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Logic

Useful to model domains with complex relationships among
entities
Various forms:

First Order Logic
Logic Programming
Description Logics
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First Order Logic

Very expressive
Open World Assumption
Undecidable
∀x Intelligent(x)→ GoodMarks(x)
∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))
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Logic Programming

Closed World Assumption
Turing complete
Prolog

flu(bob).
hay_fever(bob).
sneezing(X )← flu(X ).
sneezing(X )← hay_fever(X ).
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Description Logics

Subsets of First Order Logic
Open World Assumption
Decidable, efficient inference
Special syntax using concepts (unary predicates) and roles
(binary predicates)

fluffy : Cat

tom : Cat

Cat v Pet

∃hasAnimal.Pet v NatureLover

(kevin, fluffy) : hasAnimal

(kevin, tom) : hasAnimal

cat(fluffy).

cat(tom).

pet(X )← cat(X ).

natureLover(X )← hasAnimal(X ,Y ), pet(Y ).

hasAnimal(kevin, fluffy).

hasAnimal(kevin, tom).
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Uncertainty

Logic: representing relationships, powerful inference
but the real world is often uncertain

∀x Intelligent(x)→ GoodMarks(x)
∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))
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Handling Uncertainty

Often convenient to describe a domain using a set of random
variables.
Example: home intrusion detection system

Earthquake E
Burglary B
Alarm A
Neighbor call N

Questions:
What is the probability of a burglary? (compute P(B = t), belief
computation)
What is the probability of a burglary given that the neighbor called?
(compute P(B = t|N = t), belief updating)
What is the probability of a burglary given that there was an
earthquake and the neighbor called? (compute
P(B = t|N = t,E = t), belief updating)
What is the most likely value for burglary given that the neighbor
called? (argmaxb P(b|N = t), belief revision)
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Handling Uncertainty

When assigning a causal meaning to the variables, the problems
are also called

Diagnosis: computing P(cause|symptom)
Prediction: computing P(symptom|cause)
Classification: computing argmaxclass P(class|data)
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Handling Uncertainty

In general, we want to compute

P(q|e)

of a query q (assignment of values to a set of variables Q) given
the evidence e (assignment of values to a set of variables E).
Inference.
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Rules of Probability Theory

Product rule: P(a, b) = P(a|b)P(b)
Implies Bayes rule:

P(a|b)P(b) = P(b|a)P(a)
P(a|b) = P(b|a)P(a)

P(b)

Sum rule: P(a) =
∑

b P(a, b)
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Handling Uncertainty

X: set of all variables describing the domain
Joint probability distribution P(X): P(x) for all x
We can answer all types of queries using the definition of
conditional probability and the sum rule:

P(q|e) =
P(q, e)
P(e)

=∑
y,Y=X\Q\E P(y,q, e)∑

z,Z=X\E P(z, e)
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Handling Uncertainty

If we have n binary variables (|X| = n), knowing the joint
probability distribution requires storing O(2n) different values.
Even if we had the space, computing P(q|e) would require O(2n)
operations.
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Handling Uncertainty

A value of X is (x1, . . . , xn):

P(x) = P(x1, . . . , xn) =

P(xn|xn−1, . . . , x1)P(xn−1, . . . , x1) =

. . .

P(xn|xn−1, . . . , x1) . . .P(x2|x1)P(x1) = (1)
n∏

i=1

P(xi |xi−1, . . . , x1)

by repeated application of the product rule.
Chain rule.
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Handling Uncertainty

If, for each variable Xi , Pai is a subset of {Xi−1, . . . ,X1} such that
Xi is conditionally independent of {Xi−1, . . . ,X1} \ Pai given Pai ,
i.e,

P(xi |xi−1, . . . , x1) = P(xi |pai) whenever P(xi−1, . . . , x1) > 0,

then we could write

P(x) = P(x1, . . . , xn) =

P(xn|xn−1, . . . , x1) . . .P(x2|x1)P(x1) =

P(xn|pan) . . .P(x2|pa1)P(x1|pa1) =
n∏

i=1

P(xi |pai)
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Handling Uncertainty

