
Heuristics, Optimizations, and Parallelism for Protein
Structure Prediction in CLP(FD)

Alessandro Dal Palù, Agostino Dovier
Dipartimento di Matematica e Informatica

Università di Udine
{dalpalu,dovier}@dimi.uniud.it

Enrico Pontelli
Department of Computer Science

New Mexico State University
epontell@cs.nmsu.edu

ABSTRACT
The paper describes a constraint-based solution to the protein fold-
ing problem onface-centered cubic lattices—a biologically mean-
ingful approximation of the general protein folding problem. The
paper improves the results presented in [15] and introduces new
ideas for improving efficiency:(i) proper reorganization of the
constraint structure;(ii) development of novel, both general and
problem-specific, heuristics;(iii) exploitation of parallelism. Glob-
ally, we obtain a speed up in the order of 60 w.r.t. [15]. We show
how these results can be employed to solve the folding problem
for large proteins containing subsequences whose conformation is
already known.

Categories and Subject Descriptors
J.3 [Computer Applications]: LIFE AND MEDICAL SCIENCES

General Terms
Algorithms,Experimentations

Keywords
Constraint logic programming, parallelism, bioinformatics

1. INTRODUCTION
Proteins are responsible for nearly every function required for

life. The sequence of elements (amino acids) identifying a pro-
tein is known as the primary (1D) structure. A functional protein
can be thought of as a properly folded chain of amino acids in 3-
dimensional (3D) space. The 3D structure of a protein character-
izes its function. A folded protein interacts three-dimensionally
with other proteins (e.g., lock and key arrangements) and this inter-
action determines the functions of the organism. In fact, an organ-
ism is essentially determined by the three-dimensional interactions
between proteins and substrates. Thus, without knowing the 3D
structure of the proteins coded in a genome, we cannot completely
understand the phenotype and functioning of living organisms. Un-
derstanding how protein folds has profound implications—e.g., to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

wards the theoretical design of exact drugs, the improvement of
proteins functionality, and the precise modeling of cells.

In recent decades, most scientists have agreed that the answer
to the folding problem lies in the concept of theenergy stateof a
protein. The predominant strategy in solving the protein folding
problem has been to determine a state of the amino acid sequence
in the 3D space with minimum energy. According to this theory,
the 3D conformation that yields the lowest energy state represents
the protein’s natural shape (a.k.a. thenative conformation). The
energy of a conformation can be modeled usingenergy functions,
that determine the energy level based on the interactions between
any pairs of amino acids [7]. Thus, we can reduce the protein fold-
ing problem to an optimization problem, where the energy function
has to be minimized under a collection of constraints (e.g., derived
from known chemical and physical properties) [13].

We employConstraint Logic Programming (CLP), in particular,
constraint logic programming overfinite domains(CLP(FD)), to
model and solve a tractable representation of the protein folding
problem—i.e., protein folding in the context of face-centered cubic
lattices [31]. The choice of CLP is natural for a variety of reasons
(see, e.g., [2]). CLP is a paradigm that is highly suitable to ad-
dress optimization problems; it provides declarative and high-level
modeling, combined with effective built-in search and resolution
strategies. Furthermore, the high-level modeling offered by CLP
allows us to easilyaddnew constraints and to plug-and-play differ-
ent search strategies and heuristics.

A preliminary approach to the use of CLP(FD) for the protein
folding problem has been presented in [15]. In this paper, we elabo-
rate such proposal to consider the issue ofefficiencyandscalability.
The ultimate objective of this paper is to demonstrate that

• the modeling and optimization capabilities of CLP(FD) are
highly suitable to tackle the protein folding problem;

• the high-level modeling capabilities allow us to easily add or
modify constraints as they become available, as well as to
explore the use of different heuristics and search strategies;

• efficiency and scalability can be achieved for realistic prob-
lems.

The first step in this process lies in a remodeling of the constraint
problem, aim at making the modelization more suitable to the capa-
bilities of current CLP(FD) solvers. We also introduce new high-
level heuristics for guiding the exploration of the search space,
leading to a more effective pruning and enhanced scalability. In
particular, we introduce a heuristic calledBounded Block Fails.
Where the built-in strategies are insufficient to achieve acceptable
levels of performance, we introduce the use ofparallelism, easily
exploitable from the high-level search structure generated by the
CLP execution. Using a the novel structure, heuristics, and a 14

230

processors parallel machine, we obtain a speed-up in the order of
60 w.r.t. the performance of the code presented in [15]—running
on a single processor of the same parallel machine. The investiga-
tion proposed here pushes the built-in capabilities of CLP solvers
to, what we believe, are the limits for the problem at hand. The
proposed results indicate also thatbetter performance could be ac-
complished, but only at the price of building some of the proposed
heuristics at a lower level—i.e., as an ad-hoc constraint solver, and
bypassing the built-in strategies of CLP(FD). Finally, we demon-
strate what, we believe, is one of the greatest application areas
for our technology: folding large proteins containing subsequences
whose native conformation is already known (e.g., by homology)—
e.g., macro blocks linked by a neutral coil. This type of situation
is very common; in our framework, the known structures can be
directly added as constraints (withno modificationsto the rest of
the constraint model), allowing us to tackle large problems with
excellent performance.

1.1 Related Works
The bibliography on the protein folding problem is extensive [8,

28]; the problem has been recognized as a fundamental challenge
[23], and it has been addressed with a variety of approaches (e.g.,
comparative modeling through homology, fold recognition through
threading, ab initio fold prediction).

An abstraction of the problem, that has been recently investi-
gated, is the protein folding problem in theHP model, where amino
acids are separated into two classes (H, hydrophobic, andP , hy-
drophilic). The goal is to search for a conformation produced by an
HP sequence, such that most HH pairs are neighboring in a prede-
fined lattice. The problem has been studied on 2D square lattices
[14, 22], 2D triangular lattices [1], 3D square models [20], and
face-centered cubic lattices (fcc) [25]. Backofen and Will have ex-
tensively studied this last problem [3, 4, 5]. The approach is suited
for globular proteins, since the main force driving the folding pro-
cess is the electrical potential generated byHs andPs, and thefcc
lattices are one of the best and simplest approximation of the 3D
space (Sect. 2.2). Compared to the work of Backofen and Will, our
approach refines the energy contribution model, extending the in-
teractions between classesH andP to interactions between each
pair of amino acids [7]. Moreover, we introduce the possibility
to model secondary structure elements, that cannot be reproduced
correctly using only a simple energy model as the one adopted by
other researchers.

The use of constraint programming technology in the context of
the protein folding problem has been fairly limited. Backofen and
Will have made use of constraints over finite domains in the context
of theHP problem [5]. Clark et al. employed Prolog to implement
heuristics in pruning a exhaustive search for predictingα-helix and
β-sheet topology from secondary structure and topological folding
rules [12]. Distributed search and continuous optimization have
been used in ab initio structure prediction, based on selection of
discrete torsion angles for combinatorial search of the space of pos-
sible protein foldings [18].

2. PROBLEM MODELING

2.1 The Protein Folding Problem
ThePrimary structure of a protein is a sequence of linked units

(amino acidsor residues) of a given length. The amino acids can be
identified by an alphabetA of 20 different symbols, associated to
specific chemical-physical properties. A protein has a high degree
of freedom, and its 3D conformation is namedTertiarystructure.

From theenergypoint of view, the molecule tends to reach a

conformation with a the minimal value of free energy (Nativecon-
formation). Native conformations are largely built fromSecondary
Structure elements(i.e., helices and sheets) often arranged in well-
defined motifs (see Fig. 1,α-helices in red—dark grey andβ-sheets
in yellow—light grey). α-helices are constituted by 5 to 40 con-
tiguous residues arranged in a regular right-handed helix with 3.6
residues per turn.β-sheets are constituted by extended strands of
5 to 10 residues. Each strand is made of contiguous residues, but
strands participating in the same sheet are not necessarily contigu-
ous in sequence. Algorithms, e.g., based on neural networks, have
been developed that are capable to predict the secondary structure
of a protein with high accuracy (75% [8]).

Figure 1: Secondary Structure Elements (protein 1D6T)

Another important structural feature of proteins is the capability
of cysteine residues of covalently bind through their sulphur atoms,
thus forming disulfide bridges, which impose important constraints
on the structure (also known asssbonds). This kind of information
is often available, either through experiments or predictions.

Several models have been proposed for reasoning about the 3D
properties of proteins—i.e., dealing with theTertiary Structure.
Given a primary sequenceS = s1 · · · sn, with si ∈ A, let us
represent withω(i) thepositionof a point representing the amino
acidsi in space;ω(i) is a vector〈xi, yi, zi〉 ∈ D, for a given space
domainD. The valuesxi, yi, andzi can be real numbers—in mod-
els in which proteins are free of taking any positions in space—or
integer numbers—in models where amino acids can assume only
a finite number of positions within a suitable lattice structure. We
call D the set of admissible points.

