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Prolog Programs

• Program = a bunch of axioms
• Run your program by:

– Enter a series of facts and axioms
– Pose a query
– System tries to prove your query by finding a series 

of inference steps

• “Philosophically” declarative
• Actual implementations are deterministic
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Horn Clauses (Axioms)

• Axioms in logic languages are written:

H :- B1, B2,….,B3

Facts = clause with head and no body.
Rules = have both head and body.

Query – can be thought of as a clause with no 
body.
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Terms

• H and B are terms.
• Terms =

– Atoms - begin with lowercase letters: x, y, z, fred
– Numbers: integers, reals
– Variables - begin with captial letters: X, Y, Z, Alist
– Structures: consist of an atom called a functor, 

and a list of arguments.  ex. edge(a,b).   
line(1,2,4).
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Backward Chaining

START WITH THE GOAL and work backwards, 
attempting to decompose it into a set of (true) 
clauses. 

This is what the Prolog interpreter does.
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Backtracking search
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Assumption for this Tutorial

• Basic familiarity with Logic Programming
– Datalog (pure Horn clauses, no function symbols)
– Prolog

• SLD Resolution
• Extra-logical predicates
• Warren Abstract Machine (WAM)

– Negation as failure
• Well-founded semantics
• Answer Set Semantics

– Answer Set Programming

New Mexico State University
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Why Parallelism?

• Thermal Wall
– Slowing increases in clock frequency
– Cooling
– Power consumption

http://www.r-bloggers.com/cpu-and-gpu-trends-over-time/

• Improve performance by placing 
multiple cores on the same chip
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Why Parallelism?

• Parallelism
– Use multiple computational units to

• Speed up problem resolution
• Scale up problem resolution

• Parallel Programming is HARD!
– High level and low level issues

• How to partition problem, control access to resources, 
communication, etc.

• How to avoid race conditions, non-determinism, latencies, 
Amhdahl’s law, optimize communication, etc.
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Why Parallelism?

• Broad range of architectures

Copyright Advanced Micro Devices, Inc.
Source: anandtech.com

Source: NVIDIA, Inc.
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Some Basic Terms from Parallel Programming

• Task:
– Discrete section of computation (typically assigned to a processing unit)

• Scalability: 
– Capability to improve performance as more resources are made available

• Performance Measurements
– Time

• Sequential: Tseq
• Parallel: Tn
• Overhead: T1/Tseq
• Speedup: Tseq / Tn

• Granularity
– “Size” of the tasks performed in parallel

• Coarse: large amounts of computation between communication steps
• Fine: small amounts of computation between communication steps
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MOTIVATIONS

New Mexico State University
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Motivations

• Sequential systems are highly optimized
– E.g., highly competitive ASP systems

• Desire to apply to even more complex and 
challenging real-world problems
– Ontologies and knowledge representation
– Planning
– Bioinformatics 
– NLP

• Pushing the limit of sequential systems
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Logic Programming and Parallelism

• Interest spawned by
– LP ⇒ Declarative Language ⇒

Limited or No Control ⇒ Limited Dependences ⇒ Easy 
Parallelism

– Everlasting myth of “LP = slow execution”
• LP considered suited for parallel execution since its 

inception
– Kowalski “Logic for Problem Solving” (1979)
– Pollard’s Ph.D. Thesis (1981)

New Mexico State University

G. Pollard. Parallel Execution of Horn Clause Programs. Ph.D. Dissertation, Imperial College, 1981.
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Let’s talk Parallel Prolog: The Past

• Approaches
– Explicit Schemes

• Message passing primitives (e.g., Delta-Prolog)
• Blackboard primitives (e.g., Jinni, CIAO Prolog)
• Dataflow/guarded languages (e.g., KLIC)
• Multi-threading (e.g., any modern Prolog system)

– Implicit (or mostly implicit) Schemes

New Mexico State University
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Models of Parallelism

while (Query not empty) do
selectliteral B from Query
repeat

selectclause (H:-Body) from Program

until ( unify(H,B)  or no clauses left)
if (no clauses left) then FAIL
else 

σ = MostGeneralUnifier(H,B)
Query = ((Query \ {B}) ∪ Body)σ

endif
endwhile

New Mexico State University

And-Parallelism

Or-Parallelism

Unification
Parallelism
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Unification Parallelism

• Parallelize term-reduction stage of unification

• Not a major focus
– fine grained
– dependences – common variables
– SIMD algorithms (e.g., Barklund)

New Mexico State University
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Barklund, J., Parallel Unification . Ph.D. thesis. Uppsala Theses in Computing Science No. 9/90. 
Vitter, S. and Simons, R. Parallel Algorithms for Unification and Other Complete Problems in P. ACM Annual Conference, 1984.
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OR-PARALLELISM

New Mexico State University
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Or-parallelism: Principles

• concurrent execution of different clauses unifying with 
a given subgoal
– or-tree
– or-agents

integr(X + Y, A + B) :- integr(X,A), integr(Y,B).
integr(X + Y, A × B) :- X = A1 × B, Y = A × B1, integr(A,A1), integr(B,B1).

?- integr(5 × X + ln X × X, Z).

