solution Cost

650
L

ey,
.
+ o uncoord.
Y + SH-MGM
e

Total Energy
Consumption (kWh)
Average Cost ($/day)

2

°
uncoord.
=0, ag=1
=05

Raannnnnianas 24 °
T T T T T T T T T T T e S o ~
1 2 4 g 2 > 2
0 0 0 30 0 50 2 4 6 8 10 00«6 & A ZQ © & B
Number of Cycles Time ¢ @ 07 ¢

Figure 10: Physical Experimental Result with PIs (left); Synthetic Experimental
Results Varying a. and o, (middle and right).

of RAM. We implemented the SH-MGM algorithm using the Java Agent Devel-
opment Environment (JADE) framework,'® which provides agent abstractions
and peer-to-peer agent communication based on asynchronous message passing.
Each PI implements the logic for one agent, and the agent’s communication is
supported through JADE and using a wired network connected to a router.

We set up our experiments with seven Pls, each controlling the nine smart
actuators and five sensors described above. All agents belong to the same coali-
tion. We set the equal weights . and «. of the objective (see Equation (2)) to
0.5. Figure 10 (left) illustrates the results of this experiment, where we imposed
a 60 seconds timeout for the CP solver. As expected, the SH-MGM solution
improves with increasing number of cycles, providing an economic advantage for
the users as well as peak energy reduction, when compared to the uncoordinated
schema. These results, thus, show the feasibility of using a local search-based
schema implemented on hardware with limited storage and processing power to
solve a complex problem.

In our second set of experiments, we generate synthetic microgrid instances
sampling neighborhoods in three cities in the United States (Des Moines, TA;
Boston, MA; and San Francisco, CA) and estimate the density of houses in
each city. The average density (in houses per square kilometers) is 718 in Des
Moines, 1357 in Boston, and 3766 in San Francisco. For each city, we created
a 200m x200m grid, where the distance between intersections is 20m, and ran-
domly placed houses in this grid until the density is the same as the sampled
density. We then divided the city into k (=|H|) coalitions, where each home can
communicate with all homes in its coalition. In generating our SHDS topolo-
gies, we verified that the resulting topology is connected. Finally, we ensure that
there are no disjoint coalitions; this is analogous to the fact that microgrids are
all connected to each other via the main power grid.

In these experiments, we imposed a 10 seconds timeout for the agents’ CP
solver. We first evaluate the effects of the weights a. and a. (see Equation (2))
on the quality of solutions found by the algorithms. We evaluate three config-
urations: (a. = 1.0, = 0.0), (e, = 0.5, = 0.5), and (. = 0.0, = 1.0),
using randomly generated microgrids with the density of Des Moines, IA. Fig-

Ohttp://jade.tilab.com/

29

ure 10(middle) shows the total energy consumption per hour (in kWh) of the
day under each configuration. Figure 10 (right) illustrates the average daily cost
paid by one household under the different objective weights. The uncoordinated
greedy approach achieves the worst performance, with the highest energy peak
at 2852 kWh and the most expensive daily cost ($3.84). The configuration
that disregards the local cost reduction (. = 0) reports the best energy peak
reduction (peak at 461 kWh) but highest daily cost among the coordinated con-
figurations ($2.31). On the other extreme, the configuration that disregards the
global peak reduction (o, = 0) reports the worst energy peak reduction (peak
at 1738 kWh) but the lowest daily cost among the coordinated configurations
($1.44). Finally, the configuration with a. = a. = 0.5 reports intermediate
results, with the highest peak at 539 kWh and a daily cost of $2.18.
For a more extensive analysis of the results, we refer the reader to [16].

