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Introduction Overview

Introduction

Computer Science is now the root of all sciences
“All Science is Computer Science” G. Johnson, New York
Times, 3.25.2001

Biology is an incredible source of challenging problems for
computer science
Problems are often hidden or vaguely defined and emerge only
after cycles of feedback with biologists, physicists, chemists, etc

Solving one of these problems can be of unpredictable importance
for life sciences and medicine
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Introduction Bioinformatics

Introduction

Intuitively: Bioinformatics = Computer Science ∩ Biology

Bioinformatics
Bioinformatics deals with modeling and solving problems, analyzing
and filtering data, from biology and related life sciences.

Computations are extensive.
Data availability is huge.
Data is affected by experimental errors.
Computer science tools should help in analyzing and filtering.
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Introduction Bioinformatics

Introduction

Bioinformatics applications can be divided in three categories:

1) Support infrastructure for analysis and experiments
Computational tools for automated environments for workflow
management, description and annotation of experiments, reporting
requirements, . . .

2) Polynomial time solvable problems
The input size is large: e.g. string matching problems over DNA
sequences.

3) Intractable problems
NP-complete or worse problems. Mainly covered by this lecture.
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Introduction

Bioinformatics applications can be divided in three categories:

1) Support infrastructure for analysis and experiments
Computational tools for automated environments for workflow
management, description and annotation of experiments, reporting
requirements, . . .

2) Polynomial time solvable problems
The input size is large: e.g. string matching problems over DNA
sequences.
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Introduction Bioinformatics

Areas of Bioinformatics

1 Genomics. Study of the genomes. Huge amount of data, fast
algorithms (not always), limited to sequence analysis.
· · · G A T C T G T A C T G A G T · · ·
· · · G A T C T G T A C T G A A T · · ·

2 Structural Bioinformatics. Study of the folding process of
bio-molecules. Less structural data than sequence data available.

⇑ ⇑

⇓
3 Systems Biology. Study of complex interactions in biological

systems. High level of representation.
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Introduction Bioinformatics

Why Logic Programming?

(At least) three main reasons:

Models are rarely stable and static. Logic programming provides
the level of elaboration-tolerance to support model modifications
and incremental addition of new knowledge.
Linear Programming is not enough (in particular for modeling
energy models)
Declarative formalism is elegant and concise!
Extensive possibilities for refinement of models—parallelism,
heuristics, . . .
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Introduction Bioinformatics

What we’ll see in more details

Challenging Problems

Genomics:
X Haplotype Inference
X Phylogenetic trees

Structural Bioinformatics:
X RNA secondary structure prediction
X Protein structure prediction (on lattice)

Systems Biology:
X Reasoning on Biological Networks
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Introduction Bioinformatics

What we’ll see in more details

Challenging Problems

Support Infrastructure

Evolutionary Informatics
The EvoIO Stack
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Introduction Bioinformatics

What we’ll see in more details

Challenging Problems

Support Infrastructure

Parallelism in Logic Programming

The Past of Parallel Logic Programming
The Present of Parallel Logic Programming
Current Directions in Parallel Logic Programming
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Introduction Bioinformatics

ASP encoding

⇒ We present modelings and working codes in ASP. You can
download them at
www.unipr.it/~dalpalu/corsi/CILC15/index.html

The same models can be encoded in CLP(FD) with almost no
changes. It requires Prolog encoding. Left as exercise :)
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Introduction General References

Some introductory references

P. Clote and R. Backofen. Computational Molecular Biology. An
Introduction. Wiley, 2000.
Nice introductory slides by Sebastian Will
math.mit.edu/classes/18.417/Slides/intro.pdf

F. Crick. Central dogma of molecular biology. Nature, 227, 1970.
A. Lesk. Introduction to Bioinformatics. Oxford Univ. Press, 2008.
X. Xia. Bioinformatics and the Cell: Modern Computational
Approaches in Genomics, Proteomics and Transcriptomics.
Springer, 2007.
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Haplotype Inference

Haplotype inference
and a crash course in genomics...
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Haplotype Inference Introduction

DNA and Genome in a nutshell
DNA (DeoxyriboNucleic Acid) is
characterized by a string of nucleotides: A,
C, G, and T (Adenine, Cytosine, Guanine,
Thymine)
Given a sequence s ∈ {A,C,G,T}∗ the
complementary sequence s̄ is
deterministically obtained by reversing s and
substituting A↔ T and C ↔ G
s and s̄ fold together forming the famous
double helix
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Haplotype Inference Introduction

