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Abstract

This paper provides a novel perspective in the Protein Structure Prediction (PSP) problem. The PSP
problem focuses on determining putative 3D structures of a protein starting from its primary sequence. The
proposed approach relies on a Multi-Agent System (MAS) perspective, where concurrent agents explore the
folding of different parts of a protein. The strength of the approach lies in the agents’ ability to apply
different types of knowledge, expressed in the form of declarative constraints, to prune the search space of
folding alternatives. The paper makes also an important contribution in demonstrating the suitability of
a General-Purpose Graphical Processing Unit (GPGPU) approach to implement such MAS infrastructure,
with significant performance improvements over the sequential implementation and other methods.

1 Introduction

Structural biology is the branch of molecular biology and biochemistry that deals with problems related to the
molecular structure of DNA and proteins, and how such structures affect behavior and function. Our specific
focus in this work is concerned with structural studies of proteins. Proteins are macro-molecules that are critical
to the regulation of vital functions in all biological processes. The prediction of the 3D structure of a protein
from a sequence of amino acids is one of the oldest and most challenging a problems in bioinformatics [2]. Such
prediction is of fundamental importance, since structural properties are critical in determining the functions
of proteins and in understanding how proteins interact to make cellular processes happen [47, 4, 1]. The huge
number of conformations in which a protein can potentially fold, together with the lack of an accurate energy
function that can guide the folding process, make the Protein Structure Prediction (PSP) problem a difficult
task, even for small or medium-length proteins (i.e., with less than 100 amino acids).

In this paper, we tackle the PSP problem using a perspective that builds on the methodologies inherited
from the Multi-Agent Systems (MAS) domain. The proposed MAS approach is used to concurrently explore
and then assemble foldings of local segments of the protein. Distinct agents are in charge of retrieving, filtering,
and coordinating local information about parts of a protein, aiming to reach a global consensus. Relationships
among substructures are described and exploited in terms of constraints—where a constraint is a high-level
and declarative specification of required mutual relationships among entities. In our case, the proposed con-
straints deal with spatial relationships among parts of proteins being configured and assembled. A strength of
constraint-based methods is their elaboration tolerance, that allows the incremental addition of new knowledge
about the protein (e.g., properties of the amino acids, knowledge about specific substructures) without the need
of redesigning the solving mechanisms. Thus, any new knowledge about a protein can be readily integrated and
used to prune the space of potential conformations. Furthermore, constraint-based methods offer the power
of propagation of any decision made during construction of a protein conformation, immediately removing
infeasible branches of search space as each decision is performed. Indeed, the interest towards constraint-based
methods for structural bioinformatics has grown in recent years—the reader is referred to [5, 19] for recent
surveys.

This MAS-based model is effectively implemented using a General Purpose Graphical Processing Unit (GPU)
architecture, leading to significant gains in terms of execution time, compared to a sequential implementation.
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GPU architectures offer parallelism at a low cost and they elegantly accommodate the PSP multi-agent in-
frastructure proposed here. It must be observed that, in spite of the high number of cores available in a
typical GPU, performance improvements w.r.t. a sequential implementation is not automatically guaranteed,
due to the features and bottlenecks of typical GPU architectures (e.g., memory access, dependence of the code
executions of the various threads running in the same streaming processor).

In this paper, we present a solver that performs a constraint-based local search, distributed among several
agents. The computation proceeds until a local minimum is found. Experimental results confirm that the local
minimum reached captures with good precision the actual shape of the protein being studied. Agents use GPU
cores to explore large portions of the search space and to propagate constraints on the ensemble of structures
produced by each agent. The solver is capable of achieving excellent performance and demonstrates speedups
over a sequential solver on a large pool of benchmarks.

A preliminary version of this paper has been presented at the 2013 RCRA meeting and in a IEEE ICPP
short paper [12]. This paper greatly expands on the previous presentations, by providing the first complete
description of the solver and a precise analysis of its performance and properties.

2 Related Work and Background

2.1 Proteins and Structures

In this section, we summarize some relevant concepts from structural and molecular biology. We refer the
reader to the existing literature for a more in-depth discussion of these concepts (e.g., [16, 19]).

Figure 1: Representation of an amino acid (left), and the peptide plane (right), with the peptide bond that
binds two amino acids, and the phi (φ) and psi (ψ) dihedral angles

A protein is a polymer composed of a sequence of simple molecules, called amino acids. This sequence,
referred to as the primary sequence, folds into a unique three-dimensional stable structure, that represents the
conformation with minimum free energy; such structure determines the biological functions of the protein. We
refer to this structure as the tertiary structure of the protein. The Protein Structure Prediction (PSP) problem
is defined as the problem of finding the tertiary structure of a target protein given its primary sequence.

There are 20 types of amino acids. Each one can be represented by a common structure, called the backbone,
constituted by two Carbon, one Hydrogen, one Oxygen, and one Nitrogen atoms (see Fig. 1 on the left). The
distinction between amino acids originates from an additional group of atoms (containing from 1 to 18 atoms),
called the side-chain. In a simple model, this group can be represented by a single large centroid (group R).
The centroid is linked to the central carbon atom Cα, and its size and distance from Cα can be statistically
determined for each amino acid type.

Two consecutive amino acids are linked together by a peptide bond, that connects the C-O group of the
first amino acid to the N -H group of the following one. Due to the double bond character of the peptide bond,
these four atoms, together with the Cα-atoms immediately preceding and following them, lie on the same
plane, known as peptide plane (Figure 1 on the right). Therefore, the peptide bond backbone has only two
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degrees of freedom per amino acid group (see also Figure 5 later in the
paper): (1) The rotation around the N -Cα bond (φ angle), and (2)
The rotation around the Cα-C bond (ψ angle). A sequence of amino
acids joined by peptide bonds forms the backbone chain of the pro-
tein, whose 3D coordinates describe the complete tertiary structure.
Sequences of φ and ψ angles, defined by backbone atoms CNCαC and
NCαCN , respectively, determine exactly the tertiary structure (as 3D
coordinates of atoms), and vice-versa.
Specific ranges of the torsional angles determine also particular local
structures, referred to as secondary structures of the protein. Sec-
ondary structure elements often assume regular and repetitive spatial
shapes, being constrained by the hydrogen bonds formed by local inter-
residue interactions. The most common examples are the α-helices and
the β-sheets. Other parts of the polypeptide instead present less regu-
lar structures. They allow the folds between the structured parts, and
they are usually identified with loops and turns, as shown in Figure 3.

Figure 3: α-helix, β-sheets, loops, and
turns

Proteins can be generally classified on the basis of their secondary structure elements: if only α-helices
(resp. β-sheets) are present, we are in presence of a α (resp. β) protein; otherwise it is an αβ-protein.

In the literature, several geometric models for proteins have been proposed. One choice that influences the
quality and the complexity of computational approaches to protein structural studies is the number of points
that describe a single amino acid. In this paper, we use a simple model, where a protein composed of n amino
acids is described by the 3D coordinates of the sequence of atoms (N -Cα-C-O-H)n, and the side chain is
represented by a single centroid. Centroid positions are calculated a-posteriori on the basis of the coordinates
of the other atoms of the backbone. If each atom is identified by a triplet representing its 3D coordinates, then
the tertiary structure of a target protein will be defined by a list of [p1, . . . , p15n] values, where pi∈[1..15n] ∈ R.

2.2 Protein Structure Prediction

PSP is a known challenging problem in bioinformatics, that prompted the development of several approaches
in the literature. A class of attractive, but computationally expensive, approaches is the class of ab-initio
prediction methods, that simulate the folding process by using knowledge about the chemical structure of the
protein and the laws of physics. They usually require a large amount of computational resources; good results
have been obtained from the adoption of distributed computing [6] and high-performance architectures [49, 33].
GPU technology has also been used for ab-initio prediction (e.g., [38]). In a recent proposal, [38] address the
PSP problem using GPUs to perform molecular dynamic simulations, i.e., simulations of physical movements
of atoms and molecules.

An alternative strategy to PSP is represented by the class of comparative modeling approaches; these meth-
ods assume that a limited set of structural motifs can represent the majority of the existing protein structures.
Hence, previously determined structures can be used as templates to predict unknown targets. In the Rosetta
algorithm [46], small fragments of known proteins are combined together in order to recreate the structure
with a minimum of free energy (i.e., the native structure). This idea has proven to be promising, making
Rosetta one of the most successful comparative modeling approaches. In I-TASSER [54, 40] a comparative
modeling approach is improved with a hierarchical strategy. Given a target sequence, I-TASSER first gener-
ates some protein templates through “threading” techniques. Afterwards, it assembles template fragments in
order to generate a set of candidate structures, from which it extracts the structure with minimum energy.
The I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER) was ranked as the best server for
protein structure prediction in recent CASP competitions—an international series of competitions aimed at
establishing the current state-of-the-art in protein structure predictions.

Last but not least, extensive research has been conducted in predicting locations, types and conformations
of secondary structure elements—the interested reader is referred to [39] for a recent survey.

Declarative techniques have been extensively employed to model the PSP problem. Using Constraint Pro-
gramming (CP), it is easy to describe spatial properties of the unknown protein in terms of geometric con-
straints. In these models, it is common to superimpose the protein structure on a discretized representation of
the three dimensional space, often organized as a crystal lattice structure. Successful results have been obtained
for both the simple model with only two amino acids (the HP model), by solving a constraint optimization
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Figure 4: CUDA Logical Architecture

problem [3], and for the complete model [21] that uses all the different types of amino acids. A promising idea
has been adopted in [22], where the 3D conformation of a protein is predicted via protein fragments assembly,
modeled in terms of finite domain constraints and implemented using a dedicated constraint logic programming
system.

The use of multi-agent systems has been relatively limited in the context of the PSP problem. An agent-
based framework for protein structure prediction, using machine learning techniques, is presented in [37].
Several portfolio approaches, that combine results produced by several protein prediction servers, are presented
in literature (e.g., [26]). In [11], the authors use Concurrent Constraint Programming techniques, where a
blackboard model [15] supports communication among agents. Another multi-agent framework that uses a
blackboard architecture is presented in [30], while in [18] agents are used as a reinforcement learning approach
for solving the PSP problem in the 2-amino acid HP model.

Finally, we would like to mention that the use of GPU architectures has shown its advantages in several
other bioinformatics applications, such as computational proteomics [32], DNA sequencing [43], and molecular
docking [48], as well as in the context of Constraint Programming and SAT solving [14, 20].

2.3 GPU Computing in a Nutshell

Modern graphic cards (Graphics Processing Units) are multiprocessor devices, offering hundreds of computing
cores and a rich memory hierarchy for graphical processing (e.g., DirectX and OpenGL). Efforts like NVIDIA’s
CUDA—Compute Unified Device Architecture [42] aim at enabling the use of the multicores of a GPU to accel-
erate general applications—by providing programming models and APIs that enable the full programmability
of the GPU. In this paper, we consider the CUDA programming model. The underlying conceptual model of
parallelism supported by CUDA is Single-Instruction Multiple-Thread (SIMT), a variant of the SIMD (Single-
Instruction Multiple Data) model. In SIMT, the same instruction is executed by different threads that run
on identical cores, while data and operands may differ from thread to thread. CUDA’s architectural model is
summarized in Figure 4.

Different NVIDIA GPUs provide varying numbers of cores, their organization, and amounts of memory.
The GPU is constituted by a series of Streaming Multi-Processors (SMs); the number of SMs depends on the
specific class of GPUs—e.g., the Fermi architecture provides 16 SMs. In turn, each SM contains a number of
computing cores (each with a fully pipelined ALU and floating-point unit); the number of cores per SM may
range from 8 (in the older G80 platforms) to 32 (e.g., in the Fermi platforms). Each GPU provides access to
on-chip memory (for thread registers and shared memory) and off-chip memory (L2 cache, global memory and
constant memory).

CUDA introduces a logical view of computations, allowing programmers to define abstract parallel work
and to schedule it among different hardware configurations (see Fig. 4). A typical CUDA program is a C/C++
program that includes parts meant for execution on the CPU (referred to as the host) and parts meant for
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parallel execution on the GPU (referred as the device). A parallel computation is described by a collection of
kernels. Each kernel is a function to be executed by several threads. Threads spawned on the device to execute
a kernel are hierarchically organized to facilitate the mapping of the threads to the (possibly multi-dimensional)
data structures being processed: threads are organized in a 3-dimensional structure (called block), and blocks
themselves are organized in 2-dimensional tables (called grids). CUDA maps blocks (coarse-grain parallelism)
to the SMs for execution; each SM schedules the threads in a block (fine-grain parallelism) on its computing
cores in chunks of 32 threads at a time (called warps), thus allowing group of threads in a block to use the
computing resources while other threads of the same block might be waiting for information (e.g., completing a
slow memory request). Threads have access to several memory levels, each with different properties in terms of
speed, organization (e.g., banks that can be concurrently accessed) and capacity. Each thread stores its private
variables in very fast registers (anywhere from 8K to 64K per SM); threads within a block can communicate
by reading and writing a common area of memory (called shared memory). Communication between blocks
and with the host is realized through a large global memory (up to several gigabytes).

