
New Mexico State University

The Yesterday, Today, and Tomorrow of
Parallelism in Logic Programming

Enrico Pontelli
Department of Computer Science
New Mexico State University

KLAP Laboratory New Mexico State University

Tutorial Roadmap

Prolog

ASP

Going
Large

Going
Small

Basics

Systems
clasp

Yesterday Today (Early)
Tomorrow

KLAP Laboratory

Let’s get Started!

New Mexico State University

KLAP Laboratory New Mexico State University

Tutorial Roadmap

Prolog

ASP

Going
Large

Going
Small

Basics

Systems
clasp

Yesterday Today (Early)
Tomorrow

KLAP Laboratory 5

Prolog Programs

• Program = a bunch of axioms
• Run your program by:

– Enter a series of facts and axioms
– Pose a query
– System tries to prove your query by finding a series

of inference steps

• “Philosophically” declarative
• Actual implementations are deterministic

KLAP Laboratory 6

Horn Clauses (Axioms)

• Axioms in logic languages are written:

H :- B1, B2,….,B3

Facts = clause with head and no body.
Rules = have both head and body.

Query – can be thought of as a clause with no
body.

KLAP Laboratory 7

Terms

• H and B are terms.
• Terms =

– Atoms - begin with lowercase letters: x, y, z, fred
– Numbers: integers, reals
– Variables - begin with captial letters: X, Y, Z, Alist
– Structures: consist of an atom called a functor,

and a list of arguments. ex. edge(a,b).
line(1,2,4).

KLAP Laboratory 8

Backward Chaining

START WITH THE GOAL and work backwards,
attempting to decompose it into a set of (true)
clauses.

This is what the Prolog interpreter does.

KLAP Laboratory 9

Backtracking search

KLAP Laboratory

Assumption for this Tutorial

• Basic familiarity with Logic Programming
– Datalog (pure Horn clauses, no function symbols)
– Prolog

• SLD Resolution
• Extra-logical predicates
• Warren Abstract Machine (WAM)

– Negation as failure
• Well-founded semantics
• Answer Set Semantics

– Answer Set Programming

New Mexico State University

Te
m

p.
 R

eg
is

te
rs

X1

Xk

Current CP

Top of Stack

Current Env.

Top of Heap

Heap Top Prev. CP

Return Address

Instruction Pointer

Top of Trail

Machine
Registers

Local Stack

Choice Point Stack

choice point

environment

Machine State

A1

A2

Am

Arity

Next Alternative

C
al

l
A

rg
um

en
ts

Y1

Ym

Return Address

Lo
ca

l
Va

ria
bl

es

Prev. Environment

TRAIL CODE AREA HEAP

KLAP Laboratory

Why Parallelism?

• Thermal Wall
– Slowing increases in clock frequency
– Cooling
– Power consumption

http://www.r-bloggers.com/cpu-and-gpu-trends-over-time/

• Improve performance by placing
multiple cores on the same chip

KLAP Laboratory

Why Parallelism?

• Parallelism
– Use multiple computational units to

• Speed up problem resolution
• Scale up problem resolution

• Parallel Programming is HARD!
– High level and low level issues

• How to partition problem, control access to resources,
communication, etc.

• How to avoid race conditions, non-determinism, latencies,
Amhdahl’s law, optimize communication, etc.

KLAP Laboratory

Why Parallelism?

• Broad range of architectures

Copyright Advanced Micro Devices, Inc.
Source: anandtech.com

Source: NVIDIA, Inc.

KLAP Laboratory

Some Basic Terms from Parallel Programming

• Task:
– Discrete section of computation (typically assigned to a processing unit)

• Scalability:
– Capability to improve performance as more resources are made available

• Performance Measurements
– Time

• Sequential: Tseq
• Parallel: Tn
• Overhead: T1/Tseq
• Speedup: Tseq / Tn

• Granularity
– “Size” of the tasks performed in parallel

• Coarse: large amounts of computation between communication steps
• Fine: small amounts of computation between communication steps

KLAP Laboratory

MOTIVATIONS

New Mexico State University

KLAP Laboratory

Motivations

• Sequential systems are highly optimized
– E.g., highly competitive ASP systems

• Desire to apply to even more complex and
challenging real-world problems
– Ontologies and knowledge representation
– Planning
– Bioinformatics
– NLP

• Pushing the limit of sequential systems

KLAP Laboratory

Logic Programming and Parallelism

• Interest spawned by
– LP ⇒ Declarative Language ⇒

Limited or No Control ⇒ Limited Dependences ⇒ Easy
Parallelism

– Everlasting myth of “LP = slow execution”
• LP considered suited for parallel execution since its

inception
– Kowalski “Logic for Problem Solving” (1979)
– Pollard’s Ph.D. Thesis (1981)

New Mexico State University

G. Pollard. Parallel Execution of Horn Clause Programs. Ph.D. Dissertation, Imperial College, 1981.

KLAP Laboratory New Mexico State University

Tutorial Roadmap

Prolog

ASP

Going
Large

Going
Small

Systems
clasp

Yesterday Today (Early)
Tomorrow

Basics

KLAP Laboratory

Let’s talk Parallel Prolog: The Past

• Approaches
– Explicit Schemes

• Message passing primitives (e.g., Delta-Prolog)
• Blackboard primitives (e.g., Jinni, CIAO Prolog)
• Dataflow/guarded languages (e.g., KLIC)
• Multi-threading (e.g., any modern Prolog system)

– Implicit (or mostly implicit) Schemes

New Mexico State University

KLAP Laboratory

Models of Parallelism

while (Query not empty) do
selectliteral B from Query
repeat

selectclause (H:-Body) from Program

until (unify(H,B) or no clauses left)
if (no clauses left) then FAIL
else

σ = MostGeneralUnifier(H,B)
Query = ((Query \ {B}) ∪ Body)σ

endif
endwhile

New Mexico State University

And-Parallelism

Or-Parallelism

Unification
Parallelism

KLAP Laboratory

Unification Parallelism

• Parallelize term-reduction stage of unification

• Not a major focus
– fine grained
– dependences – common variables
– SIMD algorithms (e.g., Barklund)

New Mexico State University

f (t1,…,tn) = f (s1,…,sn)!
t1 = s1
!

tn = sn

!

"

#
#
#
#

$

%

&
&
&
&

Barklund, J., Parallel Unification . Ph.D. thesis. Uppsala Theses in Computing Science No. 9/90.
Vitter, S. and Simons, R. Parallel Algorithms for Unification and Other Complete Problems in P. ACM Annual Conference, 1984.

KLAP Laboratory

OR-PARALLELISM

New Mexico State University

KLAP Laboratory 23

Or-parallelism: Principles

• concurrent execution of different clauses unifying with
a given subgoal
– or-tree
– or-agents

integr(X + Y, A + B) :- integr(X,A), integr(Y,B).
integr(X + Y, A × B) :- X = A1 × B, Y = A × B1, integr(A,A1), integr(B,B1).

?- integr(5 × X + ln X × X, Z).