DNA and Genome in a nutshell

DNA strings are long (106–1010 nucleotides).
Differences between the DNAs of two members of the same
specie are small (e.g., 1 in 1000 for humans)
Some fragments of the DNA, called genes, encode proteins
(More on this later).
The set of all genes of an individual is called genome
The Human Genome is estimated to contain between 20,000 and
25,000 genes.
Differences of some nucleotides in the same gene define variants
of proteins that characterize a property of an individual w.r.t.
another.
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Haplotype Inference Definitions

Haplotype Inference

DNA is packaged in compact units, called Chromosomes
Genes are packaged in bundles inside chromosomes.
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Haplotype Inference Definitions

In Diploid organisms (like humans) there are almost identical
chromosome pairs.

Each pair is made of an inherited chromosome from the father and
another from the mother.
Homologous chromosomes carry same genes in the same order,
but with small trait differences.

A haplotype is a DNA sequence that has been inherited from one
parent.
A genotype is a pairing of two corresponding haplotypes.
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Haplotype Inference Definitions

Haplotype Inference

Each person inherits two haplotypes for most regions of the genome:
One from the mother
One from the father

· · · G A T C T G T A C T G A G T · · ·
· · · G A T C T G T A C T G A A T · · ·

⇑ ⇑ ⇑

In some typical positions, the bases are subject to mutations.
In the most common case, there is a Single Nucleotide Polymorphism
(SNP).
Mutations are C ↔ T and A↔ G
A variant a gene is called an Allele.
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Haplotype Inference Definitions

Haplotype Inference
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Haplotype Inference Definitions

Haplotype Inference

A good introduction in http://csiflabs.cs.ucdavis.edu/
~gusfield/gusfieldorzack.pdf

Typically the genome (genotype) is easier and cheaper to be
obtained.
Haplotypes are more powerful discriminators between cases and
controls in disease association studies
Use of haplotypes in disease association studies reduces the
number of tests to be carried out.
We need computational methods to guess haplotypes
The Haplotype Inference problem is introduced to investigate
genetic variations in a population.
Typically SNPs sites are the target of the analysis
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Haplotype Inference Definitions

Haplotype Inference
Single Nucleotide Polymorphism (SNP)

Each person has two haplotypes (from the mother and from the father)
for most regions of the genome:

G A A T C T T C G T A C T G A G T
G A A T C T T C G T A C T G A A T

Let us focus on the SNPs:
A C T G
A C T A

We encode SNPs according to: A 7→ 0 C 7→ 0 G 7→ 1 T 7→ 1

0 0 1 1
0 0 1 0

0 0 1 2 The genotype is set to 2 if there is a mismatch
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Haplotype Inference Definitions

Haplotype Inference
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Haplotype Inference Definitions

Haplotype Inference

A string of {0,1}∗ is called a haplotype
A string of {0,1,2}∗ is called a genotype
Two equal length haplotypes generate a unique genotype
The rules are 0⊕ 0 = 0, 1⊕ 1 = 1, 0⊕ 1 = 2

E.g., 0010,0101⇒ 0222
If we have a genotype, we can only conjecture (potentially
exponentially many) haplotypes that generated it
(observe that, e.g., 0110,0001⇒ 0222)
Biological experiments allow us to know genotypes!
Investigating sets of genotypes for a population, helps in
understanding the relationships between SNPs and physical
features as well as medical information
Since genotypes are introduced in evolution, it is reasonable to
find minimal sets of haplotypes explaining the known genotypes.
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Haplotype Inference Definitions

Haplotype Inference
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Haplotype Inference Model

Haplotype Inference

Let H = {{0,1}n} be the set of haplotypes and
G = {{0,1,2}n} be the set of genotypes.
Given h1,h2 ∈ H and g ∈ G, {h1,h2} explains g if and only if
|h1| = |h2| = |g| and ∀i ∈ [1..n]:

g[i] ≤ 1 −→ h1[i] = h2[i] = g[i]
g[i] = 2 −→ h1[i] 6= h2[i]

A set of haplotypes H explains a set of genotypes G if for all g ∈ G
there are h1,h2 ∈ H such that {h1,h2} explains g.
Given a set of genotypes G and an integer k , the haplotype
inference problem (HIP) by pure parsimony is the problem of
finding a set H that explains G and such that |H| = k (decision
version).
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Haplotype Inference Model

Haplotype Inference

Use of such a parsimony criterion is consistent with the fact
that the number of distinct haplotypes observed in most
natural populations is vastly smaller than the number of
possible haplotypes; this is expected given the plausible
assumptions that the mutation rate at each site is small and
recombinations rate are low.