The kernel, invoked by the host, is executed by the device and it is written in standard C-code. The
number of running blocks (gridDim) and the number of threads of each block (blockDim) are specified in the
call executing the kernel, with the following syntax:

Kernel ≪ gridDim, blockDim ≫(param1, . . . , paramn);

In order to perform a computation on the GPU, it is possible to move data between the host memory
and the device memory. By using the specific identifier of each block (blockIdx—providing x, y coordinates of
the block in the grid), its dimension (blockDim) and the identifier of each thread (threadIdx—providing x, y, z
coordinates for the thread within the block), it is possible to differentiate the data accessed by each thread
and the corresponding code to be executed. For example, the following code fragment shows a kernel and
the corresponding call from the host. Each element of a two dimensional matrix is squared, and each thread
is in charge of one element of the matrix. The matrix A is represented by a pointer in the device’s global
memory. CUDA provides functions (e.g., cudaMemCopy) to transfer data between the host and the device’s
global memory.
int main() {

...

dim3 thrsBlock(n,n);

sqMatrix<<<1,thrsBlock>>>(A);

...

__global__ sqMatrix(float *Mat){

int i=threadIdx.x;

int j=threadIdx.y;

Mat[i][j] = Mat[i][j]*Mat[i][j];

}
While it is relatively simple to develop correct CUDA programs (e.g., by incrementally modifying an exist-

ing sequential program), it is challenging to design an efficient solution. Several factors are critical in gaining
performance. The SIMT model requires active threads in a warp to execute the same instruction—thus, diverg-
ing flow paths among threads may reduce the amount of actual concurrency. Memory levels have significantly
different sizes (e.g., registers are in the order of dozens per thread, while shared memory is in the order of a
few kilobytes per block) and access times; different cache behaviors are applied to different memory levels (e.g.,
constant memory is a cached read-only global memory) and various optimization techniques are used (e.g.,
accesses to consecutive global memory locations by contiguous threads can be coalesced into a single mem-
ory transaction). Thus, optimization of CUDA programs requires a thorough understanding of the hardware
characteristics of the GPU being used.

2.4 Constraint Satisfaction and Optimization Problems

A Constraint Satisfaction Problem (CSP) is a triple T = 〈X,D,C〉 where X = {x1, . . . , xm} is a set of
variables, D = {D1, . . . , Dm} is the corresponding set of variable domains.1 For the sake of simplicity, we will
use the notation Dx to denote the domain of the variable x. C = {C1, . . . , Ch} is a finite set of constraints. A
constraint is a relation Ci ⊆ Di1 × · · · ×Diki

for some set of indices {i1, . . . , iki} ⊆ {1, . . . ,m}; let scope(Ci)
be {xi1 , . . . , xiki

}. A solution to a CSP T is a m-tuple 〈s1, . . . , sm〉 such that sj ∈ Dj for 1 ≤ j ≤ m and for
each 1 ≤ i ≤ h 〈si1 , . . . , siki

〉 ∈ Ci. If T has a solution it is said to be consistent, otherwise it is inconsistent.
A Constraint Optimization Problem (COP) is a pair Q = 〈T , E〉, where T is a CSP and E : D1×· · ·×Dm →

R is a cost function. A solution ~s of the COP Q is a solution of T such that E(~s) = min~x solution of T E(~x).
A solution of a CSP is often found by alternating two steps: (1) Selection of a variable xi and assignment

xi = d for a value d ∈ Di (labeling), and (2) Propagation of the information xi = d for removing elements from

1In this paper, we restrict our attention to finite domain variables.
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the domains of the remaining variables (constraint propagation), possibly detecting inconsistencies—when a
domain becomes empty. Solving a COP implies computing E(~s) for each solution of the CSP, and imposing
additional constraints, in order to avoid the computation of solutions that do not improve the best value found
so far. Phase (1) implements non-deterministic choices, often explored using a backtracking procedure, while
phase (2) is typically deterministic and implemented by fast filtering algorithms. GPUs can be efficiently
used in (1) and in (2): parallelism can be exploited in order to concurrently explore different variable-value
assignments, and constraint propagation can be distributed on multiple cores.

A particular search technique frequently employed in solving a COP Q = 〈T , E〉 is the Large Neighborhood
Search (LNS) ([50, 44]). The basic idea is as follows. Once one solution of T is found, instead of proceeding
with some form of backtracking, a subset of the variables (chosen randomly, often with some general or problem
oriented strategy) are uninstantiated. A new (small) COP minimizing the overall objective function—or simply
improving it—with the assignment of these variable is solved, and the procedure is repeated starting from the
last solution. The computation is usually stopped by a timeout or by a number of consecutive non-improving
steps. The technique is proved to be very effective in scheduling problems (see, e.g., [51]). In this work, we use
LNS to explore the potential foldings of a protein structure: first we define a tentative initial solution for the
tertiary structure of the target protein (e.g., the straight configuration), then we run small COPs in order to
fold secondary structure elements and to model loops and turns that join them together.

3 Problem Formalization

Given a primary sequence ~a = a1 · · · an of a protein of length n (each ai is a symbol representing an amino
acid), we model the PSP problem as a COP Q = (〈X,D,C〉, E), where X,D,C,E are described in the following
subsections.

3.1 Variables and domains

X = X ∪ P is a set of finite domain variables, where X = {x1, y1, . . . , xn, yn}, and P = {p1, . . . , p15n} (hence,
m = |X| = 17n). The variables xi and yi (for 1 ≤ i ≤ n) are associated to the torsional angles φ and ψ of the
ith amino acid, respectively.

The variables p5(i−1)+3t+1, p5(i−1)+3t+2, p5(i−1)+3t+3 (i = 1, . . . , n and t = 0, . . . , 4) are associated to the

x, y, z coordinates of the tth atom of the ith amino acid ai. More precisely, if t = 0 then it is an N -atom,
referred as ni; if t = 1 then it is the Cα-atom, referred as Cαi; if t = 2 then it is a C-atom, referred as ci; if
t = 3 then it is an O-atom, referred as oi; and if t = 4 then it is a H-atom, referred as hi. We will denote the
above list of 15 coordinates as ~Pi = 〈ni, Cαi, ci, oi, hi〉 and we refer to these variables as point variables.

Dxi and Dyi will store sets of angles retrieved from a database of proteins using statistical informa-
tion (we use DASSD ([25]). The domains for all the point variables are initially set all equal to the range
[−500000..500000], that has been experimentally proved to be large enough to accommodate all proteins tested
in our benchmarks.

3.2 Constraints

C is a finite set of constraints over X. These constraints describe geometric properties that the final structure
must satisfy to be a physically admissible structure. There is a strong correlation between X and P, allowing us
to infer the first from the second and vice versa. Keeping both types of variables explicit allows the programmer
to easily add specific angle or spatial constraints. In particular, assignments of angle variables in X identify
structures that are represented by ground points in P. On the other hand, structures obtained by constraint
propagation over variables in P identify a unique sequence of pairs of angles φ and ψ for the variables in X .

Let us introduce the most relevant constraints used to encode the PSP problem.

3.2.1 table Constraints

Values for variables in X are retrieved from a statistical database. These values are given as pairs 〈φ, ψ〉.
Therefore, for each i = 1, . . . , n, we consider a table constraint that associates 〈xi, yi〉 to the possible admissible
pairs for those angles. As a result, during the search, the assignment of xi and yi is done simultaneously
according to the table.
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3.2.2 The alldistant Constraint

This constraint has been originally introduced by [24]. Given a list of 3k variables P = (p1, . . . , p3k), and a list

of k positive values ~d, the constraint alldistant(P, ~d) imposes a distance relation between each pair of 3D
points identified by the variables in P, i.e., ∀i ∈ {1, . . . , k − 1} and ∀j ∈ {i+ 1, . . . , k}:

‖ (p(i−1)3+1, p(i−1)3+2, p(i−1)3+3)︸ ︷︷ ︸
A

− (p(j−1)3+1, p(j−1)3+2, p(j−1)3+3)︸ ︷︷ ︸
B

‖ ≥ di + dj

where ‖ · ‖ is the Euclidian norm. di and dj can be seen as the radii of two spheres centered in the points A
and B, respectively. The constraint states that these two spheres cannot intersect.

We use this constraint to model the fact that the various atoms have a minimum distance each other. In par-
ticular, the value di is chosen as the radius of a sphere containing the atom of coordinates (p(i−1)3+1, p(i−1)3+2, p(i−1)3+3).
An additional alldistant constraint, that considers only the Cα atoms of the amino acids, can also be added,
imposing a minimum distance that depends on the the radii of sphere that contain their respective amino acids.
These radii are computed from an average analysis in a database of known proteins.

3.2.3 The Single Angle (sang) Constraint

Given the list X of 2n FD variables and the list P of 15n point variables, and given i ∈ 2, . . . , n, the single
angle constraint sang(i,X ,P) imposes a relation between the lists of points of the 15 variables ~Pi−1 and the

subsequent 15 variables ~Pi so as to satisfy:
~Pi ∈ {Rot(~Pi−1, φ, ψ) : 〈φ, ψ〉 ∈ Dxi ×Dyi}

where Rot(·) is the roto-translation matrix needed to properly align the amino acid structure described by the

angles 〈φ, ψ〉 with the position of the previously placed atoms in ~Pi−1 (see Fig. 5). We use this constraint to
model the relative positions of consecutive tuples of atoms related to amino acids i− 1 and i according to the
angles selected.

Figure 5: Rotation of the vector Cα–N (angle φ) or the vector Cα–C (angle ψ)

3.3 The Cost Function E

Since our aim is to find the tertiary structure that minimizes the free energy of the protein, we used as cost
function a protein energy function already used in literature (e.g., the one adopted in [23]), composed of three
components, described below:

1) Hydrogen component: Hydrogen bonding potentials are calculated from pairs of atoms N–H of amino acid
i (ni, hi) and an O atom of another amino acid j (oj), that are located within a certain distance threshold; an
auxiliary statistical table tabh is used [35]. This contribution is calculated by a function Hydro(X) defined as
follows:
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Hydro(X) =

n∑
i=1

n∑
j=1,j 6=i

hc(X, i, j)

where hc(·) returns the energy potential of one hydrogen bond:

hc(X, i, j) =


tabh(δ(X, i, j),Θ(X, i, j),Ψ(X, i, j),Γ(X, i, j))

if 1.75 ≤ δ(X, i, j) ≤ 2.60
0 otherwise

where: δ(X, i, j) = ‖hi − oj‖, Θ(X, i, j) is the bond angle ôj hi ni, Ψ(X, i, j) is the bond angle ̂Cαj oj hi, and
Γ(X, i, j) is the torsional angle identified by ni, hi, Cαj , oj .

2) Contact component: it calculates the contribution of the contact of each pair of centroids of the side chain
using the statistical table of contact energies tabc [8]. This component considers a threshold distance equal to
the sum of the Van der Walls radii of the side chains of the amino acids involved.2 If the distance is greater
than such threshold, the potential decreases quadratically. The contact component Cont(X,~a) is defined as
follows:

Cont(X,~a) =

n−1∑
i=2

n−1∑
j=i+1

contact(γ(X, i, ai), γ(X, j, aj), ai, aj)

where ~a is the sequence of amino acids and the function γ(X, i, a) returns the position of the side chain centroid
of the amino acid i, which is dependent on the type of the amino acid a and the points Cαi−1, Cαi, Cαi+1.
Let us observe that the first and the last centroids of the structure are not taken into account since the tails
of the protein do not contribute significantly to the energy value. The contact(·) function returns the contact
potential computed in [8], retrieved by the indexing function tabc:

contact(p, q, a, a′) =


tabc(a, a

′) If ‖p− q‖ ≤ VdW(a, a′)

tabc(a, a
′)VdW(a,a′)2

‖p−q‖2 Otherwise

where VdW (a, a′) is the sum of the Van der Walls radii of amino acids a, a′.

3) Correlation component : Let Λi be the torsional angle determined by the Cα atoms Cαi, Cαi+1, Cαi+2, Cαi+3.
Two statistically computed tables tabt1 and tabt2 are are used as auxiliary functions. The first one retrieves
information from one torsional angle Λi parametrized by the type of the amino acids ai+1 and ai+2. The
second table retrieves information from the pair of torsional angles Λi−1 and Λi independently of the amino
acids’ types. The correlation component is computed as follows (see [29] for the physical backgrounds of this
component):

Corr(X,~a) =

n−4∑
i=2

tabt1(Λi, ai+1, ai+2) + tabt2(Λi−1,Λi)

Finally, we set:
E(X,~a) = w1Hydro(X) + w2Cont(X,~a) + w3Corr(X,~a)

Experimental training on the top500 dataset (trying to reduce the standard deviation of the energies calculated
w.r.t. each component) produces the following values: w1 = 8, w2 = 0.1, w3 = 7 for predicting α/β structures,
and w1 = 8, w2 = 22, w3 = 7 for predicting turns and loops. All auxiliary tables used are available in
http://www.cs.nmsu.edu/fiasco/.

The literature on precise energy functions for assessing protein foldings is extensive (see, e.g., [31, 45, 41]).
Our approach is completely parametric w.r.t. the energy function.

4 A Multi-Agent System Architecture

A Multi-Agent System (MAS) is a system composed of several agents in an environment, each with a certain
degree of autonomy, and collaborating with other agents to solve a common problem [52]. These agents have
only a local and partial view of the global system, which is too complex to be handled by a single agent.