• different threads compute different solutions: need to be 
kept independent
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Or-Parallelism

• Parallelize “don’t known” non-determinism in selecting 
matching clauses
– Tasks correspond to different branches of the SLD-resolution 

Tree
– Processes exploring distinct solutions to the goal
– Computations are (for the most part…) independent

• Environment representation problem
– Conditional variables
– At minimum: each process keeps copies of unbound ancestor 

conditional variables

New Mexico State University

?- p(A)

A: 

?- q(A) ?- r(A)

?- A=a ?- A=b

environment

choice point

choice point

a

b

p(X) :- q(X)
p(X) :- r(X)
q(Y) :- Y=a
q(Y) :- Y=b
…
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Complexity

• Abstraction of the Or-parallel Execution as operation on 
abstract data structures

• Program execution: construction of a (binary) labeled tree
– create_tree(γ)
– expand(u,γ1,γ2)
– remove(u)

• u ≤ v iff u is an ancestor of v
• variables: attributes of tree nodes
• Additional operations:

– assign(X,u)
– dereference(X,u)
– alias(X1,X2,u)
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Complexity

• Restriction on assignments: for any two distinct nodes u,v 
such that u ≤ v there are no assign(X,u) and assign(X,v)

• Problem: OP problem maintaining efficiently all these 
operations (on-line)

• Complexity of the OP problem studied on pointer machines
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Complexity Results

• Lower Bound:
Th.: The worst-case time complexity for the OP problem 

on pointer machines is
Ω( lg N)

per operation. 
General Idea: a pointer machine allows to access only a 

“small” number of records in a constant number of 
steps.
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Complexity

• Notes:
– complexity results independent from the presence of aliasing

(aliasing can be shown to be equivalent to union-find)
– complexity results independent from remove operation

(can be handled in constant-time)

• Rather large distance in complexity.
• Comparison: Method Complexity 

Best Known O(M N1/3) 
Stack Copying O(M N) 
Binding Arrays O(M N) 
Directory Tree O(M N lg N) 
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Or-Parallelism: Classification Schemes

• Formalized in terms of three basic operations
– binding management scheme
– task switching scheme
– task creation scheme

• Binding Scheme
– Shared-tree methods
– Non shared-tree methods

• Task Switching Scheme
– copying schemes
– recomputation schemes

New Mexico State University

X:

Y:

X=a

X=f(Y)

Gupta, G. and Jayaraman, B. 1993a. Analysis of Or-parallel Execution Models. ACM Transactions on Programming Languages and Systems 15, 4, 659–680.
Ranjan, D., Pontelli, E., and Gupta, G. 1999. On the Complexity of Or-Parallelism. New  Generation Computing 17, 3, 285–308.
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Or-Parallelism: Binding Schemes 

• Shared Tree:
Binding Arrays

New Mexico State University

X: #0

Y: #1

Z: #2

Y=a Y=b

Proc. 0
#0
#1
#2

Proc. 1
#0
#1
#2

a b

Warren, D. H. D. 1987b. OR-Parallel Execution Models of Prolog. In Proceedings of TAPSOFT, 
Lecture Notes in Computer Science. Springer-Verlag, 243–259. 
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Binding Array

• constant-time variable access (one level of indirection)
• non constant-time task switching:

p(X,Y) :- … X=a,.. q(Y,Z) …
p(X,Y) :- …

q(Y,Z) :- …Y=b, ..  r(Z)…
q(Y,Z) :- ….

r(Z) :- … Z= …
r(Z) :- … Z=...

Z=...

1

2

3

processor 1 1X:
Y: 2

Z: 3

a
b
... 1

2

3

...

...

...

processor 2
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Stack Copying

• Solve environment representation by duplicating the 
shared part of the computation tree

Processor 1 Processor 2
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Stack Copying

• Synchronization on shared choice points

?- …, p(X), …
p(1) :- …
p(2) :- …
p(3) :- ...

X=2
X=3X=1X=1 X=2 X=3
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Stack Copying

• Solution: make use of Shared Frames

Processor 1

a
b

c

d e

f

Processor 2Processor 1

a b

c

d e
f
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Or-Parallelism: Binding Schemes

• Stack Copying

New Mexico State University

Local Space Proc. 0 Local Space Proc. 1
CP CP EnvEnv HeapHeap TrailTrail
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Ali, K. and Karlsson, R. 1990b. The MUSE Approach to Or-Parallel Prolog. 
International Journal of Parallel Programming 19, 2, 129–162. P
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AND PARALLELISM

New Mexico State University
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And-Parallelism

• Concurrent execution of different literals in a resolvent
• Mostly organized as fork-join structures

New Mexico State University

integr(X + Y, Z) :- integr(X,A), integr(Y,B),  Z = A + B.

parallel literals continuation
?- integr(X+Y,Z)

?- integr(X,A), integr(Y,B)

integr(X,A) integr(Y,B)

Z = A + B
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And-Parallelism

• Two traditional forms
– Independent And-Parallelism

• runtime access to independent sets of variables

New Mexico State University

quick(In,Out) :- partition(In,First,Low,High),
( indep(Low,High) => quick(Low,SLow) & quick(High,SHigh)

;      quick(Low,SLow) , quick(High,SHigh)
), 
append(SLow,[First|SHigh],Out).

test

parallel case

sequential case

Hermenegildo, M. 1986. An Abstract Machine for Restricted AND-parallel Execution of Logic Programs.
In Proceedings of the International Conference on Logic Programming, Springer-Verlag, 25–40. 
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And-Parallelism

New Mexico State University

p, (p1 & p2 & p3), p4...
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And-Parallelism

New Mexico State University

p, (p1 & p2 & p3), p4...

Processor 1 Processor 3Processor 2

Chpt Stack

Goal Stack

p2
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p1 & p2 & p3 Chpt Stack
p

parcall
frame

p1

Chpt Stack

p3output
frame

p4
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And-Parallelism

• Backtracking

New Mexico State University

p1(..), (<cond> ⇒ p2(..) & p3(..) & p4(..)), p5(..)
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And-Parallelism

• Outside backtracking

• Standard right-to-left
– across processors

• Public vs Private Backtracking
– skip deterministic goals

• Choice points linearization
– restart in parallel

New Mexico State University

b(..), (<cond> ⇒ c(..) & d(..) & e(..)), f(..)
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b

c d e
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And-Parallelism

• Inside backtracking

• Optimizations
– Speculative Backtracking + Memoization

New Mexico State University

p1(..), (<cond> ⇒ p2(..) & p3(..) & p4(..)), p5(..)
killkill

Pontelli, E. and Gupta, G. 2001, Backtracking in Independent And-Parallel Implementations of Logic Programming Languages. 
IEEE Trans. Parallel Distrib. Syst. 12(11): 1169-1189.