P(xi |pai): conditional probability table, much smaller than
{Xi−1, . . . ,X1},
If k is the maximum size of Pai , then the storage requirements are
O(n2k ) instead of O(2n).
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Probabilistic Graphical Models

Taking into account independencies among the variables enables
faster inference.
Graphical models: graph structures that represent
independencies.
Bayesian network [Pearl 88]: directed acyclic graph with a node
per variable and an edge from Xj to Xi only if Xj ∈ Pai .
A BN together with the set of CPTs P(xi |pai) defines a joint
probability distribution.
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Example - Alarm

burglary

burg t f
0.1 0.9

earthquake

earthquake t f
0.2 0.8

alarm

call

alarm t f
b=t, e=t 1.0 0.0
b=t, e=f 0.8 0.2
b=f, e=t 0.8 0.2
b=f, e=f 0.1 0.9

call t f
a=t 0.9 0.1
a=f 0.05 0.95
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Markov Networks

Undirected graphical models

Intelligent GoodMarks

CouDifficulty TeachAbility

Each clique in the graph is associated with a potential φi ≥ 0

P(x) =

∏
i φi(xi)

Z
Z =

∑
x

∏
i

φi(xi)

Intelligent GoodMarks φi(I,G)
false false 4.5
false true 4.5
true false 1.0
true true 4.5
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Markov Networks

Intelligent GoodMarks

CouDifficulty TeachAbility

If all the potential are strictly positive, we can use a log-linear
model (where the fis are features)

P(x) = exp(
∑

i wi fi (xi))
Z

Z =
∑

x exp(
∑

i wi fi(xi)))

fi(Intelligent ,GoodMarks) =
{

1 if ¬Intelligent∨GoodMarks
0 otherwise

wi = 1.5

F. Riguzzi (UNIFE) Introduction to PLP 20 / 78



Combining Logic and Probability

Logic does not handle well uncertainty
Graphical models do not handle well relationships among entities
Solution: combine the two
Many approaches proposed in the areas of Logic Programming,
Uncertainty in AI, Machine Learning, Databases, Knowledge
Representation
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Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries)
The probability of a query is obtained from this distribution
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Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens
et al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
They differ in the way they define the distribution over logic
programs
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PLP Online

http://cplint.eu
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (EMBLEM)
Structure learning (SLIPCOVER)

https://dtai.cs.kuleuven.be/problog/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (LFI-ProbLog)
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PRISM

sneezing(X )← flu(X ),msw(flu_sneezing(X ),1).
sneezing(X )← hay_fever(X ),msw(hay_fever_sneezing(X ),1).
flu(bob).
hay_fever(bob).

values(flu_sneezing(_X ), [1,0]).
values(hay_fever_sneezing(_X ), [1,0]).
: −set_sw(flu_sneezing(_X ), [0.7,0.3]).
: −set_sw(hay_fever_sneezing(_X ), [0.8,0.2]).

Distributions over msw facts (random switches)
Worlds obtained by selecting one value for every grounding of
each msw statement
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Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing_simple.pl

sneezing(X ) : 0.7 ; null : 0.3← flu(X ).
sneezing(X ) : 0.8 ; null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause
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ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each switch/clause/fact
Atomic choice: selection of the i-th atom for grounding Cθ of
switch/clause C

represented with the triple (C, θ, i)

Example C1 = sneezing(X ) : 0.7 ; null : 0.3← flu(X ).,
(C1, {X/bob},1)
A ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.
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Distribution Semantics

Selection σ: a total set of atomic choices (one atomic choice for
every grounding of each clause)
A selection σ identifies a logic program wσ called world
The probability of wσ is P(wσ) =

∏
(C,θ,i)∈σ P0(C, i)