2The van der Waals radius of an atom is the radius of an imaginary hard sphere which can be used to model atoms.
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The basic structure of an agent is shown in Figure 6 (left). Usually, an agent receives information from the
external environment, it processes the information, and it uses a predefined strategy to determine which action
to perform—the action has the potential to affect the environment, by making changes to it.

Agent
Perception of 

the world

Behavior & 
Capabilities

New 
Action EN

VI
RO

NM
EN

T

Supervisor

Structure Coordinator

Workers Workers

Figure 6: Basic structure of an agent and Multi-Agent System architecture

In this work, we use a multi-level MAS to compute the folding process. We define four types of agents: (1)
A Supervisor agent, which is the highest level agent in the system, and it coordinates all of the other agents,
(2) Structure agents, and (3) Coordinator agents, which are associated to the secondary structure elements
of the target protein; both the structure and coordinator agents implement their own search methods; (4)
Worker agents, which are associated to the X variables of the constraint model. The worker agents are in
charge of propagating constraints and labeling the associated variables. The communication between agents
passes through the Supervisor agent, since it is the only agent that has complete knowledge about the folding
process during the complete search phase. Figure 6 (right) shows the architecture of the multi-agent system
with the four types of agents. Let us consider a target protein of length n with s secondary structures elements
involving p amino acids. s structure agents will be activated and coordinated by the supervisor agent. The
supervisor agent will also activate 1 coordinator agent to take care of the remaining s− 1 internal loops/turns
and of the initial and final tails. More than one coordinator agents (e.g., one for each loop or turn) could be
specified by the user to the supervisor agent as input parameter. n worker agents are created, one for each
amino acid ai, assigned as auxiliary agents for the corresponding structure/coordinator agent. Then, at each
instant of the computation either p (if we are computing secondary structures elements) or n − p (if we are
coordinating structures looking for loops and turns) workers will run in parallel.

4.1 The Supervisor Agent

The Supervisor agent is the intermediary between the external world (e.g., user, external knowledge) and
the other agents. It represents the highest level of abstraction in the framework and it holds global spatial
information about the protein structure during the complete folding process. Its main task is to assign different
sub-sequences of the primary sequence to the immediately underlying types of agents—the coordinator and the
structure agents—and to supervise them, in order to guide the entire folding process towards a stable global
configuration.

It is also responsible for creating the set of worker agents associated to the coordinator agents and to the
structure agents. Moreover, it imposes both the search strategies and the constraints to be propagated on the
other agents.

The supervisor agent sets a priority order among the agents. First, each “highly constrained” secondary
structure (α-helix/β-sheet) is computed by the structure agents; afterwards, the coordinator agents are invoked
to model the whole tertiary structure by moving loops or turns. In this work, we will restrict to a single
coordinator agent. The supervisor agent must ensure also that the structures determined by each structure
agent can be combined in order to obtain the global structure that can be effectively folded by the coordinator
agent. To discard symmetric equivalent solutions, the secondary structure ai · · · aj with the lowest i among
those computed is deterministically placed in the 3D space. The positions of all other points are obtained
starting from it, as soon as the angles are assigned to variables x, y.
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The location in the primary sequence and the type of the secondary structure elements is done by the
supervisor agent using some of the capabilities of the secondary structure prediction algorithm JNet [17]. We
remark that only the location is delegated to external knowledge, while the actual folding process is performed
by the structure agents.

4.2 The Worker Agent

Worker agents are the lowest-level agents in the system. Each worker agent is associated either to a coordinator
agent or to a structure agent and takes care of a particular amino acid ai. In particular, it assigns all admissible
values to the pair of variables xi, yi and executes consequent constraint propagation possibly rejecting incon-
sistent assignments. Precisely, propagation is performed to the portion of the constraint problem delegated to
the structure/coordinator agent associated with it. A set of admissible structures (i.e., a set of structures that
satisfy all the constraints the agent can see) is returned to the agent at the higher level.

This separation between high-level agents and worker agents allows us to not worry about how effectively the
propagation is performed (e.g., choosing between CPU and GPU), but to solely invoke the propagation function
of the worker agent from the structure or the coordinator agent, and choosing the best labeling according to
an appropriate criterion and the type of constraint imposed on the variable associated to the worker agent.

4.3 The Structure Agent

This agent models secondary structure elements, such as α-helices and β-sheets. There is a structure agent
for each secondary structure element of the target protein. Thus, each structure agent works exclusively on a
specific part of the overall structure—i.e., it solves a folding problem on a limited subsequence of amino acids.
It is not the task of the structure agent to maintains relations between the assigned subsequence and the rest
of the structure (this will be handled by the coordinator agents).

The agent implements a coordinate-wise gradient ascent method (e.g., see [9, 10]). We call this search
strategy Iterated Conditional Mode (ICM ), implemented by Algorithm 2. This search strategy iterates to
“greedily” refine a first feasible solution, as described in the next sections. This greedy strategy is suitable
to secondary structure elements, since α-helices and β-sheets are “highly constrained” structures presenting
a strong energy correlation between pairs of atoms; this implies a strong gap between geometrically stable
structures and unfolded structures. Let us recall that our solution uses an independent system for secondary
structure prediction to suggest type and locations of secondary structures.

4.4 The Coordinator Agent

The coordinator agent folds the protein by determining loops and turns that connect the secondary structure
elements. xi, yi variables in already computed helices and sheets from the structure agents are already assigned;
their related Cartesian variables Pi are instead unassigned: this allows to “move” structures as rigid objects.
Since loops and turns are, in general, poorly structured, thus generating an intractable search space, the folding
process is driven by a sampling of the search space. We compute the energy values of a set of structures to
obtain more discriminant energy values. Coordinator agents adopt a search strategy that generalizes the one
used by the structure agents and it is summarized in Algorithm 2 of Sect. 5.1. In particular, two sub-strategies
have been implemented: a variant of the Gibbs [10] sampling search strategy, and a Monte Carlo search strategy
(see Sections 5.2–5.3). Gibbs strategy is commonly used to solve the Maximum A-Posteriori (MAP) estimation
problem. Recently, [36] have shown that COPs can be mapped to MAP estimation problems, therefore we have
used it as a sampling algorithm to minimize E(X,~a) (Sect. 3.3).

5 General search schema

The structure and coordinator agents execute a large neighborhood search on a COP. The general schema of
the LNS is implemented by Algorithm 1. The inputs provided to the algorithm are: the list X of 2n variables
for angles, the list P of 15n point variables, and a list of atom sizes ~d. Let us observe that each agent receives
only a part of the whole protein, thus n is, in this case, not the number of amino acids of the whole protein,
but only of a sub-part of it.
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The first step of the algorithm (lines 3–7) is to post all the constraints required for the resolution of the
problem—i.e., the table constraints that relates pairs of angles for variables xi, yi, the sang constraints that
links point variables and corresponding FD variables, and an alldistant constraint over the set of point
variables. Let us observe that this step is done only once, before the search begins.

The next step is to compute a first solution for the set of constraints (line 8)—this is a rather trivial
task, e.g., by determining a solution that connects the most “straight” fragments; this allows us to satisfy the
alldistant constraint in a trivial manner. The energy of this initial solution is computed in line 9.

Algorithm 1 Search(X ,P, ~d)

1: - Constraints:
2: n← |X |/2;
3: post table 〈φ, ψ〉 constraint on |X |;
4: post constraint: alldistant(P, ~d);
5: for i← 2 to n do
6: post constraint: sang(i,X ,P);
7: end for
8: S ← first solution(X ,P);
9: current energy← compute energy(S); . Other parameters are omitted

10: - Search:
11: if (Agent = Structure) then
12: repeat
13: best energy← current energy;
14: (S, current energy)← icm(X ,P);
15: until (current energy ≥ best energy)
16: else if (Agent = Coordinator) ∧ (Search = Montecarlo) then
17: repeat
18: best energy← current energy;
19: (S, current energy)←mc(X ,P);
20: until (current energy ≥ best energy for k consecutive times)
21: else (Agent = Coordinator) ∧ (Search = Gibbs)
22: S∗ ← S;
23: best energy← current energy;
24: for i← 1 to m do
25: mc(X ,P); . Prepare a new starting point (X ,P)
26: for t← 1 to n samples do
27: (S, current energy)← gibbs(X ,P);
28: if current energy < best energy then
29: best energy← current energy
30: S∗ ← S;
31: end if
32: end for
33: end for
34: S ← S∗;
35: end if
36: return S;

The search phase starts at line 10. The code is slightly different in the case of structure agent and the case
of coordination agent.

5.1 ICM

The search strategy adopted for the Structure agents is described by the loop in lines 12–15, that invokes
the ICM algorithm (Algorithm 2) and it terminates when the energy value cannot be further improved. The
ICM search strategy takes one pair of variables xi, yi at a time, it evaluates the energy for all their possible
assignments, and they are assigned to the value that returns lowest energy. This task is performed by the
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Algorithm 2 icm(X ,P)

1: for i← 1 to n do
2: wrk ← get worker agent(i);
3: X ← choose best label(wrk,X ,P); . Label xi, yi again
4: S ← compute structure[X ]; . Structure Updating
5: current energy← compute energy(S);
6: end for
7: return (S, current energy)

worker agent i which runs the choose best label function (line 3). This function implements the strategy for
selecting a new solution and it is performed in parallel on the GPU. Precisely, the variables xi, yi are assigned
with all the elements (pair of angles) in their domains that satisfy the table constraint—variables ~Pi are
deterministically assigned by propagating the sang constraint.3 All the resulting structures consistent with the
alldistant constraint are energetically evaluated, and the one providing the minimum value is kept in X .

Observe that the starting configuration is in the set of structure scanned by the ICM algorithm and,
therefore, a solution is ensured to exists and the energy cannot increase. Although, in principle, two structures
with the same minimum energetic value might emerge in the above step, the fine-grained energy model employed
makes this situation highly unlikely; as a result, in practice the algorithm converges deterministically towards
a local minimum. In the case in which two equivalent structures emerge, the first one encountered is chosen.

5.2 Monte Carlo

The Monte Carlo search strategy is implemented by the loop in lines 17–20 of Algorithm 1. Termination
is forced after k consecutive loop iterations without any energy improvement, where k is a user-selectable
parameter. The search space is sampled by the function mc described by the Algorithm 3.

Algorithm 3 mc(X ,P)

1: for i← 1 to n do
2: wrk ← get worker agent(i);
3: X ← choose best label random(wrk,X ,P); . Label xi, yi again
4: (t2i−1, t2i)← (xi, yi);
5: end for
6: if (solution check(~t ) = true) then
7: X ← ~t . Update consistently
8: else
9: X ← assignment from(S); . Retrieve previous value (*)

10: end if
11: S ← compute structure[X ]; . Structure Updating
12: current energy← compute energy(S); . End of Coordination Agent
13: return (S, current energy)

The for loop scans through all the variables associated to the agent and it focuses on one pair of variables,
xi, yi, at a time to determine a better structure. All the variables (related to loops and turns) assigned to the
coordinator are uninstantiated. The worker agent implements the choose best label random function (line
3). If xi, yi are not allocated to the coordinator agent, then the procedure halts immediately, leaving their
values unchanged; otherwise, every admissible assignment to the pair xi, yi is attempted.2 A fixed number of
random assignments (samples) for the other variables xj , yj is attempted for each assignment of xi, yi. The
values of xi, yi that is part of the sample returning the best energetic value is retained. In our experiments, we
set the number of samples to 1,000. As before, the values to be assigned to the point variables P are obtained by
propagation. The values t2i−1, t2i for xi, yi that allows us to obtain the best (i.e., minimal) energetic value are
kept (lines 3–4). The list ~t = (t1, . . . , t2n) of these values constitutes a new possible solution. If this assignment

3For each new assignment the variables xi, yi and the variables ~Pi, ~Pi+1, . . . , ~P|X| are uninstantiated.
2For each attempt all the variables assigned to the coordinator and all the variables P are uninstantiated.
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(and the subsequent propagation to P driven by the sang constraint) satisfies the alldistant constraint (line
6—solution check), the energy is evaluated and updated (line 7), otherwise, a new iteration of the loop in
lines 17–20 of Algorithm 1 is started.

Variants of this method include also the possibility of worsening solutions with some fixed probability or
with a probability decreasing over time (i.e., as in simulated annealing). The changes to the code to achieve
these variants are minimal—these will be explored as future work. Moreover, if the test in line 6 fails, then
some small changes in the solution will be attempted before deciding to restart from the previous solution.
In particular, the algorithm considers other s solutions (default s = 2) sorted in ascending order of energy
value before performing a new iteration of the loop in lines 17–20 (Algorithm 1). If there are any admissible
assignment, the first one is used as new possible solution.

