
Model-Checking Based Data Retrieval

Agostino Dovier1 and Elisa Quintarelli2

1 Dip. di Matematica e Informatica, Università di Udine.
Via delle Scienze 206, 33100 Udine (IT). dovier@dimi.uniud.it
2 Dip. di Elettronica e Informazione, Politecnico di Milano.

Piazza Leonardo da Vinci 32, 20133 Milano (IT). quintare@elet.polimi.it

Abstract. In this paper we develop a new method for solving queries
on semistructured data. The main idea is to see a database as a Kripke
Transition System (a model) and a query as a formula of the temporal
logic CTL. In this way, the retrieval of data fulfilling a query is reduced
to the problem of finding out the states of the model which satisfy the
formula (the model-checking problem) that can be done in linear time.
Keywords. Semistructured DBs, Temporal Logic, Model-Checking.

1 Introduction

Most of the information accessible through the Web are typically semistructured,
i.e. neither raw data nor strictly typed data [1]. It is a common approach to
represent semistructured data by using directed labeled graphs [4, 28, 7]. A lot of
work has been done to face the problem of accessing in a uniform way this kind of
data with graph-based queries. In some approaches queries are really graphs [19,
12, 27] while, in others, queries can be written in extended SQL languages [3, 2,
6]. In both cases, the data retrieval activity requires the development of graph
algorithms. In fact, queries (graphical or not) are expected to extract information
stored in labeled graphs. In order to do that, it is required to perform a kind
of matching of the “query” graph with the “database instance” graph. More in
detail, we need to find subgraphs of the instance of the database that match
(e.g., they are isomorphic or somehow similar to) the query graph. In [13, 4] the
concept of similarity used is bisimulation [21]. Even if the problem of establishing
whether two graphs are bisimilar or not is polynomial time [20, 25], the task of
finding subgraphs isomorphic or bisimilar is NP-complete [16] and hence, not
applicable to real-life size problems.

Graphical queries can be easily translated into logic formulae. Techniques for
translating graphs in formulae have been exploited in literature [5]. The novel
ideas of this work are to associate a modal logic formula Ψ to a graphical query,
and to interpret database instance graphs as Kripke Transition Systems (KTS).
We use a modal logic with the same syntax as the temporal logic CTL; the
notion of different instants of time represents the number of links the user needs
to follow to reach the information of interest. This way, finding subgraphs of
the database instance graph that match the query can be performed by finding
nodes of the KTS derived from the database instance graph that satisfy the

formula Ψ . This is an instance of the model-checking problem, and it is well-
known that if the formula Ψ belongs to the class CTL of formulae, then the
problem is decidable and algorithms running in linear time on both the sizes of
the KTS and the formula can be employed [11].

We identify a family of graph-based queries that are correctly represented
by CTL formulae. As immediate consequence, an effective procedure for effi-
ciently querying semistructured databases can be directly implemented on a
model checker. We use a “toy” query language called W. It can be considered
as a representative of several approaches in which queries are graphical or can
easily be seen as graphical (cf., e.g., Lorel [2], G-Log [27], GraphLog [12], and
UnQL [19]). We will relate W to UnQL, GraphLog, and G-Log and show the ap-
plicability of the method for implementing (parts of) these languages. We have
also effectively tested the approach using the model-checker NuSMV.

2 Transition Systems and CTL

In this section we recall the main definitions and results of the model-checking
problem for the branching time temporal logic CTL [18].

Definition 1. A Kripke Transition System (KTS) over a set Π of atomic
propositions is a structure K = 〈Σ,Act,R, I〉, where Σ is a set of states, Act is a
set of actions, R ⊆ Σ×Act×Σ is a total transition relation, and I : Σ → ℘(Π)
is an interpretation (we assume, w.l.o.g., that Π ∩ Act = ∅).
Definition 2. Given the sets Π and Act of atomic propositions and actions,
CTL formulae are recursively defined as follows:

1. each p ∈ Π is a CTL formula;
2. if ϕ1 and ϕ2 are CTL formulae, a ⊆ Act, then ¬ϕ1, ϕ1 ∧ ϕ2, AXa(ϕ1),

EXa(ϕ1), AUa(ϕ1, ϕ2), and EUa(ϕ1, ϕ2) are CTL formulae.1

A and E are the universal and existential path quantifiers, while X (neXt) and
U (Until) are the linear-time modalities. Composition of formulae of the form
ϕ1∨ϕ2, ϕ1 → ϕ2, and the modalities F (Finally) and G (Generally) can be defined
in terms of the CTL formulae: F(ϕ) = U(true, ϕ),G(ϕ) = ¬F(¬ϕ) (cf. [18]).

A path (fullpath in [18]) in a KTS K = 〈Σ,Act,R, I〉 is an infinite sequence
π = 〈π0, a0, π1, a1, π2, a2, . . .〉 of states and actions (πi denotes the i-th state in
the path π) s.t. for all i ∈ N it holds that πi ∈ Σ and either 〈πi, ai, πi+1〉 ∈ R,
with ai ∈ Act, or there are not outgoing transitions from πi and for all j ≥ i it
holds that aj is the special action ª (which is not in Act) and πj = πi.