• different threads compute different solutions: need to be
kept independent

KLAP Laboratory

Or-Parallelism

• Parallelize “don’t known” non-determinism in selecting
matching clauses
– Tasks correspond to different branches of the SLD-resolution

Tree
– Processes exploring distinct solutions to the goal
– Computations are (for the most part…) independent

• Environment representation problem
– Conditional variables
– At minimum: each process keeps copies of unbound ancestor

conditional variables

New Mexico State University

?- p(A)

A:

?- q(A) ?- r(A)

?- A=a ?- A=b

environment

choice point

choice point

a

b

p(X) :- q(X)
p(X) :- r(X)
q(Y) :- Y=a
q(Y) :- Y=b
…

KLAP Laboratory 25

Complexity

• Abstraction of the Or-parallel Execution as operation on
abstract data structures

• Program execution: construction of a (binary) labeled tree
– create_tree(γ)
– expand(u,γ1,γ2)
– remove(u)

• u ≤ v iff u is an ancestor of v
• variables: attributes of tree nodes
• Additional operations:

– assign(X,u)
– dereference(X,u)
– alias(X1,X2,u)

KLAP Laboratory 26

Complexity

• Restriction on assignments: for any two distinct nodes u,v
such that u ≤ v there are no assign(X,u) and assign(X,v)

• Problem: OP problem maintaining efficiently all these
operations (on-line)

• Complexity of the OP problem studied on pointer machines

KLAP Laboratory 27

Complexity Results

• Lower Bound:
Th.: The worst-case time complexity for the OP problem

on pointer machines is
Ω(lg N)

per operation.
General Idea: a pointer machine allows to access only a

“small” number of records in a constant number of
steps.

KLAP Laboratory 28

Complexity

• Notes:
– complexity results independent from the presence of aliasing

(aliasing can be shown to be equivalent to union-find)
– complexity results independent from remove operation

(can be handled in constant-time)

• Rather large distance in complexity.
• Comparison: Method Complexity

Best Known O(M N1/3)
Stack Copying O(M N)
Binding Arrays O(M N)
Directory Tree O(M N lg N)

KLAP Laboratory

Or-Parallelism: Classification Schemes

• Formalized in terms of three basic operations
– binding management scheme
– task switching scheme
– task creation scheme

• Binding Scheme
– Shared-tree methods
– Non shared-tree methods

• Task Switching Scheme
– copying schemes
– recomputation schemes

New Mexico State University

X:

Y:

X=a

X=f(Y)

Gupta, G. and Jayaraman, B. 1993a. Analysis of Or-parallel Execution Models. ACM Transactions on Programming Languages and Systems 15, 4, 659–680.
Ranjan, D., Pontelli, E., and Gupta, G. 1999. On the Complexity of Or-Parallelism. New Generation Computing 17, 3, 285–308.

KLAP Laboratory

Or-Parallelism: Binding Schemes

• Shared Tree:
Binding Arrays

New Mexico State University

X: #0

Y: #1

Z: #2

Y=a Y=b

Proc. 0
#0
#1
#2

Proc. 1
#0
#1
#2

a b

Warren, D. H. D. 1987b. OR-Parallel Execution Models of Prolog. In Proceedings of TAPSOFT,
Lecture Notes in Computer Science. Springer-Verlag, 243–259.

KLAP Laboratory

Binding Array

• constant-time variable access (one level of indirection)
• non constant-time task switching:

p(X,Y) :- … X=a,.. q(Y,Z) …
p(X,Y) :- …

q(Y,Z) :- …Y=b, .. r(Z)…
q(Y,Z) :- ….

r(Z) :- … Z= …
r(Z) :- … Z=...

Z=...

1

2

3

processor 1 1X:
Y: 2

Z: 3

a
b
... 1

2

3

...

...

...

processor 2

KLAP Laboratory

Stack Copying

• Solve environment representation by duplicating the
shared part of the computation tree

Processor 1 Processor 2

KLAP Laboratory

Stack Copying

• Synchronization on shared choice points

?- …, p(X), …
p(1) :- …
p(2) :- …
p(3) :- ...

X=2
X=3X=1X=1 X=2 X=3

KLAP Laboratory

Stack Copying

• Solution: make use of Shared Frames

Processor 1

a
b

c

d e

f

Processor 2Processor 1

a b

c

d e
f

KLAP Laboratory

Or-Parallelism: Binding Schemes

• Stack Copying

New Mexico State University

Local Space Proc. 0 Local Space Proc. 1
CP CP EnvEnv HeapHeap TrailTrail

Shared
Space

• Incrementality

Ali, K. and Karlsson, R. 1990b. The MUSE Approach to Or-Parallel Prolog.
International Journal of Parallel Programming 19, 2, 129–162. P

Q

Old
Shared

Part

New
Shared

Part

Local Space of P
ChPt Env Heap Trail

KLAP Laboratory

AND PARALLELISM

New Mexico State University

KLAP Laboratory

And-Parallelism

• Concurrent execution of different literals in a resolvent
• Mostly organized as fork-join structures

New Mexico State University

integr(X + Y, Z) :- integr(X,A), integr(Y,B), Z = A + B.

parallel literals continuation
?- integr(X+Y,Z)

?- integr(X,A), integr(Y,B)

integr(X,A) integr(Y,B)

Z = A + B

KLAP Laboratory

And-Parallelism

• Two traditional forms
– Independent And-Parallelism

• runtime access to independent sets of variables

New Mexico State University

quick(In,Out) :- partition(In,First,Low,High),
(indep(Low,High) => quick(Low,SLow) & quick(High,SHigh)

; quick(Low,SLow) , quick(High,SHigh)
),
append(SLow,[First|SHigh],Out).

test

parallel case

sequential case

Hermenegildo, M. 1986. An Abstract Machine for Restricted AND-parallel Execution of Logic Programs.
In Proceedings of the International Conference on Logic Programming, Springer-Verlag, 25–40.

KLAP Laboratory

And-Parallelism

New Mexico State University

p, (p1 & p2 & p3), p4...

Processor 1 Processor 3Processor 2

Chpt Stack Chpt StackChpt Stack
p

p1 & p2 & p3

p

p2
p3

Goal Stack

parcall
frame

processor 3

processor 2

processor 1

p1

p2

p3

KLAP Laboratory

And-Parallelism

New Mexico State University

p, (p1 & p2 & p3), p4...

Processor 1 Processor 3Processor 2

Chpt Stack

Goal Stack

p2
p

p1 & p2 & p3 Chpt Stack
p

parcall
frame

p1

Chpt Stack

p3output
frame

p4

KLAP Laboratory

And-Parallelism

• Backtracking

New Mexico State University

p1(..), (<cond> ⇒ p2(..) & p3(..) & p4(..)), p5(..)

KLAP Laboratory

And-Parallelism

• Outside backtracking

• Standard right-to-left
– across processors

• Public vs Private Backtracking
– skip deterministic goals

• Choice points linearization
– restart in parallel

New Mexico State University

b(..), (<cond> ⇒ c(..) & d(..) & e(..)), f(..)

a

b

c d e

4

1

2
3

Choice-point

Links

a , (p & q & r & s)

a

p q r s Parallel Call

KLAP Laboratory

And-Parallelism

• Inside backtracking

• Optimizations
– Speculative Backtracking + Memoization

New Mexico State University

p1(..), (<cond> ⇒ p2(..) & p3(..) & p4(..)), p5(..)
killkill

Pontelli, E. and Gupta, G. 2001, Backtracking in Independent And-Parallel Implementations of Logic Programming Languages.
IEEE Trans. Parallel Distrib. Syst. 12(11): 1169-1189.