P. Chico de Guzmán, A. Casas, M. Carro, M.V. Hermenegildo:2011.  Parallel backtracking with answer memoing for independent 
and-parallelism. TPLP 11(4-5): 555-574 
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And-Parallelism

• Dependent and-parallelism
p(X) & q(X)

– Goals
• consistent bindings
• reproduce Prolog observable behavior

– Different Degrees of Dependence
• non-conflicting: actually no conflict is present on shared variables 

(e.g., Non-strict Independence)
• determinate: only determinate parallel subgoals (e.g., Basic Andorra 

Model)
• unrestricted: no restrictions on parallel subgoals (e.g., DDAS, ACE)

New Mexico State University

Shen, K. 1996. Overview of DASWAM: Exploitation of Dependent And-Parallelism. Journal of Logic Programming 29, 1/3, 245–293.
Pontelli, E. and Gupta, G. 1997. Implementation Mechanisms for Dependent And-Parallelism. In 

Proceedings of the International Conference on Logic Programming, L. Naish, Ed. MIT Press, Cambridge, MA, 123–137. 
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And-Parallelism

– Common approach
• dynamic classification of subgoals as producers/consumers

– Produces are allowed to bind variables
– Consumers can only read bindings, not create them

• several complex schemes (e.g., filtered binding model, DDAS)
– Complex backtracking

New Mexico State University
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Backtracking

• Backward execution is complex!
– Outside Backtracking: unchanged
– Inside Backtracking: backtracking is not “independent”

p & q & r

n In indep. and-parallelism: backtracking in q will affect p, r
only if q completely fails. 

n In dependent and-parallelism even backtracking inside a 
subgoal may affect other subgoals - due to dependent variables
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Backtracking

• propagation of backtracking across subgoals
– a new notion of speculative work: dependent and-parallel computations 

which consume a conditional binding

p(X) & q(X,Y) & r(Y,Z)

fail

X=1 X=2
X=1 X=3 X=2

Y=a

Y=a Y=c

Y=c
Z=10 Z=-2

p(X) & q(X,Y) & r(Y,Z)

fail

X=1 X=2
X=1X=3X=2

Y=a

Y=a Y=c

Y=c
Z=10 Z=-2
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Backtracking

• Extended Point-Backtracking
– subgoals subdivided into groups; 
– if G1 and G2 are two groups, then vars(G1) ∩ vars(G2) = ∅

n groups are independent - if a group fails, then the whole parallel call fails
n inside a group:

n if leftmost subgoal of group fails then the whole group fails (e.g., c(B) )
n if non-leftmost subgoal of group fails then backtracking should continue in the 

immediately preceding subgoal in the group (e.g., from b(A) to a(A) )
n if a subgoals untrails a dependent variable, then all the subgoals on its right in 

the group are restarted (e.g., a(A) changes the value of A, then b(A) and f(A) 
are restarted)

a(A) b(A) c(B) d(C) e(B) f(A)& & & & &
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Committed-choice Languages

• “The Great Schism” [Warren’93]
• or-control: committed-choice  selectclause does not generate 

choice points
• and-control: data-flow dependent and-parallelism

p(...) :- guard1, ..., guardn | goal1, ..., goalm
n producer-consumer management of dependent and-parallelism
n producer/consumers detected through 

n modes (Parlog)
n variable annotations (Concurrent Prolog)
n implicit modes (GHC, KL1)

n guards not allowed to bind external variables (suspends)

?- p(X), q(X). p(A) :- A=ok | ...
q(B) :- true | B = ok.
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MORE RECENT APPROACHES

New Mexico State University
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More Recent Techniques

• Or-Parallelism via Stack Splitting
• Copy nodes from P to Q

– Incremental Copying:
• From bottommost open node of 

P to bottommost node in common 
with Q

– (on shared memory):
• Create shared frames for copied 

nodes

New Mexico State University
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Vertical Stack Splitting
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E. Pontelli, K. Villaverde, H-F. Guo, G.Gupta. 2006. Stack splitting: A technique for efficient exploitation of search 
parallelism on share-nothing platforms. J. Parallel Distrib. Comput. 66(10): 1267-1293. 



KLAP Laboratory

Horizontal Stack Splitting
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Half Stack Splitting
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R. Vieira, R. Rocha, R.M. A. Silva, 2013. On Comparing Alternative Splitting Strategies for Or-Parallel Prolog 
Execution on Multicores. CoRR abs/1301.7690.
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Side-Effects and order-sensitive predicates

• Side-effects are order-sensitive predicates: their behavior 
depends on the order of execution

• E.g., 

write(1) write(2)

2
1

• Goal: recreate the same observable behavior of sequential Prolog
• Sequentialize order-sensitive predicates
• Sequential is opposite of Parallel…
• Dynamic vs. Static management of order-sensitive predicates

K. Villaverde, E. Pontelli, H-F. Guo, G. Gupta, 2003. A Methodology for Order-Sensitive Execution of Non-deterministic Languages
on Beowulf Platforms. Euro-Par, Springer Verlag, 694-703.
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Order-sensitive Executions

• Idea: a side-effect should be delayed until all “preceding” side-
effects have been completed

• determining the exact time of execution: undecidable
• safe approximation: delay until all “impure” branches on the left 

of the side-effects have been completed

side-effect

S
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Order-sensitive predicates

• Standard Technique: maintain subroot nodes for each node
• Subroot(X) = root of largest subtree containing X in which X is 

leftmost

• Aurora, Muse: O(n) algorithms for 
maintaining subroot nodes

• possible to perform O(1)
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Where are the systems?
• Where are all the parallel LP systems???