Definition 3. Satisfaction of a CTL formula by a state s of a KTS K =
〈Σ,Act,R, I〉 is defined recursively as follows:

– If p ∈ Π, then s |= p iff p ∈ I(s). Moreover, s |= true and s 6|= false;
– s |= ¬φ iff s 6|= φ;

1 When a is of the form {m} for a single action m, we simply write A(E)X(U)m.

2

– s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2;
– s |= EXa(φ) iff there is a path π = 〈s, x, π1, . . .〉 s.t. x ∈ a and π1 |= φ;
– s |= AXa(φ) iff for all paths π = 〈s, x, π1, . . .〉, x ∈ a implies π1 |= φ;
– s |= EUa(φ1, φ2) iff there is a path π = 〈π0, `0, π1, `1 . . .〉, and ∃j ∈ N s.t.

π0 = s, πj |= φ2, and (∀i < j) (πi |= φ1 and `i ∈ a);
– s |= AUa(φ1, φ2) iff for all paths π = 〈π0, `0, π1, `1 . . .〉 such that π0 = s,
∃j ∈ N s.t. πj |= φ2 and (∀i < j)(πi |= φ1 and `i ∈ a).

Definition 4. The model-checking problem can be stated in two instances. The
local model-checking: given a KTS K, a formula ϕ, and a state s of K, verifying
whether s |= ϕ. The global model-checking: given a KTS K, and a formula ϕ,
finding all states s of K s.t. s |= ϕ.

If Σ is finite, the global model-checking problem for a CTL formula ϕ can be
solved in linear running time on |ϕ| · (|Σ|+ |R|) [11].

3 Syntax of the query language W

In this section we describe the syntax of the language W, a very simple graph-
based language that we will use to characterize Database queries that have a
temporal-logic interpretation.

Definition 5. A W-graph is a directed labeled graph 〈N,E, `〉, where N is a
(finite) set of nodes, E ⊆ N × (C × L)×N is a set of labeled edges of the form
〈m, label , n〉, ` is a function ` : N −→ C × (L ∪ {⊥}). ⊥ means ‘undefined’, and

– C = { solid, dashed } denotes how the lines of nodes and edges are drawn.
– L is a set of labels.

` can be seen as the composition of the two single-valued functions `C and `L.
With abuse of notation, when the context is clear, we will use ` also for edges:
if e = 〈m, 〈c, k〉, n〉, then `C(e) = c and `L(e) = k. Two nodes may be connected
by more than one edge, provided that edge labels be different.

Definition 6. If G = 〈N, E, `〉 is a W-graph, then the size of G is |G| = |N |+
|E|; Gs = 〈Ns, Es, `|Ns〉 is the solid subgraph of G, i.e. Ns = {n ∈ N : `C(n) =
solid} and Es = {〈m, 〈solid, `〉, n〉 ∈ E : m,n ∈ Ns}; given two sets of nodes
S, T ⊆ N , T is accessible from S if for each n ∈ T there is a node m ∈ S such
that there is a path in G from m to n.

Definition 7. A W-instance is a W-graph G such that `C(e) = solid for each
edge e of G and `C(n) = solid and `L(n) 6= ⊥ for each node n of G.

Definition 8. A W-query is a pointed W-graph, namely a pair 〈G, ν〉 with ν a
node of G (the point). A W-query 〈G, ν〉 is accessible if the set N of nodes of G
is accessible from {ν}.

See Fig. 1 for some examples of W-graphs. Dashed nodes and lines are intro-
duced to allow a form of negation. The meaning of the first query is: collect all
the teachers aged 37. The second query asks for all the teachers that have de-
clared some age (observe the use of an undefined node). The third query, instead,
requires to collect all the teachers that teach some course, but not Databases.

3

?
Teacher

?
37

age

?
Teacher

?age

- Teacher

?
Course

teaches

?
Databases

cname

Teacher

n1
Teacher

n2

37
n5

¡ªage

40
n6-age

Course

n3
Student

n4

Databases

n7
?cName

Smith

n8
?name

@R ¡ª
¾

teaches teaches

attends

Fig. 1. Three W-queries and a W-instance

4 W-Instances as Kripke Transition System

In this section we show how to build the KTS associated with a W-instance.

Definition 9. Let G = 〈N, E, `〉 be a W-instance; we define the KTS KG =
〈ΣG,ActG,RG, IG〉 over the set of atomic propositions ΠG as follows:

– ΠG is the set of all the node labels of G: ΠG = {p : (∃n ∈ N)(p = `L(n)}.
– The set of states is ΣG = N .
– The set of actions ActG includes all the edge labels. In order to capture the

notion of before we also add in ActG actions for the inverse relations and
for the negation of all the relations introduced.2 Thus, if m

p→ n belongs to
E we add the actions p, p−1, p̄, p̄−1. We define two sets: Act+G = {p, p−1 :
(∃m ∈ N)(∃n ∈ N)(〈m, p, n〉 ∈ E)} and ActG = {q, q̄ : q ∈ Act+G}.

– The ternary transition relation RG is defined as follows: let ẼG = E ∪
{〈n, p−1,m〉 : 〈m, p, n〉 ∈ E}. Then RG = ẼG ∪ {〈m, p̄, n〉 : m,n ∈ N, p ∈
Act+G, 〈m, p, n〉 /∈ Ẽ}. Moreover, we can assume, for each state s with no
outgoing edge in E (a leaf in G) to add a self-loop edge labeled by the special
action ª that is not in ActG.