P. Chico de Guzmán, A. Casas, M. Carro, M.V. Hermenegildo:2011. Parallel backtracking with answer memoing for independent
and-parallelism. TPLP 11(4-5): 555-574

KLAP Laboratory

And-Parallelism

• Dependent and-parallelism
p(X) & q(X)

– Goals
• consistent bindings
• reproduce Prolog observable behavior

– Different Degrees of Dependence
• non-conflicting: actually no conflict is present on shared variables

(e.g., Non-strict Independence)
• determinate: only determinate parallel subgoals (e.g., Basic Andorra

Model)
• unrestricted: no restrictions on parallel subgoals (e.g., DDAS, ACE)

New Mexico State University

Shen, K. 1996. Overview of DASWAM: Exploitation of Dependent And-Parallelism. Journal of Logic Programming 29, 1/3, 245–293.
Pontelli, E. and Gupta, G. 1997. Implementation Mechanisms for Dependent And-Parallelism. In

Proceedings of the International Conference on Logic Programming, L. Naish, Ed. MIT Press, Cambridge, MA, 123–137.

KLAP Laboratory

And-Parallelism

– Common approach
• dynamic classification of subgoals as producers/consumers

– Produces are allowed to bind variables
– Consumers can only read bindings, not create them

• several complex schemes (e.g., filtered binding model, DDAS)
– Complex backtracking

New Mexico State University

p(X) q(X) Time

X=1

?- p(X) & q(X)
p(2).
p(1).
q(3).
q(2).

su
sp

en
de

d
co

m
pu

ta
tio

n

producer consumer

KLAP Laboratory

Backtracking

• Backward execution is complex!
– Outside Backtracking: unchanged
– Inside Backtracking: backtracking is not “independent”

p & q & r

n In indep. and-parallelism: backtracking in q will affect p, r
only if q completely fails.

n In dependent and-parallelism even backtracking inside a
subgoal may affect other subgoals - due to dependent variables

KLAP Laboratory

Backtracking

• propagation of backtracking across subgoals
– a new notion of speculative work: dependent and-parallel computations

which consume a conditional binding

p(X) & q(X,Y) & r(Y,Z)

fail

X=1 X=2
X=1 X=3 X=2

Y=a

Y=a Y=c

Y=c
Z=10 Z=-2

p(X) & q(X,Y) & r(Y,Z)

fail

X=1 X=2
X=1X=3X=2

Y=a

Y=a Y=c

Y=c
Z=10 Z=-2

KLAP Laboratory 48

Backtracking

• Extended Point-Backtracking
– subgoals subdivided into groups;
– if G1 and G2 are two groups, then vars(G1) ∩ vars(G2) = ∅

n groups are independent - if a group fails, then the whole parallel call fails
n inside a group:

n if leftmost subgoal of group fails then the whole group fails (e.g., c(B))
n if non-leftmost subgoal of group fails then backtracking should continue in the

immediately preceding subgoal in the group (e.g., from b(A) to a(A))
n if a subgoals untrails a dependent variable, then all the subgoals on its right in

the group are restarted (e.g., a(A) changes the value of A, then b(A) and f(A)
are restarted)

a(A) b(A) c(B) d(C) e(B) f(A)& & & & &

KLAP Laboratory

Committed-choice Languages

• “The Great Schism” [Warren’93]
• or-control: committed-choice selectclause does not generate

choice points
• and-control: data-flow dependent and-parallelism

p(...) :- guard1, ..., guardn | goal1, ..., goalm
n producer-consumer management of dependent and-parallelism
n producer/consumers detected through

n modes (Parlog)
n variable annotations (Concurrent Prolog)
n implicit modes (GHC, KL1)

n guards not allowed to bind external variables (suspends)

?- p(X), q(X). p(A) :- A=ok | ...
q(B) :- true | B = ok.

KLAP Laboratory

MORE RECENT APPROACHES

New Mexico State University

KLAP Laboratory

More Recent Techniques

• Or-Parallelism via Stack Splitting
• Copy nodes from P to Q

– Incremental Copying:
• From bottommost open node of

P to bottommost node in common
with Q

– (on shared memory):
• Create shared frames for copied

nodes

New Mexico State University

CP1

CP2

CP3

CP4

P

a1
a2

b1 b2

b3
b4

c1
c2

c3

d1 d2

Q

KLAP Laboratory

Vertical Stack Splitting

CP1

CP2

CP3

CP4

P

a1
a2

b1 b2

b3
b4

c1
c2

c3

d1 d2

CP1

CP2

CP3

CP4

P

a1

b1 b2

b3
b4

c1

d1 d2

CP1

CP2

CP3

Q

a1
a2

b1

c3

E. Pontelli, K. Villaverde, H-F. Guo, G.Gupta. 2006. Stack splitting: A technique for efficient exploitation of search
parallelism on share-nothing platforms. J. Parallel Distrib. Comput. 66(10): 1267-1293.

KLAP Laboratory

Horizontal Stack Splitting

CP1

CP2

CP3

CP4

P

a1
a2

b1 b2

b3
b4

c1
c2

c3

d1 d2

CP1

CP2

CP3

CP4

P

a1
a2

b1

b3

c1
c2

d1

Q

CP1

CP2

CP3

CP4

a1

b1 b2

b4

c1

c3

d2

KLAP Laboratory

Half Stack Splitting

CP1

CP2

CP3

CP4

P

a1
a2

b1 b2

b3
b4

c1
c2

c3

d1 d2

CP1

CP2

CP3

CP4

P

a1

b1

c1
c2

c3

d1 d2

Q

CP1

CP2

a1
a2

b2
b3

b4

R. Vieira, R. Rocha, R.M. A. Silva, 2013. On Comparing Alternative Splitting Strategies for Or-Parallel Prolog
Execution on Multicores. CoRR abs/1301.7690.

KLAP Laboratory

Side-Effects and order-sensitive predicates

• Side-effects are order-sensitive predicates: their behavior
depends on the order of execution

• E.g.,

write(1) write(2)

2
1

• Goal: recreate the same observable behavior of sequential Prolog
• Sequentialize order-sensitive predicates
• Sequential is opposite of Parallel…
• Dynamic vs. Static management of order-sensitive predicates

K. Villaverde, E. Pontelli, H-F. Guo, G. Gupta, 2003. A Methodology for Order-Sensitive Execution of Non-deterministic Languages
on Beowulf Platforms. Euro-Par, Springer Verlag, 694-703.