New Mexico State University

System Status
MUSE One reference in www.sics.se

Andorra-I CLICK HERE

Aurora CLICK HERE

PEPSys ECLiPSe 5.10
“The parallel annotation specifies that the system is allowed to 
execute the clauses of the annotated predicate in parallel “

Stack Splitting ALS-Prolog (PALS)
YAP Prolog (see later)

ACE Defunct

&-Prolog CIAO Prolog
Low-level concurrency (see later)

DDAS Defunct

KLIC CLICK HERE
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YAP: Perfect Engineering of Or-P

• Supports Or-Parallelism through splitting
• Different engines

– YapOr: 
• Shared memory system, 

workers using processes
• Supports both 

or-frames model and stack 
splitting

– ThOr:
• Shared memory system, workers as threads

– More complex copying – require shifting pointers
• Easier to port on different platforms
• Restricted to pure Prolog

– Teams:
• Team = process
• Team members = threads within the process
• Designed to run on multiprocessors of multicores

J. Santos, R. Rocha, 2013. Or-Parallel Prolog Execution on Clusters of Multicores. SLATE, 9-20
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CIAO Prolog: Making Parallel Prolog Boring

• High level parallel primitives
– Implement forms of parallelism in Prolog
– Original idea

• Codish & Shapiro (1987)
• &-Prolog CGE (1988)
• &-ACE DAP (1995)

• Raise implementation from abstract machine/compiler 
to source code

• Experimented with at the level of IAP

New Mexico State University

A. Casas, M. Carro, M.V. Hermenegildo, 2008. A High-Level Implementation of Non-deterministic, Unrestricted, 
Independent And-Parallelism. ICLP, Springer Verlag, 651-666
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CIAO Prolog

• Source-level operators
– G &> H

• G scheduled for parallel execution
• Thread places goal on its goal queue
• H handler of G

– H <& 
• Waits for goal with handler H to terminate
• Upon termination, all bindings of G are available

• Traditional & operator is now:
A & B :- A &> H, call(B), H<&.
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Implementation

• Sample code fragment
Handler <& :-

enter_mutex_self,
(

goal_available(Handler) ->
exit_mutex_self,
retrieve_goal(Handler,Goal),
call(Goal)

;
check_if_finished_or_failed(Handler)

).
Handler <& :-

add_goal(Handler),
release_some_suspended_thread,
fail.

0

1

2

3

4

5

6

7

2 4 6 8

S
pe

ed
up

Number of Agents

AIAKL

Ann

Boyer

FFT

Mmatrix

Takeuchi
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Systems

New Mexico State University
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Parallelism in ASP

• Implementations based on search techniques
• Similar Foundations as Prolog
• First proposals in 2001

– Finkel et al. 2001 (parstab)
– Pontelli et al. 2001

E. Pontelli, O. El-Khatib: Exploiting Vertical Parallelism from Answer Set Programs. Answer Set Programming, AAAI Spring Symp., 2001
R. Finkel, V.Marek, N. Moore, M. Truszczynski: Computing stable models in parallel. Answer Set Programming, AAAI Spring Symp., 2001
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Basic Procedure

• Both systems use Smodels as their core
Compute (P: Program)
1:   S := <∅, ∅>
2:   while (TRUE) do
3:      S := EXPAND(P, S)
4:      if (S+ ∩ S- ≠ ∅) then
5:         return FAILURE
6:      endif
7:      if (S+∪S- = BΣ) then
8:         return S
9:      endif
10:    choose either 
11:        S+ := S+∪ {CHOOSEP(S)} or
12:        S- := S-∪ {CHOOSEP(S)}
13:  endwhile

• Expand(Program, Partial Answer Set):
o Fixpoint computation
o Well-founded model that expands a 

partial interpretation
• CHOOSEP(Partial Answer Set):

o Heuristic-based
o Other techniques (e.g., Lookahead)
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Basic Procedure

HEAD

POSITIVE

NEGATIVE

Rule Descriptors

Head

Positive

Negative

Program

Rule Head List

Atom Head List

STACK

Atom Descriptors
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Forms of Parallelism

p

q

r

p=truep=false

expand

expand

processor i

processor j

p

q

r

p=truep=false

expand

expand

processor i

processor j

Horizontal Parallelism Vertical Parallelism
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Horizontal Parallelism

• Generic parallelization of the expand operation 
attempted with very modest results

• In general, hard to produce great results
– Theoretical limitations:

• Analogous to unit propagation/arc consistency
• Problem is log-space complete in P
• [Kasif 90] unlikely there is a polylog time parallel algorithm 

(using polynomial resources)
– Practical limitations: risk of highly sequential cases

q1. p1 :- q1. q2 :- p1. p2 :- q1. …
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Horizontal Parallelism

• Parallel Lookahead
– Before selecting a chosen atom
– Test each undefined atom A:

EXPAND(S∪{A})  and EXPAND(S∪{not A})
• If one leads to contradiction: deterministically add the 

complement
• If both lead to contradiction: backtrack
• Deterministic expansions; aid with heuristic

– Perform test of each atom A in parallel
M. Balduccini, E. Pontelli, O. El-Khatib, H. Le, 2005. Issues in parallel execution of non-monotonic reasoning systems. 

Parallel Computing 31(6): 608-647.
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Horizontal Parallelism
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Design of a Vertical Parallel Engine

• Explore search (or-) parallelism in ASP 
• Initial phase

– Each worker receives complete ASP program
– Each worker receives a unique binary ID (e.g., 1011)
– Each worker uses ID to deterministically choose the first 

branches

a1

a2

a3

a4 true
true

true

false

Worker: 1011

a1

a2

a3

a4
true

false

false

false

Worker: 0001
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Design of a Vertical Parallel Engine

• Symmetrical workers
• Each worker alternates

– Computation: explore an assigned branch of the 
search tree (local task)

– Load Balancing: 
• Idle worker moves 

to a different place 
in the search tree

• Busy worker donates 
unexplored branches 
to idle worker Agent 1

Agent 2

Idle Agent
Destination

Agent 1

Agent 2
E. Pontelli, H. Le, T. Son, 2010. An investigation in parallel execution of answer set programs on 

distributed memory platforms. Computer Languages, Systems & Structures 36(2): 158-202.
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Design of a Vertical Parallel Engine

• Load Balancing composed of two activities
– Scheduling: Identify the new position for a worker 

in the search tree
• Worker from whom we are taking a choice point 

(sender)
• Choice point that we are taking from such worker 

(open node)
– Task Sharing: Position the idle worker to its new 

position
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Task Sharing Strategies