– The interpretation function IG can be defined as follows. In each state n
the only formulae that hold are the unary atom `L(n) and true: IG(n) =
{true, `L(n)}.3

Observe that: |RG| = |Act+G| · |N |2 ≤ |E| · |N |2 since for each pair of nodes,
exactly one between q or q̄ holds, for q = p or q = p−1, q ∈ ΠG. For instance,
consider the graph G = 〈ΣG = {n1, . . . , n8}, E, `〉 of Fig. 1. It holds that:

– ΠG = {Teacher, Course, Student, 37, 40, Databases,Smith} ,
– I(n1) = {true, Teacher}, I(n2) = {true, Teacher}, . . . , I(n8) = {true, Smith}.

5 Temporal Logic semantics of W-queries

In this section we show how to extract CTL formulae from W-queries. We as-
sociate a formula Ψν(G) to a query (a W-pointed graph) 〈G, ν〉. Such a formula
2 Actually, negated edges are not always needed to be effectively stored—cf. Sect. 6.
3 The two unary atoms represent the basic local properties of a system state. Other

properties can be added, if needed.

4

allows us the possibility to define a model-checking based methodology for query-
ing a W-instance. We anticipate this definition in order to make the meaning of
formula encoding more clear.

Definition 10 (Querying). Given a W-instance I and a W-query 〈G, ν〉, let
KI be the KTS associated with I and Ψν(G) the CTL formula associated with
〈G, ν〉. Querying I with G amounts to solve the global model-checking problem
for KI and Ψν(G), namely find all the states s of KI such that s |= Ψν(G).

5.1 Technique Overview

In order to explain the technique, we start our analysis by considering simple
queries in which the pointed graph consists of two nodes (Fig. 2).

?
Teacher - Course

teaches
?

Teacher - Course
teaches

(R1) Collect all the teachers
of some course

(R2) Collect all the teachers
that do not teach all courses
(i.e., s.t. there is a course that
they do not teach)

?
Teacher - Course

teaches
?

Teacher - Course
teaches

(R3) Collect all the teachers
that teach no courses (i.e., for
each course they do not teach
it)

(R4) Collect all the teachers
that teach all courses (i.e., for
each course they do not not
teach —they teach— it).

Fig. 2. Simple queries

Query R1 has no dashed part: only positive information is required. Its mean-
ing is to look for nodes labeled Teacher that are connected with nodes labeled
Course by an edge labeled teaches. The CTL formula must express the statement
“In this state Teacher formula is true and there is one next state reachable by
an edge labeled teaches, where the Course formula is true”, i.e.

Teacher ∧ EXteaches(Course)

The CTL operator neXt (used either as EX or AX) captures the notion of
following an edge in the graph. Thanks to this operator, we can easily define
a path on the graph, nesting formulae that must be satisfied by one (or every)
next state.

Query R2 contains a dashed edge teaches that introduces a negative informa-
tion. R2 requires the existence of two nodes, and the non-existence of one edge
labeled teaches between them. We can express this statement by

Teacher ∧ EXteaches(Course)

5

The availability of the negation of the predicate symbol teaches, allows us to
say that the relation teaches does not hold between two nodes is the same as
requiring that, between the same pair of nodes, the relation teaches holds.

The meaning of query R3, where there are dashed edges and nodes, is rather
different. This formula is true if “there is a node labeled Teacher s.t., for all the
nodes labeled Course, the relation teaches is not fulfilled”. A CTL formula that
states this property is the following:

Teacher ∧ AXteaches(¬Course)

To give a semantics to query R4, first replace the solid edge labeled teaches
with the dashed edge labeled teaches. Then use the same interpretation as for
query R3:

Teacher ∧ AXteaches(¬Course)

Its meaning is: “it is true if Teacher is linked by edges labeled teaches to all
the Course nodes of the graph”. Note the extremely compact way for expressing
universal quantification.

5.2 Admitted queries

We will show how to encode W-queries in CTL formulae. The equivalence result
with G-log (Sect. 7) and the NP-completeness of the subgraph bisimulation
problem ([16]) prevents us to encode all possible queries in a framework that can
be solved in polynomial time. We will encode four families of queries Q = 〈G,µ〉:
– Q is an acyclic accessible query (Sect. 5.4).
– G is an acyclic solid graph (Sect. 5.4).
– G is an acyclic graph and after the application of a rewriting procedure, it

becomes acyclic and accessible from {µ} (Sect. 5.4).
– G is in one of the forms above with some leaf nodes replaced by simple solid

cycles (Sect. 5.5).

5.3 Query Translation

As initial step, we associate a formula ϕ to each node and edge of a graph G.
Then we will use this notion for the definition of the formula.

Definition 11. Let G = 〈N,E, `〉 be a W-graph. For all nodes n ∈ N and for
all edges e = 〈n1, 〈c, p〉, n2〉 ∈ E, we define:

ϕ(n) =
{

`L(n) if `L(n) 6= ⊥
true otherwise ϕ(e) =

{
p if `C(e) = `C(n2)
p otherwise

5.4 Acyclic Graphs

Definition 12. Let G = 〈N,E, `〉 be an acyclic W-graph, and ν ∈ N . The
formula Ψν(G) is defined recursively as follows (cf. Fig. 3):

– let b1, . . . , bh (h ≥ 0) be the successors of ν s.t. `C(bi) = solid,
– let c1, . . . , ck (k ≥ 0) those s.t. `C(ci) = dashed,

6

ν

b1 bh c1 ck

´
´́+

£
£°

Q
QQs

B
BN

¢¢ CC ¢¢ CC ¤¤ AA ¤¤ AA

e1 eh e′1 e′k

· · · · · ·

· · · · · ·

?