KLAP Laboratory

Order-sensitive Executions

• Idea: a side-effect should be delayed until all “preceding” side-
effects have been completed

• determining the exact time of execution: undecidable
• safe approximation: delay until all “impure” branches on the left

of the side-effects have been completed

side-effect

S

KLAP Laboratory

Order-sensitive predicates

• Standard Technique: maintain subroot nodes for each node
• Subroot(X) = root of largest subtree containing X in which X is

leftmost

• Aurora, Muse: O(n) algorithms for
maintaining subroot nodes

• possible to perform O(1)

KLAP Laboratory New Mexico State University

Tutorial Roadmap

ASP

Going
Large

Going
Small

Systems
clasp

Yesterday Today (Early)
Tomorrow

Basics Prolog

KLAP Laboratory

Where are the systems?
• Where are all the parallel LP systems???

New Mexico State University

System Status
MUSE One reference in www.sics.se

Andorra-I CLICK HERE

Aurora CLICK HERE

PEPSys ECLiPSe 5.10
“The parallel annotation specifies that the system is allowed to
execute the clauses of the annotated predicate in parallel “

Stack Splitting ALS-Prolog (PALS)
YAP Prolog (see later)

ACE Defunct

&-Prolog CIAO Prolog
Low-level concurrency (see later)

DDAS Defunct

KLIC CLICK HERE

KLAP Laboratory

YAP: Perfect Engineering of Or-P

• Supports Or-Parallelism through splitting
• Different engines

– YapOr:
• Shared memory system,

workers using processes
• Supports both

or-frames model and stack
splitting

– ThOr:
• Shared memory system, workers as threads

– More complex copying – require shifting pointers
• Easier to port on different platforms
• Restricted to pure Prolog

– Teams:
• Team = process
• Team members = threads within the process
• Designed to run on multiprocessors of multicores

J. Santos, R. Rocha, 2013. Or-Parallel Prolog Execution on Clusters of Multicores. SLATE, 9-20

KLAP Laboratory

CIAO Prolog: Making Parallel Prolog Boring

• High level parallel primitives
– Implement forms of parallelism in Prolog
– Original idea

• Codish & Shapiro (1987)
• &-Prolog CGE (1988)
• &-ACE DAP (1995)

• Raise implementation from abstract machine/compiler
to source code

• Experimented with at the level of IAP

New Mexico State University

A. Casas, M. Carro, M.V. Hermenegildo, 2008. A High-Level Implementation of Non-deterministic, Unrestricted,
Independent And-Parallelism. ICLP, Springer Verlag, 651-666

KLAP Laboratory

CIAO Prolog

• Source-level operators
– G &> H

• G scheduled for parallel execution
• Thread places goal on its goal queue
• H handler of G

– H <&
• Waits for goal with handler H to terminate
• Upon termination, all bindings of G are available

• Traditional & operator is now:
A & B :- A &> H, call(B), H<&.

KLAP Laboratory

Implementation

• Sample code fragment
Handler <& :-

enter_mutex_self,
(

goal_available(Handler) ->
exit_mutex_self,
retrieve_goal(Handler,Goal),
call(Goal)

;
check_if_finished_or_failed(Handler)

).
Handler <& :-

add_goal(Handler),
release_some_suspended_thread,
fail.

0

1

2

3

4

5

6

7

2 4 6 8

S
pe

ed
up

Number of Agents

AIAKL

Ann

Boyer

FFT

Mmatrix

Takeuchi

KLAP Laboratory

Systems

New Mexico State University

Tutorial Roadmap

ASP

Going
Large

Going
Small

clasp

Yesterday Today (Early)
Tomorrow

Basics Prolog

KLAP Laboratory

Parallelism in ASP

• Implementations based on search techniques
• Similar Foundations as Prolog
• First proposals in 2001

– Finkel et al. 2001 (parstab)
– Pontelli et al. 2001

E. Pontelli, O. El-Khatib: Exploiting Vertical Parallelism from Answer Set Programs. Answer Set Programming, AAAI Spring Symp., 2001
R. Finkel, V.Marek, N. Moore, M. Truszczynski: Computing stable models in parallel. Answer Set Programming, AAAI Spring Symp., 2001

KLAP Laboratory

Basic Procedure

• Both systems use Smodels as their core
Compute (P: Program)
1: S := <∅, ∅>
2: while (TRUE) do
3: S := EXPAND(P, S)
4: if (S+ ∩ S- ≠ ∅) then
5: return FAILURE
6: endif
7: if (S+∪S- = BΣ) then
8: return S
9: endif
10: choose either
11: S+ := S+∪ {CHOOSEP(S)} or
12: S- := S-∪ {CHOOSEP(S)}
13: endwhile

• Expand(Program, Partial Answer Set):
o Fixpoint computation
o Well-founded model that expands a

partial interpretation
• CHOOSEP(Partial Answer Set):

o Heuristic-based
o Other techniques (e.g., Lookahead)

KLAP Laboratory

Basic Procedure

HEAD

POSITIVE

NEGATIVE

Rule Descriptors

Head

Positive

Negative

Program

Rule Head List

Atom Head List

STACK

Atom Descriptors

KLAP Laboratory

Forms of Parallelism

p

q

r

p=truep=false

expand

expand

processor i

processor j

p

q

r

p=truep=false

expand

expand

processor i

processor j

Horizontal Parallelism Vertical Parallelism

KLAP Laboratory

Horizontal Parallelism

• Generic parallelization of the expand operation
attempted with very modest results

• In general, hard to produce great results
– Theoretical limitations:

• Analogous to unit propagation/arc consistency
• Problem is log-space complete in P
• [Kasif 90] unlikely there is a polylog time parallel algorithm

(using polynomial resources)
– Practical limitations: risk of highly sequential cases

q1. p1 :- q1. q2 :- p1. p2 :- q1. …

KLAP Laboratory

Horizontal Parallelism

• Parallel Lookahead
– Before selecting a chosen atom
– Test each undefined atom A:

EXPAND(S∪{A}) and EXPAND(S∪{not A})
• If one leads to contradiction: deterministically add the

complement
• If both lead to contradiction: backtrack
• Deterministic expansions; aid with heuristic

– Perform test of each atom A in parallel
M. Balduccini, E. Pontelli, O. El-Khatib, H. Le, 2005. Issues in parallel execution of non-monotonic reasoning systems.

Parallel Computing 31(6): 608-647.

KLAP Laboratory

Horizontal Parallelism

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50

tim
e

(s
ec

s)

agents

Times (Parallel Lookahead)

Color
Pigeon
Queen
Schur

KLAP Laboratory

Design of a Vertical Parallel Engine

• Explore search (or-) parallelism in ASP
• Initial phase

– Each worker receives complete ASP program
– Each worker receives a unique binary ID (e.g., 1011)
– Each worker uses ID to deterministically choose the first

branches

a1

a2

a3

a4 true
true

true

false

Worker: 1011

a1

a2

a3

a4
true

false

false

false

Worker: 0001

KLAP Laboratory

Design of a Vertical Parallel Engine

• Symmetrical workers
• Each worker alternates

– Computation: explore an assigned branch of the
search tree (local task)

– Load Balancing:
• Idle worker moves

to a different place
in the search tree

• Busy worker donates
unexplored branches
to idle worker Agent 1

Agent 2

Idle Agent
Destination

Agent 1

Agent 2
E. Pontelli, H. Le, T. Son, 2010. An investigation in parallel execution of answer set programs on

distributed memory platforms. Computer Languages, Systems & Structures 36(2): 158-202.