Given two pointsω1, ω2 ∈ D, we indicate withnext(ω1, ω2)
the fact that the two points are admissible positions for two amino
acids that are contiguous in the primary sequence. It is assumed
that two consecutive amino acids are always separated by a fixed
distance.

We also employ the binary predicatecontact, which is used
to describe the fact that two amino acids are sufficiently close to be
able to interact, and thus they contribute to the energy function: two
non-consecutive amino acidssi andsj in the positionsω(i) and
ω(j) are in contact (denoted bycontact(ω(i), ω(j))) when their
distance is less than a given threshold. Lattice models (defined in
the next subsection) simplify the definitions ofnext andcontact.

Given a primary sequenceS = s1 · · · sn, with si ∈ A, a folding
of S is a functionω : {1, . . . , n} → D such that:

1. next(ω(i), ω(i + 1)) for i = 1, . . . , n − 1, and
2. ω(i) 6= ω(j) for i 6= j (namely,ω introduces no loops).
A simplified evaluation of the energy of a folding can be ob-

tained by observing thecontactspresent in the folding. In particu-
lar, every time a contact between a pair of amino acids is detected,
a specific energy contribution is applied towards the global energy.
These contributions can be obtained from tables developed using

231

statistical methods applied to structures obtained from X-Rays and
Nuclear Magnetic Resonance experiments [21, 7]; these tables as-
sociates an energy measure to each pair of non-consecutive amino
acids when they are in contact. We denote withPot(si, sj) the en-
ergy contribution associated to the amino acidssi andsj (the order
does not matter).

Theprotein structure prediction problemcan be modeled as the
problem of finding the foldingω of S such that the following en-
ergy cost function is minimized:

E(ω, S) =
∑

1≤i<n

∑

i+2≤j≤n

contact(ω(i), ω(j)) · Pot(si, sj).

With a slight abuse of notation predicatecontact is here used as
a Boolean function. This definition is sufficiently general to cover
the case of several spatial modelsD, such as thefcc lattice and the
cubic lattice [13].

2.2 Lattice Models
Lattice models have long been used for protein structure pre-

diction (see [29] for a survey). In [25] it is shown that theFace-
Centered Cubic Lattice(fcc) model is a well-suited, realistic model
for 3D conformations of proteins. The model is based on cubes of
size2, where the central point of each face is also admitted. The
domainD consists of the set of triples〈x, y, z〉, wherex, y, z ∈ N

such thatx+y+z is even (see Fig. 2). Points at Euclidean distance√
2 are linked; their distance is calledlattice unit. Observe that, for

linked pointsi andj, it holds that|xi−xj |+|yi−yj |+|zi−zj | = 2.

T
T

T
T

T
T

T
T

"""""

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

XXX
C
C
C
C
C
C
C
C

»»»»»»»»

u

u

u

u

u

u

u
u

u

u

0

1

2

0

1

2

2

1

0

Figure 2: A cube of the fcc lattice. Thick lines link connected
points. Dashed lines represent connections inside the cube.

Each point is adjacent to 12 neighboring points. Thus, we define
the predicatenext as follows:next(ω(i), ω(i + 1)) holds iff
• |xi−xi+1| ∈ {0, 1}, |yi−yi+1| ∈ {0, 1}, |zi−zi+1| ∈ {0, 1},
• |xi − xi+1| + |yi − yi+1| + |zi − zi+1| = 2.

In fcc lattices, the angle between three adjacent residues may
assume values60◦, 90◦, 120◦, and180◦. Volumetric constraints
and energetic restraints in proteins make values60◦ and180◦ in-
feasible. Therefore, in our model, we retain only the90◦ and120◦

angles [31, 17]. No similar restriction exists on torsional angles
among four adjacent residues. In detail, let~vi−1,i = ω(i)−ω(i−1)
and~vi,i+1 = ω(i + 1) − ω(i). To impose that the angle between
them can only be of90◦ and120◦, we use the scalar product be-
tween these two vectors:~vi−1,i · ~vi,i+1 = |~vi−1,i||~vi,i+1| cos(θ).
Thus, since|~vi−1,i| = |~vi,i+1| =

√
2 we only need to impose that:

~vi−1,i · ~vi,i+1 ∈ {1, 0}.

A contactbetween two non-adjacent residues infcc occurs when
their separation is two lattice units—i.e., viewing the lattice as a
graph whose edges connect adjacent points in the lattice, the posi-
tions of the residues are connected by a path of length2. Physically,
two amino acids in contact cannot be at the distance of a single lat-
tice unit, because their volumes would overlap. Consequently, we
impose the constraint that two non-consecutive residuessi andsj

must be separated by more than one lattice units. This is achieved
by adding, for the pairi andj, the constraint (callednon next):

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

> 2

With these additional constraints, we can define:

contact(ω(i), ω(j)) iff |xi − xj | + |yi − yj | + |zi − zj | = 2

3. A CLP(FD) IMPLEMENTATION
The formalization of the protein structure prediction problem in

fcc has been instantiated in a declarative program in CLP over finite
domains—and it follows the basic structure outlined in [16, 15].
In this section, we describe the main predicates employed in such
implementation. We make use of the library CLP(FD) of SICS-
tus PROLOG 3.12.0 [10] and the libraryic of ECLiPSe 5.8 [11].
Complete code and other related material can be found in:www.
dimi.uniud.it/dovier/PF.

3.1 Basic Constraints
The program has the classicalConstrain & Generate[2] struc-

ture:

constrain(Primary,Secondary,Matrix,Tertiary,...),
labeling(Primary,Secondary,Matrix,Tertiary,...)

Theconstrain predicate deterministically introduces the con-
straints for the variables involved, whilelabeling searches for
the solution in the search space (through chronological backtrack-
ing). The inputs arePrimary (a list of amino acids),Secondary
(a list of known secondary structure components), andMatrix
(the matrix of energy contributions, see Section 3.2).Tertiary
is the output list of positions (a flat list of triples of integers) of the
conformation andEnergy is the output value of energy associated
to such conformation. We do not discuss here the other, more tech-
nical, parameters. The predicateconstrain is defined in Fig. 3.
Given the input list of amino acidsPrimary = [s1, . . . , sN], the
predicategenerate tertiary creates the list

Tertiary = [X1, Y1, Z1, . . . , XN , YN , ZN]

of 3N variables. The predicatedomain bounds specifies the
domains for theXi, Yi, Zi variables (the range0 . . . 2 ∗ N), and
adds the constraints forcingXi + Yi + Zi to be even.
avoid self loops forces all triples to be distinct (we em-

ploy the built-in predicateall different on the list[B1, .., Bn]
where

Bi #= (Xi ∗ P ∗ P) + (Yi ∗ P) + Zi

for a suitable valueP). next constraints imposes that the
points[Xi, Yi, Zi] and[Xi+1, Yi+1, Zi+1] are adjacent in the lat-
tice.distance constraints defines that two non-consecutive
points are at a lattice distance greater than 1.angles defines
the admissible angles formed by three consecutive amino acids.
compact constraints introduces a user-defined maximal dis-
tance between amino acids (calledcompact factor).
secondary info encodes the Secondary Structure informa-

tion as constraints in the program. TheSecondary structure is
described by a list of elements of the type:
helix(i, j): si, si+1, . . . , sj form anα-helix.

232

constrain(Primary, Secondary, Energy, Tertiary, Matrix, Compact, OrdTertiary):-
length(Primary,N),
generate_tertiary(N, Tertiary), domain_bounds(Tertiary,N),
avoid_self_loops(Tertiary,N), next_constraints(Tertiary),
distance_constraints(Tertiary), angles(Tertiary),
compact_constraints(Tertiary,N,Compact), secondary_info(Secondary, Tertiary),
avoid_symmetries(Secondary, Tertiary, SSP),
define_variables_order(Secondary,Tertiary, SSP, OrdTertiary),
energy_constraints(Primary, Tertiary, Secondary, Energy, Matrix).

Figure 3: constrain predicate

strand(i, j): si, si+1, . . . , sj are in aβ-strand.
ssbond(i, j): presence of a disulfide bridge betweensi andsj .
In our tests, we retrieved these information from the Protein Data
Bank [6]; it is easy to modify the code to obtain such information
from secondary structure prediction programs (e.g., [26]).
avoid symmetries removes admissible conformations that

are equivalent to others modulo symmetries and/or rotations. The
predicate selects three particular consecutive amino acids. We set
the position of the first of them removing all foldings equivalent
modulo translations. We fix also the positions of the second and the
third point in order to remove all equivalences modulo rotations.
define variables order makes use of the distribution of

secondary structure elements to sort the variables inTertiary
for labeling purposes (see Section 4.1).