Company City

Employee

?
lives

´
´

3́gives salary

-address

?

Company City

Employee

?
lives

´
´́+

works

-address

(a) (b)

Fig. 3. Graph for computing Ψν(G) and two equivalent acyclic queries

– for i = 1, . . . , h and j = 1, . . . , k let ei be the edge which links ν to bi and e′j
the one which links ν to cj. If `C(ν) = solid, then:

Ψν(G) = ϕ(ν) ∧
∧

i=1...h

EXϕ(ei)(Ψbi
(G)) ∧

∧

j=1...k

AXϕ(e′j)(Ψcj
(G))

else (`C(ν) = dashed):

Ψν(G) = ¬ϕ(ν) ∨
∨

i=1...h

AXϕ(ei)(Ψbi(G)) ∨
∨

j=1...k

EXϕ(e′j)(Ψcj (G))

Given a graph G, let Ḡ be the graph obtained from G by complementation
of the colors of edges and nodes (solid becomes dashed and vice versa). It is
immediate to prove, by induction on the depth of the subgraph of G that can
be reached from a node ν, that Ψν(G) = ¬Ψν(Ḡ). Moreover, by the recursive
definition of the formula, and by the acyclicity of G, Ψν(G) is a CTL formula.

Definition 13. Let G = 〈N, E, `〉 be an acyclic W-graph, ν ∈ N , and Q =
〈G, ν〉 be an accessible query. The formula associated to Q is Ψν(G).

Observe that each node and edge of G is used to build the formula.

Remark 1. The size of the formula Ψν(G) can grow exponentially w.r.t. |G|,
since the construction of the formula involves the unfolding of a DAG. However,
it is only a representation problem: It is easy to compute the formula avoiding
repetitions of subformulae and keeping the memory allocation linear w.r.t. |G|.

The condition on the accessibility of all nodes of G for ν can be weakened.
Consider, for instance, the two goals of Fig. 3. If works is the inverse relation of
gives salary (i.e. gives salary−1), then one expects the same results from queries
(a) and (b). Thus, the idea is to swap the direction of some edges, replacing the
labeling relation with its inverse.4

Algorithm 1 Let G = 〈N, E, `〉 be an acyclic solid W-graph and ν ∈ N .

1. Let Ĝ = 〈N, Ê〉 be the non-directed graph obtained from G defining Ê =
{{m,n} : 〈m, `, n〉 ∈ E}.

2. Identify each connected component of Ĝ by one of its nodes. Use ν for its
connected component. Let µ1, . . . , µh be the other chosen nodes.

4 Recall that in the KTS associated to a W-instance, inverse relations for all the
relations involved occur explicitly: the framework is tuned to deal also with this case.

7

3. Execute a breadth-first visit of Ĝ starting from ν, µ1, . . . , µh.
4. Consider the list of nodes ν = n0 < n1 < · · · < nk ordered by the above visit.
5. Build the W-graph G = 〈N, E, `〉 from G as follows:

E = (E \ {〈na, 〈c, p〉, nb〉 ∈ E : b < a})∪
{〈nb, 〈c, p−1〉, na〉 : 〈na, 〈c, p〉, nb〉 ∈ E ∧ b < a}

The above algorithm always produces an acyclic graph, since the edges follow
a strict order of the nodes. All the nodes of each connected component of Ĝ are
accessible from the corresponding selected node (ν, µ1, . . . , µh) by construction
(they have been reached by a visit). Algorithm 1 can be implemented so as to
run in time O(|N |+ |E|) and, for each node ν, µ1, . . . , µh, we can compute:

Ψν(G), Ψµ1(G), . . . , Ψµh
(G)

We recall here the semantics of EFa(φ) (see Sect. 2): s |= EFa(φ) iff there is a
path 〈π0, `0, π1, `1 · · · 〉 s.t. π0 = s and ∃j ∈ N s.t. πj |= φ and (∀i < j) `i ∈ a.

Definition 14. Let G = 〈N, E, `〉 be an acyclic solid W-graph and ν ∈ N . Let
Q = 〈G, ν〉 a W-query. The formula associated with Q is (ActG is as in Def. 9):

Ψν(G) ∧ EFActG
(Ψµ1(G)) ∧ · · · ∧ EFActG

(Ψµh
(G))

Observe that Algorithm 1 terminates even if G admits cycles (save self-loops).
However, in these cases, the semantics of the query is lost. Cyclic queries require
different modal operators (see Sect. 5.5).

Let us study one more family of acyclic queries that can be handled, via
reduction to the accessible query case.

Definition 15. Let G = 〈N, E, `〉 be an acyclic W-graph, let ν ∈ N , `C(ν) =
solid, and Q = 〈G, ν〉 be a W-query.

1. Let Gs = 〈Ns, Es, `|Ns〉 its solid subgraph (cf. Def. 6).
2. Apply the Algorithm 1 to Gs. Let ν, µ1, . . . , µh be the root nodes.
3. Swap in G the same edges that have been swapped by Algorithm 1 in Gs

obtaining the graph G.
4. If G is acyclic, then compute the formulae Ψν(G), Ψµ1(G), . . . , Ψµh

(G)
5. If all the nodes of G have been visited during the last phase, then the formula

associated with Q is: Ψν(G) ∧ EFActG
(Ψµ1(G)) ∧ · · · ∧ EFActG

(Ψµh
(G))

Let us explain why we applicate the algorithm only to Gs. Consider, for
example, the query (a) in Fig. 4. According to Def. 15, its formula is:

Teacher ∧ AX¬teaches(¬Course) ∧ EFActG(Student ∧ AX¬attends(¬Course)) (1)

which requires to find those Teachers who teach all the Courses, if there is
somewhere a Student who attends all the Courses.