9 Conclusions

Responding to the recent call to action for AI researchers to contribute to-
wards the smart grid vision [32], this paper presented two important applica-
tions of Distributed Constraint Optimization Problems (DCOPs) for demand
response (DR) programs in smart grids. The multi-agent Economic Dispatch
with Demand Response (EDDR) provides an integrated approach to the eco-
nomic dispatch and the DR model for power systems. The Smart Home Device
Scheduling (SHDS) problem formalizes the device scheduling and coordination
problem across multiple smart homes to reduce the energy peaks.

Due to the complexity of the problems the adoption of off-the-shelf DCOPs
resolutions algorithms is infeasible. Thus, the paper introduces a methodol-
ogy to exploit the structural problem decomposition (called MVA) for DCOPs,
which enables agents to solve complex local sub-problems efficiently. It fur-
ther discusses a general GPU parallelization schema for inference-based DCOP
algorithms, which produces speed-ups of up to 2 order of magnitude.

In the context of EDDR applications, evaluations on a state-of-the-art power
systems simulator show that the solutions found are stable within acceptable
frequency deviations. In the context of home automation, the proposed algo-
rithm was deployed on a distributed system of Raspberry Pis, each capable of
controlling and scheduling smart devices through hardware interfaces. The ex-
perimental results show that this algorithm outperforms a simple uncoordinated
solution on realistic small-scale experiments as well as large-scale synthetic ex-
periments.

Therefore, this work continues to pave the bridge between the Al and power
systems communities, highlighting the strengths and applicability of AT tech-
niques in solving power system problems.

30

Acknowledgments

We would like to thank all the friends that have worked with us in this chal-
lenging research area, namely, Federico Campeotto, Alessandro Dal Palu, Rina
Dechter, Khoi D. Hoang, Ping Hou, William Kluegel, Muhammad Aamir Igbal,
Tiep Le, Tran Cao Son, Athena M. Tabakhi, Makoto Yokoo, Roie Zivan, and,
in particular, William Yeoh.

A. Dovier is partially supported by Indam GNCS 20142017 grants, and by

PRID UNIUD ENCASE. E. Pontelli has been supported by NSF grants CNS-
1440911, CBET-14016539, HRD-1345232.

References

[1]

[2]

Baruch Awerbuch. A new distributed depth-first-search algorithm. Infor-
mation Processing Letters, 20(3):147-150, 1985.

Emma Bowring, Milind Tambe, and Makoto Yokoo. Multiply-constrained
distributed constraint optimization. In Proc. of AAMAS, pages 1413-1420,
2006.

David Burke and Kenneth Brown. Efficiently handling complex local prob-
lems in distributed constraint optimisation. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pages 701-702, 2006.

Federico Campeotto, Agostino Dovier, Ferdinando Fioretto, and Enrico
Pontelli. A GPU implementation of large neighborhood search for solving
constraint optimization problems. In Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI), pages 189-194, 2014.

Federico Campeotto, Alessandro Dal Palu, Agostino Dovier, Ferdinando
Fioretto, and Enrico Pontelli. Exploring the Use of GPUs in Constraint
Solving. In Proceedings of the Practical Aspects of Declarative Languages
(PADL), pages 152167, 2014.

Imen Chakroun, Mohand-Said Mezmaz, Nouredine Melab, and Ahcene
Bendjoudi. Reducing thread divergence in a GPU-accelerated branch-and-
bound algorithm. Concurrency and Computation: Practice and Experience,
25(8):1121-1136, 2013.

Alessandro Dal Palu, Agostino Dovier, Andrea Formisano, and Enrico Pon-
telli. CUDQSAT: SAT solving on GPUs. J. Exp. Theor. Artif. Intell.,
27(3):293-316, 2015.

Gregory Frederick Diamos, Benjamin Ashbaugh, Subramaniam Maiyu-
ran, Andrew Kerr, Haicheng Wu, and Sudhakar Yalamanchili. SIMD re-
convergence at thread frontiers. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, pages 477-488, 2011.

31

[9]

[10]

[13]

[14]

[15]

[16]

Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas Jennings.
Decentralised coordination of low-power embedded devices using the Max-
Sum algorithm. In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 639-646, 2008.