• Two main categories
– Recomputation-based: Receiver repeats 

computation of the sender to reach the open 
node

– Copying-based: Sender provides copies of its 
data structure to allow receiver to directly jump to 
open node
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Task Sharing Strategies

• Recomputation with backtracking
– Requires relative positions of workers for NCA 

computation
– Exchange guiding 

paths
– Variant:

• Estimate NCA using
broadcasts and half
splitting

open node  N

position of idle B 

root node

shared by A to B

position of  A 

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b} {not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents 

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

the last share choice point
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Task Sharing Strategies

• Recomputation with Reset
– Avoid lengthy backtracking
– No need for 

NCA
– Only need 

guiding path
– Variant:

• Stack splitting
for complete path
of A

open node  N

position of idle B 

root node
shared by A to B

position of  A 

a :- not b
b :- not a
c :- not d
d :- not c
e :- not f

a

{a, not b} {not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents 

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e {a, not b, not c, d}

B performs reset operation
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Task Sharing Strategies

• Copying
– Sender gives copy of its data structures to receiver

• State of rules and atoms 
• Atoms Stack

• Bottom-up approach
– Copy to the current position of sender
– Backtrack from there to open node
– Natural to use stack splitting techniques to share 

multiple nodes at once
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Task Sharing Strategies

• Incremental Copying
• Copy-All

position of idle B 

root node

position of  A 

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b} 
{not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents 

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

B performs copying operation

k :- not l
l :- not k

 {a, not b, not c, d, not e, f, not g, h, not k, l}

k

g

k{a, not b, c, not d,e, not f, g, not h}

A 

A 

B

B

{a, not b, c, not d,e, not f, g, not h, k, not l}

copying branch

position of idle B 

root node

position of  A 

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b} 
{not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents 

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

B performs copying operation

k :- not l
l :- not k

 {a, not b, not c, d, not e, f, not g, h, not k, l}

k

g

k{a, not b, c, not d,e, not f, g, not h}

A 

A 

B

B

{a, not b, c, not d,e, not f, g, not h, k, not l}

copying branch
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Task Sharing Strategies

• No clear winner!
• 60% variance in some 

cases
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Scheduling

• Which workers will be involved
• Dimensions

– Centralized vs Decentralized scheduling
– Worker selection

• Random
• Based on local load
• Based on location

– Who initiates scheduling
• Sender initiated vs. Receiver initiated
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Centralized vs. Decentralized
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Production Systems: clasp
• Several multi-threaded versions

– claspar
– clasp 2

• Two approaches to parallelism
– Vertical parallelism

• Centralized Scheduling – queue of guiding paths
• Dynamic load balancing
• Up to 64 threads

– Portfolio parallelism
• Advantage of threads

– Easier to communicate
– E.g., exchange of learned nogoods

• Short nogoods only
• Various filters to decide which nogoods to accept (e.g., how relevant to the 

current computation; how long; how many decision levels of literals)

Martin Gebser, Benjamin Kaufmann, Torsten Schaub, 2012. Multi-threaded ASP solving with clasp. TPLP 12(4-5): 525-545
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Production Systems: DLV

• Two core forms of parallelism 
– Portfolio Parallelism

• Each thread solves the problem with a different 
branching heuristic

• Stop as soon as a thread finds a model

– Parallel Grounding

Simona Perri, Francesco Ricca, Marco Sirianni: Parallel instantiation of ASP programs: techniques and experiments. TPLP 13(2): 253-278 (2013)



KLAP Laboratory

DLV: Parallel Grounding

• ASP solvers use ground programs
• Three levels of parallelization of grounding

1. Components: 
• Strongly connected components of the predicate dependency 

graph (components)
• Topological sorting guides grounding
• Components that do not have dependencies can be grounded in 

parallel
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DLV

2. Rules within one 3. Single Rule 
component      

Component

Components

                                    Exit rule:
       h :- b1, …, bk, not c1, …

                           Recursive rule:
       a :- p1, …, ph, not d1, …

head :- b1, b2, …,  bi,   …, not c1, …

head :- b1, b2, …,  bi,   …, not c1, … head :- b1, b2, …,  bi,   …, not c1, …
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DLV
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Going BIG

• Issues of size are becoming common
– ASP with its grounding requirements

• E.g., encoding Biochemical Pathway planning benchmarks
• ASP can ground only instances with less than 70 actions 

(instances 1-4)
• Out of memory from Instance 5 (163 actions)

– Use of LP techniques for processing knowledge 
bases (e.g., RDF stores)

• E.g., CDAOStore, 957GB, 5 Billion RDF triples
• Distribution as a way to scale

– Challenging to distribute data and ensure reliability
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Big Data

• Distributed File Systems
– Global file namespace
– Google GFS, Hadoop HDFS, …
– Replication for seamless recovery from disk/machine 

failures
• Chunk Servers

– Files split into chunks (16-64MB)
– Chunks replicated (2x or 3x) to different racks
– Chunk servers are also compute servers
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MapReduce and Friends

• Programming models
– Designed to operate on DFS

• MapReduce

Map
tasks

Reduce
tasks

Input
from
DFS

Output
to DFS

“key”-value
pairs

Map1 Reduce1 Map2 Reduce2 Map3 Reduce3 

Map(Long key, String Value):
forall word in Value do

emit(word, 1);
endforall

Reduce(String key, Iterator Values)
int count=0;
forall val in Values do

count+=val
endforall
emit(key, count);
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From Natural Joins to Datalog

• p(X,Y) :- q(X,Z), r(Z,Y).
– Map produces:

• [z, (x,q)] for each incoming q(x,z) fact
• [z, (y,r)] for each incoming r(z,y) fact

– Reduce
• Input: (z, L) where L=[ (x,q), (x’,q), (y,r), (y’,r),…]
• Output: p(x,y) for each (x,q) ∊ L and (y,r) ∊ L