[Gusfield and Orzack, 2006]

The problem is NP-complete. Reduction from vertex cover
[LPR04].
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Haplotype Inference ASP implementation

Haplotype Inference
The ASP modeling

m genotypes (1 . . .m) in input; facts:

geno(1 . . . m).
site(1. . . n).
g(i,j,k).

i is the i-th genotype (1 ≤ i ≤ m)
j is the position within the genotype (1 ≤ j ≤ n) and
k is the value in {0, 1, 2}

2m inferred haplotypes (1 . . . 2m, not necessarily distinct); facts:
haplo(1 . . . 2m).

The i-th genotype gi is explained by haplotypes h2i and h2i−1

Haplotype h(i,j). is in the model if the value at position j is 1
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Haplotype Inference ASP implementation

Haplotype Inference
The ASP modeling: Deterministic Case

% If g(i,j)=0 or 1 assign deterministically
% h(2i) and h(2i-1).

(1) h(2*I-1,J) :- g(I,J,1).
(2) h(2*I,J) :- g(I,J,1).
(3) :- h(2*I-1,J), g(I,J,0).
(4) :- h(2*I,J), g(I,J,0).
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Haplotype Inference ASP implementation

(5) h(2*I-1,J) :- g(I,J,2), not h(2*I,J). (6) h(2*I,J) :- g(I,J,2), not h(2*I-1,J).
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Haplotype Inference ASP implementation

Haplotype Inference
The ASP modeling

(7) representative_haplo(A) :-
haplo(A), not cover_someone(A).

(8) cover_someone(B) :-
haplo(A), haplo(B), A < B, samehaplo(A,B).

Define the representatives.

The lowest index haplotype of a set of equal ones is selected as
representative.

(9) { samehaplo(A,B) } :- haplo(A), haplo(B), A < B.
(10) :- samehaplo(A,B), haplo(A), haplo(B), A < B,

site(S), h(A,S), not h(B,S).
(11) :- samehaplo(A,B), haplo(A), haplo(B), A < B,

site(S), not h(A,S), h(B,S).
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Haplotype Inference ASP implementation

Haplotype Inference
The ASP modeling

(7) representative_haplo(A) :-
haplo(A), not cover_someone(A).

(8) cover_someone(B) :-
haplo(A), haplo(B), A < B, samehaplo(A,B).

(9) { samehaplo(A,B) } :- haplo(A), haplo(B), A < B.
(10) :- samehaplo(A,B), haplo(A), haplo(B), A < B,

site(S), h(A,S), not h(B,S).
(11) :- samehaplo(A,B), haplo(A), haplo(B), A < B,

site(S), not h(A,S), h(B,S).

We have a (possibly empty) set of samehaplo.

Constraints: can’t be samehaplo and a site S with 6= values.

not(_,S) for the case haplotype at site S is 0.

Symmetry breaking.

E. Pontelli (NMSU) Exploring Life through LP Udine, Dec. 21-23 2015 31 / 91



Haplotype Inference ASP implementation

Haplotype Inference
The ASP modeling

% Count the number of representative and minimize it
(12) #minimize{ 1,A:representative_haplo(A) }.
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Haplotype Inference ASP implementation

Considerations

Refined versions of this ASP have been presented in
Erdem, Erdem, Türe. HAPLO-ASP: Haplotype Inference Using Answer
Set Programming. LPNMR 2009: 573–578

Competitive results with state-of-the-art tools
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Haplotype Inference References

Haplotype Inference
Some References

Gusfield and Orzack. Haplotype Inference (Survey, and ILP
formulations) In CRC Handbook on Bioinformatics, 2006

Lancia, Pinotti, Rizzi. [LPR04] Haplotyping Populations by Pure
Parsimony: Complexity of Exact and Approximation Algorithms.
INFORMS Journal on Computing 16(4):348–359, 2004.

Graça, Marques-Silva, Lynce, Oliveira. Several works on SAT-based and
specialized 0-1 ILP for Haplotype Inference. (e.g. WCB 08, WCB 09)

Di Gaspero, Roli. Stochastic local search for large-scale instances of the
haplotype inference problem by pure parsimony. J. Algorithms 63(1-3):
55-69 (2008) (also in WCB08).

Erdem, Erdem, Türe. HAPLO-ASP: Haplotype Inference Using Answer
Set Programming. LPNMR 2009: 573–578

James Cussens Maximum likelihood pedigree reconstruction using
integer programming. WCB 10.
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