3.2 Contacts and Energy Constraints
As described above, two amino acidssi, sj are in contact if a

path of length2 lattice units links them. The contact information
is maintained in a symmetric matrixM , such thatM [i, j] is the
energy contribution provided bysi and sj . The following code
constrains the contact contribution to the matrix element:

table(si,sj,Pot), M[i,j] in {0,Pot},
2 #= abs(Xi-Xj) + abs(Yi-Yj) + abs(Zi-Zj)

#<=> M[i,j] #= Pot.

wheretable reports the valuePot(si, sj) as computed in [7].
Values ofPot have been scaled w.r.t. [7] to have only integer val-
ues. The global energy is the sum of the elements inM . The opti-
mal folding is reached when the global energy is minimal. During
the labelingphase, the information stored inM is used to control
the minimization process and to prune the search tree.

Various heuristics have been developed, aimed at simplifying
the computation of the contact matrixM—see also [15, 16]. In
particular, we restrict our attention to contact contributions coming
from amino acidssi, sj that arenot included in the same secondary
structure element. This is justified by the fact that contact contri-
butions from amino acids within the same secondary structure ele-
ment is constant in each folding.

To further reduce the search space, it is possible to ignore the
contact contributions for all pairssi, sj such thatj < i + k, where
k is a parameter. In those cases, the constraint is not applied and
M [i, j] = 0. When we increase the valuek, we generate a simpler
global constraint and, at the same time, we consider only contri-
butions from distant amino acids (considered, from the biological
perspective, more relevant).

Let us now describe how the matrixM is used to compute the
global energy. As mentioned earlier, the global energy is the sum of
the elements ofM . To simplify the computation, we first proceed
to collect in a list (PotentialList) all the unbound elements
present inM (i.e., contributions that are still unknown). The list is
used in the heuristics and also to assert the constraint:

sum(PotentialList, #=, Energy).

Note that the constraints imposed by the predicates described above,
combined to the constraint propagation, have as a consequence that
many elements inM receive a binding before the beginning of the
labeling phase. The net effect is to further restrict the number of
variables that need to be instantiated by the labeling procedure.

In order to further prune the search tree, we introduced in [16] a
local labeling heuristic. After each instantiation oft variables,1 we
store the best known ground admissible solution, its energy, and its
associated potential matrix. The idea is to compare the current state
to saved history, and decide if it is reasonable to cut the search tree.
We consider the ground set of elements in the current potential ma-
trix, CurrentGround, and compare them to the corresponding
set present in the best solution found so far,BestGround. Ac-
cording to the ratio of ground variables inPotentialList, a
coefficient can be computed to control the pruning process:

best_solution(BestEnergy),
best_potentialList(BestPL),
sumgrounds(PotentialList, BestPL,

CurrentGround, BestGround),
term_variables(PotentialList,PlV),
length(PlV,LPotVar),
length(PotentialList,LPotTot),
CoefS1 is (0.5 * (LPotVar) +

1.1*(LPotTot-LPotVar))/(LTotPot),
S1 is integer(CoefS1 * BestGround),
CurrentGround < S1,

whereterm variables is a built-in predicate to extract (in con-
stant time) the list of non-ground variables. In this version, if the
set of ground elements is small, then we allow the computation to
continue even in presence of significant differences in energy from
the best known solution (0.5 compared to the best known), with
the hope that this choice will pay off in the rest of the matrix to be
discovered. When the protein is almost folded, the coefficient be-
comes higher and, consequently, we prune many solutions that are
clearly not improving the local minimum, at that moment.

4. THE NEW IMPLEMENTATION
In this section we present the improvements w.r.t. the code pre-

sented in [15], briefly described in the previous section, to seek
better performance and scalability to larger proteins.

4.1 Constraints Redesign
In our previous experiments, we observed that one of the causes

behind the lack of scalability of the constraint system of Sect. 3
to large proteins is the limited propagation achieved in presence
of non-linear constraints (e.g., constraints related to torsion angles,
as they require vector scalar products). The first stage of redesign
implied removing as many non-linear constraints as possible and
enhancing the propagation structure.

1t is a parameter of the program.

233

4.1.1 Angle-free Encoding
The constraint structure proposed in [15] to solve the problem,

imposed an alternative local coordinate system, used for the de-
scription of the tertiary structure; this coordinate system is com-
posed of a sequence of the torsion angles forming the protein. The
secondary structure elements, due to their regular shape, were sim-
ply described by a regular sequence of angles. The angles and coor-
dinates descriptions were linked via an additional set of constraints.
We noticed that, even though the resulting model was clean and
declarative, the resulting constraints caused a bottleneck during the
search because of poor propagation.

In the current version, we opted to remove the torsion angles de-
scription of secondary structure elements and restrict our descrip-
tion of the tertiary structure only to Cartesian coordinates. We sim-
plify and remodel the description of secondary structure elements.
α-helices: the modeling ofα-helices builds on the observation that
it is sufficient to constrain the first5 amino acids of the helix to
guarantee its shape—the shape can then be propagated to the rest
of the helix via simple vector equalities. More precisely, given the
set of the first5 amino acids〈X1, Y1, Z1〉, . . . , 〈X5, Y5, Z5〉 of a
helix, the following constraint describes the helical organization in
terms of relative distances between the points in thefcc lattice:

Dx #=X5-X1, Dy #=Y5-Y1, Dz #=Z5-Z1,
Dx1#=X3-X1, Dy1#=Y3-Y1, Dz1#=Z3-Z1,
Dx2#=X5-X3, Dy2#=Y5-Y3, Dz2#=Z5-Z3,
Dx3#=abs(X4-X1), Dy3#=abs(Y4-Y1), Dz3#=abs(Z4-Z1),
Dx4#=abs(X5-X2), Dy4#=abs(Y5-Y2), Dz4#=abs(Z5-Z2),
count(0,[Dx,Dy,Dz],#=,1),
count(0,[Dx1,Dy1,Dz1],#=,2),
count(0,[Dx2,Dy2,Dz2],#=,2),
Dx3 #=<2, Dy3 #=<2, Dz3 #=<2,
Dx4 #=<2, Dy4 #=<2, Dz4 #=<2.

Because of constraints interaction,[Dx,Dy,Dz] results to be a
vector(±2,±2, 0) in any coordinate permutation, that represents
the placement of each next pattern of 4 points. For every amino
acid si in positionXi, Yi, Zi, the position ofsi+5 will be Xi +
Dx, Yi + Dy, Zi + Dz. Constraints of the form
Dx #= Xi+5 − Xi, Dy #= Yi+5 − Yi, Dz #= Zi+5 − Zi

are added to everysi, si+5 in the helix to ensure the propagation of
the helix shape.
β-strands: the modeling of aβ-strand is considerably simpler:
given 3 consecutive amino acids (X1, Y1, Z1, . . . , X3, Y3, Z3), in
order to form a90◦ angle, the first and last point must have two
identical coordinates and one coordinate at distance2:

Dx #= X3-X1, Dy #= Y3-Y1,Dz #= Z3-Z1,
count(0,[Dx,Dy,Dz],#=,2),
abs(Dx+ Dy+ Dz) #=2,

Once again, the correct shape is propagated to the other amino acids
in the strand by vector equalities, using a step of three amino acids.
ssbonds: the original implementation ofssbond structures was
achieved by imposing a maximal Euclidean distance of6 between
the two residues linked connected by a disulfide bridge. We re-
moved the Euclidean distance of 6, in favor of the following sim-
pler approximation:

Dx#=abs(X1-X2), Dy#=abs(Y1-Y2), Dz#=abs(Z1-Z2),
Dx #=< 4, Dy #=< 4, Dz #=< 4.

4.1.2 Variable Selection Strategy
The second improvement to the constraint organization lies in

the development of an alternative strategy for the selection of vari-
ables during labeling. In the original constraint scheme proposed

in [15], the variable selection is dynamic. The strategy employed
builds on the idea of always selecting, for labeling, a variable which
is adjacent to a ground subsequence of the primary sequence. Ba-
sically, the method tries to grow the ground part of protein until an
acceptable solution is found.

The solution we propose here, instead, relies on precomputing
the order of labeling of the variables; the intuition is the desire to
avoid the run-time costs of the previous selection strategy. In the
constrain phase, we select the longest secondary structure, and we
assign to it ground values. The protein is then partitioned in five
consecutive parts:

• Left Tail—containing no secondary structure elements;
• Left Body;
• Longest Secondary Structure Element—ground;
• Right Body;
• Right Tail—containing no secondary structure elements.

The exploration order used during labeling is the following:(i) Left
Body first (in reverse order),(ii) Right Body,(iii) Left Tail (in re-
verse order), andRight Tail. The idea is similar to our previous
approach, but we save the time to seek for the next variable to se-
lect. The tails are free to assume every conformation—they do not
contain any superimposed pattern. Since the main energy contribu-
tion is given by the protein body, the tails are left to be instantiated
at the end.