5.3 Gibbs sampling

Gibbs sampling mixes the ICM search strategy with the Monte Carlo sampling as follows. It uses two “meta”
parameters: m (the number of starting points) that controls the number of iterations in lines 24–33 and
n samples (the number of sampling steps) that controls the number of iterations in lines 26–32. The coordinator
agent invokes the function gibbs (line 27 of Algorithm 1) to sample one variable at a time based on the current
assignment of the other variables. Each starting point is a valid random assignment of values to variables
computed by invoking the mc function (see, Alg. 3). Algorithm 4 tries to improve the initial random point as
follows. Initially, the current (random) structure is computed and energetically evaluated (lines 2–3). Then,

Algorithm 4 gibbs(X ,P)

1: for i← 1 to n do
2: S ← compute structure[X ];
3: current energy← compute energy(S);
4: wrk ← get worker agent(i);
5: X ← choose label random(wrk,X ,P); . Label xi, yi again
6: if (Solution check(X ) = true) then
7: S∗ ← compute structure[X ]; . Auxiliary structure updating
8: current energy∗ ← compute energy(S∗);

9: q ←min

(
1, exp(−current energy∗)

exp(−current energy)

)
;

10: r ← rand();
11: if r ≤ q then
12: X ← assignment from(S); . Reject the new state
13: end if
14: else
15: X ← assignment from(S); . Retrieve previous value (*)
16: end if
17: end for
18: S ← compute structure[X ];
19: current energy← compute energy(S);
20: return (S, current energy)

for each pairs of variables xi, yi, the corresponding worker agent invokes the function choose label random
to randomly select a pairs of elements from their domains that satisfies the table constraint. If the selected
assignment (and the subsequent propagation to P driven by the sang constraint) satisfies the alldistant

constraint (line 6—solution check), the new energy is evaluated on an auxiliary structure S∗ (lines 7–8). The
random choice is then accepted with a probability value q that depends on the ratio between the previous
energy value and the current one (lines 6–14). If the random assignment does not satisfy the alldistant

constraint the previous assignment is retrieved from S (line 15).
At each step of the Gibbs sampling algorithm the assignment is updated according to a Metropolis sampling

process (i.e., a random assignment is accepted with probability that depends on the previous energy value—
lines 9–10). Variants of this method includes also the possibility of changing the acceptance ratio in line 9
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by multiplying the energy values by a temperature factor that varies over time. Moreover, the set of starting
points can be partitioned in subsets of equal size, each represented by a different temperature factor.

5.4 The LNS general schema

Let us show how Algorithm 1, together with its auxiliary algorithms, implements a LNS schema. After one
solution is computed (line 8 of Algorithm 1), a loop looking for improving solutions is entered.

In the case of the structure agent, the auxiliary procedure 2 generates sequentially n “neighborhoods”, each
obtained by releasing the assignments of the 17 variables corresponding to amino-acid i; neighbors are the set
of assignments for such variables that satisfy all the constraints.

In the case of the coordination agent, we have two options: with Monte Carlo and with Gibbs. As far as
Monte Carlo is concerned, the situation is similar to the structure agent case, with the difference that we do not
optimize the neighbor at every step, but simply obtain an optimum of a sample of a subset of the neighbors.
With a large number of samples (e.g. 1,000) this guarantees good results. As far as Gibbs is concerned, the
situation is again similar: an improving solution (if any) is selected.

In this framework, GPU is used to speedup the exploration of large neighborhoods. The use of GPUs
architectures is not new for speeding up LNS strategies. For example, a guideline for design and implementation
of LNS strategies on GPUs is presented in [34].

6 Some Implementation Details

We implemented, in C++, a constraint solver that exploits parallelism on GPUs to explore the search space,
following the previously described multi-level MAS model. As anticipated, locations of secondary structures
are computed by a secondary structure prediction algorithm based on neural networks and sequence similarity
alignments—specifically, the JNet application.4 This descriptions can be provided by other secondary structure
alignments tools (e.g., PSIPRED5) or by the user. In this section, we provide some implementation details
about this solver.

6.1 Constraints

The table constraint is simply used for pairs of simultaneous assignments to variables xi and yi. Let us make
some observations regarding how the other constraints can be efficiently handled on a GPU.

The alldistant constraint is checked on the whole set of point variables representing a protein structure.
Using a sequential algorithm, the test of consistency of this constraint on a list of 3D coordinates of length
n requires time O(n2). In our implementation, we map this consistency check and constraint propagation to
distinct cores of the GPU—by enabling each core to serve as representative of a different quintuple of atoms,
that defines each amino acid of the structure. This allows us to reduce the complexity to O(n).

The propagation of the sang constraint relies on a kernel that is invoked with n threads, if the constraint
is imposed on a list of 15n point variables. Each thread deals with a different quintuple of point variables,
reducing the computation from O(n) to O(1) time. Further parallelism is obtained by calling the subroutine
by all threads generating viable candidates within the implementation of the ICM search procedure.

6.2 Energy

The implementation of the energy function used in this work (see Sect. 3.3) as a CUDA kernel requires the
introduction of two levels of parallelism:

1. Given a set of admissible structures, the energy value of each structure is calculated in parallel by a
number of blocks equal to the size of the set, and

2. For a given structure, each energy field is calculated in parallel by a thread within the block.

4http://www.compbio.dundee.ac.uk/www-jpred/advanced.html
5http://bioinf.cs.ucl.ac.uk/psipred/
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To obtain a linear time computation for the contact and the hydrogen potentials, we adopt the same strategy
used for the alldistant constraint: if we consider a structure of length n, then we use n threads for both the
contact potential and the hydrogen bond potential, while we use a single thread for the correlation potential.
The total energy value is calculated in O(n) time. Further parallelism is obtained by calling the subroutine by
all threads generating viable candidates.

6.3 Subroutines of the Search Algorithms

Subroutines are executed with references to an amino acid i = 1, . . . , n. Let k be the number of pairs that can be
assigned to variables xi, yi. Then the function choose best label is implemented by a CUDA kernel invoked
with with a number of blocks equal to k and a number of threads equal to n.6 Each kernel block b = 1, . . . , k
considers an assignment 〈φb, ψb〉 and each thread j computes the alignment for the jth atoms ~Pj . Let us

observe that the alignment of the atoms ~Pj w.r.t. the previously placed atoms ~Pj−1 is deterministic, provided

the positions of at least one list of points ~Pl, for 1 ≤ l ≤ n (see Sect. 3.2.3). Hence, the roto-translation matrices

Rot(·) can be computed independently by each thread once any 15-tuple of point ~Pl variables is assigned. The
cost of this subroutine is then O(1) time instead of O(kn) time of a sequential implementation.

A similar idea is applied for the subroutine choose best label random. Let k be the number of pairs
that can be assigned to variables xi, yi. Then a kernel CUDA is invoked a number of blocks m ≥ k equal to the
number of random samplings to be performed.7 The first k blocks performs exactly the same computation as
the choose best label function—thus, simply exploring the impact of modifying only the angles associated to
the xi, yi variables. The remaining m− k blocks are subdivided in k groups, each corresponding to a different
possible assignment of the variables xi, yi; these m − k blocks are in charge of the actual random sampling.
Each one of these blocks starts with the initial configuration of the variables xi, yi—determined by which of
the k groups the block belongs to. The block then continues by determining the random assignments for all
the other pairs of variables xj , yj , with i 6= j (among those variables allocated to the coordinator agent), as
described in Sect. 2. The roto-translation matrices Rot(·) differ every time the alignment for a new list of

point variables ~Pj+1 is computed based on the previous list of point variables ~Pj . The block makes use of two
threads to speed-up such computation. In particular, we use one thread to perform the sequential alignment on
the lists of point variables ~P1, . . . , ~Pj−1, while the second thread performs the sequential alignment on the lists

of point variables ~Pj+1, . . . , ~Pn, according to the two angles 〈φ, ψ〉 randomly selected for the variables xj , yj .
This subroutine runs in O(n) time using this organization in blocks and threads, instead of the O(k · v ·m)
required by a sequential implementation, where v is the number of variables assigned to the coordinator agent,
and m is the number of random samplings.

As mentioned earlier, given a set of instantiated point variables, calculated by either the choose best label
function or the choose best label random function, the energy values of the corresponding structures are
calculated in parallel on the GPU. Once a list of energy values (for each of the structures determined by the
choose best label/choose best label random) has been determined, we delegate the computation of the
minimal energy to the host—using a simple linear scan of the list of energy values of the various structures.
We do not use a logarithmic reduction to compute the minimal energy, since the cost of invoking a kernel
CUDA plus the costs of the memory transactions between host and device would exceed the time required by
the sequential scan.

As far as the Gibbs sampling strategy is concerned, the for of lines 24–33 of Alg. 1 is delegated to a CUDA
kernel invoked with m blocks, where each block is assigned to a different starting point. Starting points are
computed as described above by the choose best label random function considering k = 1 and forcing the
random assignment of the variables associated to the agent (i.e., it will be performed the same computation
performed by one of the blocks ≥ (m − k) of the choose best label random function). The for-loop that
iterates on the number of samples (Alg. 1—line 26-32) and the for-loop that iterates on the number of worker
agents (Alg. 4—lines 1-17) are kept as sequential loops due to the correlation of consecutive samples (i.e.,
consecutive samples define a Markov chain). Energy values are calculated in parallel on the GPU at each
iteration of the two nested loops on all the set of (updated) starting points.

6The average number of the pairs of angles allowed is k = 107.
7The average number of the pairs of angles allowed is 389. We have tested values of k from 500 to 3000 and we have observed

that the best behavior for the system is for values for k close to 1000.
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6.4 General details about CUDA

We present some details related to the implementation of the CUDA kernels described in the previous sections.
In particular, due to the features of the architectural model of CUDA, we must consider three main aspects
that can affect the performance of the parallel computations: (1) The maximum number of threads per block;
(2) The maximum number of threads that can be physically executed in parallel on each processor of the GPU
(also known as the warp size); (3) The information stored on the device memory and the copies of data to and
from the host memory.

In this paper we assume that we are using a (typical) hardware where the maximum number of threads per
block is limited to 1024, and the size of a warp is 32. The first restriction could potentially limit the maximum
size of the target protein to 1024, when we use one thread per amino acid (e.g., to implement the alldistant

constraint). To avoid such restriction we can split the computation in multiple executions of the same kernel.
For each invocation we simply consider a different window of 1024 consecutive amino acids, until we cover the
whole protein. However, protein typical size is less than 1024, so this further stage is normally not needed.

The second restriction is important when we allow threads of the same warp to diverge to different com-
putational branches. Since kernel instructions are issued not to each thread, but to each warp, to solve the
divergences the compiler of CUDA generates code that will run sequentially one branch after the other, causing
a delay in the execution of the entire warp. We solved this problem by splitting the parallel computation of
different parts of the kernel code among warps of 32 threads. For example, considering the energy function
instead of 2n + 2 threads per block, we invoke the kernel with 2m + 64 threads per block, where m = d n

32e.
Hence, 2m threads are used to compute the contact potential and the hydrogen bond potential, and 64 threads
are used to compute the correlation and torsional potential.

The final aspect regards the optimization of the memory usage in order to achieve maximum memory
throughput. CUDA has different types of memory spaces. Each thread block has access to a small amount of a
fast shared memory within the scope of the block. In turn, all threads have access to the same global memory.
Global memory is slower than shared memory but it can store more data. Since applications should strive to
minimize data transfers between the host and the device (i.e., data transfers with low bandwidth), we reserve
in the global memory an array of size equal to the maximum number of structures expected for the sampling
of the coordinator agent multiplied the size of a structure. Moreover, we reserve an array of Boolean values for
the admissible structures and an array of doubles for the energy values. Each kernel receives the number of
structures to be considered and the pointers to the arrays in the global memory, in order to properly overwrite
them considering only the memory area affected by the kernel function. The memory transfers to and from
the CPU are made at each labeling step by copying the array of structures produced by the propagation of
constraints and the array of the energy values. Again, only the elements affected by the computation of the
kernel are transferred into the host memory.

To optimize the computation on the device, we store all the structures to rotate, the structures on which
to perform the consistency checks for the alldistant constraint, and those on which to calculate the energy
values in the shared memory of the GPU—paying particular care to not exceed the maximum size available for
the device in use. The shared memory can be a limitation when we manage a large number of structures or
very long proteins. Nevertheless, this is not a problem if we consider that the size of our domains is about 300,
and the proteins are typically 200-300 amino acids long. These numbers are compatible with the characteristics
of CUDA (e.g., maximum number of threads per block), which makes this architecture particularly efficient on
our model.

7 Results

We report some experimental results obtained from the GPU implementation of the multi-agent system (briefly,
GMAS). We run our experiments on a CPU AMD Opteron 2.3GHz, 132 GB memory, Linux 3.7.10-1.16-desktop
x86 64, and GPU GeForce GTX TITAN, 14 SMs, 875MHz, 6 GB global memory, CUDA 5.0 with compute
capability 3.5. To evaluate the speedup gained from exploiting parallelism on the GPU, we implement a
sequential version of the multi-agent system (briefly, CMAS). Since coordinator agents use randomized search
strategies, we report the results averaged over 20 runs per protein, as well as their standard deviation (sd).
Computational times are reported in second. To assess the quality of our predictions we use the Root Mean
Square Deviation (RMSD) as an indicator of how close is the predicted structure w.r.t. the correspondent
(known) structure deposited in the protein data bank (the lower the better). Energy and RMSD values are
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averaged on the sets of results produced by both the CPU and the GPU implementations. “SUp” denotes
Speedup in tables.

For following experiments we considered two different benchmark set of proteins selected from the Protein
Structure Database ([7]). The first benchmark set, BS1, is composed by 27 proteins divided in 9 sets based
on their length. In particular for x = 1, . . . , 9 we we randomly selected an α protein, a β protein, and an αβ
protein of length n ∈ {10x+ 1, . . . , 10(x+ 1)}.