KLAP Laboratory

Design of a Vertical Parallel Engine

• Load Balancing composed of two activities
– Scheduling: Identify the new position for a worker

in the search tree
• Worker from whom we are taking a choice point

(sender)
• Choice point that we are taking from such worker

(open node)
– Task Sharing: Position the idle worker to its new

position

KLAP Laboratory

Task Sharing Strategies

• Two main categories
– Recomputation-based: Receiver repeats

computation of the sender to reach the open
node

– Copying-based: Sender provides copies of its
data structure to allow receiver to directly jump to
open node

KLAP Laboratory

Task Sharing Strategies

• Recomputation with backtracking
– Requires relative positions of workers for NCA

computation
– Exchange guiding

paths
– Variant:

• Estimate NCA using
broadcasts and half
splitting

open node N

position of idle B

root node

shared by A to B

position of A

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b} {not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

the last share choice point

KLAP Laboratory

Task Sharing Strategies

• Recomputation with Reset
– Avoid lengthy backtracking
– No need for

NCA
– Only need

guiding path
– Variant:

• Stack splitting
for complete path
of A

open node N

position of idle B

root node
shared by A to B

position of A

a :- not b
b :- not a
c :- not d
d :- not c
e :- not f

a

{a, not b} {not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e {a, not b, not c, d}

B performs reset operation

KLAP Laboratory

Task Sharing Strategies

• Copying
– Sender gives copy of its data structures to receiver

• State of rules and atoms
• Atoms Stack

• Bottom-up approach
– Copy to the current position of sender
– Backtrack from there to open node
– Natural to use stack splitting techniques to share

multiple nodes at once

KLAP Laboratory

Task Sharing Strategies

• Incremental Copying
• Copy-All

position of idle B

root node

position of A

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b}
{not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

B performs copying operation

k :- not l
l :- not k

 {a, not b, not c, d, not e, f, not g, h, not k, l}

k

g

k{a, not b, c, not d,e, not f, g, not h}

A

A

B

B

{a, not b, c, not d,e, not f, g, not h, k, not l}

copying branch

position of idle B

root node

position of A

a :- not b
b :- not a
c :- not d
d :- not c

e :- not f

a

{a, not b}
{not a, b}

 {a, not b, not c, d, not e, f}

e

the program

f :- not e
g :- not h
h :- not g

{a, not b, c, not d}

cc

A, B: the agents

g

 {a, not b, not c, d, not e, f, not g, h}

{a, not b, c, not d,e, not f}

open node
explored node

e
{a, not b, not c, d}

B performs copying operation

k :- not l
l :- not k

 {a, not b, not c, d, not e, f, not g, h, not k, l}

k

g

k{a, not b, c, not d,e, not f, g, not h}

A

A

B

B

{a, not b, c, not d,e, not f, g, not h, k, not l}

copying branch

KLAP Laboratory

Task Sharing Strategies

• No clear winner!
• 60% variance in some

cases
puzzle

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10 12
number of agents

sp
ee

du
p

ReBackComp

ReBack

ReReset

ReResetSplit

CopyAll

IncCopySplit

IncCopySplitHistory

car plan

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10 12
number of agents

sp
ee

du
p

seating

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 8 10 12
number of agents

sp
ee

du
p

KLAP Laboratory

Scheduling

• Which workers will be involved
• Dimensions

– Centralized vs Decentralized scheduling
– Worker selection

• Random
• Based on local load
• Based on location

– Who initiates scheduling
• Sender initiated vs. Receiver initiated

KLAP Laboratory

Centralized vs. Decentralized

LP19

0

5

10

15

20

25

30

35

1 4 8 12 16 20 24 28 32
Num. of Agents

Sp
ee

du
p

LP22

0

5

10

15

20

25

1 4 8 12 16 20 24 28 32
Num.of Agents

Sp
ee

du
p

queen

0

4

8

12

16

20

24

28

32

1 4 8 12 16 20 24 28 32
Num. of Agents

Sp
ee

du
p

centralized
decentralized

Seating Problem

0

2

4

6

8

10

12

14

16

18

1 4 8 12 16 20 24 28 32
Num. of Agents

Sp
ee

du
p

C

C

C

C

C

0 5 10 15
No. of Agents

0

5

10

15

S
p

ee
d

u
p

Car
Lp17

Lp19

Lp22

Lp5C C

Adaptive Symmetric Scheduling
(Speedup Curves)

0 5 10 15
No. of Agents

0

5

10

15

S
p

ee
d

u
p

PigeonHole

Puzzle
Queen

Seating

VertexCover

Adaptive Symmetric Scheduling
(Speedup Curves)

KLAP Laboratory

Production Systems: clasp
• Several multi-threaded versions

– claspar
– clasp 2

• Two approaches to parallelism
– Vertical parallelism

• Centralized Scheduling – queue of guiding paths
• Dynamic load balancing
• Up to 64 threads

– Portfolio parallelism
• Advantage of threads

– Easier to communicate
– E.g., exchange of learned nogoods

• Short nogoods only
• Various filters to decide which nogoods to accept (e.g., how relevant to the

current computation; how long; how many decision levels of literals)

Martin Gebser, Benjamin Kaufmann, Torsten Schaub, 2012. Multi-threaded ASP solving with clasp. TPLP 12(4-5): 525-545

KLAP Laboratory

Production Systems: DLV

• Two core forms of parallelism
– Portfolio Parallelism

• Each thread solves the problem with a different
branching heuristic

• Stop as soon as a thread finds a model

– Parallel Grounding

Simona Perri, Francesco Ricca, Marco Sirianni: Parallel instantiation of ASP programs: techniques and experiments. TPLP 13(2): 253-278 (2013)

KLAP Laboratory

DLV: Parallel Grounding

• ASP solvers use ground programs
• Three levels of parallelization of grounding

1. Components:
• Strongly connected components of the predicate dependency

graph (components)
• Topological sorting guides grounding
• Components that do not have dependencies can be grounded in

parallel

KLAP Laboratory

DLV

2. Rules within one 3. Single Rule
component

Component

Components

 Exit rule:
 h :- b1, …, bk, not c1, …

 Recursive rule:
 a :- p1, …, ph, not d1, …

head :- b1, b2, …, bi, …, not c1, …

head :- b1, b2, …, bi, …, not c1, … head :- b1, b2, …, bi, …, not c1, …

KLAP Laboratory

DLV

KLAP Laboratory

Going
Large

Systems

New Mexico State University

Tutorial Roadmap

Going
Small

clasp

Yesterday Today (Early)
Tomorrow

Basics Prolog

ASP

KLAP Laboratory

Going BIG

• Issues of size are becoming common
– ASP with its grounding requirements

• E.g., encoding Biochemical Pathway planning benchmarks
• ASP can ground only instances with less than 70 actions

(instances 1-4)
• Out of memory from Instance 5 (163 actions)

– Use of LP techniques for processing knowledge
bases (e.g., RDF stores)