Finite set of worlds: WT = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WT

P(w) = 1
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Distribution Semantics

Ground query Q
P(Q|w) = 1 if Q is true in w and 0 otherwise
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w |=Q P(w)

You can see P(Q) as the probability that Q is true in a world
sampled at random from P(w)

for each choice, sample a value to get a world
test the query in the world
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Example Program (LPAD) Worlds
http://cplint.eu/e/sneezing_simple.pl

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

P(Q) =
∑

w∈WT

P(Q,w) =
∑

w∈WT

P(Q|w)P(w) =
∑

w∈WT :w|=Q

P(w)

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Example Program (ProbLog) Worlds

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8
flu_sneezing(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing.pl

strong_sneezing(X ) : 0.3 ; moderate_sneezing(X ) : 0.5← flu(X ).
strong_sneezing(X ) : 0.2 ; moderate_sneezing(X ) : 0.6← hay_fever(X ).
flu(bob).
hay_fever(bob).

9 worlds
strong_sneezing(bob) is true in 5
P(strong_sneezing(bob)) =
0.3 · 0.2 + 0.3 · 0.6 + 0.3 · 0.2 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44
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Monty Hall Puzzle

A player is given the opportunity to select one of three closed
doors, behind one of which there is a prize.
Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated to open
one of the remaining closed doors which does not contain the
prize, showing that the room behind it is empty.
He then asks the player if he would like to switch his selection to
the other unopened door, or stay with his original choice.
Does it matter if he switches?
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Monty Hall Puzzle
http://cplint.eu/e/monty.swinb

:- use_module(library(pita)).
:- endif.
:- pita.
:- begin_lpad.
prize(1):1/3; prize(2):1/3; prize(3):1/3.

open_door(2):0.5 ; open_door(3):0.5:- prize(1).
open_door(2):- prize(3).
open_door(3):- prize(2).

win_keep:- prize(1).

win_switch:-
prize(2),
open_door(3).

win_switch:-
prize(3),
open_door(2).

:- end_lpad.

F. Riguzzi (UNIFE) Introduction to PLP 35 / 78

http://cplint.eu/e/monty.swinb


Examples

Throwing coins http://cplint.eu/e/coin.swinb

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).
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Examples

Mendel’s inheritance rules for pea plants
http://cplint.eu/e/mendel.pl

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-
father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths http://cplint.eu/e/path.swinb

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
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Encoding Bayesian Networks

Burglary Earthquake

Alarm

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg t f
0.1 0.9

earthq t f
0.2 0.8

http://cplint.eu/e/alarm.pl

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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Expressive Power

All languages under the distribution semantics have the same
expressive power
LPADs have the most general syntax
There are transformations that can convert each one into the
others
PRISM, ProbLog to LPAD: direct mapping
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LPADs to ProbLog

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into

H1 ← B, fi,1(X ).

H2 ← B,not(fi,1(X )), fi,2(X ).
...
Hn ← B,not(fi,1(X )), . . . ,not(fi,n−1(X )).

π1 :: fi,1(X ).
...
πn−1 :: fi,n−1(X ).

where π1 = p1, π2 = p2
1−π1

, π3 = p3
(1−π1)(1−π2)

, . . .

In general πi =
pi∏i−1

j=1 (1−πj )
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Conversion to Bayesian Networks

PLP can be converted to Bayesian networks
Conversion for an LPAD T
For each ground atom A a binary variable A
For each clause Ci in the grounding of T

H1 : p1 ∨ . . . ∨ Hn : pn ← B1, . . .Bm,¬C1, . . . ,¬Cl

a variable CHi with B1, . . . ,Bm,C1, . . . ,Cl as parents and H1, . . .,
Hn and null as values
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Conversion to Bayesian Networks