4.1.3 Contact revisited
In addition to this, we also introduce a modification in the com-

putation of the energy function w.r.t. Sect. 3.2; specifically, we ig-
nore the energy contributions provided by amino acids at distance
less or equal than three in the primary sequence. Due to our model,
three consecutive amino acid,si, si+1, si+2, can form an angle of
either90◦ or 120◦. Given the definition ofcontact and the energy
contribution, amino acids forming a90◦ angle are such thatsi and
si+2 are in contact, thus, they provide an energy contribution. On
the other hand, when they form a120◦ angle, there is no energy
contribution, sincesi andsi+2 are separated by a distance larger
than the minimum contact distance of2. This fact shows that rele-
vant contributions to the global energy come from the local angles
formed by the amino acids.

The overall effect of this simplification is to exclude every contri-
bution raising from the fact that three consecutive amino acids form
a90◦ angle. The intuition of our choice is that the “important” en-
ergy contributions that characterize a folding are those provided by
pairs of amino acids that are “far apart” in the primary sequence.
Indeed, we observed that the contributions deriving from local sub-
sequences tend to mask the global energy evaluation and thus bias
our search heuristic. This energy function better reflects the quality
of the folding, even if the model is still too simple for a direct rela-
tion between our energy and theRMSD(Root-Mean-Square Devi-
ation, the typical measure of structural diversity, Sect. 4.2.2).

4.1.4 Experimental Results
Let us discuss the impact of these new ideas on the performance

of the computation. Table 1 compares the execution times of the
old constraint structure of [15] and the modified one on different
proteins. For a fair comparison, we have updated the contact con-
straints of the code [15] as described in Sect. 4.1.3. This explains
the differences between results in column “Old version” and those
reported in Table 3 for the code [15]. Both the codes include the
same heuristics described in Section 3.2. The experiments have
been performed on a 3GHz Pentium under Linux and they high-
light a marked improvement in performance; only in one case we
observed a slow-down, while in many cases we achieved from4 to

234

over50 fold speedup. On the other hand, although the results are
good for relatively small proteins, the new method are not sufficient
to produce significant speedups on bigger proteins. In the next sec-
tion, we introduce a new search heuristic that, combined with the
ideas introduced here, is capable to efficiently explore the search
tree generated by larger proteins.

ID Size New version Old version Speedup
1LE0 12 0.63 s 2.9s 4.7
1KVG 12 2.84 s 11.4s 4.0
1LE3 16 4.85 s 4.5s 0.9
1EDP 17 0.66 s 34.9s 52.9
1PG1 18 0.7 s 18.8s 26.8
1ZDD 34 3m 37s 29m21s 8.1

Table 1: Performance of the Modified Constraint Structure

4.2 Bounded Block Fails heuristic
In this section, we present a novel heuristic to guide the explo-

ration of the search tree, calledBounded Block Fails (BBF). This
technique is general and can be applied to every search with a fixed
ordering of variables—though it is particularly effective when ap-
plied to the protein folding problem at hand.

The heuristic involves the concept ofblock. Let us assume that
V is a list [V1, . . . , Vn] of variables and constants. A blockBi

is a sublist ofV of sizek composed of unbound variables. The
concatenation of all the blocksB1B2 . . . B` gives the ordered list
of unbound variables present inV , where` ≤ dn

k
e. The blocks

are selected dynamically, and they could exclude some of the orig-
inal variables, that have already been instantiated due to constraint
propagation. The number of blocks, thus, could be less thandn

k
e

and it could be not constant during the whole search. In Figure 4
we depict a simple example fork = 3: we consider a list of 9
variables. The dark boxes represent ground assignments.

V1 V3 V5 V6 V7 V9

V1

V3

V5

V6

V7

V9

B1

B2

Figure 4: The BBF heuristics

The heuristics consists of splitting the search among the` blocks.
Internally, each blockBi is individually labeled according to the
desired labeling strategy—in our case, the same heuristic employed
in [15]. When a blockBi has been completely labeled, the search
moves to the successive blockBi+1, if any. If the labeling of the
blockBi+1 fails, the search backtracks to the blockBi. Here there
are two options: if the number of times thatBi+1 completely failed
is below a certain thresholdti, then the process continues, by gen-
erating one more solution toBi and re-enteringBi+1. Otherwise,
if too many failures have occurred, then the Bounded Block Fail
heuristic generates a failure forBi as well and backtracks to a pre-
vious block. Observe that the count of the number of failures in-
cludes both the regular search failures as well as those caused by

the Bounded Block Failure strategy. The listt1, . . . , t` of thresh-
olds determines the behavior of the heuristic. In the Figure, we
assumet1 = 3; the figure shows that, after the third failure ofB2,
the search onB1 fails as well.

The BBF heuristic is effective whenever:
• suboptimal solutions are spread sparsely in the search tree;
• for each admissible solution, there are many others with small

differences in variables assignments and energy.
In these cases, we can afford to skip solutions when generating
block failure, because some others are going to be discovered fol-
lowing other choices in some earlier blocks. In particular, for our
problem, it is reasonable to keep high threshold values for the first
blocks, while exploring instead only a small fraction of the search
space present in the last blocks. This is justified by the fact that
many equivalent solutions can be typically found, just by changing
the assignments in the last blocks, while the core of the problem
lies in the first blocks.

In general, this technique can be effectively applied every time
the variables are associated to some spatial properties and the cor-
responding physical object are related to each others, like in the
case of a chain of amino acids. When assigning positions follow-
ing the order of the amino acids on the chain, a failure in the current
branch, means that the partial conformation does not allow to pro-
ceed without a collision. The BBF heuristic suggests to try to revise
some earlier choices instead of exploring the whole space of pos-
sibilities depending on the block that collects failures. The high
density and the great number of admissible solutions allow us to
exclude some solutions, depending on the threshold values, and to
still be able to find almost optimal solutions in shorter time.

4.2.1 Experimental Results
In Table 2, we report the performance obtained by applying the

BBF strategy. We compute the execution times and the energy
values for a set of proteins, using the implementation described
in the previous section, with and without the application of the
BBF heuristic. For the BBF heuristic, we use the valuesk = 3,
t1 = 5, tdn/ke = 3, which have been experimentally shown to pro-
duce good performance. The other integer valuesti are determined
as follows:ti = (1 − (i−1

dn/ke
)2)t1 + (i−1

dn/ke
)2tdn/ke. The entries

marked (*) indicate timeouts (execution stopped after the specified
amount of time).

No BBF BBF
Protein Len. Time Energy Time Energy Speedup
1LE0 12 0.63s -6799 0.80s -6251 0.8
1KVG 12 2.84s -14571 4.12s -12661 0.7
1LE3 16 4.85s -11008 1.53s -11289 3.17
1EDP 17 0.66s -16259 0.53s -24492 1.2
1PG1 18 0.70s -27016 0.83s -27016 0.8
1E0N 27 1m 16s -25493 3m -22308 0.4
1ZDD 34 3m 37s -9907 1m 51s -18455 2.0
1VII 36 3h 35m -24681 3h 40m -25914 1.0
2GP8 40 1m 24s -17425 1m 33s -15187 0.9
1ED0 46 (*) 10h -27410 1h 43m -31565 ≥ 5.8

1ENH 54 2h 24m -26909 55m 6s -28559 2.6
2ERA 61 (*) 10h -37071 16m 21s -45006 ≥ 36.7

Table 2: Executions with and without the BBF heuristic.

The BBF strategy nicely integrates with the modifications de-
scribed in Sect. 2. We would like to make two important observa-
tions. First of all, the current implementation of the BBF heuristic
is performed in SICStus Prolog at a very high-level; e.g., when fail-
ing, manyfail predicates are invoked, with a relatively high cost
in the handling of the search tree. This makes the implementation

235

rather inefficient, and this is evident especially for the smaller pro-
teins. In spite of this, there are obvious advantages in terms of ex-
ecution times and optima found for larger proteins. Clearly, a low-
level implementation of the strategy (e.g., like the search strategies
in ECLiPSe), will push the speedups to a much higher level. This
leads us to the second observation—the BBF heuristics is designed
to handle inputs with large sizes. For smaller proteins, the number
of blocks tends to be small, and the heuristics accomplishes few
block backtracks. In our experiments, we made use of blocks of
size3 (corresponding to the three coordinates of a single amino
acid); attempts to reduce this value (i.e., increase the number of
blocks) actually produced degradation of performance, due to the
excessively small size of the blocks (that defeats the original idea of
BBF). To handle larger proteins, it is possible to use larger blocks
(e.g. k = 9), that include more nodes within the corresponding
search subtree. Thus, a failure induced by the BBF strategy prunes
a consistent portion of the tree and speeds up the search. To limit
the consequent amount of speedup and loss of accuracy, it is advis-
able to tune properly the parametersti (e.g. high values for slow
but more accurate results).