• E.g., CDAOStore, 957GB, 5 Billion RDF triples
• Distribution as a way to scale

– Challenging to distribute data and ensure reliability

KLAP Laboratory

Big Data

• Distributed File Systems
– Global file namespace
– Google GFS, Hadoop HDFS, …
– Replication for seamless recovery from disk/machine

failures
• Chunk Servers

– Files split into chunks (16-64MB)
– Chunks replicated (2x or 3x) to different racks
– Chunk servers are also compute servers

KLAP Laboratory

MapReduce and Friends

• Programming models
– Designed to operate on DFS

• MapReduce

Map
tasks

Reduce
tasks

Input
from
DFS

Output
to DFS

“key”-value
pairs

Map1 Reduce1 Map2 Reduce2 Map3 Reduce3

Map(Long key, String Value):
forall word in Value do

emit(word, 1);
endforall

Reduce(String key, Iterator Values)
int count=0;
forall val in Values do

count+=val
endforall
emit(key, count);

KLAP Laboratory

From Natural Joins to Datalog

• p(X,Y) :- q(X,Z), r(Z,Y).
– Map produces:

• [z, (x,q)] for each incoming q(x,z) fact
• [z, (y,r)] for each incoming r(z,y) fact

– Reduce
• Input: (z, L) where L=[(x,q), (x’,q), (y,r), (y’,r),…]
• Output: p(x,y) for each (x,q) ∊ L and (y,r) ∊ L

New Mexico State University

F. Afrati, J. Ullman. 2010. Optimizing Joins in a Map-Reduce Environment. ACM EDBT, ACM Press.

KLAP Laboratory

From Natural Joins to Datalog

• p(X,Y) :- q(X,Z), r(Z,T), s(T,Y).
– Assume k = z * t reducers
– Map: Tuple r(b,c) generates key-value:

[(hashz(b),hasht(c)),r]
– Map: Tuple q(a,b) generates key-values:

[(hashz(b), k), (a,q)] for each k=1,…,t
– Map: Tuple s(c,d) generates key-values:

[(k, hasht(c)), (d,s)] for each k=1,…,z
– Reducer (i,j): for each (a,q), (d,s), r produce

p(a,d)

New Mexico State University

KLAP Laboratory

From Natural Joins to Datalog

• Additional considerations
– HaLoop: iteration of MapReduce reducing

communication
– Set of tasks for each rule in the program
– Need to add another layer of MapReduce to

remove duplicates
• MAP: for each p(a,b) generate (p,hash(a,b))
• Reduce: stores (a,b), forwards it only the first time

New Mexico State University

KLAP Laboratory

Specialized applications

• WebPIE
– RDFS and OWL-Horst Reasoning

• RDFS: only 2 subgoals in each rule; many are small
• RDFS: can order rules to reduce number of iterations

• Defeasible Logic
– Stratified Datalog
– Ordered rules with

defeasible conclusions
– One set of tasks for each

strata
• First MapReduce task to

determine rules that fire
• Second MapReduce task to

apply defeasibility principles

New Mexico State University

KLAP Laboratory

Well-Founded Semantics

• WFS
– Logic Programming with negation as failure

p(X) :- a(X), not b(X)
– Partial Interpretation:

• Consistent set of literals (e.g., p(a), not b(c), …)
– Extended Immediate Consequence Operator

– Alternating fixpoint

– Fixpoint (Ki,Ui)=(Ki+1,Ui+1)
• W* = Ki ∪ {not A| A ∉ Ui}

TP,J (I) = A | A :−Body ∈ ground(P), pos(Body)⊆ I,neg(Body)∩ J =∅{ }
K0 = lfp(TP+)
Ki+1 = lfp(TP,Ui

)
U0 = lfp(TP,Ko

)
Ui+1 = lfp(TP,Ki+1)

I. Tachmazidis, G. Antoniou, W. Faber “Efficient Computation of the Well-Founded Semantics over Big Data.” TPLP 14(4-5): 445-459 (2014)

KLAP Laboratory

WFS and MapReduce

• TP,J(I): MapReduce for a typical rule
q(X,Y) :- a(X,Z), b(Z,Y), not c(X,Z).

• I={a(1,2), a(1,3), b(2,4), b(3,5)} J={c(1,2)}
• 2-Phase Computation

1. Positive Part Join – standard 2-way or multi-way join;
use tuples from I

• Map: produces
<2,(a,1)> <3,(a,1)> <2,(b,4)> <3,(b,5)>

• Reduce:
receives <2, [(a,1), (b,4)]> <3, [(a,1), (b,5)]>
produces ab(1,2,4) and ab(1,3,5)

KLAP Laboratory

WFS and MapReduce

2. Anti-Join: Use tuples from first step and
tuples from J

• Map: produces
<(1,2),(ab,4)> <(1,3),(ab,5)> <(1,2),(c)>

• Reduce:
receives <(1,2), [(ab,4),(c)]> and

<(1,3),[(ab,5)]>
produces abc(1,3,5)

q(X,Y) :- ab(X,Z,Y), not c(X,Z).

KLAP Laboratory

WFS and MapReduce

win(X) :- move(X,Y), not win(Y)

Cyclic facts:
move(1,2), move(2,3),…move(n,1)

tc(X,Y) :- par(X,Y).
tc(X,Y) :- par(X,Z), tc(Z,Y).
par(X,Y) :- b(X,Y), not q(X,Y).
par(X,Y) :- b(X,Y), b(Y,Z), not q(Y,Z).
q(X,Y) :- b(Z,X), b(X,Y), not q(Z,X).

Chain facts:
b(i,i+k) for 1 ≤ i ≤ n

KLAP Laboratory

Towards ASP

• Computation view of ASP:
– Computation: sequence of sets of atoms

X0=∅ ⊆ X1⊆ X2⊆…
– Properties

• Revision: Xi⊆ TP(Xi-1)

• Convergence:

• Persistence: p∈ Xi∖Xi-1 then there is a rule p:-Body such
that Xj ⊨ Body for each j ≥ i

– M is an answer set iff there computation that
converges to M

Xi = TP Xi
i≥0
∪
"

#
$

%

&
'

i≥0
∪

KLAP Laboratory

Systems

New Mexico State University

Tutorial Roadmap

Going
Small

clasp

Yesterday Today (Early)
Tomorrow

Basics Prolog

ASP

Going
Large

KLAP Laboratory

GPGPU

• GPUs
– Highly parallel architectures
– Inexpensive

• GPGPU: General Purpose GPU
– Vendors provide APIs and programming frameworks

for general purpose applications
– Use GPUs as massively parallel architectures for

general purpose computing
– OpenCL
– Compute Unified Device Architecture (CUDA)

KLAP Laboratory

CUDA

• Designed for data oriented applications
• Heterogeneous serial-parallel computing
• C for CUDA – extension to C
• SIMT – Single Instruction Multiple Thread

– Same instruction executed by different threads
– Data might be different from thread to thread

KLAP Laboratory

CUDA

• The “physical” view S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

L2 Cache

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

D
R

AM
D

R
AM

H
os

t I
nt

er
fa

ce

D
R

AM
D

R
AM

D
R

AM
D

R
AM

In
st

ru
ct

io
n

C
ac

he

W
AR

P
sc

he
du

le
r

W
AR

P
sc

he
du

le
r

R
eg

is
te

rs
 (3

2K
)

core core core core core core core core

core core core core core core core core

core core core core core core core core

core core core core core core core core

Sh
ar

ed
 M

em
or

y
L1

 C
ac

he
 (6

4K
B)