The Algorithm 1 should replace the edge labeled attends in the query (a)
with an edge labeled attends−1, as depicted in the query (b) of Fig. 4, leading to:

Teacher ∧ AX¬teaches(¬Course ∨ AXattends−1Student) (2)

The two formulae have different models. (1) is closer than (2) to the interpreta-
tion of graph-based formulae in other frameworks (e.g. G-Log).

8

- Teacher

?
Course

teaches

6
Student

attends

- Teacher

?
Course

teaches

?
Student

attends−1 ?
Class

-
Function

calls

¾defined Function

?
6

Class

calls defined

Class

?
Function

callscalls

-defined
Class

¾¡¢£
n1

n2 n3

(a) (b) (c) (I1) (I2)

Fig. 4. W-queries and W-instances

5.5 Cyclic queries

In this section we extend the technique assigning a temporal formula to queries
admitting cycles. We make use of the Generally operator, used as EGa(φ), whose
semantics is (see Sect. 2): s |= EGa(φ) iff there is a path π = 〈π0, `0, π1, `1 . . .〉,
s.t. π0 = s and ∀j ∈ N πj |= φ and `j ∈ a.

Consider the query (c) in Fig. 4. It requires to collect all the classes which
call a function defined inside theirselves. This property could be expressed by:

Ψ(c) = Class ∧ EXcalls(Function ∧ EXdefined(Class)) ∧
EG{calls,defined}((Class ∨ Function) ∧ Class → Xcalls(Function) ∧

Function → Xdefined(Class))

The modal operator X is used without any path quantifier. This is allowed in
CTL* but not in CTL [18]. The first part of the formula Ψ(c) is aimed at identi-
fying cycles of length greater than or equal to two, and the Generally operator
imposes to retrieve only cyclic paths where nodes labeled Class alternate with
nodes labeled Function.

With the CTL logic it is only possible to approximate the translation of this
kind of cyclic queries:

Ψ ′(c) = Class ∧ EXcalls(Function ∧ EXdefined(Class)) ∧
EG{calls,defined}(Class → EXcalls(Function ∧ EXdefined(Class)))

The node Class of instance (I1) in Fig. 4 satisfies both the formulas Ψ(c) and
Ψ ′(c), while the node n1 of instance (I2) in Fig. 4 satisfies Ψ ′(c) but not Ψ(c). Thus,
the CTL translation gives only an approximation of the CTL* one.

Since the model-checking problem for CTL* is PSPACE complete, we accept
this loss of precision, and we assign a formula to a (pointed) cycle.

Definition 16. The formula Ψν1(G) associated to a red cyclic graph G = 〈{ν1, . . . ,
νn}, {〈ν1, `1, ν2〉, 〈ν2, `2, ν3〉, . . . , 〈νn−1, `n−1, νn, 〉, 〈νn, `n, ν1〉}, `, ν1〉 is defined as:

Ψν1(G) = Ψν1(C) ∧ EG{`1,...,`n}(ϕ(ν1) → Ψν1(C))

where ϕ(ν1) is as in Def. 11, Ψν1(C) is the formula associated to the DAG
C = 〈{ν1, . . . , νn+1}, {〈ν1, `1, ν2〉, 〈ν2, `2, ν3〉, . . . , 〈νn−1, `n−1, νn, 〉, 〈νn, `n, νn+1〉}〉,
rooted at ν1, and νn+1 is a “copy” of ν1, i.e. a new node s.t. `(νn+1) = `(ν1).

9

If a graph G is in one of the forms of the previous sections and, moreover,
instead of some leaf nodes it contains cycles of the form above (this test can be
easily performed using the graph of the strongly connected components), we can
use the formula in Def. 16 as subroutine to compute the global formula.

6 Complexity issues and Implementation of the method

Let us state the main computational results of our approach:

Theorem 2. Let 〈G, ν〉 be a W-query in one of the forms described in Sect. 5.2.
Querying a W-instance I with G can be done in linear time on |KI | and |Ψν(G)|.

The proof of the theorem follows from [11]. When computing KI , a quadratic
time and space complexity is introduced as negative relations are computed and
stored. We will discuss later on in this section when this extra complexity can
be avoided.

As far as the size of the formula is concerned, as discussed in Remark 1,
even if |Ψν(G)| can grow exponentially with |G|, it is natural to represent it
using a linear amount of memory. This compact representation is allowed by the
model-checker NuSMV.

Corollary 1. Querying a W-instance I with a W-query G can be done in time
linear on |I|2 and |G|.

As shown in Sect. 5.5 for cyclic queries, it seems to be impossible to map all
the queries in CTL formulae. This fact can be formally justified. The semantics
of acyclic W-queries without negation can be proved to be equivalent to that of
G-Log queries without negation (Sect. 7). If we extended this equivalence result
to cyclic queries (even without negation), we would provide a polynomial time
implementation for a subset of G-Log in which data retrieval is equivalent to the
subgraph bisimulation problem, proved to be NP complete in [16].