In Table 3, we report a comparison between the results obtained
in the original constraint structure [15] and the corresponding ones
obtained using the ideas reported in Section 4.1 and the BBF heuris-
tic. In the columnCF we indicate whether a specific compact fac-
tor was used (see Section 2)—when blank, we used a (high) default
value (see [15] for more details). In theAAcolumn, we indicate the
number of amino acids in the protein, while in theCore Zonecol-
umn we identify the subsequence of the protein without the tails—
since the tails are less stable and less relevant for a quality test. The
RMSDcolumn reports the RMSD values (between brackets we in-
dicate the RMSD for the Core Zone) of the computed solution w.r.t.
the native structure deposited in the PDB (c.f. Section 4.2.2). At the
bottom of the table (marked with (**)), we report two larger pro-
teins, in order to demonstrate the power of the BBF heuristic, using
larger size of the BBF blocks (k = 9). The thresholds are set to
t1 = 4 andtdn/ke = 2. The foldings of these proteins were be-
yond the capabilities of the original constraint structure, while the
computation time is extremely low using BBF; furthermore, the
RMSD errors are also sufficiently low, thus making this folding a
reasonable input to a molecular dynamics refinement step.

We also compare some of our results with those returned by the
HMMSTR/Rosetta Prediction System [27]. This program does not
use a lattice as underlying model: aminoacids can take any position
in R

3. We have used it as anab-initio predictor (precisely, we have
disabled thehomologyandpsi-blastoptions). The comparison is
obviously not fair because in our case secondary structure is known
and not predicted. Times are obtained from the result files, but it
is not clear to which machine they refer. Results are in Table 4.
HMMSTR prediction runs presumably faster, but our predictions
(which includes known secondary structure) improve the RMSD
for bigger proteins.

Name N Our Rosetta
Time RMSD Time RMSD

1ZDD 34 1m.51s. 5.2 5m.35s. 3.5
1VII 36 3h.40m. 5.6 (4–32) 5m.35s. 4.2

1E0M 37 4h.30m. 6.3 (8–29) 6m.35s. 7.7
2GP8 40 1m.33s. 3.6 (6–38) 6m.35s. 6.4
1ED0 46 1h.43m. 6.2 (3–40) 7m.23s. 8.9

Table 4: Comparisons with Rosetta predictions

4.2.2 RMSD: Discussion
The root-mean-square deviation (RMSD)is the common mea-

sure of thestructural diversityof two proteins and it measures the
average distance between the atoms of two optimally aligned sets
of amino acids. In our specific case, the reference model is taken
directly from the sequences in the Protein Data Bank [6] (where a
full atom model with real coordinates can be found).

When comparing this model to our prediction, we have to con-
sider some important issues. First of all, our prediction deals with
an approximation of each amino acid (i.e., with itsα-carbon). When
we compare the results, we consider the distance between the pairs
of corresponding carbons in the models. Basically, we extract the
backbone of the original protein, in order to obtain an equivalent
chain ofα-carbons.

The RMSD measure contains some intrinsic and unavoidable
parts, that derive from the discretization of the backbone on thefcc
lattice. Clearly, this reduces the possible placements in the space
and, at the same time, forces the backbone to adapt to the closest
position to the optimal folding. To quantify how this problem re-
flects on the RMSD measure, we consider a protein from the PDB,
we select itsα-carbons of the backbone, and we place them on the
lattice. The placement fulfills our standard formalization of chain
neighbors and allowed angles in the lattice. To maintain the fold-
ing properties in the lattice, we compute the Euclidean distance for
each pair of amino acids and we add a constraint on the correspond-
ing discrete pair. The quadratic number of distances is sufficient to
recover the protein shape in the real space. Due to discretization,
the distance on lattice cannot be kept exact and thus we relax the
constraint including arangeof allowed distances.

We tested the mapping onfcc with two short proteins: 1EDP (17
amino acids) and 1ZDD (34 amino acids). For 1EDP, the RMSD
error is 6.58̊A and for 1ZDD is 3.64̊A. These values are relatively
high, even if thefcc lattice is considered one of the best known
discrete approximations. 1ZDD is composed mainly ofα-helices,
that can be well approximated on the lattice. Nevertheless, the error
is still of the order of the distance between two consecutive amino
acids. These considerations stress the fact that our results are af-
fected by this kind of systematic errors, which are inherent in the
use of thefcc lattice and independent from the quality of our solu-
tion strategies. As shown in [15], it is possible to eliminate these
errors by running some steps of molecular dynamics—e.g., using
the Generalized Born implicit solvent method [24] as implemented
in the program CHARMM [9], applied to the initialfcc disposi-
tion of the backbone. After this relaxation, the molecule with a full
atom description is closer to the local minimum of energy and, in
general, eliminates the artifacts coming from the use of a discrete
lattice structure.

4.3 SICStus vs ECLiPSe
The results presented in the previous sections were based on the

CLP(FD) library provided by the SICStus Prolog system [10]. An-
other effective solver for finite domain constraints is offered by the
ECLiPSe system [11]. In this section, we explore the impact of the
different solvers on the performance of our protein folding problem
solution. In particular, we tested the library CLP(FD) of SICStus
Prolog 3.12.0 [10] and the librariesic and branchand boundof
ECLiPse 5.8 [11]. The tests have been performed using the opti-
mized constraint system described in the previous sections. The
aim is to compare the features of the two constraint solvers and, at
the same time, understand which search strategy fits better to the
problem.

As first test, we compared the efficiency of the built-in branch-
and-bound solver. We coded the same program in SICStus and
ECLiPSe—in the first case using theminimize option offered by
the built-inlabeling predicate, that starts a branch and bound

236

Results from [15] New results with BBF Core
Protein CF AA Time Energy RMSD Time Energy RMSD Zone Speedup
1LE0 12 1.3s -9040 2.8 (2.6) 0.80s -6251 3.9 (3.2) 2-11 1.6
1KVG 12 7.3s -14409 2.7 (2.4) 4.12s -12661 4.1 (4.1) 2-15 1.8
1LE3 16 2.3s -13653 3.0 (2.7) 1.53s -11289 4.6 (3.4) 3-11 1.5
1EDP 17 20.4s -19389 4.3 (1.1) 0.53s -24492 4.0 (1.1) 9-15 38.4
1PG1 18 14.6s -10126 6.0 (5.2) 0.83s -27016 4.2 (3.2) 4-17 17.6
1E0N 27 7m 54s -12029 5.2 (5.1) 3m -22308 6.4 (4.5) 3-24 2.6
1ZDD 34 17m 25s -22350 4.0 (4.0) 1m 51s -18455 5.3 (5.2) 5-34 9.4
1VII 36 7h 42m -26408 10.2 (7.8) 3h 40m -25914 6.0 (5.6) 4-32 2.1
1VII 0.3 36 3h58m -28710 8.0 (7.4) 22m 41s -19181 8.2 (8.1) 4-32 10.5
1E0M 37 (*) 24h -30163 8.9 (4.4) 4h 35m -26745 9.2 (6.3) 8-29 ≥ 5.2
2GP8 40 10h 39m -29196 4.9 (3.5) 1m 33s -15187 6.6 (3.6) 6-38 412.3
1ED0 46 9h 38m -38218 8.0 (7.2) 1h 43m -31565 6.9 (6.2) 3-40 5.6
1ENH 54 (*) 24h -23373 9.9 (8.6) 55m 6s -28559 11.1 (9.5) 8-52 ≥ 26.1
6PTI 0.25 58 (*) 48h -42096 9.7 (9.4) (*) 48h -52258 8.0 (7.9) 3-55 1
2IGD 0.17 60 4h 59m -40588 12.6 (11.5) 2h 35m -45462 10.6 (10.5) 6-59 1.9
2ERA 0.19 61 (*) 1000s -38138 11.6 (10.6) (*) 1000s -45006 11.9 (11.7) 3-55 1
1SN1 0.25 63 (*) 10h -47121 8.6 (8.1) (*) 10h -47650 9.1 (9.2) 2-51 1
1YPA 0.17 63 (*) 10h -60244 12.9 (9.8) (*) 10h -45617 11.5 (10.5) 12-52 1
1FVS 0.15 72 (**) 11m 49s -58587 13.1 (13.5) 13-70 -
1B4R 0.16 80 (**) 25m 47s -78140 13.1 (13.1) 2-79 -

Table 3: Computational results and comparisons.

search; for ECLiPSe we invoked acomplete search ofic as pa-
rameter of thebb min predicate in thebranchand boundlibrary.
Table 5 compares the results. On average, the SICStus solver per-
forms 12.3 times faster than the ECLiPSe solver. For these tests,
we make use of a 2.4GHz Pentium 4 PC.