SFU SFU SFU SFU

KLAP Laboratory

CUDA

• The “logical” view
– Hybrid program

• Host functions: executed on the CPU (__host__)
• Kernels: executed on the GPU

(__global__ or __device__)
– Programmer responsible for

• Determine threads to be launched
on the GPU

• Data organization
– E.g., __device__ or __shared__

• data movements between CPU and
GPU

– cudaMemcpy
• Synchronization, memory

management, …
– synchtreads()

KLAP Laboratory

CUDA

• Kernel executed by many threads
– Very lightweight
– Fast context switch

• Threads organization
– 2D collection of threads

(Block)
• Threads can synchronize
• Threads can use

shared memory
– 3D collection of blocks

(Grid)
• Blocks can interact through

Global memory
HOST

GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

KLAP Laboratory

GPU and LP

• Very limited applications of GPU-level
parallelism directly to LP
– But growing fast…

KLAP Laboratory

Datalog in CUDA

• Datalog execution as relational algebra operations

example(Z,X) :- table1(Y,X), table2(Y,Z,a), table3(Z,B,C).

example(Z,X) :- temptable1(Y,X,Z), table3(Z,B,C).

example(Z,X) :- temptable2(Y,X,Z,B,C).

example(Z,X).

selection

Join over Y

Join over Z

Projection over Z,X

C. Martinez-Angeles, I. Dutra, V. Santos Costa, J.Buenabad-Chavez, 2013.
A Datalog Engine for GPUs. KDPD: 152-168

KLAP Laboratory

Datalog in CUDA

• Host:
– Maintain facts in global

memory
– Explicit memory management

• List with least recently used facts
at the end

• Selection: 3 kernels
1. Mark all rows that satisfy

selection condition
2. Count marked rows (using prefix

sum)
3. Write results in global memory

(use results of prefix sum as
indices)

• Projection:
– 1 kernel, copy rows

• Join:
– Extract arrays of two columns to

join
– Sort one and create a CSS-Tree

for it
– Search tree to determine join

positions
– First join will count successful

joined elements
– Second join will write the results

KLAP Laboratory

Datalog in CUDA

KLAP Laboratory

More General LP

• Not there yet
• But…

– Many components have been investigated
– Applied to similar frameworks
– Work is in progress…

KLAP Laboratory

GPGPU and Search

• Parallelizing depth-first search (e.g., Prolog)
– Distributing

the actual
search is
challenging

• Lots of
subtrees,
high memory
cost, no
coalescing

– Need many threads
for hiding memory
latencies

Backtracking GPU
Problem Instance Irregular Access Regular access,

locality

Work Unit Memory, Computation
Variable

Constant size,
perfect SIMD

Output Exponential Size
(enumerate); hard to
estimate

Polynomial size, a-
priori

Search Space Tree-based, unbalanced Fixed, a-priori

J. Jenkins, I. Arkatkar, J.D. Owens, A.N. Choudhary, N.F. Samatova: Lessons Learned from Exploring the
Backtracking Paradigm on the GPU. Euro-Par (2) 2011: 425-437

KLAP Laboratory

GPGPU and Search

• Most successful search
problems on GPUs
– Ability to remove stack and

perform breadth-first traversal
– Ability to exploit fine-grained

parallelism within each node
• Maintain a depth-first

exploration, e.g.,
– Construction of next states

(parallel maximal cliques
enumeration)

– Evaluate bounds (B&B)

Ava80 Slp rmat1 rmat2

CPU 1-core 3.6 15.7 24.6 108

CPU 4-core no lb 1.2 5.1 13.8 59

CPU 4-core lb 1.1 3.8 8.19 33.2

GPU 0.9 11.2 10.8 60.5

Problem Size CPU time
(s)

GPU time
(s)

Speedup

100 1.59 0.41 3.84

200 4.85 0.91 5.33

300 9.82 1.44 6.80

400 10.94 1.27 8.61

500 13.39 1.44 9.27

KLAP Laboratory

GPGPU and Search

• Effective for enhanced local search

New Mexico State University

Hamming Distance 1 Hamming Distance 2

Instance CPU GPU Speedup CPU GPU Speedup

121 1.4 1.5 0.9 106 5.2 20.4

151 2.1 1.7 1.2 193 8.0 24.1

171 2.7 1.9 1.4 305 11.3 26.9

201 3.8 2.2 1.7 455 17.6 29.5

N. Melab et al. “ParadisEO-MO-GPU: a Framework for Parallel GPU-based Local Search Metaheuristics” GECCO, ACM Press, 2013.
T. Van Luong et al. “A GPU-based Iterated Tabu Search for Solving the Quadratic 3-dimensional Assignment Problem”, AICCSA, IEEE Press, 2010.

KLAP Laboratory

GPGPU and SAT

• Parallelizing DPLL
DPLL(!,ϑ):
ϑ’ = unit_propagation(!,ϑ)
if (satisfied(!ϑ’)) then
 return ϑ’
else if (falsified(!ϑ’)) then
 return FALSE
else
 X = select_variable(!,ϑ’))
 ϑ1 = ϑ ⋃"{X/TRUE};
 ϑ2 = ϑ ⋃"{X/FALSE};
 if (DPLL(!,ϑ1)) then
 return ϑ1
 else return DPLL(!,ϑ2))

A. Dal Palu, A. Dovier, A. Formisano, E. Pontelli. (to appear).
CUD@SAT: SAT Solving on GPUs.
Journal of Experimental and Theoretical AI.

KLAP Laboratory

GPGPU and SAT

• Majority of the efforts
– E.g., MESP (miniSAT Enhanced with Survey Propagation)

• Parallelizing Unit Propagation
– Given a partial assignment ϑ: mask array

• mask[i]=0 if clause i is satisfied by ϑ
• mask[i]=-1 if clause i is falsified by ϑ
• mask[i]=u if there are u > 0 unknown literals in clause i and ϑ does

not satisfy the clause
– mask_prop procedure: returns

• -1 if there is a value of i such that mask[i]=-1
• 0 if mask[i]=0 for all clauses
• Pointer to an unknown literal in clause i where mask[i]>0 and mask[i]

is minimal among all those with mask[i]>0

KLAP Laboratory

GPGPU and SAT

KLAP Laboratory

GPGPU and SAT

0

50

100

150

200

250

2 4 8 16 32 64 128 256 512 1024 2048 4096

Host-only

Host+Device

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128

Host-only

Host+Device

KLAP Laboratory

GPGPU and SAT

• Parallelizing Search
– Focus on tail of the search
– If/when the formula (reduced by current ϑ) is

“large but not huge”, we can parallelize the
search in it

KLAP Laboratory

GPGPU and SAT

• Idea:
– MaxV variables undefined (sorted)
– First log2(B) variables are

deterministically assigned in each block
• All threads in one block assign same truth

value to such variables

– Next log2(T) variables are
deterministically assigned in each
thread

– Thread performs an iterative DPLL on
the remaining
MaxV-log2(B)-log2(T) variables