H1 : p1 ∨ . . . ∨ Hn : pn ← B1, . . .Bm,¬C1, . . . ,¬Cl

The CPT of CHi is

. . . B1 = 1, . . . ,Bm = 1,C1 = 0, . . . ,Cl = 0 . . .
CHi = H1 0.0 p1 0.0

. . .
CHi = Hn 0.0 pn 0.0
CHi = null 1.0 1−

∑n
i=1 pi 1.0
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Conversion to Bayesian Networks

Each variable A corresponding to atom A has as parents all the
variables CHi of clauses Ci that have A in the head.
The CPT for A is:

at least one parent = A remaining cols
A = 1 1.0 0.0
A = 0 0.0 1.0
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Conversion to Bayesian Networks

C1 = x1 : 0.4 ∨ x2 : 0.6.
C2 = x2 : 0.1 ∨ x3 : 0.9.
C3 = x4 : 0.6 ∨ x5 : 0.4← x1.
C4 = x5 : 0.4← x2, x3.
C5 = x6 : 0.3 ∨ x7 : 0.2← x2, x5.

CH1 CH2

X1 X2 X3

CH3 CH4

X4 X5

CH5

X6 X7
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Conversion to Bayesian Networks

CH1,CH2 x1, x2 x1, x3 x2, x2 x2, x3
x2 = 1 1.0 0.0 1.0 1.0
x2 = 0 0.0 1.0 0.0 0.0

x2, x5 1,1 1,0 0,1 0,0
CH5 = x6 0.3 0.0 0.0 0.0
CH5 = x7 0.2 0.0 0.0 0.0
CH5 = null 0.5 1.0 1.0 1.0

CH1 CH2

X1 X2 X3

CH3 CH4

X4 X5

CH5

X6 X7
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Function Symbols

What if function symbols are present?
Infinite, countable Herbrand universe
Infinite, countable Herbrand base
Infinite, countable grounding of the program T
Uncountable WT

Each world infinite, countable
P(w) = 0
Semantics not well-defined
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Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
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Hidden Markov Models

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-
Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Hybrid Programs

Up to now only discrete random variables and discrete probability
distributions.
Hybrid Probabilistic Logic Programs: some of the random
variables are continuous.
cplint allows the specification of density functions over arguments
of atoms in the head of rules
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Hybrid Programs

A probability density on an argument Var of an atom A is
specified with
A : Density :- Body.

where Density is a special atom
uniform(Var,L,U): Var is uniformly distributed in [L,U]
gaussian(Var,Mean,Variance): Gaussian distribution
dirichlet(Var,Par): Dirichlet distribution with parameters α
specified by the list Par
gamma(Var,Shape,Scale): gamma distribution
beta(Var,Alpha,Beta): beta distribution
+ others (see the manual)
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Hybrid Programs

Also discrete distributions, with either a finite or countably infinite
support:

discrete(Var,D) or finite(Var,D): D is a list of couples
Value:Prob assigning probability Prob to Value
uniform(Var,D): D is a list of values each taking the same
probability (1 over the length of D).
poisson(Var,Lambda): Poisson distribution
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Semantics

For each random variable, sample a value, obtaining a world
Test Q in the world
P(Q) is the probability that Q is true in the world

F. Riguzzi (UNIFE) Introduction to PLP 52 / 78



Examples

g(X) : gaussian(X,0,1).
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Gaussian Mixture Example

http://cplint.eu/e/gaussian_mixture.pl defines a
mixture of two Gaussians:
heads:0.6;tails:0.4.
g(X): gaussian(X,0, 1).
h(X): gaussian(X,5, 2).
mix(X) :- heads, g(X).
mix(X) :- tails, h(X).

The argument X of mix(X) follows a distribution that is a mixture
of two Gaussian, one with mean 0 and variance 1 with probability
0.6 and one with mean 5 and variance 2 with probability 0.4.
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Description Logics

DISPONTE: “DIstribution Semantics for Probabilistic ONTologiEs”
[Riguzzi et al. SWJ15]
Probabilistic axioms:

p :: E
e.g., p :: C v D represents the fact that we believe in the truth of
C v D with probability p.