ID AA SICStus ECLiPSe Optimum Ratio
1LE0 12 25.7 s 314 s -9072 12.22
1KVG 12 23.2 s 319 s -14571 13.75
1LE3 16 85.0 s 990 s -11840 11.65
1PG1 18 6.3 s 70.5 s -27853 11.14

Table 5: ECLiPSe vs. SICStus branch-and-bound performance

On the other hand, ECLiPSe offers a number of additional built-
in search heuristics, that can be selected when solving a minimiza-
tion problem. We tested the following built-in strategies: theLim-
ited Discrepancy Search (LDS), theBounded Backtracking Search
(BBS), and theDepth Bounded Search (DBS)—together with LDS.

The LDS strategy looks for neighbors of an admissible solution
that differ only in a limited number of different choices (discrep-
ancies) in labeling [32]. The BBS strategy limits to the number of
backtracking steps performed in the search tree. The DBS strategy
expands completely a specified number of levels from the root and
then explores the remaining tree with a specified technique (LDS
in our experiments).

In Tables 5 and 6 we report the results obtained from various
benchmarks using the different ECLiPSe heuristics. In these exper-
iments we made use of the optimized constraint structure butwith-
out the BBF strategy. Table 5 compares SICStus to the LDS and the
BBS strategies. Table 6 focuses on the DBS strategy. Even if the
SICStus solver is faster than ECLiPSe, it does not offer a compa-
rable selection of built-in search strategies. Our pruning heuristic
is implemented at a very high level, and thus not as efficient as
possible. Nevertheless, it performs better in terms of time and best
solution found. None of the tested ECLiPSe strategies is able to
produce fasteror better results than our heuristic in SICStus.

One of the problems we observed is that the ECLiPSe heuristics
do not properly fit the problem. Conceptually, we would like to
explore the space considering that:
• small changes in the protein folding are not relevant to the global

energy—which is the opposite of what the LDS strategy does;

1PG1 (54 Vars) 1E0N (81 Vars)
Heuristic Time Energy Time Energy

SICStus 0.73 -27016 78.0 -25493

Lds(0) 0.22 -20767 No No
Lds(1) 1.79 -21412 11.17 -13715
Lds(2) 8.8 -27082 93.0 -14958
Bbs(10) 0.3 -20676 1.3 -12017
Bbs(100) 2.17 -22253 5.6 -12017
Bbs(1000) 40.8 -27853 75.0 -17221

Figure 5: SICStus and ECLiPSe times (in seconds)

• once a solution is found, it is likely that another interesting solu-
tion lies in a complete different part of the search tree—which is
in contrast to the BBS strategy, that performs a fixed number of
backtracks, and thus it keeps the search in the proximity of the
solution found;

• the complete exploration of the first levels of the tree (as done in
DBS) is time consuming, and a more selective heuristic should
be employed.

1E0N Y=0 Y=1 Y=2
Time Energy Time Energy Time Energy

X=1 No No 21.5 -13715 166 -15382
X=2 No No 30.3 -12688 219 -15382
X=3 No No 45.9 -14052 326 -18046

Figure 6: Strategy Dbs(X,lds(Y)) test. Times in seconds

Nevertheless, the experiments performed with ECLiPSe high-
light that some of the search strategies (e.g., the BBS strategy) can
produce solutions that are suboptimal in terms of global energy, but
in a significantly shorter period of time. This could be useful in sit-
uations where an optimal solution requires too much time and an
approximation is satisfactory to work with. These considerations
suggest also that a more efficient search could be performed on a
specific solver in which we handle the search tree at low level and
implement some new heuristics, more suitable to our problem.

4.4 Further Experiments
In this section, we summarize some additional promising ideas

that we explored in this project; in spite of looking theoretically

237

promising, once implemented, these strategies failed to provide a
benefit. They are not part of our system, but they deserve to be
discussed.

In our approach we explore the search space on the lattice struc-
ture, instantiating variables with ground values drawn from their
finite domains. Another approach is to bisect the search space at
each labeling step, non-deterministically adding some extra con-
straints that specify, e.g., whether a variable is even or odd. The
idea is that the interaction of these constraints should efficiently
prune the search space, and allow propagation to force more vari-
ables to ground values. The idea seems promising, since thefcc
lattice relies on properties based on the even relationships of its
points. Unfortunately, the implementation of these idea provided
relatively poor performance. The reasons can be found in the lack
of propagation due to the distance between the points that get as-
signed values.

We also tried to investigate the order in which variables should
be explored. We tried to first label theX coordinates of every point,
and later the other two coordinates, in the hope that some propaga-
tion could already prune parts of the search space. The intuition
is that the lattice structure creates tight dependences between co-
ordinates; thus, fixing one coordinate is expected to quickly affect
the others. Also in this case, the resulting performance was very
poor—mostly due to lack of propagation (fixing one coordinate is
not sufficiently strong to propagate on the neighboring points).

We explored other variations in the order of labeling of the vari-
ables. We consideredkeyamino acids, i.e., a subset of the sequence
composed of samples of the original primary sequence. The subse-
quence has been created by taking one amino acid eachk positions
(amino acidssik, for every allowedi). The idea is that, by labeling
these amino acids first, we should be able to considerably restrict
the number of choices left for the amino acids lying in between
two key amino acids. The labeling order is, thus, all the key amino
acids first, followed by all the others. This idea showed that, when-
ever we increase the valuek, the tree explored increases in size as
well. This can be explained by the fact that, oncesik is ground,
there is an exponential number (ink) of choices for the placements
of s(i+1)k. Thus, the possible reduction in the number of confor-
mations for the amino acids between key elements does not suffi-
ciently balance the number of alternatives for the key elements. We
concluded that labeling amino acids that are next to ground ones
(as done in the system described earlier) is really the choice that
limits the most the exponential growth of the search tree.

Finally, we observed that performing the search by operating di-
rectly on the complete list containing first the amino acids in the
central part of the protein and then the amino acids in the tails (i.e.,
the list [Body,Tails]) is 10% faster than searching first [Body], and
later invoking another labeling search on [Tails]. We believe this
derives from the greater effectiveness of the interaction between
heuristics on the full search tree.

5. A PARALLEL SOLUTION
In this section we provide an overview of a parallel scheme we

designed to solve the protein folding problem. The overall paral-
lelization scheme has been designed as a customization of general
or-parallelism techniques [19] to the structure of the problem at
hand. The parallel scheme builds on the constraint structure de-
scribed in the previous sections. The search for solutions is divided
among a number of processors, and the search tree is fragmented
into subtrees (calledtasks) and distributed for parallel exploration.

There are two main issues related to the task assignment. The
first is that the tasks should beuniformlydistributed among proces-
sors during the execution; this is easier if the number of tasks is

large. The second issue relates to constraint propagation and prun-
ing of the search tree through problem-dependent heuristics, that
are more effective when applied to large search trees—i.e., fewer
tasks. Hence, the task scheduling strategy should strike a proper
balance between these two conflicting requirements.

5.1 Overview of the System
The system is composed of three components: aloader, asched-

uler, and a set ofclients. Figure 7 shows the components and the
main interactions.

Scheduler

Task
queue

Constraints

Client

Constraints

Client

Constraints

Client

. . .

=> Request_size
=> Assign_task
=> Rescheduling
=> Termination

<= Size
<= Task_request
<= Sub_task

Figure 7: The parallel system

The loader is a C program, in charge of creating the communica-
tion channels—realized using shared memory segments—between
the scheduler and the clients. In addition, the loader is in charge of
launching both the scheduler and the clients, as parallel processes.

The system we developed makes use of a centralized scheduling
mechanism. The scheduler is also a C program, that handles the dy-
namic distribution of tasks to the clients, and implements strategies
for load balancing. Each client is a CLP program, that explores the
subtree (i.e., task) assigned to the client by the scheduler. When the
task is exhausted, the client will notify the scheduler that it is ready
to receive an additional task.

5.2 Scheduling and Communication
The centralized scheduler implements adirect schedulingstrat-

egy. It relies on a static partitioning of the search tree, performed
according to user defined parameters. During direct scheduling,
tasks are assigned to clients upon request.

The scheduler determines the initial pool of tasks to be assigned
(task queuein Fig. 7)—according to a static expansion of a user-
specified number of levels (Levels) of the search tree. Since the
scheduler is a C program, it does not have access to the collec-
tion of constraints; thus, the initial pool of tasks is generated by
the clients, and retrieved by the scheduler during the initialization
phase. Here, the first client is in charge of precomputing the expan-
sion ofLevels levels of the search tree and of returning the result
of the expansion to the scheduler. The task queue is initialized with
a set of subtrees of the search tree, all with roots at the same depth
in the tree (Level). Each task is described by the list of nodes in
the branch that connects the root of the search tree to the root of
the task subtree. The scheduler assigns a task to a client whenever
the client sends atask request message. The task is assigned
to the client by communicating the list of nodes describing it. The
message that brings the task to the client is calledAssign task.