We have effectively tested the data retrieval technique presented in the pre-
vious sections by using the model checker NuSMV [10]. Due to lack of space, we
do not enter here into the details of the implementation (see [17]). We only stress
here on the fact that negated edges (relations) are not always needed to be explic-
itly stored in the model. If the query expresses negation only by means of dashed
edges entering dashing nodes, we can avoid to store explicitly negated edges (we
translate the formula with an universal quantification on paths, cf. Fig. 2), ob-
taining linear time complexity instead of quadratic complexity. This fact can be
proved using the fact that model-checkers use ‘paths’ to traverse a KTS and thus
to find pairs (or tuples) of nodes connected with a certain edge.

As already said, a formula can be stored as a DAG, without the unneces-
sary loss of space due to the repetition of subformulae. This allows linear time
dependency on the size of the query. Two examples are reported in Fig. 5.

10

?
Person

City Company

¡¡ªlives Rworks

?
Company

Company City

City

?owns

-address

-address

SPEC

l = person & EX(l = lives & EX(l = city))
& AX(l = works -> ! EX(l = company))

SPEC

l = company & EX(l = owns & EX(l = company

& EX(l = address & EX(l = city))))
& EX(l = address & EX(l = city))

Fig. 5. Translation of Queries in NuSMV

7 Comparison and Applicability of the method

We have studied the applicability of the method to three existing query languages
for semistructured data: UnQL, GraphLog, and G-Log. Due to lack of space, we
give only a brief overview here. For further details, see [17]. Then we discuss in
detail the problems related to the implementation of the join operation in our
framework.

UnQL is a language for querying data organized as a rooted directed graph
with labeled edges [3]. A rooted graph is a pointed graph such that all the nodes
are accessible from the root node (the point). UnQL database instances can be
immediately and completely mapped to W-instances. Basically, it is sufficient to
encode labeled edges into labeled nodes. We replace every labeled edge m

label−→ n
by the two edges m −→ µ, µ −→ n, where µ is a new node labeled label.

In order to encode UnQL queries into modal formulae we have used the
modal operator B (Before), whose meaning is the following (we have omitted
edge names since all labels have been moved to nodes): s |= ABφ iff for all paths
π = 〈. . . , x, , s, , π1, . . .〉, it holds that x |= ψ, whereas s |= EBψ iff there is a
path π = 〈. . . , x, , s, , π1, . . .〉 such that x |= ψ.5

The expression (1): select t whereR1 ⇒ \t ← DB computes the union of
all trees t such that DB contains an edge R1 ⇒ t emanating from the root. This
concept can be expressed by the temporal formula ϕ(1) = ⊥ ∧ EB(R1).

The UnQL expression (2): select t where \` ⇒ \t ← DB retrieves any edge
emanating from the root and is translated by the formula ϕ(2) = ⊥ ∧ EB(¬⊥ ∧
EB(DB)).

An UnQL query that looks at arbitrarily depth into the database to find all
edges with a numeric label is (3): select {`}where ∗ ⇒ \` ⇒ ← DB, isnumber(`).
It can be easily translated into the CTL formula ψ(3) = ¬⊥∧number. Note that
number is an atomic proposition that holds in numeric states of the original
database.

5 The B operator can be removed (by using X) since inverse relations can be stored.

11

The UnQL query: select {Tup ⇒ {A ⇒ x,D ⇒ z}}
where R1 ⇒ Tup ⇒ {A ⇒ \x,C ⇒ \y} ← DB,

R2 ⇒ Tup ⇒ {C ⇒ \y, D ⇒ \z} ← DB
computes the join of R1 and R2 on their common attribute C and the project
onto A and D. UnQL queries expressing a join condition on a graph do not have
a corresponding temporal formula, as we discuss at the end of the section.

Although we have not developed an algorithm to translate UnQL queries into
CTL formulae, we can conclude that our approach allows to correctly deal with
join-free queries of UnQL.

GraphLog is a query language based on a graph representation of both
data and queries [12]. Queries represent graph patterns corresponding to paths
in databases. For example, the graph I in Fig. 6 is a representation of a flights
schedule database. Each flight number is related to the cities it connects (by the
predicates from and to, respectively) and to the departure and arrival time (by
the predicates departure and arrival).

GraphLog represents databases by means of directed labeled multigraphs which
precisely correspond to W-instances; these databases are not required to be
rooted and therefore the corresponding W-graphs are not necessarily rooted.
Queries ask for patterns that must be present or absent in the database graph.
A graphical query is a set of query graphs, each of them defining (construc-
tive part) a set of new edges (relations) that are added to the graph whenever
the path (non-constructive part) specified in the query itself is found (or not
found for negative requests). More in detail, a query graph is a directed labeled
multigraph with a distinguished edge (it defines a new relation that will hold,
after the query application, between two objects in a chosen database whenever
they fulfill the requirements of the query graph) and without isolated nodes.
Moreover, each edge is labeled by a literal (i.e. positive or negative occurrence
of a predicate applied to a sequence of variables and constants) or by a closure
literal, which is simply a literal followed by the positive closure operator; each
distinguished edge can only be labeled by a positive non-closure literal.