New Mexico State University

F. Afrati, J. Ullman. 2010. Optimizing Joins in a Map-Reduce Environment. ACM EDBT, ACM Press.
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From Natural Joins to Datalog

• p(X,Y) :- q(X,Z), r(Z,T), s(T,Y).
– Assume k = z * t reducers
– Map: Tuple r(b,c) generates key-value:

[(hashz(b),hasht(c)),r]
– Map: Tuple q(a,b) generates key-values:

[(hashz(b), k), (a,q)] for each k=1,…,t
– Map: Tuple s(c,d) generates key-values:

[(k, hasht(c)), (d,s)] for each k=1,…,z
– Reducer (i,j): for each (a,q), (d,s), r produce

p(a,d)

New Mexico State University
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From Natural Joins to Datalog

• Additional considerations
– HaLoop: iteration of MapReduce reducing 

communication
– Set of tasks for each rule in the program
– Need to add another layer of MapReduce to 

remove duplicates
• MAP: for each p(a,b) generate (p,hash(a,b))
• Reduce: stores (a,b), forwards it only the first time

New Mexico State University
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Specialized applications

• WebPIE
– RDFS and OWL-Horst Reasoning

• RDFS: only 2 subgoals in each rule; many are small
• RDFS: can order rules to reduce number of iterations

• Defeasible Logic
– Stratified Datalog
– Ordered rules with 

defeasible conclusions
– One set of tasks for each 

strata
• First MapReduce task to 

determine rules that fire
• Second MapReduce task to 

apply defeasibility principles

New Mexico State University
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Well-Founded Semantics

• WFS
– Logic Programming with negation as failure

p(X) :- a(X), not b(X)
– Partial Interpretation: 

• Consistent set of literals (e.g., p(a), not b(c), …)
– Extended Immediate Consequence Operator

– Alternating fixpoint

– Fixpoint (Ki,Ui)=(Ki+1,Ui+1)
• W* = Ki ∪ {not A| A ∉ Ui}

TP,J (I ) = A | A :−Body ∈ ground(P), pos(Body)⊆ I,neg(Body)∩ J =∅{ }
K0 = lfp(TP+ )
Ki+1 = lfp(TP,Ui

)
U0 = lfp(TP,Ko

)
Ui+1 = lfp(TP,Ki+1 )

I. Tachmazidis, G. Antoniou, W. Faber “Efficient Computation of the Well-Founded Semantics over Big Data.” TPLP 14(4-5): 445-459 (2014)
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WFS and MapReduce

• TP,J(I): MapReduce for a typical rule
q(X,Y) :- a(X,Z), b(Z,Y), not c(X,Z).

• I={a(1,2), a(1,3), b(2,4), b(3,5)}     J={c(1,2)}
• 2-Phase Computation

1. Positive Part Join – standard 2-way or multi-way join; 
use tuples from I

• Map: produces 
<2,(a,1)> <3,(a,1)> <2,(b,4)> <3,(b,5)>

• Reduce: 
receives <2, [(a,1), (b,4)]> <3, [(a,1), (b,5)]>
produces ab(1,2,4) and ab(1,3,5)
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WFS and MapReduce

2. Anti-Join: Use tuples from first step and 
tuples from J

• Map: produces 
<(1,2),(ab,4)> <(1,3),(ab,5)> <(1,2),(c)>

• Reduce: 
receives <(1,2), [(ab,4),(c)]> and 

<(1,3),[(ab,5)]>
produces abc(1,3,5)

q(X,Y) :- ab(X,Z,Y), not c(X,Z).
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WFS and MapReduce

win(X) :- move(X,Y), not win(Y)

Cyclic facts:
move(1,2), move(2,3),…move(n,1)

tc(X,Y) :- par(X,Y).   
tc(X,Y) :- par(X,Z), tc(Z,Y).
par(X,Y) :- b(X,Y), not  q(X,Y).
par(X,Y) :- b(X,Y), b(Y,Z), not  q(Y,Z).
q(X,Y) :- b(Z,X), b(X,Y), not  q(Z,X).

Chain facts:
b(i,i+k)  for 1 ≤ i ≤ n
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Towards ASP

• Computation view of ASP:
– Computation: sequence of sets of atoms

X0=∅ ⊆ X1⊆ X2⊆…
– Properties

• Revision: Xi⊆ TP(Xi-1)

• Convergence: 

• Persistence: p∈ Xi∖Xi-1 then there is a rule p:-Body such 
that Xj ⊨ Body for each j ≥ i

– M is an answer set iff there computation that 
converges to M

Xi = TP Xi
i≥0
∪
"

#
$

%

&
'

i≥0
∪
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GPGPU

• GPUs
– Highly parallel architectures
– Inexpensive

• GPGPU: General Purpose GPU
– Vendors provide APIs and programming frameworks 

for general purpose applications
– Use GPUs as massively parallel architectures for 

general purpose computing
– OpenCL
– Compute Unified Device Architecture (CUDA)
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CUDA

• Designed for data oriented applications
• Heterogeneous serial-parallel computing
• C for CUDA – extension to C
• SIMT – Single Instruction Multiple Thread

– Same instruction executed by different threads
– Data might be different from thread to thread
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CUDA

• The “physical” view S
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CUDA

• The “logical” view
– Hybrid program

• Host functions: executed on the CPU ( __host__ )
• Kernels: executed on the GPU 

( __global__ or __device__ )
– Programmer responsible for

• Determine threads to be launched 
on the GPU

• Data organization 
– E.g., __device__ or __shared__

• data movements between CPU and 
GPU

– cudaMemcpy
• Synchronization, memory 

management, …
– synchtreads()
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CUDA

• Kernel executed by many threads
– Very lightweight
– Fast context switch

• Threads organization
– 2D collection of threads

(Block)
• Threads can synchronize
• Threads can use 

shared memory
– 3D collection of blocks

(Grid)
• Blocks can interact through

Global memory
HOST

GLOBAL MEMORY

CONSTANT MEMORY

Shared 
memory

Thread Thread

regs regs

Block

Shared 
memory

Thread Thread

regs regs

Block

GRID
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GPU and LP

• Very limited applications of GPU-level 
parallelism directly to LP
– But growing fast…
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Datalog in CUDA