Due to the irregular structure of the search subtrees—because of
the pruning performed by the constraint propagation process and
by the heuristics—it is necessary to provide load balancing mech-

238

anisms. These mechanisms are employed when the scheduler has
an empty task queue, and there is a mix of active and idle clients in
the system. The purpose of load balancing is to dynamically gen-
erate new, smaller tasks, by further partitioning some of the tasks
that are still active. Such smaller tasks can then be reassigned to the
idle clients. The load balancing is implemented by arescheduling
procedure, activated by the scheduler every time there is at least
one idle client and the task queue is empty. In this case, the sched-
uler selects, with aRescheduling message, the client that has
the estimated highest load of work. Due to lack of space, we do not
provide technical details on the rescheduling procedure.

The scheduler takes also care of detecting global termination.
Termination occurs when the task queue is empty and task requests
have been submitted from all clients. In such a situation, the sched-
uler returns aTermination message to each client.

5.3 Structure of the Client
Each client is a CLP program that implements the process of

solving the constraints on a given subset of the search space—i.e.,
a subset of the domains of the variables in the problem. When
launched, a client imports protein data, defines variable domains
and applies constraints. After the initial loading, the first client
communicates back to the scheduler the list of partial assignments
(Tasks) obtained from the expansion of the search tree forLevels

variables.
After that, each client starts a loop composed of three operations:
1. delivery of aTask request to the scheduler,
2. wait for assignment of a task (Assign task), and
3. execution of the task.

The processing of a task is based on the CLP scheme described ear-
lier. During each task execution, the client checks for eventual re-
quests forRescheduling—realized by breaking down the label-
ing process into labeling of smaller lists. If the request is received,
the client stops the execution and communicates all the subtasks
left to the scheduler. The client stops its execution when it receives
the special termination signal.

5.4 Implementation Details
The parallel system has been implemented using a combination

of C programming and Constraint Logic Programming (specifically
SICStus Prolog 3.12.0 [30]). The activation of the processes imple-
menting the scheduler and the clients is accomplished by standard
fork calls of C issued by the loader. Separate processes are cre-
ated for the scheduler and for the different clients.

The communication is realized using shared memory — in de-
tail, using the IPCshm library. Since the clients are written in
Prolog, it is necessary to encapsulate some low level C routines to
access the shared memory. This has been realized using the foreign
interface of SICStus Prolog. The use of a low level implementation
of shared memory communication mechanisms has been dictated
by the need for fast interaction between processes. SICStus Pro-
log provides existing libraries for interprocess communication, e.g.,
those based on the Linda paradigm, but tests revealed that access
to shared data using Linda blackboard takes about 10ms, while our
implementation using shared memory requires only 1µs (105 times
faster). The reason is that we require a less stringent synchroniza-
tion behavior.

The message exchange between clients and the scheduler is re-
alized using shared memory queues. For boolean messages, e.g.,
Request size andTask request, a single byte is written,
while the reading process checks the same memory location. For
passing more structured data, e.g., lists specifying the tasks, the
n list elements are written in an array from location1 to n, and

the lengthn of the list is stored in the array position0. The first
byte of the array is used also as a synchronizing flag, to ensure that
the reader accesses the data only once they have been completely
transferred in the communication buffer.

During the execution of Prolog predicates, we also relied on low-
level C routines to maintain an efficient representation of the cur-
rent state of execution of the task. This allows us to maintain a
simplified representation of the state of the execution across the
branches of the subtree (which are explored via backtracking by the
Prolog system) and it simplifies communication with the scheduler
during load balancing.

5.5 Experimental results
In this section, we report the experimental results obtained from

the execution of our parallel system. The experiments have been
performed using a HP RP8400 NUMA architecture, with 14 PA-
RISC processors, 8GB RAM, and running HP-UX 11.1.0.

Table 6 shows the times, in seconds, of the parallel execution of
the program, using the BBF strategy, no rescheduling and up to8
parallel clients. We have parallelized the code on numbers of pro-
cessors that are powers of 2. For each protein, the first4 Levels of
the tree are fully expanded. For the protein 1E0N we also included
the results obtained using a value ofLevels equal to3—as this is
sufficient to generate a sufficient number of tasks. The correspond-
ing speedup curves are depicted in Fig. 8. The last column reports
the execution time, on one CPU of the parallel machine, of the code
from [15].

Processors [15]
Protein 1 2 4 8 1
1PG1 12.51 6.21 3.5 2.11 48.7
1KVG 13.03 7.56 3.99 2.73 24.9
1LE3 16.36 10.63 5.66 2.51 8.2
1EDP 11.91 6.4 3.42 1.19 67.8
1E0N 239.9 160 136.2 118.5 598.4
1E0N 3Levels 2249 1367 141.72 82 598.4

Table 6: Parallel Execution Time (in seconds)

These performance results show that the scalability factors are
strongly dependent on the specific problem. We discuss here some
of the reasons that generate this behavior. First of all, the subdivi-
sion of the search tree into tasks does not imply an equal partition
of the workload. In fact, since constraints and heuristics are applied
to the trees during the search, their effect on a local portion of the
search tree can result in a different pruning compared to the same
subtree during a sequential search. This effect can have appreci-
ated side-effects: for instance, the superlinear speed-up obtained
in the cases of 1EDP and 1E0N (3 levels). Let us observe that,
although the sequential speed up for some proteins is of the order
of 40 (e.g., for 1EDP—see Table 3) and the parallel speed up is
for some proteins of the order of 10 with eight processors (e.g., for
1EDP), the combined speed up is only of the order of 60 (instead of
400). The reason is the overheads associated to the management of
parallel tasks—e.g., task exchange, communication costs, and the
cost of resetting the constraint store when a new task is acquired.
The latter cost, that seems to be the most significant one, could be
removed by introducing a more ad-hoc handling of constraints—
i.e., bypassing some of the constraint-handling functionalities of
SICStus.

An aspect that is important to emphasize is that clients share their
intermediate results by placing them in shared memory, where it
becomes accessible to every other client. In particular, the shared
memory allows the agents to share their current best solution, effec-

239

tively parallelizing the branch-and-bound process. Let us assume
that the tasksT1, . . . Tn are explored in that order in the equiva-
lent sequential algorithm. In the parallel case, every task can take
advantage of an earlier-found new bound for the search. For exam-
ple,Ti andTj , with i < j, are explored in parallel, and a new best
solution is found inTj . This allows a client to pruneTi as well,
resulting in a speedup in the search. On the other hand, though, the
symmetric case can arise:Tj can be explored extensively because
of a late discover of a bound inTi. In the sequential caseTj would
have been pruned from the very beginning, becauseTi would have
been completed before even starting the exploration ofTj . Thus,
the way the partitioning of the search tree in tasks is performed
will dramatically affect the search. As reported in the experimen-
tal data, for the protein 1E0N, we launched two different sets of
initial tasks, resulting from an expansion of respectively3 and4
levels of the search tree. The effect of this choice is dramatic, and
it shows how the early discover of some local optima in the search
can drastically reduce the entire search. We plan to investigate in
the future the design of problem-dependent partitionings, in order
to take advantage of this parallel sharing of information.

1 2 4 8
Processors

5

10

S
pe

ed
up

1PG1
1KVG
1LE3
1EDP
1E0N
1E0N 3L
Linear

Figure 8: The parallel speedup without rescheduling

Let us conclude by observing that, during our experiments, the
rescheduling procedure has been rarely effective in improving per-
formance. This is due to the poor interaction between the fairly
“sequential” way of rescheduling tasks and the more sophisticated
exploration imposed by our heuristic strategies. Work is in progress
to adapt rescheduling to better match our search strategies.

6. SCALABILITY ON MACRO BLOCKS
In this section we provide some ideas about the possible applica-

tions of our program to tackle larger proteins. When dealing with
large proteins, it is common to encounter situations where the con-
formations of various subsequences are already known (e.g., by
homology). Thus, the problem of predicting the structure of the
whole protein is conceptually equivalent to predicting the place-
ment of few rigid macro blocks, that are linked together by some
coils. These ideas could be exploited by our prediction tool.

We defined the following example, to demonstrate that the cur-
rent model can be feasibly used to attack larger proteins. Let us

assume that we know in advance two substructures of a protein.
In particular, we use the sequence XYX, where X is a known pro-
tein sequence and Y is a fixed-length linking coil of non-interacting
amino acids. The idea is to predict the structure of the sequence
XYX, using as input some strong constraints derived from the al-
ready known conformation of X. In our example, the two subunits
X represent two generic structures that are known. In detail, we
use the Euclidean distances between every pair of amino acids in
the conformation of X as an additional constraint. This would be
sufficient to recover the exact shape of the two Xs, if the original
model was predicted on lattice (see the discussion in Sect. 4.2.2).