DISPONTE applies the distribution semantics of probabilistic logic
programming to description logics
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DISPONTE

World w : regular DL KB obtained by selecting or not the
probabilistic axioms
Probability of a query Q given a world w : P(Q|w) = 1 if w |= Q, 0
otherwise
Probability of Q
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w :w |=Q P(w)
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Example

0.4 :: fluffy : Cat
0.3 :: tom : Cat
0.6 :: Cat v Pet
∃hasAnimal .Pet v NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal

P(kevin : NatureLover) =
0.4× 0.3× 0.6 + 0.4× 0.7× 0.6 + 0.6× 0.3× 0.6 = 0.348
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Knowledge-Based Model Construction

The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model [Breese et al.
TSMC94].
Languages: CLP(BN), Markov Logic
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CLP(BN) [Costa UAI02]

Variables in a CLP(BN) program can be random
Their values, parents and CPTs are defined with the program
To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference
The answer will be a probability distribution for the variables
Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
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CLP(BN)

....
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5,0.4,0.1]) }.
....
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).

F. Riguzzi (UNIFE) Introduction to PLP 60 / 78



CLP(BN)

....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
p([a,b,c,d],

%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
[Int,Dif]))

}.
.....
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CLP(BN)

?- [school_32].
?- registration_grade(r0,G).

p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),

student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
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Markov Logic

A Markov Logic Network (MLN) [Richardson, Domingos ML06] is
a set of pairs (F ,w) where F is a formula in first-order logic w is a
real number
Together with a set of constants, it defines a Markov network with

One node for each grounding of each predicate in the MLN
One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Markov Logic Example

1.5 ∀x Intelligent(x)→ GoodMarks(x)
1.1 ∀x , y Friends(x , y)→ (Intelligent(x)↔ Intelligent(y))

Constants Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) Friends(B,B)

Friends(B,A)

Int(A) Int(B)

GM(A) GM(B)
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Markov Networks

Probability of an interpretation x

P(x) =
exp(

∑
i wini(xi))

Z

ni(xi) = number of true groundings of formula Fi in x
Typed variables and constants greatly reduce size of ground
Markov net
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Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence, or find assignments of the
random variables with the highest probability
Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data
Structure learning we want to infer both the structure and the
weights of the model from data
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Inference for PLP under DS

EVID: compute an unconditional probability P(e), the probability
of evidence (also query in this case).
COND: compute the conditional probability distribution of the
query given the evidence, i.e. compute P(q|e)
MPE or most probable explanation: find the most likely value of all
non-evidence atoms given the evidence, i.e. solving the
optimization problem argmaxq P(q|e)
MAP or maximum a posteriori: find the most likely value of a set of
non-evidence atoms given the evidence, i.e. finding
argmaxq P(q|e). MPE is a special case of MAP where
Q ∪ E = HT .
DISTR: compute the probability distribution or density of the
non-ground arguments of a conjunction of literals q, e.g.,
computing the probability density of X in goal mix(X ) of the
Gaussian mixture
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Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of
the data given the model
Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model
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Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood
of the data given the model
Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs
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Conclusions

Handling relationships
Handling uncertainty
Open problems

Semantics for hybrid programs with
function symbols
Learning hybrid progams
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Resources

Online course on cplint
Moodle https://edu.swi-prolog.org/
Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeND0UGWJxBRWs7qzzKpC-FkN

ACAI summer school on Statistical Relational AI
http://acai2018.unife.it/

Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeNDWTNwWTWnVffXi5XwAj1mb

Videos of lecture Probabilistic Inductive Logic Programming
Part 1 https://youtu.be/mLdPGSlgNxU
Part 2 https://youtu.be/DRlOft0Y_Ng

cplint in Playing with Prolog https://www.youtube.com/
playlist?list=PLJPXEH0boeNAik6QnfvGlAGRQxFY_LCE3
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