For example, graph (G) in Fig. 6 requires to find in a database two flights
F1 and F2 departing from and arriving to the same city C, respectively. The
edge ‘result’ will connect F1 and F2. The CTL formula associated with the
non-costructive part of this query is:

Ψ(G) = Flight ∧ EXto(City ∧ EXfrom−1Flight)

(which describes the node F1). Ψ(G) is satisfied by the state labeled 109.
The possibility to express closure literals causes some difficulties in the trans-

lation of query graphs into CTL formulae. Consider for example, the two query
graphs in Fig. 7 representing relationships between people. Their natural trans-
lation into CTL should be:

Ψ(Q1) = Person ∧ (EXparentPerson) → (Person ∧ EXparent(Person∧
EXrelative−1Person))

Ψ(Q2) = Person ∧ (EXrelative(Person ∧ EXrelativePerson)) →
(Person ∧ EXrelative(Person ∧ EXrelative(Person ∧ EXrelative−1Person)))

12

20:05

815

Miami

6:30

Toronto 20:29

109

19:29

Vancouver

6to

?departure
HHHjarrival

-from

©©©¼
to HHHjdeparture? arrival

-from

-result
F1 F2

C

@@Rto ¡¡ª from

(I) (G)

Fig. 6. GraphLog representation of a database and a query

It is easy to see that the node n of the instance graph I in Fig. 7 satisfies
the formula Ψ(Q1) but does not fulfill the natural interpretation of relationship
between people. The problem is that in CTL it is not possible to constrain that
the last unary predicate Person in Ψ(Q1) has to be satisfied by the same state
of the first unary predicate Person.

In order to overcome this limitation one should firstly compute the closure of
labeled graphs representing databases. Intuitively, computing graph-theoretical
closure entails inserting a new edge labeled a between two nodes, if they are
connected via a path of any length composed of edges that are all labeled a in the
original graph (see [14] for an application of graph closure to XML documents).
Computing the closure is well-known to be polynomial time w.r.t. the size of
nodes of the graph.

?
relative

Person

Person

?
parent @

@@R
relative

Person

Person

?
relative

Person

?
-relative

Person
n

Person

?
parent

Person
¾relative

¾
person

?
Student

Course

Student

¡¡ªattends@@Rattends

-friend

Q1 Q2 I QJ

Fig. 7. Two query graphs, an instance, an a ‘join’ query

We can conclude that our approach based on model-checking techniques al-
lows to correctly deal with join-free queries of GraphLog without closure opera-
tors.

G-Log [27], as GraphLog, is a query language in which data, queries, and
generic rules are expressed by graphs. As far as instances are concerned, syntax
of G-Log instances is the same as that of W. G-Log queries allow more flexibility
then W-ones. Nevertheless, often G-Log queries has only one “green” node with
an edge pointing to a “red” node ν. These queries are the same as W-queries,
in which ν is the node pointed by the query. In G-Log two kinds of nodes

13

are allowed, complex and atomic nodes, but this feauture can be simulated by
modifying the co-domain of the label function. Instead, solid edges are forbidden
to enter into dashed nodes in G-Log. This feauture ofW is one of the main points
for programming nesting quantification and for expressing in a compact way the
universal quantification. Only existential requirements are instead allowed in
G-Log queries. If a W query fulfills this further requirement, is a G-Log query.

Semantics of query application is given in [27] via the notion of graph em-
bedding and in [13] (cf. [17]) using the notion of subgraph bisimulation (both
NP complete). We have formally proved that for acyclic queries that are allowed
both in W and in G-log (with the semantics of [13]) the results of query applica-
tion is the same in the two languages. We have already discussed (Sect. 6) that
for complexity limits we cannot extend the method to all cyclic queries.

The problem of expressing join conditions by means of CTL formulae remains
open, because in the propositional modal logics framework there is no way to
distinguish different states having the same set of local properties. A possibility
to overcome this problem is to add to the set of local properties of each state
an identificator of the state (of course, we assume that the set of all states is
finite). For example, the W-query QJ in Fig. 7 requires to find all the Students
that attend a Course together with (at least) one friend. If we know that the
identificators of Course nodes are c1 and c2, we could translate the query with
the CTL formula

(Student ∧ EXattends(Course ∧ c1) ∧ EXfriend(Student ∧ EXattends(Course ∧ c1)))∨
(Student ∧ EXattends(Course ∧ c2) ∧ EXfriend(Student ∧ EXattends(Course ∧ c2)))

This translation causes an explosion of the formula size and it requires also
to know in advance the set of identificators of a certain state (in the example
the Course state).

8 Conclusions and Future Work

In this work we have shown how it is possible to effectively solve the data retrieval
problem for semistructured data using techniques and algorithms coming from
the model-checking community. Note that this approach could also be applied to
XML-based languages such as Quilt [8] and XPath [29]. The input and output
of these languages are documents usually modeled as trees. Once again, in this
setting model-checking algorithms can correctly deal with properties expressing
conditions to be satisfied on paths but without joins, grouping, or aggregation
functions of SQL.

Some other works on this direction are [9, 23, 24]. In [9] the author proposes
an approach for inferring properties of models by using a model checker. He
extends the syntax of CTL by allowing the special symbol ‘?’, and characterizes
a subset of this new language that allows linear-time decidability. In [23] the
authors suggest to query data using ‘query automata’, that are particular cases of
two-ways deterministic tree automata. They show the equivalence with formula
expressible in second-order monadic logic. In [24] they identifies subclasses of

14

formulae/automata that allow efficient algorithms. A future work is to determine
the exact relationships with our approach.