Block i

Th
re

ad
 j

KLAP Laboratory

GPGPU and SAT

Benchmark Host-only Vars Clauses Speed-up MaxV-B-T
marg3x3add8.shuffled-
as.sat03-1449

1242 41 224 88.3 35-6-7

marg3x3add8ch.shuffled-
as.sat03-1448

1751 41 272 92.7 35-6-7

battleship-5-8-unsat 2.26 40 105 7.1 40-8-8

battleship-6-9-unsat 69.38 54 171 6.2 54-10-8

unif-k5-r21.3-v50-c1065-
S1449708927-022

220.92 50 1065 12.9 50-6-7

unif-k5-r21.3-v50-c1065-
S370067727-038

213.95 50 1065 11.4 50-7-7

sgen1-unsat-61-100 440.49 61 132 7.8 61-7-7

Jnh16 53.14 100 850 4 100-8-8

KLAP Laboratory

Towards GPGPU and ASP

• Compute assignments
A ⊆{Tp | p is an atom} ∪ {Fp | p is an atom}

• Computation based on
– Selection
– Propagation

• Based on nogoods Δ𝚷 for a program 𝚷
(set of literals that cannot be extended into an answer set)

• Two classes of nogoods
– Completion nogoods
– Loop nogoods

• A violates nogood δ if δ ⊆A
• A is an answer set of program 𝚷 iff A is a solution of Δ𝚷

F. Vella, A. Dal Palù, A. Dovier, A. Formisano, E. Pontelli: CUD@ASP: Experimenting with GPGPUs in ASP solving.
CILC 2013: 163-177

KLAP Laboratory

1: A = ∅; dl = 0; Δ𝚷=Parse(𝚷);
2: loop
3: conflict = NoGoodsCheck(A, Δ𝚷)
4: if (conflict∧(dl=0)) then return No Answer Set
5: if (conflict ∧ dl > 0) then
6: (dl,δ) = ConflictAnalysis(A, Δ𝚷)
7: Δ𝚷 = Δ𝚷 ∪ δ
8: A = A ∖ { p ∈ A| dl < dl(p) }
9: else if there is δ∈Δ𝚷 such that δ∖A={p} then
10: A = UnitPropagation(A, Δ𝚷)
11: Δ𝚷 = UnfoundedSetCheck(A, Δ𝚷)
12: else if unassigned atoms ≥ k then
13: A = Select(A)
14: else if 0 < unassigned atoms < k then
15: A = ExhaustiveSearch(A)
16: if StableTest(A, 𝚷) then return A
17: else Δ𝚷 = LearnNoGoods(A, 𝚷)
18: else return A
19: endloop

Towards GPGPU and ASP

• From a sequential ASP solver to a GPU-solver

1: A = ∅; dl = 0; Δ𝚷=Parse(𝚷);
2: loop
3: conflict = NoGoodsCheck(A, Δ𝚷)
4: if (conflict ∧ (dl=0)) then return No Answer Set
5: if (conflict ∧ dl > 0) then
6: (dl,δ) = ConflictAnalysis(A, Δ𝚷)
7: Δ𝚷 = Δ𝚷 ∪ δ
8: A = A ∖ { p ∈ A| dl < dl(p) }
9: else if there is δ∈Δ𝚷 such that δ∖A={p} then
10: A = UnitPropagation(A, Δ𝚷)
11: Δ𝚷 = UnfoundedSetCheck(A, Δ𝚷)
12: else if unassigned atoms > 0 then
13: A = Select(A)
14: else return A
15: endloop

KLAP Laboratory

Towards GPGPU and ASP

Problem Smodels Cmodels Clasp-None Clasp Yasmin

channelRoute_3 2.08 1.42 69.27 0.24 0.37

Knights_17 0.91 1.99 0.05 0.06 0.16

Knights_20 9.61 3.85 0.22 0.2 0.46

Schur_4_42 0.07 0.6 0.02 0.05 0.07

Problem GT250 GT460 C2075 K20c K80 Titan Titan X

0001-visitall-14-1 128 93 70 46 34 14 13

0007-graph colouring-125-0 214 155 134 91 64 66 29

0023-labyrinth-11-0 TO 899 TO 314 51 51 49

0167-sokoban-15-1 102 40 33 59 63 71 28

KLAP Laboratory

CONCLUDING REMARKS

New Mexico State University

KLAP Laboratory

In summary…

• Decades of research on extracting parallelism from logic based
paradigms

• Research has informed developments in many related areas
• Many opportunities

– Novel applications with high performance demands
– Avoids many challenges present in other paradigms
– Features suitable to parallelization, e.g.,

• Search and non-determinism
• Language features (e.g., map, list processing)

• Many challenges
– Memory management
– Granularity
– Static analysis

New Mexico State University

KLAP Laboratory

Acknowledgments

• KLAP = Knowledge representation, Logic, and Advanced Programming

G. Gupta
U.T.Dallas

M. Hermenegildo
U.Politecnica Madrid

H. Viet Le
Iowa State U.

A. Dovier
Univ. Udine

A. Formisano
Univ. Perugia

A. Dal Palu
Univ. Parma

T. Son
NMSU

KLAP Laboratory New Mexico State University

KLAP Laboratory

Logic Programming

• Definite programs (Pure Prolog, Datalog)
– Collection of first-order Horn clauses

reachable(X) :- edge(Y,X), reachable(Y).

– Declarative semantics based on
least Herbrand model

New Mexico State University

))()(),((, XreachableYreachableYXedgeYX →∧∀

KLAP Laboratory

Logic Programming: Prolog

• Typical Operational Semantics: SLD Resolution
– Top-down, goal oriented

• Language enriched with extra-logical constructs
– I/O and other side effects
– Control operators

(e.g., cut, oneof, freeze)
– Embedding of other

“pre-interpreted” constructs
• Compiled-based implementations

– Warren Abstract Machine (WAM)

New Mexico State University

a(X) :- b(X), !, c(X).
a(X) :- d(X).

a(X) :- write(X), nl, c(X).

a(X,Y) :- X:1..4, X+Y#>0.

KLAP Laboratory

Logic Programming: WAM

New Mexico State University

Te
m

p.
 R

eg
is

te
rsX1

Xk

Current CP

Top of Stack

Current Env.

Top of Heap

Heap Top Prev. CP

Return Address

Instruction Pointer

Top of Trail

Machine
Registers

Local Stack

Choice Point Stack

choice point

environment

Machine State

A1

A2

Am

Arity

Next Alternative

C
al

l
Ar

gu
m

en
ts

Y1

Ym

Return Address

Lo
ca

l
Va

ria
bl

es

Prev. Environment

TRAILCODE AREAHEAP

KLAP Laboratory

Logic Programming

• Normal programs
– enter negation as failure

color(X,red) :- node(X), not color(X,blue).
– Alternative semantics

• Well-founded semantics [XSB, tabling]
• Answer set semantics [Answer Set Programming]

– Answer Set Programming
• Program = modeling of problem
• Solutions = answer sets of the program
• Execution Models

– bottom-up execution models (each solution = one answer set)
» variations of DPLL
» mapping to SAT