• Datalog execution as relational algebra operations

example(Z,X) :- table1(Y,X), table2(Y,Z,a), table3(Z,B,C).

example(Z,X) :- temptable1(Y,X,Z), table3(Z,B,C).

example(Z,X) :- temptable2(Y,X,Z,B,C).

example(Z,X).

selection

Join over Y

Join over Z

Projection over Z,X

C. Martinez-Angeles, I. Dutra, V. Santos Costa, J.Buenabad-Chavez, 2013. 
A Datalog Engine for GPUs. KDPD: 152-168
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Datalog in CUDA

• Host: 
– Maintain facts in global 

memory 
– Explicit memory management 

• List with least recently used facts 
at the end

• Selection: 3 kernels
1. Mark all rows that satisfy 

selection condition
2. Count marked rows (using prefix 

sum)
3. Write results in global memory 

(use results of prefix sum as 
indices)

• Projection: 
– 1 kernel, copy rows

• Join: 
– Extract arrays of two columns to 

join
– Sort one and create a CSS-Tree 

for it
– Search tree to determine join 

positions
– First join will count successful 

joined elements
– Second join will write the results
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Datalog in CUDA
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More General LP

• Not there yet
• But…

– Many components have been investigated
– Applied to similar frameworks
– Work is in progress…
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GPGPU and Search

• Parallelizing depth-first search (e.g., Prolog)
– Distributing 

the actual 
search is 
challenging

• Lots of 
subtrees, 
high memory 
cost, no 
coalescing

– Need many threads
for hiding memory
latencies

Backtracking GPU
Problem Instance Irregular Access Regular access, 

locality

Work Unit Memory, Computation 
Variable

Constant size, 
perfect SIMD

Output Exponential Size 
(enumerate); hard to 
estimate

Polynomial size, a-
priori

Search Space Tree-based, unbalanced Fixed, a-priori

J. Jenkins, I. Arkatkar, J.D. Owens, A.N. Choudhary, N.F. Samatova: Lessons Learned from Exploring the 
Backtracking Paradigm on the GPU. Euro-Par (2) 2011: 425-437
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GPGPU and Search

• Most successful search 
problems on GPUs
– Ability to remove stack and 

perform breadth-first traversal
– Ability to exploit fine-grained 

parallelism within each node
• Maintain a depth-first 

exploration, e.g.,
– Construction of next states 

(parallel maximal cliques 
enumeration)

– Evaluate bounds (B&B)

Ava80 Slp rmat1 rmat2

CPU 1-core 3.6 15.7 24.6 108

CPU 4-core no lb 1.2 5.1 13.8 59

CPU 4-core lb 1.1 3.8 8.19 33.2

GPU 0.9 11.2 10.8 60.5

Problem Size CPU time 
(s)

GPU time 
(s)

Speedup

100 1.59 0.41 3.84

200 4.85 0.91 5.33

300 9.82 1.44 6.80

400 10.94 1.27 8.61

500 13.39 1.44 9.27
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GPGPU and Search

• Effective for enhanced local search

New Mexico State University

Hamming Distance 1 Hamming Distance 2

Instance CPU GPU Speedup CPU GPU Speedup

121 1.4 1.5 0.9 106 5.2 20.4

151 2.1 1.7 1.2 193 8.0 24.1

171 2.7 1.9 1.4 305 11.3 26.9

201 3.8 2.2 1.7 455 17.6 29.5

N. Melab et al. “ParadisEO-MO-GPU: a Framework for Parallel GPU-based Local Search Metaheuristics” GECCO, ACM Press, 2013.
T. Van Luong et al. “A GPU-based Iterated Tabu Search for Solving the Quadratic 3-dimensional Assignment Problem”, AICCSA, IEEE Press, 2010.
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GPGPU and SAT

• Parallelizing DPLL
DPLL(!,ϑ):
ϑ’ = unit_propagation(!,ϑ)
if (satisfied(!ϑ’)) then 
    return ϑ’
else if (falsified(!ϑ’)) then
    return FALSE
else
    X = select_variable(!,ϑ’))
    ϑ1 = ϑ ⋃"{X/TRUE};
    ϑ2 = ϑ ⋃"{X/FALSE};
    if (DPLL(!,ϑ1)) then
        return ϑ1
   else return DPLL(!,ϑ2))

A. Dal Palu, A. Dovier, A. Formisano, E. Pontelli. (to appear). 
CUD@SAT: SAT Solving on GPUs. 
Journal of Experimental and Theoretical AI.
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GPGPU and SAT

• Majority of the efforts
– E.g., MESP (miniSAT Enhanced with Survey Propagation)

• Parallelizing Unit Propagation
– Given a partial assignment ϑ: mask array

• mask[i]=0 if clause i is satisfied by ϑ
• mask[i]=-1 if clause i is falsified by ϑ
• mask[i]=u if there are u > 0 unknown literals in clause i and ϑ does 

not satisfy the clause
– mask_prop procedure: returns

• -1 if there is a value of i such that mask[i]=-1
• 0 if mask[i]=0 for all clauses
• Pointer to an unknown literal in clause i where mask[i]>0 and mask[i] 

is minimal among all those with mask[i]>0
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GPGPU and SAT
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GPGPU and SAT
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GPGPU and SAT

• Parallelizing Search
– Focus on tail of the search
– If/when the formula (reduced by current ϑ) is 

“large but not huge”, we can parallelize the 
search in it
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GPGPU and SAT

• Idea:
– MaxV variables undefined (sorted)
– First log2(B) variables are 

deterministically assigned in each block
• All threads in one block assign same truth 

value to such variables

– Next log2(T) variables are 
deterministically assigned in each 
thread

– Thread performs an iterative DPLL on 
the remaining 
MaxV-log2(B)-log2(T) variables