The graph-formula translation could be extended to a wider family of graphs
including join conditions, and it might be interesting to find the exact subset of
CTL* (whose model-checking problem is PSPACE complete) needed to translate
queries of interest. Moreover, similar techniques are shown to be possible for
extracting formulae from SQL-like queries. The modal logic semantics forces a
bisimulation equivalence between subgraphs fulfilling the same formula. This
allows us to say that two nodes with the same properties are equivalent but
not to require that they are the same node. This prevents us to model correctly
the join operation. We have implemented the method on the model-checker
NuSMV. However, for an effective implementation on Web-databases some form
of heuristic (e.g. check part of the domain name) must be applied in order to
cut the search space for accessible data (that can be all the web). This issue is
studied in [15] in a slight different context. Another future direction is to mix
this technique with constraint-based data retrieval (where temporal formulae
can be used directly).

Acknowledgements

Nico Lavarini has contributed with his Master’s Thesis to the earlier stages of
the research presented in this work. We thank also A. Cimatti, R. Giacobazzi,
C. Piazza, M. Roveri, and L. Tanca for useful discussions.

References

1. S. Abiteboul. Querying semi-structured data. In Proc. of ICDT. Vol. 1186 of
LNCS, pp. 1–18, 1997.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query
language for semistructured data. Int’l J. on Digital Libraries, 1(1):68–88, 1997.

3. P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A Query Language
and Optimization Techniques for Unstructured Data. In Proc. of the 1996 ACM
SIGMOD, pp. 505–516, 1996.

4. P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. Adding structure to
unstructured data. In Proc. of Database Theory; 6th Int’l Conf., pp. 336–350, 1997.

5. P. J. Cameron. First-Order Logic. In L. W. Beineke and R. J. Wilson (Eds.): Graph
Connections. Relationships Between Graph Theory and other Areas of Mathemat-
ics. Clarendon Press, 1997.

6. L. Cardelli and G. Ghelli. A query language for semistructured data based on the
Ambient logic. In Proc. of ESOP 2001, Vol. 2028 of LNCS, pp. 1–22, 2001.

7. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: a graphical language for querying and restructuring XML documents. Proc.
of WWW8, Canada, 1999.

8. D. Chamberlin, J. Rubie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In Proc. of the World Wide Web and Databases,
Third International Workshop WebDB 2000, Vol. 1997 of LNCS, pp. 1–25, 2001.

15

9. W. Chan. Temporal-logic Queries. In Proc. of 12th CAV. Vol. 1855 of LNCS, pp.
450–463. Chicago, USA, 2000.

10. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. Proc. of 11th CAV. Vol. 1633 of LNCS, pp. 495–499, 1999.

11. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent system using temporal logic specification. ACM TOPLAS, 8(2):244–
263, 1986.

12. M. P. Consens and A. O. Mendelzon. GraphLog: a Visual Formalism for Real Life
Recursion. In Proc. of the 9th ACM PODS’90, pp. 404–416, 1990.

13. A. Cortesi, A. Dovier, E. Quintarelli, and L. Tanca. Operational and Abstract
Semantics of a Query Language for Semi-Structured Information. In Proc. of
DDLP’98, pp. 127–139. GMD Report 22, 1998. Extended Version to appear in
Theoretical Computer Science.

14. E. Damiani and L. Tanca. Blind Queries to XML Data. In Proc. of 11th Interna-
tional Conference, DEXA 2000, Vol. 1873 of LNCS, pp. 345–356, 2000.

15. L. de Alfaro. Model Checking the World Wide Web. In Proc. of 13th Conference
on Computer Aided Verification, Vol. 2102 of LNCS, pp. 337–349, 2001.

16. A. Dovier and C. Piazza. The Subgraph Bisimulation Problem and its Complexity.
Univ. di Udine, Dip. di Matematica e Informatica, RR 27/00, Nov. 2000.

17. A. Dovier and E. Quintarelli. Model-Checking Based Data Retrieval. Technical
Report, Politecnico di Milano, May 2000 (www.elet.polimi.it/∼quintare).

18. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B: Formal Models and Semantics. Elsevier,
and MIT Press, 1990.

19. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a web-site
management system. SIGMOD Record, 26(3):4–11, 1997.

20. P. C. Kannellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. Information and Computation, 86(1):43–68, 1990.

21. R. Milner. A Calculus of Communicating Systems. Vol. 92 of LNCS, 1980.
22. M. Müller-Olm, D. Schmidt, and B. Steffen. Model-checking. A tutorial introduc-

tion. In Proc. of SAS’99 . Vol. 1694 of LNCS, pp. 330–354, 1999.
23. F. Neven and T. Schwentick. Query Automata. In Proc. of the 18th ACM SIGACT-

SIGMOD-SIGART Symp. on Princ. of DB Systems, ACM Press, pp. 205–
214, 1999.

24. F. Neven and T. Schwentick. Expressive and Efficient Pattern Languages for Tree-
Structured Data. In Proc. of the 19th ACM SIGACT-SIGMOD-SIGART Symp.
on Princ. of DB Systems, ACM Press, pp. 145–156, 2000.

25. R. Paige and R. E. Tarjan. Three Partition refinements algorithms. SIAM J. on
Computing, 16(6):973–989, 1987.

26. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across
heterogeneous information sources. In Proc. of the 11th ICDE, pp. 251–260, 1995.

27. J. Paredaens, P. Peelman, and L. Tanca. G–Log: A Declarative Graphical Query
Language. IEEE TKDE, 7(3):436–453, 1995.

28. D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying Semistruc-
tured Heterogeneus Information. In Proc. of DOOD’95, pp. 319–344, 1995.

29. World Wide Web Consortium. XML Path Language (XPath) version 1.0.
www.w3.org/TR/xpath.html, W3C Reccomendation, November 1999.

16