The second benchmark set, BS2, is composed by 12 proteins of length that ranges from 125 to 200 residues,
split into 4 subsets (where n = 125, 150, 175, 200). For each subset we randomly selected an α protein, a β
protein, and an αβ protein. The symbol “*” marks some proteins’ IDs that represents difficult targets due
to their supersecondary structure conformation. A supersecondary structure is a compact three-dimensional
protein structure of several adjacent elements of secondary structure that is smaller than a protein domain or
a subunit. For both benchmark sets we will consider a structure agent per secondary structure element and
one coordinator agent (default options).

In all CMAS/GMAS experiments we set a global timeout of 5000 seconds. This situation is reported as
“5000 (-)” in the tables. Let us observe that in these cases, the best solution found in the time allowed is
returned.

In Section 7.4 we analyze the system on a long protein as a case of study; for this test we used more coordi-
nator agents. In Section 7.3 for the comparison with I-TASSER and FIASCO we considered the benchmark sets
presented in the publications concerning those tools. Globally the GMAS tool has been tested on 65 proteins.
The CPU and the GPU versions of the multi-agent system, the set of proteins, the input files, and the best
results computed by the MAS tool can be found at http://www.cs.nmsu.edu/fiasco/.

7.1 GPU vs. CPU

Structure agents and secondary structure elements: In Table 1 and 2 we compare GMAS and CMAS
w.r.t. the times required by Structure agents to fold α-helices and β-sheets for the benchmark sets BS1 and
BS2, respectively. SS denotes the total length of the secondary structures in the protein of length n. Let us
observe that Structure agents use the ICM algorithm to fold secondary structures.

Protein ID Type SS/n CPU GPU SUp

2CZP α 11/15 0.065 (0.001) 0.011 (0.0) 5.9
1LE0 β 6/12 0.006 (0.001) 0.010 (0.0) 0.6
2H2D αβ 9/18 0.003 (0.0) 0.007 (0.0) 0.4
2L5R α 20/23 0.367 (0.001) 0.060 (0.0) 6.1
1E0N β 13/27 0.103 (0.001) 0.037 (0.0) 2.7
1YYP αβ 12/31 0.046 (0.001) 0.019 (0.0) 2.4
1ZDD α 25/35 0.675 (0.001) 0.062 (0.0) 10.8
1E0L β 12/37 0.054 (0.001) 0.035 (0.0) 1.5
1PNH αβ 19/31 0.181 (0.003) 0.061 (0.0) 2.9
2K9D α 33/44 0.973 (0.001) 0.075 (0.0) 12.9
1YWI β 16/41 0.125 (0.001) 0.050 (0.0) 2.5
1HYM αβ 18/45 0.575 (0.001) 0.072 (0.0) 7.9
1YZM α 41/51 2.729 (0.001) 0.149 (0.0) 18.3
2CRT β 27/60 1.014 (0.001) 0.176 (0.0) 5.7
2HBB αβ 28/51 1.101 (0.011) 0.069 (0.0) 15.9
1AIL α 59/69 6.986 (0.005) 0.395 (0.005) 17.6

1PWT β 31/61 2.117 (0.001) 0.141 (0.0) 15.0
2IGD αβ 40/61 4.267 (0.021) 0.345 (0.002) 12.3
1OF9 α 53/77 4.816 (0.010) 0.242 (0.002) 19.9
1SPK β 27/72 0.994 (0.001) 0.111 (0.0) 8.9
1VIG αβ 42/71 3.022 (0.001) 0.213 (0.002) 14.1
1I11 α 44/81 2.707 (0.001) 0.202 (0.0) 13.4

1TEN β 48/87 7.258 (0.036) 0.556 (0.004) 13.0
1DCJ αβ 43/81 2.943 (0.002) 0.204 (0.0) 14.4
1JHG α 82/100 16.12 (0.003) 0.557 (0.003) 28.9

1WHM β 38/92 7.309 (0.002) 0.342 (0.006) 21.3
2CJO αβ 41/97 7.955 (0.001) 0.296 (0.005) 26.8

Table 1: CPU vs GPU: Secondary Structure predictions for the set BS1.
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Protein ID Type SS/n CPU GPU SUp

1A0B α 98/125 40.15 (0.103) 1.223 (0.007) 32.8
1H10 β 56/125 24.12 (0.083) 0.730 (0.003) 33.0
1F98 αβ 74/125 18.96 (0.010) 0.574 (0.002) 33.0
2CJ5 α 116/150 71.78 (0.021) 1.155 (0.012) 62.1
1STB β 72/150 36.46 (0.040) 0.748 (0.005) 48.7
1LEO αβ 89/150 39.15 (0.157) 0.763 (0.001) 51.3
1BGD α 113/175 80.73 (0.283) 1.311 (0.005) 61.5
1FNL β 92/175 48.24 (0.024) 1.073 (0.008) 44.9
1T8A αβ 130/175 95.44 (0.017) 1.592 (0.006) 59.9
1IB1 α 165/200 113.4 (0.108) 2.851 (0.002) 39.7
2GH2 β 100/200 63.60 (0.115) 1.264 (0.008) 50.3
1RR9 αβ 114/200 86.50 (0.023) 1.147 (0.005) 75.4

Table 2: CPU vs GPU: Secondary Structure predictions for the set BS2.

The speedups increase as SS increases. In particular, the higher speedups in most sets are obtained on
Structure agents associated to proteins of type α. This is due to the highly constrained structure of the helices
where the (rather greedy) search strategy reaches a local minima without iterating many times on the set of
variables associated to the agent. β-sheets are less constrained structures and they require more iterations to
converge to the local minima. For the GMAS implementation point of view, more iterations leads to more
information exchanged between host and device (e.g., memory copies) resulting in a decrease in performance.

AB-Initio Prediction using Monte Carlo: Ab-Initio prediction is performed by the Supervisor agent by
managing Structure agents and Coordinator agents. In Table 3 we report the comparison between CMAS
and GMAS considering one Coordinator agent using the Monte Carlo search strategy on the benchmark set
BS1. Running time are inclusive of secondary structure prediction (by structure agents), while the external
computation using JNet of the possible segments where looking for secondary structures is not considered.
For each of the following experiments regarding Monte Carlo we considered a sample set of 1000 structures, a
number of improving steps k = 4,8 and a time-out limit of 10800 seconds (3 hours). Speedups range from 4.5
to 17.3. For each protein we also report the best result found in 20 runs in terms of RMSD (column “Best).
Let us observe that RMSD values are rather low: for proteins of length 100 we are in an average of 5Å.

AB-Initio Prediction using Gibbs: Coordinator agents can use the Gibbs sampling algorithm to model
loops and turns and hence to fold the entire protein. In terms of time, the Gibbs sampling algorithm has
a more stable behavior than Monte Carlo since the former runs for a fixed number of iterations, while the
latter runs until a local minimum (or a given time-out) is reached. Computation of secondary structures are
performed by structure agents as described in the previous experiment. In Table 4 we report the comparisons
between CMAS and GMAS using the Gibbs sampling strategy for the Coordinator agent, considering a number
of samples n samples = 50, and m = 1000 starting points.9

The standard deviations of running times are smaller than those obtained using Monte Carlo. Speedups
are higher than in the previous experiments; this is due to the fact that Gibbs algorithm updates the initial
set of starting points in parallel considering one structure at a time for each sampling step, while Monte Carlo
produces a new sampling set for each variable associated to the agent at each iteration step.

Time vs. Number of Samplings: The time needed to fold the structures and their quality are two factors
that are strongly correlated to the number of samples when using the Gibbs sampling search strategy. Although
it is quite difficult to relate the upper bound on the number of samples with an upper bound on the quality of
the results (e.g., see [36]), it is easy to study how the computational time varies w.r.t. the number of samples
and the length of the proteins. In particular, since the coordinator agent invokes the gibbs function for a fixed
number of times (see Alg. 1, lines 26–35), the computational time varies linearly w.r.t. the number of samples.
We report this analysis in Figure 7 for the computationally most demanding protein of each subset, varying
the number of samples from 1 to 50, and comparing GMAS with CMAS.

In order to study how the quality of the solution changes w.r.t. the number of samples we selected the longer
protein of the benchmark set (i.e., 2CJO, with n = 97 but with 48 amino acids delegated to the Coordinator
agent) and we varied the number of samples from 1 to 50. Table 5 reports the results in terms of RMSD and
standard deviation w.r.t. the number of samples.

8Parameters found experimentally considering a trade-off between time and quality of predictions.
9The number of sampling steps has been found experimentally and it has been chosen as a good compromise between compu-
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ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 0.559 (0.128) 0.046 (0.010) 12.1 0.8 (0.0) -490.5 (2.55) 0.8
1LE0 12 1.923 (0.176) 0.337 (0.020) 5.7 1.2 (0.2) -344.2 (23.50) 0.5
2H2D 18 1.815 (0.118) 0.275 (0.073) 6.6 1.2 (0.0) -263.3 (6.76) 1.2
2L5R 23 1.603 (0.222) 0.188 (0.028) 8.5 1.4 (0.0) -1482.54 (0.00) 1.4
1E0N 27 63.80 (14.180) 10.73 (1.463) 5.9 2.4 (0.6) -1945.00 (41.17) 1.5
1YYP 22 8.479 (2.262) 1.473 (0.482) 5.7 1.7 (0.3) -1205.24 (31.23) 1.2
1ZDD 35 39.40 (7.801) 4.343 (1.263) 9.0 1.1 (0.2) -2472.0 (27.79) 0.9
1E0L 37 20.76 (3.230) 1.816 (0.257) 11.4 2.7 (0.6) -959.366 (70.40) 1.9
1PNH 31 24.15 (3.037) 2.865 (0.301) 8.4 2.7 (0.3) -2611.61(40.20) 2.3
2K9D 44 87.46 (10.81) 13.67 (5.427) 6.3 1.5 (0.4) -6162.405 (150.29) 0.9
1YWI 41 32.23 (4.690) 3.523 (0.959) 9.1 3.4 (0.3) -1295.636 (14.75) 2.7
1HYM 45 81.10 (5.193) 9.309 (1.033) 8.7 3.5 (0.2) -2258.224 (71.90) 3.0
1YZM 51 32.45 (4.361) 1.871 (0.279) 17.3 2.6 (0.4) -4963.852 (63.70) 1.6
2CRT 60 1213 (166.45) 163.2 (20.70) 7.4 3.7 (0.6) -9514.056 (271.25) 2.6

2HBB* 51 476.3 (37.86) 64.42 (6.383) 7.3 3.6 (0.5) -6175.155 (217.69) 3.0
1AIL 69 88.10 (15.37) 6.546 (0.593) 13.4 3.2 (0.6) -10443.04 (251.59) 2.3

1PWT 61 512.8 (45.63) 66.61 (12.23) 7.6 4.1 (0.6) -7983.511 (238.57) 3.2
2IGD* 61 681.4 (50.13) 92.79 (12.55) 7.3 6.2 (0.8) -7928.462 (218.74) 5.0
1OF9* 77 750.6 (82.15) 133.9 (32.54) 5.6 4.3 (0.7) -17063.19 (480.68) 3.3
1SPK 72 1343 (149.27) 174.4 (28.00) 7.7 4.1 (0.4) -8457.154 (334.07) 3.6
1VIG 71 977.1 (107.20) 164.8 (34.63) 5.9 4.9 (0.7) -9295.76 (296.07) 3.7
1I11 81 296.7 (23.22) 38.70 (10.75) 5.6 4.4 (0.4) -7852.049 (251.77) 3.8

1TEN* 87 2995 (466.99) 1014 (86.20) 2.9 5.2 (0.8) -13955.71 (686.41) 4.1
1DCJ* 81 1590 (139.66) 310.7 (43.92) 5.1 4.5 (0.4) -15398.04 (606.98) 3.7
1JHG 100 1168 (123.86) 187.0 (33.59) 6.2 5.7 (1.0) -23687.56 (360.45) 4.0

1WHM 92 2796 (414.802) 611.5 (63.32) 4.5 4.5 (0.7) -17220.98 (525.289) 3.3
2CJO* 97 9195 (547.22) 1988 (162.6) 4.6 4.6 (0.2) -15785.77 (318.45) 4.2

Table 3: Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins BS1. Coordinator
agent uses Monte Carlo algorithm.