In our tests, we used as shape model for X the proteins 1EDP,
2GP8, and 1ZDD, as predicted by our tool onfcc. In Table 7,
we report the length (Len) of|XY X| and the time (in seconds)
required to predict the structure of XYX, for different lengths of
Y. For the search, we used SICStus Prolog 3.12.0 and our pruning
heuristic (without BBF strategy) on a 2.4GHz Pentium PC.

X=1EDP X=1ZDD X=2GP8
|Y | Len Time Len Time Len Time

0 34 2.9s 68 10.7s 80 47.9s
1 35 16.5s 69 22.2s 81 1m 45s
2 36 27.1s 70 25.5s 82 1m 21s
3 37 28.1s 71 40.4s 83 2m 35s
4 38 1m 3s 72 50.9s 84 7m 5s

Table 7: Resolution of the XYX problem

The execution times grow according to the length of the coil Y.
As expected, for proteins of this size but with partially known struc-
ture, the times are significantly lower than a prediction that uses
only the secondary structure information. This allows our system
to handle larger protein complexes.

In Table 8 we recomputed the execution times, disabling our
pruning heuristic and replacing it by the SICStus built-in branch
and bound search. It shows the exponential growth depending on
the length of the inner coilY . Note how our heuristic (see Table 7)
considerably reduces the execution times.

|Y | Len X=1EDP Len X=1ZDD Len X=2GP8
0 34 7.0s 68 15.8s 80 3m15s
1 35 36.6s 69 1m6s 81 16m40s
2 36 3m1s 70 6m14s 82 1h25m
3 37 14m15s 71 33m6s 83 7h36m

Table 8: XYX problem using built-in branch-and-bound

7. CONCLUSION AND FUTURE WORK
In this paper, we provided a formalization of the protein folding

problem on face-centered cubic lattice structures. The formaliza-
tion has been transformed in a constraint system, and solved using
constraint solving over finite domains. We analyzed different ways
of organizing the constraint structure, and different heuristics and
search strategies to solve them. We presented and tested a new
search heuristic (Bounded Block Fails), well suited for this prob-
lem. We also provided a way to parallelize the process of exploring
the search space, allowing concurrent constraint solvers to cooper-
ate in the search of an optimal folding.

The results collected from the different approaches to the prob-
lem (sequential search strategies, parallel implementations, differ-
ent implementations of solvers) converge on the need of a new dedi-
cated and efficient solver. The analysis in Section 4.3 suggests that
the only way to significantly improve our framework is to access

240

the search tree at a lower level, and to implement new heuristics
more suitable to the problem. Since this is not allowed by the cur-
rent implementations of SICStus and ECLiPSe, we plan to develop
our own ad-hoc constraint solver. The new solver will be dedicated
to problem on lattices (and thus more efficient) and will implement
ad-hoc search strategies. The new solver, applied to the protein
folding problem offcc, is expected to allow us to tackle larger
problems—the final goal is to manage proteins composed of 500
amino acids. As shown in Table 3, currently we can solve (without
using scalability—Section 6) proteins of length in the order of 80
amino acids.

We also plan to continue the development of the parallel solu-
tion; in particular, we intend to develop rescheduling strategies that
better match the heuristics employed by the sequential system, al-
lowing for a more effective load balancing and scalability.

Acknowledgments
We thank Federico Fogolari, for his guidance and comments.

The research has been partially supported by NSF grants HRD-
0420407 and EIA-0220590, by the MIUR ProjectSybilla, by GNCS
2005Vincoli e codiciand by FIRB 2003 project RBNE03B8KK.

8. REFERENCES
[1] R. Agarwala et al. Local rules for protein folding on a

triangular lattice and generalized hydrophobicity in the HP
model.J. of Computational Biology, pages 275–296, 1997.

[2] K. R. Apt. Principles of constraint programming. Cambridge
University press, 2003.

[3] R. Backofen. The protein structure prediction problem: A
constraint optimization approach using a new lower bound.
Constraints, 6(2–3):223–255, 2001.

[4] R. Backofen and S. Will. Fast, constraint-based threading of
HP sequences to hydrophobic cores.Int. Conf. on Principle
and Practice of Constraint Programming, 494–508, 2001.
Springer Verlag.

[5] R. Backofen and S. Will. A Constraint-Based Approach to
Structure Prediction for Simplified Protein Models that
Outperforms Other Existing Methods.ICLP, 2003, Springer
Verlag.

[6] H. M. Berman et al. The protein data bank.Nucleic Acids
Research, 28:235–242, 2000.
http://www.rcsb.org/pdb/.

[7] M. Berrera, H. Molinari, and F. Fogolari. Amino acid
empirical contact energy definitions for fold recognition in
the space of contact maps.BMC Bioinformatics, 4(8), 2003.

[8] R. Bonneau and D. Baker. Ab initio protein structure
prediction: progress and prospects.Annu. Rev. Biophys.
Biomol. Struct., 30:173–89, 2001.

[9] B. R. Brooks et al. Charmm: A program for macromolecular
energy minimization and dynamics calculations.J. Comput.
Chem., 4:187–217, 1983.

[10] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended
finite domain constraint solver.PLILP, Springer Verlag,
1997.

[11] A. M. Cheadle et al. ECLiPSe: An Introduction. Technical
Report IC-Parc 03–1, IC-Parc, 2003.

[12] D. Clark, J. Shirazi, and C. Rawlings. Protein topology
prediction through constraint-based search and the evaluation
of topological folding rules.Protein Engineering,
4:752–760, 1991.

[13] P. Clote and R. Backofen.Computational Molecular
Biology: An Introduction. John Wiley & Sons, 2001.

[14] P. Crescenzi et al. On the complexity of protein folding. In
Proc. of STOC, pages 597–603, 1998.

[15] A. Dal Pal̀u, A. Dovier, and F. Fogolari. Constraint logic
programming approach to protein structure prediction.BMC
Bioinformatics, 5(186), 2004.

[16] A. Dal Pal̀u, A. Dovier, and F. Fogolari. Protein folding in
CLP (FD) with empirical contact energies. InRecent
Advances in Constraints, Springer Verlag, 2004.

[17] F. Fogolari et al. Modeling of polypeptide chains as C-α

chains, C-α chains with C-β, and C-α chains with ellipsoidal
lateral chains.Biophysical Journal, 70:1183–1197, 1996.

[18] S. Forman.Torsion Angle Selection and Emergent Non-local
Secondary Structure in Protein Structure Prediction. PhD
thesis, U. of Iowa, 2001.

[19] G. Gupta, E. Pontelli, M. Carlsson, M. Hermegildo, K. Ali.
Parallel Execution of Prolog: a Survey.ACM TOPLAS,
23(4):472–602, 2001.

[20] W. Hart and S. Israil. Fast protein folding in the
hydrophobic-hytrophilic model within three-eighths of
optimal.J. of Computational Biology, pages 53–96, 1996.

[21] S. Miyazawa and R. L. Jernigan. Residue-residue potentials
with a favorable contact pair term and an unfavorable high
packing density term, for simulation and threading.J. of
Molecular Biology, 256(3):623–644, 1996.

[22] A. Newman. A New Algorithm for Protein Folding in the HP
Model. InSymposium on Discrete Algorithms. Springer
Verlag, 2002.

[23] Committee on Mathematical Challenges from Computational
Chemistry. National Research Council, 1995.

[24] D. Qiu, P. Shenkin, F. Hollinger, and W. Still. The gb/sa
continuum model for solvation. A fast analytical method for
the calculation of approximate born radii.J. Phys. Chem.,
101:3005–3014, 1997.

[25] G. Raghunathan and R. L. Jernigan. Ideal architecture of
residue packing and its observation in protein structures.
Protein Science, 6:2072–2083, 1997.

[26] B. Rost and C. Sander. Prediction of protein secondary
structure at better than 70% accuracy.J. Mol. Biol.,
232:584–599, 1993.

[27] K. Simons et al. Ab initio protein structure prediction of
CASP III targets using ROSETTA.Proteins1999,
3:171–176.

[28] J. Skolnick and A. Kolinski. Computational studies of
protein folding.Computing in Science and Engineering,
3(5):40–50, 2001.

[29] J. Skolnick and A. Kolinski. Reduced models of proteins and
their applications.Polymer, 45:511–524, 2004.

[30] Swedish Institute for Computer Science. Sicstus Prolog.
http://www.sics.se/sicstus/.

[31] L. Toma and S. Toma. Folding simulation of protein models
on the structure-based cubo-octahedral lattice with contact
interactions algorithm.Protein Science, 8:196–202, 1999.

[32] M.L.G. William and D. Harvey. Limited discrepancy search.
IJCAI, pages 607–615, Morgan Kaufmann, 1995.

241