Block i

Th
re

ad
 j
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GPGPU and SAT

Benchmark Host-only Vars Clauses Speed-up MaxV-B-T
marg3x3add8.shuffled-
as.sat03-1449

1242 41 224 88.3 35-6-7

marg3x3add8ch.shuffled-
as.sat03-1448

1751 41 272 92.7 35-6-7

battleship-5-8-unsat 2.26 40 105 7.1 40-8-8

battleship-6-9-unsat 69.38 54 171 6.2 54-10-8

unif-k5-r21.3-v50-c1065-
S1449708927-022

220.92 50 1065 12.9 50-6-7

unif-k5-r21.3-v50-c1065-
S370067727-038

213.95 50 1065 11.4 50-7-7

sgen1-unsat-61-100 440.49 61 132 7.8 61-7-7

Jnh16 53.14 100 850 4 100-8-8
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Towards GPGPU and ASP

• Compute assignments 
A ⊆{Tp | p is an atom} ∪ {Fp | p is an atom}

• Computation based on 
– Selection
– Propagation

• Based on nogoods Δ𝚷 for a program 𝚷
(set of literals that cannot be extended into an answer set)

• Two classes of nogoods
– Completion nogoods
– Loop nogoods

• A violates nogood δ if δ ⊆A
• A is an answer set of program 𝚷 iff A is a solution of Δ𝚷

F. Vella, A. Dal Palù, A. Dovier, A. Formisano, E. Pontelli: CUD@ASP: Experimenting with GPGPUs in ASP solving. 
CILC 2013: 163-177
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1: A = ∅; dl = 0; Δ𝚷=Parse(𝚷);
2: loop
3:    conflict = NoGoodsCheck(A, Δ𝚷)
4:    if (conflict∧(dl=0)) then return No Answer Set
5:    if (conflict ∧ dl > 0) then
6:        (dl,δ) = ConflictAnalysis(A, Δ𝚷)
7:        Δ𝚷 = Δ𝚷 ∪ δ
8:        A = A ∖ { p ∈ A| dl < dl(p) }
9:    else if there is δ∈Δ𝚷 such that δ∖A={p} then
10:      A = UnitPropagation(A, Δ𝚷)
11:      Δ𝚷 = UnfoundedSetCheck(A, Δ𝚷)
12:  else if unassigned atoms ≥ k then
13:      A = Select(A)
14:   else if 0 < unassigned atoms < k then 
15:      A = ExhaustiveSearch(A)
16:      if StableTest(A, 𝚷) then return A
17:      else Δ𝚷 = LearnNoGoods(A, 𝚷)
18:  else return A
19: endloop

Towards GPGPU and ASP

• From a sequential ASP solver to a GPU-solver

1: A = ∅; dl = 0; Δ𝚷=Parse(𝚷);
2: loop
3:    conflict = NoGoodsCheck(A, Δ𝚷)
4:    if (conflict ∧ (dl=0)) then return No Answer Set
5:    if (conflict ∧ dl > 0) then
6:        (dl,δ) = ConflictAnalysis(A, Δ𝚷)
7:        Δ𝚷 = Δ𝚷 ∪ δ
8:        A = A ∖ { p ∈ A| dl < dl(p) }
9:    else if there is δ∈Δ𝚷 such that δ∖A={p} then
10:      A = UnitPropagation(A, Δ𝚷)
11:      Δ𝚷 = UnfoundedSetCheck(A, Δ𝚷)
12:  else if unassigned atoms > 0 then
13:      A = Select(A)
14:  else return A
15: endloop
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Towards GPGPU and ASP

Problem Smodels Cmodels Clasp-None Clasp Yasmin

channelRoute_3 2.08 1.42 69.27 0.24 0.37

Knights_17 0.91 1.99 0.05 0.06 0.16

Knights_20 9.61 3.85 0.22 0.2 0.46

Schur_4_42 0.07 0.6 0.02 0.05 0.07

Problem GT250 GT460 C2075 K20c K80 Titan Titan X

0001-visitall-14-1 128 93 70 46 34 14 13

0007-graph colouring-125-0 214 155 134 91 64 66 29

0023-labyrinth-11-0 TO 899 TO 314 51 51 49

0167-sokoban-15-1 102 40 33 59 63 71 28
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CONCLUDING REMARKS

New Mexico State University
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In summary…

• Decades of research on extracting parallelism from logic based 
paradigms

• Research has informed developments in many related areas
• Many opportunities

– Novel applications with high performance demands
– Avoids many challenges present in other paradigms
– Features suitable to parallelization, e.g.,

• Search and non-determinism
• Language features (e.g., map, list processing)

• Many challenges
– Memory management
– Granularity
– Static analysis

New Mexico State University
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Logic Programming

• Definite programs (Pure Prolog, Datalog)
– Collection of first-order Horn clauses

reachable(X) :- edge(Y,X), reachable(Y).

– Declarative semantics based on 
least Herbrand model

New Mexico State University

))()(),((, XreachableYreachableYXedgeYX →∧∀
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Logic Programming: Prolog

• Typical Operational Semantics: SLD Resolution
– Top-down, goal oriented

• Language enriched with extra-logical constructs
– I/O and other side effects
– Control operators 

(e.g., cut, oneof, freeze)
– Embedding of other

“pre-interpreted” constructs
• Compiled-based implementations

– Warren Abstract Machine (WAM) 

New Mexico State University

a(X) :- b(X), !, c(X).
a(X) :- d(X).

a(X) :- write(X), nl, c(X).

a(X,Y) :- X:1..4, X+Y#>0.
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Logic Programming: WAM

New Mexico State University
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Logic Programming

• Normal programs
– enter negation as failure

color(X,red) :- node(X), not color(X,blue).
– Alternative semantics

• Well-founded semantics [XSB, tabling]
• Answer set semantics [Answer Set Programming]

– Answer Set Programming
• Program = modeling of problem
• Solutions = answer sets of the program
• Execution Models

– bottom-up execution models (each solution = one answer set)
» variations of DPLL
» mapping to SAT