Protein ID n. CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 1.243 (0.001) 0.219 (0.002) 5.6 0.8 (0.0) -490.461 (1.965) 0.8
1LE0 12 2.674 (0.001) 0.557 (0.009) 4.8 1.4 (0.1) -308.881 (4.903) 1.3
2H2D 18 2.210 (0.018) 0.513 (0.009) 4.3 1.5 (0.3) 235.4091 (7.062) 1.1
2L5R 23 5.009 (0.154) 0.356 (0.006) 14.0 1.4 (0.0) -1482.54 (0.0) 1.4
1E0N 27 69.69 (0.167) 3.379 (0.025) 20.6 2.7 (0.6) -1724.791 (41.558) 1.7
1YYP 22 19.12 (0.14) 1.450 (0.009) 13.1 1.8 (0.4) -1203.736 (11.868) 1.2
1ZDD 35 57.64 (0.09) 2.639 (0.013) 21.8 1.1 (0.1) -2470.327 (26.436) 0.9
1E0L 37 27.06 (0.459) 1.895 (0.014) 14.2 2.5 (0.4) -894.690 (55.465) 2.0
1PNH 31 33.99 (0.104) 1.793 (0.020) 18.9 2.3 (0.1) -2538.936 (25.54) 2.1
2K9D 44 144.0 (1.282) 4.687 (0.020) 30.7 1.7 (0.7) -5883.502 (102.288) 0.9
1YWI 41 41.48 (0.221) 2.251 (0.011) 18.4 3.4 (0.3) -1168.549 (13.060) 2.9
1HYM 45 74.58 (1.250) 3.478 (0.049) 21.4 3.5 (0.5) -2037.445 (39.651) 2.8
1YZM 51 56.04 (0.719) 1.800 (0.015) 31.3 2.8 (0.2) -4993.436 (27.578) 2.4
2CRT 60 665.7 (10.23) 17.93 (0.320) 37.1 4.0 (0.7) -8289.048 (166.152) 2.7

2HBB* 51 372.6 (1.628) 11.68 (0.116) 31.9 4.0 (0.2) -5309.193 (101.03) 3.7
1AIL 69 156.0 (3.019) 3.889 (0.017) 40.1 3.5 (0.3) -11275.98 (190.78) 3.2

1PWT 61 474.4 (0.345) 12.70 (0.611) 37.3 4.7 (0.6) -6942.941 (146.546) 3.6
2IGD* 61 550.4 (2.870) 14.15 (0.231) 38.8 5.1 (0.9) -7029.251 (86.943) 4.4
1OF9* 77 780.5 (10.87) 18.50 (0.429) 42.1 4.0 (0.8) -14739.77 (335.616) 2.5
1SPK 72 700.3 (1.521) 18.42 (0.353) 38.0 4.6 (0.5) 7071.708 (80.60) 4.0
1VIG 71 750.0 (2.161) 23.00 (0.288) 32.6 5.1 (1.0) -8015.638 (130.803) 3.4
1I11 81 433.1 (1.244) 10.11 (0.122) 42.8 3.9 (0.6) -7544.959 (114.85) 2.8

1TEN* 87 1841 (2.742) 50.93 (1.611) 36.1 5.5 (0.5) -12576.83 (413.913) 4.6
1DCJ* 81 1021 (1.246) 26.18 (1.077) 38.9 5.2 (0.6) -13061.12 (174.81) 3.9
1JHG 100 1462 (1.344) 32.63 (1.255) 44.8 4.9 (1.3) -21332.2 (258.721) 3.3

1WHM 92 1035 (1.281) 37.19 (0.262) 27.8 4.9 (0.6) -13953 (237.5671) 4.3
2CJO* 97 2024 (2.149) 56.41 (1.274) 35.8 5.2 (0.6) -12964.17 (170.607) 4.3

Table 4: Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins BS1. Coordinator
agent uses Gibbs sampling algorithm.
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Figure 7: Time vs number of samples for the Gibbs sampling algorithm

Number of Samples
Protein ID 1 10 20 30 40 50

2CJO 6.3 (0.9) 5.8 (0.2) 5.5 (0.4) 5.4 (0.6) 5.4 (0.5) 5.2 (0.6)

Table 5: Quality w.r.t. number of samples for the Gibbs sampling strategy.
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Our choice of setting 50 as upper bound on the number of sampling for the benchmarks set BS1 is motivated
by the two following observations: (1) for n ≥ 30 the improvements on the quality of the structures are relatively
small, and (2) 2CJO can be implicitly considered as a representative protein for all the other targets in BS1,
since it has the larger set of amino acids assigned to a coordinator agent (51 residues). Therefore, we have
conjectured that this value is suitable for the whole set. Other, not reported, experiments have confirmed this
hypothesis. Let us conclude this analysis by observing that the observed linearity guarantees that using less
than 50 sampling steps would preserve the speedups.

Quality evaluation: using RMSD as Objective Function: The quality of the predicted structure strongly
depends on the energy function adopted in the model. The energy function can be changed as a black box
and without affecting the overall structure of the system. In this test, we evaluated the differences in terms of
RMSD between the Gibbs sampling and the Monte Carlo algorithm using the RMSD w.r.t. the native known
structure as objective function for both the structure and the coordinator agents. Of course this function
cannot be used for still unknown proteins; however we experiment it in order to see if our tool is, in principle,
able to compute the native structure if the “real” protein energy function would be know. Table 6 shows the
results in terms of average and best RMSD computed for the benchmark set is BS1. Best results are reported
in boldfont.

Protein ID n Gibbs (sd) Best MC (sd) Best

2CZP 15 1.0 (0.0) 1.0 1.0 (0.0) 1.0
1LE0 12 1.0 (0.0) 1.0 0.9 (0.9) 0.9
2H2D 18 0.5 (0.0) 0.5 1.2 (0.0) 1.2
2L5R 23 1.4 (0.0) 1.4 1.1 (0.1) 1.0
1E0N 27 1.3 (0.2) 1.0 0.9 (0.0) 0.8
1YYP 22 0.9 (0.0) 0.9 1.5 (0.1) 0.8
1ZDD 35 1.6 (0.1) 1.5 1.5 (0.1) 1.4
1E0L 37 3.4 (0.1) 3.1 3.5 (0.3) 2.8
1PNH 31 2.8 (0.4) 2.1 2.9 (0.2) 2.7
2K9D 44 2.0 (0.3) 1.5 1.9 (0.1) 1.7
1YWI 41 2.5 (0.4) 1.9 2.5 (0.2) 2.2
1HYM 45 2.4 (0.3) 1.6 2.4 (0.2) 2.1
1YZM 51 1.5 (0.0) 1.5 1.5 (0.1) 1.4
2CRT 60 4.3 (0.3) 3.9 4.5 (0.2) 4.1

2HBB* 51 2.6 (0.3) 2.1 1.8 (0.3) 1.4
1AIL 69 2.0 (0.3) 1.5 2.8 (0.7) 1.7

1PWT 61 3.5 (0.3) 2.9 2.7 (0.4) 2.1
2IGD* 61 3.0 (0.2) 2.6 2.9 (0.3) 2.6
1OF9* 77 2.2 (0.3) 2.1 1.7 (0.1) 1.5
1SPK 72 4.3 (0.5) 3.8 4.2 (0.3) 3.7
1VIG 71 5.0 (0.5) 4.2 5.8 (0.4) 4.9
1I11 81 2.9 (0.4) 2.3 2.4 (0.1) 2.2

1TEN* 87 6.3 (0.4) 5.8 6.5 (0.4) 5.8
1DCJ* 81 4.6 (0.7) 3.8 4.3 (0.3) 3.8
1JHG 100 5.7 (0.5) 5.1 5.7 (0.6) 4.3

1WHM 92 5.2 (0.9) 4.1 4.8 (0.2) 4.5
2CJO* 97 4.8 (0.5) 4.1 4.2 (0.4) 3.5

Table 6: Quality evaluation: RMSD as objective function.

As expected, the average quality of the results is better than using the original energy function, since both
search strategies try to minimize the spatial difference between the native structure and the target. Nevertheless,
RMSD values are not close to zero since the variables’ domains are created to be used for predicting unknown
structures. Therefore, they do not necessary contain the true pair of angles of the amino acids of each target.

Let us observe that an objective function based on the RMSD value can be adopted for new search strategies.
For example, minimization of the RMSD distance between (parts of) the target and a corresponding set of
templates can be useful in template-based modeling techniques [27].

Adding constraints while preserving speedup: In this section we show that the system is highly mod-
ular and that we can introduce additional geometric constraints that allows to reduce the search space while
preserving the speedup.

tational time and quality of predictions, as discussed in what follows.
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We consider the case of modeling the side-chain of each amino acid. This can be done by defining a new
constraint that relates the position of each Cα atom with the group R defined on it. The centroid (CG)

constraint enforces a relation among four triples of real variables ~p1, ~p2, ~p3, and ~p4. This relation establishes
the value to assign to the variables ~p4 representing the coordinates of the side chain defined on the carbon
atom Cαi, given the bend angle formed by the carbon atoms ~p1 7→ Cαi−1, ~p2 7→ Cαi, and ~p3 7→ Cαi+1, and the
average Cαi–side chain distance [28]. The coordinates of ~p1, ~p2, and ~p3 are already present in our modeling,
while the coordinates of ~p4 are considered only here. Moreover, this constraint checks the minimum distance
between side chains and all the other atoms of the structure in order to avoid steric clashes, as in the case
of the alldistant constraint. Note that, using a sequential algorithm, it is possible to check the consistency
of this constraint for a given assignment of values to the variables in P in time O(n2). We adopt the same
strategy used for the alldistant constraint to obtain O(n) time in the parallel implementation.

In Table 7 (resp., 8) we report the times for CMAS and GMAS on the protein set BS1 for the Monte Carlo
(reps., Gibbs sampling strategies), using the alldistant constraint and the CG constraint.

Protein ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 0.760 (0.158) 0.075 (0.017) 10.1 0.8 (0.0) -487.009 (0.0) 0.8
1LE0 12 2.225 (0.247 0.489 (0.047) 4.5 1.4 (0.1) -310.5714 (15.03) 1.3
2H2D 18 2.112 (0.340) 0.425 (0.042) 4.9 1.3 (0.2) -258.0266 (4.655) 1.1
2L5R 23 2.072 (0.525) 0.281 (0.109) 7.3 1.4 (0.0) -1482.54 (0.0) 1.4
1E0N 27 72.46 (9.620) 14.18 (2.458) 5.1 2.3 (0.4) -1723.076 (49.3655) 1.7
1YYP 22 10.94 (2.793) 1.695 (0.114) 6.4 1.4 (0.2) -1190.033 (36.27) 1.2
1ZDD 35 45.799 (7.169) 5.284 (1.378) 8.6 1.7 (0.2) -2272.059 (55.53058) 1.5
1E0L 37 24.85 (3.285) 4.493 (0.271) 5.5 2.6 (0.6) -882.369 (37.0802) 1.8
1PNH 31 27.25 (4.602) 3.370 (0.387) 8.0 3.4 (0.6) -2518.261 (52.135) 2.1
2K9D 44 95.42 (9.547) 12.68 (1.798) 7.5 3.0 (1.3) -5258.283 (114.113) 1.4
1YWI 41 29.07 (5.566) 3.940 (1.688) 7.3 3.1 (0.5) -1152.215 (40.8021) 2.2
1HYM 45 97.96 (18.16) 10.29 (0.964) 9.5 3.5 (0.3) -2113.299 (85.986) 2.9
1YZM 51 36.69 (10.11) 2.406 (0.330) 15.2 2.7 (0.3) -4393.806 (39.639) 2.4
2CRT 60 1280 (110.4) 187.5 (22.14) 6.8 4.0 (0.3) -8346.851 (264.8791) 3.5

2HBB* 51 562.2 (91.53) 67.66 (12.38) 8.3 3.9 (0.8) -5471.265 (67.6792) 2.8
1AIL 69 132.5 (9.236) 7.575 (0.653) 17.4 3.8 (0.8) -8880.202 (227.2679) 2.7

1PWT 61 554.5 (40.66) 67.75 (4.649) 8.1 4.1 (0.6) -7034.326 (178.9961) 3.0
2IGD* 61 717.7 (135.3) 82.09 (12.19) 8.7 5.3 (1.0) -7126.439 (224.9547) 4.1
1OF9* 77 768.2 (100.4) 140.0 (33.79) 5.4 3.5 (0.7) -14429.41 (342.4358) 2.6
1SPK 72 1317 (103.3) 175.7 (9.452) 7.4 4.2 (0.5) -7189.066 (264.136) 3.4
1VIG 71 1176 (184.4) 160.3 (34.90) 7.3 4.7 (0.9) -8118.327 (181.7243) 3.3
1I11 81 322.7 (18.45) 49.91 (5.924) 6.4 4.0 (0.7) -6870.417 (151.4574) 3.1

1TEN* 87 5330 (564.8) 1128 (148.1) 4.7 6.0 (0.8) -13505.96 (204.369) 5.1
1DCJ* 81 1623 (209.8) 292.0 (52.30) 5.5 5.2 (0.7) -12866.59 (445.7158) 4.4
1JHG 100 1417 (101.7) 179.8 (28.56) 7.8 6.1 (0.9) -20293.91 (404.9333) 4.8

1WHM 92 2829 (250.4) 968.9 (189.5) 2.9 5.1 (0.8) -14676.57 (484.0556) 3.8
2CJO* 97 8248 (748.3) 1967 (262.8) 4.1 5.4 (0.8) -13916.12 (395.8187) 4.4

Table 7: Time (sec.), quality, and energy values averaged on 20 runs for some proteins of different length
and type. Coordinator agents use Monte Carlo algorithm to explore conformations. CG constraint has been
enabled.

7.2 Longer Proteins

After experimented the speedup of GMAS w.r.t. CMAS, in this section we show the results of GMAS on the
set of larger proteins BS2. Table 9 shows the results in terms of time, RMSD, energy, and best RMSD when
using the Gibbs algorithm for the Coordinator agent (1 Coordinator agent, 50 sampling steps). Times vary
from 40.4 to 376.6 seconds, while the best RMSD values are always under 8.0Å. In Table 10 the CG constraint
is added to the encoding. Quality of results are slightly decreased due to the poor approximation of the side
chain with a single atom, while computational times are reduced since more structures have been pruned.