Ferdinando Fioretto, Federico Campeotto, Luca Da Rin Fioretto, William
Yeoh, and Enrico Pontelli. GD-GIBBS: a GPU-based sampling algorithm
for solving distributed constraint optimization problems. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1339-1340, 2014.

Ferdinando Fioretto, Tiep Le, William Yeoh, Enrico Pontelli, and Tran Cao
Son. Improving DPOP with branch consistency for solving distributed con-
straint optimization problems. In Proceedings of the International Confer-

ence on Principles and Practice of Constraint Programming (CP), pages
307-323, 2014.

Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed con-
straint optimization problems and applications: A survey. Journal of Ar-
tificial Intelligence Research (JAIR), (to appear), 2018.

Ferdinando Fioretto, Enrico Pontelli, William Yeoh, and Rina Dechter.
Accelerating exact and approximate inference for (distributed) discrete op-
timization with GPUs. Constraints, 23(1):1-43, Jan 2018.

Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. A dynamic
programming-based MCMC framework for solving DCOPs with GPUs. In
Proceedings of Principles and Practice of Constraint Programming (CP),
pages 813-831, 2016.

Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. Multi-variable
agents decomposition for DCOPs. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 24802486, 2016.

Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. A multiagent
system approach to scheduling devices in smart homes. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 981-989, 2017.

Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, and Satishku-
mar Ranade. A DCOP approach to the economic dispatch with demand

response. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2017.

Rachel Greenstadt, Jonathan Pearce, and Milind Tambe. Analysis of pri-
vacy loss in DCOP algorithms. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 647-653, 2006.

32

[19]

[20]

[21]

[24]

[25]

[26]

Tianyi David Han and Tarek S. Abdelrahman. Reducing Branch Divergence
in GPU Programs. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, pages 3:1-3:8, New York,
NY, 2011. ACM Press.

Khoi Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie
Zivan. A large neighboring search schema for multi-agent optimization. In
Proceedings of the International Conference on Principles and Practice of
Constraint Programming (CP), page to appear, 2018.

William Kluegel, Muhammad A. Igbal, Ferdinando Fioretto, William Yeoh,
and Enrico Pontelli. A realistic dataset for the smart home device schedul-
ing problem for DCOPs. In Gita Sukthankar and Juan A. Rodriguez-
Aguilar, editors, Autonomous Agents and Multiagent Systems: AAMAS
2017 Workshops, Visionary Papers, Sdo Paulo, Brazil, May 8-12, 2017,
Revised Selected Papers, pages 125—142, Cham, 2017. Springer Interna-
tional Publishing.

Thomas Léauté and Boi Faltings. Distributed constraint optimization un-
der stochastic uncertainty. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI), pages 68-73, 2011.

T. Logenthiran, D. Srinivasan, and T. Shun. Demand side management
in smart grid using heuristic optimization. IEEE Transactions on Smart
Grid, 3(3):1244-1252, 2012.

Ye Ma, Wei Zhang, Wenxin Liu, and Qinmin Yang. Fully distributed
social welfare optimization with line flow constraint consideration. IFEFE
Transaction on Industrial Informatics, 11(6):1532-1541, 2015.

Rajiv Maheswaran, Jonathan Pearce, and Milind Tambe. Distributed algo-
rithms for DCOP: A graphical game-based approach. In Proceedings of the
International Conference on Parallel and Distributed Computing Systems

(PDCS), pages 432-439, 2004.

Rajiv T. Maheswaran, Jonathan P. Pearce, and Milind Tambe. Distributed
Algorithms for DCOP: A Graphical-Game-Based Approach. In Proceed-
ings of the ISCA 17th International Conference on Parallel and Distributed
Computing Systems, pages 432-439, 2004.

Sam Miller, Sarvapali D. Ramchurn, and Alex Rogers. Optimal decen-
tralised dispatch of embedded generation in the smart grid. In AAMAS,
pages 281-288, 2012.