7.3 Comparison with other Systems

Comparison with Rosetta: We compared the quality of the proposed tool in terms of RMSD against
the state-of-the-art Rosetta tool, initially presented in [46] and continuously evolved since then. For each
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Protein ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 2.006 (0.001) 0.314 (0.029) 6.3 0.8 (0.0) -491.458 (1.022) 0.8
1LE0 12 4.114 (0.007) 0.806 (0.077) 5.1 1.4 (0.1) -300.8306 (6.789) 1.3
2H2D 18 3.300 (0.039) 0.758 (0.060) 4.3 1.7 (0.7) -244.392 (7.862) 0.9
2L5R 23 6.787 (0.070) 0.521 (0.047) 13.0 1.4 (0.0) -1482.54 (0.000) 1.4
1E0N 27 93.61 (10.66) 4.964 (0.118) 18.8 3.0 (0.6) -1517.871 (28.7422) 2.3
1YYP 22 25.71 (0.062) 2.100 (0.099) 12.2 1.7 (0.5) -1183.739 (9.5) 1.1
1ZDD 35 81.41 (0.500) 3.384 (0.065) 24.0 1.6 (0.1) -2378.678 (61.27) 1.5
1E0L 37 39.52 (0.782) 2.692 (0.017) 14.6 2.8 (0.6) -849.1835 (35.66) 2.0
1PNH 31 47.02 (0.205) 2.451 (0.034) 19.1 2.8 (0.4) -2440.618 (55.42) 2.1
2K9D 44 186.9 (15.24) 5.311 (0.069) 35.1 2.0 (0.4) -5191.226 (247.499) 1.6
1YWI 41 52.96 (0.211) 3.203 (0.090) 16.5 3.0 (0.5) -1072.859 (16.79) 2.3
1HYM 45 110.7 (0.198) 4.646 (0.093) 23.8 3.9 (0.7) -1905.429 (62.30) 2.9
1YZM 51 70.85 (0.770) 2.575 (0.007) 27.5 2.6 (0.1) -4533.8 (46.809) 2.5
2CRT 60 636.3 (4.732) 18.29 (0.331) 34.7 3.8 (0.6) -7252.04 (247.893) 3.1

2HBB* 51 578.2 (4.624) 13.77 (0.208) 41.9 4.3 (0.4) -4818.446 (54.610) 3.6
1AIL 69 226.8 (0.356) 6.403 (0.651) 35.4 3.7 (0.7) -9842.159 (227.2839) 2.4

1PWT 61 524.7 (173.7) 11.60 (1.573) 45.2 4.2 (0.7) -6173.182 (109.042) 3.3
2IGD* 61 361.7 (29.61) 16.94 (0.347) 21.3 5.4 (0.9) -6185.173 (151.216) 4.0
1OF9* 77 1077 (23.35) 18.18 (0.615) 59.2 4.8 (0.9) -12970 (212.057) 3.0
1SPK 72 554.2 (28.9) 15.08 (0.597) 36.7 4.9 (0.5) -6151.49 (128.4445) 4.1
1VIG 71 644.6 (19.86) 22.70 (0.765) 28.3 5.0 (0.6) -6995.402 (223.483) 3.9
1I11 81 461.9 (106.3) 13.56 (0.177) 34.0 4.0 (0.7) -6747.406 (94.80) 2.8

1TEN* 87 3348 (15.58) 62.29 (0.354) 53.7 6.3 (0.9) -11030.24 (311.69) 4.8
1DCJ* 81 1065 (392.9) 19.51 (1.196) 54.5 5.9 (0.9) -11330.29 (271.17) 3.5
1JHG 100 1556 (63.96) 15.80 (0.347) 98.4 5.2 (0.8) -19074.76 (579.9539) 4.0

1WHM 92 1879 (0.431) 30.18 (1.693) 62.2 5.2 (1.0) -12364.63 (199.9923) 3.7
2CJO* 97 1795 (148.7) 45.30 (0.742) 39.6 5.8 (0.9) -11197.55 (188.3018) 4.7

Table 8: Time (sec.), quality, and energy values averaged on 20 runs for some proteins of different length and
type. Coordinator agents use Gibbs sampling algorithm to explore conformations. CG constraint has been
enabled.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 40.44 (0.99) 5.2 (1.1) -23592.9 (1007.557) 3.5
1H10* 69.18 (3.278) 7.6 (1.0) -14041.22 (1010.967) 6.9
1F98* 84.37 (3.410) 6.9 (0.9) -21683.44 (760.408) 6.0
2CJ5 100.6 (4.546) 6.4 (0.8) -35302.44 (1062.648) 5.2

1STB* 118.0 (5.452) 7.5 (1.1) -19563.05 (910.6381) 5.6
1LEO 101.6 (8.208) 6.7 (0.9) -32627.28 (909.583) 5.4

1BGD* 135.5 (7.360) 8.1 (1.5) -47544.61 (1441.902) 5.2
1FNL* 376.6 (26.34) 8.4 (0.7) -40839.9 (1424.246) 7.2
1T8A 214.8 (12.56) 7.9 (1.0) -44482.65 (1107.889) 6.3
1IB1 208.7 (10.80) 8.4 (1.0) -50007.91 (1047.775) 6.4

2GH2* 84.75 (0.851) 9.8 (1.5) -38321.71 (1283.365) 7.5
1RR9* 298.8 (17.93) 8.4 (1.1) -45074.02 (1959.957) 7.0

Table 9: Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sampling.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 32.33 (1.424) 7.8 (1.3) -21292.37 (708.0099) 5.6
1H10* 49.76 (2.648) 7.3 (1.1) -13354.67 (184.2466) 5.0
1F98* 51.56 (2.795) 7.1 (1.0) -19554.71 (751.1157) 5.9
2CJ5 75.33 (7.619) 6.5 (1.2) -30636.26 (218.7721) 5.6

1STB* 58.00 (3.399) 7.2 (1.5) -17567.47 (862.4277) 4.5
1LEO 60.32 (5.187) 7.3 (0.8) -28359.66 (658.0844) 6.1

1BGD* 83.57 (9.395) 9.0 (1.2) -42451.74 (942.5947) 7.8
1FNL* 101.9 (15.99) 10.5 (1.7) -34714.2 (2204.668) 7.9
1T8A 113.6 (4.960) 8.8 (1.7) -39357.61 (862.8464) 5.5
1IB1 112.6 (10.07) 9.1 (1.2) -42539.18 (1545.187) 7.3

2GH2* 118.5 (20.11) 12.4 (1.2) -33937.24 (2317.069) 11.1
1RR9* 144.3 (18.84) 8.8 (1.2) -38644.9 (1474.511) 6.9

Table 10: Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sampling with the CG
constraint enabled.
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Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 285.9 (61.19) 4.1 (0.4) -25588.58 (717.2202) 2.7
1H10* 1693 (300.3) 5.8 (0.6) -18914.5 (459.4581) 5.1
1F98* 2987 (598.4) 5.8 (0.9) -26607.36 (721.812) 4.7
2CJ5 1583 (230.9) 7.0 (1.4) -41436.0 (1558.731) 5.5

1STB* 5392 (625.9) 6.5 (0.2) -25676.32 (1207.134) 6.2
1LEO 5145 (609.2) 5.8 (0.3) -40749.62 (1038.819) 5.4

1BGD* 5000 (-) 6.2 (1.3) -38185.23 (1199.362) 5.1
1FNL* 5000 (-) 6.0 (0.4) -45450.2 (1014.597) 5.7
1T8A 5000 (-) 4.7 (0.7) -39630.5 (922.132) 4.2
1IB1 4436 (543.1) 3.4 (0.2) -43938.1 (907.0643) 3.1

2GH2* 5000 (-) 7.2 (0.7) -49686.63 (503.952) 6.7
1RR9* 5000 (-) 5.8 (1.2) -45133.57 (640.239) 4.6

Table 11: Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte Carlo search
strategy.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 240.6 (44.56) 7.1 (1.8) -22661.39 (242.603) 5.1
1H10* 1659 (247.8) 6.4 (0.5) -13641.52 (5259.107) 5.9
1F98* 2287 (240.3) 6.3 (0.8) -22783.95 (530.0175) 5.2
2CJ5 1547 (149.6) 13.5 (2.9) -35356.96 (660.8399) 8.6

1STB* 4891 (372.8) 7.0 (0.6) -21351.42 (440.864) 6.1
1LEO 4125 (402.6) 6.1 (0.9) -33733.4 (164.6203) 5.2

1BGD* 6.6 (1.1) -40615.83 (870.601) 5.4
1FNL* 5000 (-) 6.3 (1.0) -44714.47 (382.754) 5.1
1T8A 4.6 (0.5) -38881.8 (997.4146) 4.1
1IB1 3625 (538.4) 4.8 (0.3) -43085.2 (934.407) 4.5

2GH2* 5000 (-) 9.2 (0.4) -47081.13 (1051.74) 9.5
1RR9* 5000 (-) 6.3 (1.0) -40543.97 (1206.53) 5.6

Table 12: Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte Carlo search
strategy and CG constraint.

protein of benchmark set SB1 and SB2 we built the dictionary for 3 and 9 amino acid long peptides previous
sequence alignment using the PSIPRED online server (http://bioinf.cs.ucl.ac.uk/psipred). We followed
the examples in the Rosetta distribution. Let us observe that our tool uses e a generic database of angles
whereas Rosetta uses a database of fragments created based on the target sequence. To be as fair as possible
in comparing the tools we run them considering their default settings. Moreover, we run the Rosetta tool on
a host machine equipped with 8 processors Intel(R) Core(TM) i7-2600 CPU, 3.40GHz.

Table 13 show the results in terms of RMSD and time as given by Rosetta. For each protein we report
also the RMSD corresponding to the best structure found by Rosetta and the RMSD corresponding to best
structure found by GMAS among all the previous experiments using Monte Carlo (MC) and Gibbs sampling
as well as the corresponding times. Best results are reported in boldfont.

The quality of the structures predicted by GMAS is in line with the results of Rosetta. On the other hand,
Rosetta tends to be faster on longer proteins (e.g., ≥ 150 amino acids). This is due to several factors such as
a better energy function that can lead sooner to a local minimum, the computation of the fragments database
for each target, and the various heuristics encoded in that tool during the years.

Comparison with I-TASSER: We compared GMAS with another state-of-the-art protein structure predic-
tion system, namely the Iterative TASSER (I-TASSER) tool [54, 40]. I-TASSER is a threading-based system
that builds protein structures from primary sequences considering already known homologous proteins. Ta-
ble 14 presents the comparison between I-TASSER and GMAS. For comparing I-TASSER with GMAS we
considered the complete benchmark set of 16 proteins presented in [53] (benchmark 1). For each protein we re-
port the best result found by I-TASSER (as reported in their work), as well as the best results found by GMAS
using Monte Carlo without the GC constraint and Gibbs with the CG constraints, that previous experiments
proved to be the best combinations. The running time of I-TASSER computations are those reported in the
2007 paper. However, we have re-launched some of them with our machine obtaining similar (slightly worse)
results with their timeout of five hours. The RMSD results shows that our tool (considering our best result
with the two options) has results comparable to I-TASSER (and obtained in shorter time).
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Rosetta GMAS
Protein ID n RMSD (sd) Time (sd) Best MC Time (sd) Gibbs Time (sd)

2CZP 15 0.4 (0.1) 2.700 (0.483) 0.2 0.8 0.046 (0.010) 0.8 0.219 (0.002)
1LE0 12 0.7 (0.2) 2.600 (0.516) 0.3 0.5 0.337 (0.020) 1.3 0.557 (0.009)
2H2D 18 1.3 (0.3) 3.428 (0.534) 0.9 1.1 0.425 (0.042) 0.9 0.758 (0.060)
2L5R 23 1.1 (0.0) 3.500 (0.547) 1.1 1.4 0.188 (0.028) 1.4 0.356 (0.006)
1E0N 27 2.7 (0.4) 7.100 (1.523) 2.0 1.5 10.73 (1.463) 1.7 3.379 (0.025)
1YYP 22 2.5 (0.4) 7.857 (0.690) 2.1 1.2 1.473 (0.482) 1.1 2.100 (0.099)
1ZDD 35 1.3 (0.4) 11.00 (0.942) 0.8 0.9 4.343 (1.263) 0.9 2.639 (0.013)
1E0L 37 3.5 (0.6) 11.70 (2.540) 2.3 1.8 4.493 (0.271) 2.0 1.895 (0.014)
1PNH 31 3.2 (0.8) 11.20 (1.549) 1.8 2.1 3.370 (0.387) 2.1 1.793 (0.020)
2K9D 44 2.8 (1.3) 12.30 (2.057) 1.6 0.9 13.67 (5.427) 0.9 4.687 (0.020)
1YWI 41 2.5 (0.4) 9.222 (1.715) 2.8 2.2 3.940 (1.688) 2.3 3.203 (0.090)
1HYM 45 4.2 (0.9) 15.10 (0.567) 3.1 2.9 10.29 (0.964) 2.8 3.478 (0.049)
1YZM 51 0.9 (0.4) 10.75 (1.035) 0.5 1.6 1.871 (0.279) 2.4 1.800 (0.015)
2CRT 60 4.5 (0.8) 20.75 (1.035) 3.5 2.6 163.2 (20.70) 2.7 17.93 (0.320)
2HBB 51 3.4 (0.7) 17.11 (1.452) 2.2 2.8 67.66 (12.38) 3.6 13.77 (0.208)
1AIL 69 4.1 (1.4) 26.33 (0.707) 1.7 2.3 6.546 (0.593) 2.4 6.403 (0.651)