Pragnesh Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo.
ADOPT: Asynchronous distributed constraint optimization with quality
guarantees. Artificial Intelligence, 161(1-2):149-180, 2005.

33

[29]

[30]

[31]

[32]

[33]

[34]

[39]

[40]

Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward
bounding for distributed constraint optimization problems. AI Journal,
193:186-216, 2012.

Adrian Petcu and Boi Faltings. A scalable method for multiagent con-
straint optimization. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1413-1420, 2005.

Adrian Petcu and Boi Faltings. Superstabilizing, fault-containing dis-
tributed combinatorial optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), pages 449-454, 2005.

Sarvapali D Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and
Nicholas R Jennings. Putting the ’smarts’ into the smart grid: A grand
challenge for artificial intelligence. Communications of the ACM, 55(4):86—
97, 2012.

Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas Jen-
nings. Bounded approximate decentralised coordination via the max-sum
algorithm. Artificial Intelligence, 175(2):730-759, 2011.

Emma Rollon and Javier Larrosa. Improved bounded max-sum for dis-
tributed constraint optimization. In Proceedings of the International Con-
ference on Principles and Practice of Constraint Programming (CP), pages
624-632. Springer, 2012.

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming. Elsevier, 2006.

Pierre Rust, Gauthier Picard, and Fano Ramparany. Using message-passing
DCOP algorithms to solve energy-efficient smart environment configuration
problems. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 468-474, 2016.

Jason Sanders and Edward Kandrot. CUDA by Ezample. An Introduction
to General-Purpose GPU Programming. Addison Wesley, 2010.

Evan Sultanik, Pragnesh Jay Modi, and William C Regli. On modeling
multiagent task scheduling as a distributed constraint optimization prob-
lem. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1531-1536, 2007.

D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney. Optimal
power flow by Newton approach. IEEFE Transactions on Power Apparatus
and Systems, PAS-103(10):2864-2880, Oct 1984.

Menkes Van Den Briel, Paul Scott, Sylvie Thiébaux, et al. Randomized load
control: A simple distributed approach for scheduling smart appliances. In

Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2013.

34

[41]

[48]

Meritxell Vinyals, Juan A. Rodriguez-Aguilar, and Jestus Cerquides. Con-
structing a unifying theory of dynamic programming DCOP algorithms
via the generalized distributive law. Autonomous Agents and Multi-Agent
Systems, 22(3):439-464, 2011.

T. Voice, P. Vytelingum, S. Ramchurn, A. Rogers, and N. Jennings. De-
centralised control of micro-storage in the smart grid. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages 1421-1427,
2011.

S. Wang, S. Shahidehpour, D. Kirschen, S. Mokhtari, and G. Irisarri.
Short-term generation scheduling with transmission and environmental
constraints using an augmented lagrangian relaxation. IEFEE Transaction
on Power Systems, 10(3):1294-1301, 1995.

William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asyn-
chronous branch-and-bound DCOP algorithm. Journal of Artificial Intel-
ligence Research, 38:85—-133, 2010.

William Yeoh and Makoto Yokoo. Distributed problem solving. Al Maga-
zine, 33(3):53-65, 2012.

Makoto Yokoo, editor. Distributed Constraint Satisfaction: Foundation of
Cooperation in Multi-agent Systems. Springer, 2001.

Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenberg. Dis-
tributed stochastic search and distributed breakout: Properties, compar-
ison and applications to constraint optimization problems in sensor net-
works. Artificial Intelligence, 161(1-2):55-87, 2005.

Roie Zivan, Harel Yedidsion, Steven Okamoto, Robin Glinton, and Ka-
tia Sycara. Distributed constraint optimization for teams of mobile sens-

ing agents. Journal of Automomous Agents and Multi-Agent Systems,
29(3):495-536, 2015.

35