1PWT 61 3.9 (0.7) 23.12 (0.640) 2.8 3.0 67.75 (4.649) 3.3 11.60 (1.573)
2IGD 61 5.6 (0.6) 20.75 (3.615) 4.7 4.1 82.09 (12.19) 4.0 16.94 (0.347)
1OF9 77 11.5 (0.1) 18.33 (1.032) 10.9 2.6 140.0 (33.79) 2.5 18.50 (0.429)
1SPK 72 4.6 (0.6) 25.12 (1.246) 3.7 3.4 175.7 (9.452) 4.0 18.42 (0.353)
1VIG 71 5.5 (1.2) 25.25 (1.281) 4.1 3.3 160.3 (34.90) 3.4 23.00 (0.288)
1I11 81 4.8 (1.1) 25.00 (1.322) 2.9 3.1 49.91 (5.924) 2.8 10.11 (0.122)

1TEN 87 6.8 (0.6) 34.50 (1.511) 5.7 4.1 1014 (86.20) 4.6 50.93 (1.611)
1DCJ 81 5.3 (0.9) 30.87 (1.807) 4.0 3.7 310.7 (43.92) 3.5 19.51 (1.196)
1JHG 100 5.0 (0.7) 38.25 (6.273) 3.8 4.0 187.0 (33.59) 3.3 32.63 (1.255)

1WHM 92 6.4 (0.5) 35.00 (1.772) 5.8 3.3 611.5 (63.32) 3.7 30.18 (1.693)
2CJO 97 4.7 (0.8) 38.62 (2.924) 3.5 4.2 1988 (162.6) 4.3 56.41 (1.274)
1A0B 125 6.0 (1.4) 45.25 (2.964) 4.4 2.7 285.9 (61.19) 3.5 40.44 (0.99)
1H10 125 7.1 (1.4) 47.50 (5.830) 5.4 5.1 1693 (300.3) 5.0 49.76 (2.648)
1F98 125 5.8 (1.0) 55.00 (3.681) 4.5 4.7 2987 (598.4) 5.9 51.56 (2.795)
2CJ5 150 7.1 (1.9) 62.77 (5.540) 4.8 5.5 285.9 (61.19) 5.2 100.6 (4.546)
1STB 150 6.3 (0.7) 62.80 (5.329) 4.8 6.1 4891 (372.8) 4.5 58.00 (3.399)
1LEO 150 6.5 (1.0) 69.50 (5.380) 4.9 5.2 4125 (402.6) 5.4 101.6 (8.208)
1BGD 175 7.8 (1.2) 59.10 (9.085) 5.8 5.1 5000 (-) 5.2 135.5 (7.360)
1FNL 175 6.8 (1.2) 60.70 (4.056) 5.1 5.1 5000 (-) 7.2 376.6 (26.34)
1T8A 175 6.8 (1.2) 86.40 (6.380) 5.0 4.1 5000 (-) 5.5 113.6 (4.960)
1IB1 200 7.8 (1.5) 129.0 (9.297) 6.4 3.1 4436 (543.1) 6.4 208.7 (10.80)
2GH2 200 8.0 (1.0) 101.9 (6.297) 6.9 6.7 5000 (-) 7.5 84.75 (0.851)
1RR9 200 7.1 (1.8) 86.40 (12.33) 4.8 4.6 5000 (-) 6.9 144.3 (18.84)

Table 13: Quality evaluation: best results of GMAS systems against Rosetta.

I-TASSER GMAS
MC Gibbs

ID n RMSD RMSD Time (sd) RMSD Time (sd)

1B72 A 49 3.1 2.4 20.56 (3.863) 3.1 7.437 (0.081)
1SHF A 59 1.7 3.0 144.2 (11.63) 3.7 17.92 (0.096)

1TIF 59 7.0 3.9 45.11 (4.230) 3.6 9.350 (0.665)
2REB 2 60 4.7 4.1 17.78 (3.393) 2.4 7.023 (0.018)

1R69 61 1.9 3.5 124.5 (15.06) 3.5 15.58 (0.164)
1CSP 67 2.1 4.4 248.0 (46.72) 4.8 22.26 (1.124)

1DI2 A 69 2.3 4.8 41.23 (5.382) 5.4 13.09 (0.273)
1N0U A4 69 4.4 4.7 128.3 (16.03) 3.7 19.63 (0.950)
1MLA 2 70 2.7 3.6 61.75 (14.83) 4.6 16.95 (0.241)

1AF7 72 4.2 3.4 60.39 (7.870) 3.4 14.92 (0.109)
1OGW A 72 1.1 4.3 485.1 (66.16) 3.5 30.40 (0.518)
1DCJ A 73 10.0 3.7 267.5 (42.02) 3.9 24.40 (1.267)
1DTJ A 74 1.7 4.3 247.8 (23.99) 3.1 25.41 (0.172)
1O2F B 77 5.2 3.6 228.5 (16.91) 3.4 22.82 (1.262)

1MKY A3 81 4.5 3.8 545.7 (88.16) 4.9 35.20 (0.551)
1TIG 88 4.4 4.7 196.4 (30.92) 5.6 31.73 (0.301)

Table 14: Quality evaluation: best results of GMAS systems against I-TASSER.
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Comparison with FIASCO: We compared GMAS with another CP-based tool FIASCO ([13] —Table 15).
FIASCO is a C++-based constraint solver targeted at modeling a general class of protein structure studies
that relies on fragment assembly techniques. The benchmark set used for these experiments is the same used
in [13]. For GMAS we report the best results among 20 runs for each combination using Monte Carlo and Gibbs
without the CG constraints, that previous experiments proved to be the best combinations. Let us observe
that GMAS is a clear winner in this case.

FIASCO GMAS
MC Gibbs

ID n RMSD Time RMSD Time (sd) RMSD Time (sd)

1ZDD 35 2.0 685.2 0.9 4.343 (1.263) 0.9 2.639 (0.013)
2GP8 40 6.2 376.8 1.3 1.916 (0.226) 1.3 2.070 (0.180)
2K9D 44 2.5 513.0 0.9 13.67 (5.427) 0.9 4.687 (0.020)
1ENH 54 8.2 1900 2.3 13.75 (5.731) 1.3 10.86 (1.301)
2IGD 61 10.5 1588 4.1 82.09 (12.19) 4.0 16.94 (0.347)
1SN1 63 5.5 889.2 4.1 47.35 (10.41) 3.0 46.40 (9.726)
1AIL 69 4.5 267.6 2.3 6.546 (0.593) 2.4 6.403 (0.651)
1B4R 79 6.1 504.6 4.1 462.1 (97.58) 4.0 479.8 (47.01)
1JHG 100 4.5 270.0 4.0 187.0 (33.59) 3.3 32.63 (1.255)

Table 15: Quality evaluation: best results of GMAS systems against FIASCO.

7.4 A Case of Study: 3BHI

In this section we consider a specific long protein as representative for a case of study to assess the capabilities
of our solver on “hard” proteins. We selected the protein 3BHI with n = 276, and its secondary structure
contains 6 α-helices, 3 β-sheets, and 7 turns. First of all we compute the offsets of the secondary structure
elements on the primary sequence using JNet that will produce a text file containing the desired alignment:

SSGIHVALVTGGNKGIGLAIVRDLCRLFSGDVVLTARDV . . .
−−−−EEEE−−−−−HHHHHHHHHHHHH−−−EEEEE−−−H . . .

JNet requires few seconds to generate the alignment and hence it does not affect the overall computational
time. However, this input file might be also generated by other tools or on-line servers (e.g., http://bioinf.
cs.ucl.ac.uk/psipred/). Once the alignment has been generated we run the solver specifying the Gibbs
algorithm as search strategy for the Coordinator agents, with 150 sampling steps, and the file containing the
alignment as input file. We used the Gibbs option in the coordinator that proved to be the faster for long
proteins in our previous experiments. We increased the number of samples to 150 since we experimentally
observed a convergence of the quality of the solutions after 150 samples, running the system considering 50,
100, 150 and 200 samples. Results are reported in Table 16 - Default row.

Experiment Time (sd) RMSD (sd) Energy (sd) Best RMSD

Default 3885 (178.4) 12.15 (2.0) -83854.05 (3060.509) 10.8
Default-CG 908.2 (60.83) 11.40 (1.4) -74065.95 (2979.682) 10.1

Multi-Coordinators 1317 (2.146) 10.175 (2.1) -86866.9 (4447.796) 8.3
Multi-Coordinators-CG 939.8 (3.024) 11.17 (1.2) -76466.71 (5154.601) 9.8

Table 16: Case of Study: 3BHI (276 amino acids)

Then we have introduced the CG constraint: Default-CG row shows that time is reduced from 3885 to
908.2 seconds. Let us observe that also the quality of the solution is improved from 12.15Å to 11.40Å although
the energy value is increased. This means that the energy function and, in particular, the weights of the energy
components are not completely precise.

To further improve the prediction we used more than one coordinator agent, in particular one for each
sequence of amino acids between a pair of consecutive secondary structures. Results are reported in column
Multi-Coordinators column. With these new settings we improved the quality of the predictions (i.e., the
structure is more compact since loops and turns are better simulated) and we reduced the computational time
(since coordinator agents are associated to few variables). Finally we use both these facilities and results are
reported in Multi-Coordinators-CG row. The time is further reduced but the average RMSD is increased due
to the side chain centroids that forbid structures that are too compact.
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7.5 Comparing different GPUs

In this section, we compare three different GPUs with different computational capabilities in order to evaluate
how much the architecture affects execution times. We report the details of the various hardware used (CPU
and GPU). (1) is the hardware used in previous experiments: TITAN: Host AMD Opteron Processor 6376,
2.3GHz, Device GeForce GTX TITAN, 2688 cores@875MHz (14SM); (2) Quadro: Host Intel Core i7-3770,
3.4GHz, Device Quadro 600, 96 cores@640 MHz (2SM); (3) Tesla: Host Intel Xeon, 2.4GHz, Device Tesla
C2075, 448 cores@1.15 Ghz (14SM).

Table 17 compare these three different architectures on three different predictions using the MC algorithm
and Gibbs sampling considering default settings, without the CG constraint. We report running time and
speed-ups in any of the three machines. It emerges clearly that the approach benefits from better GPUs either
in the running time or in the speed-up. Let us observe that we still have speedups also for the Quadro device
that is the less powerful graphic card among the three devices, whit 2 SM and 96 cores (whereas the host has
3.4GHz w.r.t. 2.3 GHz of TITAN host and Tesla host). Speedups are in the order of 2 ∼ 3 when considering
the Gibbs sampling algorithm that has been proven in the previous experiments to be the more effective for
longer proteins.

Protein ID n Time
TITAN Quadro Tesla

CMAS (sd) GMAS (sd) SUp CMAS (sd) GMAS (sd) SUp CMAS (sd) GMAS (sd) SUp
1E0N 27 63.80 10.73 (1.463) 5.9 59.92 (5.050) 152.3 (27.07) 0.3 87.92 (12.24) 23.98 (4.681) 3.6
2HBB 51 476.3 64.42 (6.383) 7.3 329.9 (45.69) 873.6 (146.9) 0.3 523.2 (52.55) 163.0 (19.51) 3.2
1JHG 100 1168 187.0 (33.59) 6.2 1175 (82.02) 1719 (414.7) 0.6 1414 (137.3) 270.2 (76.11) 5.2 Monte Carlo
1E0N 27 69.69 3.379 (0.025) 20.6 67.80 (0.037) 33.16 (0.458) 2.0 74.89 (0.147) 7.362 (0.073) 10.1
2HBB 51 372.6 11.68 (0.116) 31.9 405.8 (1.574) 150.9 (2.008) 2.6 433.3 (0.800) 26.72 (0.246) 16.2
1JHG 100 1462 32.63 (1.255) 44.8 1602 (11.15) 433.8 (12.02) 3.6 1674 (0.957) 71.96 (2.411) 23.2 Gibbs

Table 17: Comparison between different GPUs - Monte Carlo and Gibbs sampling.

8 Conclusion

In this paper we presented a novel perspective for addressing the Protein Structure Prediction Problem. We
used a declarative approach for ab-initio simulation, implementing a multi agent system. Moreover, we used
a GPU architecture to efficiently explore the search space and to propagate constraints. The results are
remarkable. The use of GPU allows us to obtain speedups up to 75. The system can fold proteins of small-
medium length with a low computational time (in the order of minutes) and quality of the results comparable
with the state-of-the-art systems.

As future work, we plan to improve the search strategies of the agents. In particular, we shall try to make use
of dynamic priorities between agents. These priorities are set by the supervisor agent, and dynamically modified
on the base of the current partial results computed by the structure and the coordinator agents. Moreover, the
prediction of the area where secondary structures might occur, currently delegated to the external tool JNet,
will be incorporated in the system (as initial module of the supervisor agent).

An interesting direction is the study of an implementation of the multi-agent system on a multi-GPU
environment. Different GPUs can be assigned to different structure and coordinator agents, which can exchange
information during the whole folding process. The entire search phase is governed by the supervisor agent which
assigns jobs to and retrieves results from processes running on different GPUs. We are also developing a visual
interface that allows the use of the tool outside the community of computer scientists.
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[21] Alessandro Dal Palù, Agostino Dovier, and Federico Fogolari. Constraint Logic Programming Approach
to Protein Structure Prediction. BMC Bioinformatics, 5(186), 2004.

28
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