
Probabilistic Logic Programming
Learning and Applications

Elena Bellodi

Department of Engineering
University of Ferrara, Italy

University of Udine, PhD Course, December 4th-5th 2018

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 1 / 99



Outline

1 Learning Problems in Probabilistic Logic Programming

2 Parameter Learning
EMBLEM
LFI-ProbLog
LeProbLog

3 Structure Learning

4 Applications

5 References

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 2 / 99



Learning Problems in Probabilistic Logic Programming

Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence
Weight learning: we know the structural part of the model (the logic
formulas) but not the numeric part (the weights) and we want to infer
the weights from data
Structure learning: we want to infer both the structure and the
weights of the model from data
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Learning Problems in Probabilistic Logic Programming

Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of the
data given the model
Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set of
inputs
Generative learning: tries to be equally capable of predicting the
truth value of all predicates
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Learning Problems in Probabilistic Logic Programming

Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood of
the data given the model
Discriminative or generative learning
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Parameter Learning

Parameter Learning for PLP

Based on Expectation - Maximization (EM) (Dempster et al. (1977))
Thon et al. (2008) proposed an adaptation of EM for CPT-L, a
simplified version of LPADs. The algorithm computes the counts
efficiently by repeatedly traversing the BDDs representing the
explanations
Ishihata et al. (2008) independently proposed a similar algorithm
EMBLEM (Bellodi and Riguzzi (2013)) adapts Ishihata et al. (2008)
to LPADs
LFI-ProbLog (Fierens et al. (2015)) for the ProbLog language

Based on gradient descent: LeProbLog (Gutmann et al. (2008)) for
the ProbLog language
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Parameter Learning EMBLEM

EM-based Learning
EMBLEM: EM over Bdds for probabilistic Logic programs Efficient Mining

Definition (EMBLEM Learning Problem)

Given an LPAD P with unknown parameters and two sets
E + = {e1, . . . , eT} and E− = {eT+1, . . . , eQ} of ground atoms (positive
and negative examples), find the value of the parameters Π of P that
maximize the likelihood of the examples, i.e., solve

argmaxΠP(E +,∼ E−) = argmaxΠ

T∏
t=1

P(et)
Q∏

t=T+1

P(∼ et).

Predicates for the atoms in E + and E−: are called target because the
objective is to be able to better predict the truth value of atoms for them.
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Parameter Learning EMBLEM

EM-based Learning
EMBLEM: EM over Bdds for probabilistic Logic programs Efficient Mining

Typically, the LPAD has two components:
a set of rules, annotated with parameters
a set of certain ground facts, representing background knowledge on
individual cases of a specific world

Useful to provide information on more than one world: a background
knowledge and sets of positive and negative examples for each world
Description of one world: mega-interpretation or mega-example
Positive examples: ground facts that are true in the
mega-interpretation
Negative examples : ground facts that are declared false (neg(a) for
negative example a)
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Parameter Learning EMBLEM

EM-based Learning
EMBLEM: EM over Bdds for probabilistic Logic programs Efficient Mining

Predicates can be treated as closed-world or open-world
In case of CWA: the body of clauses with that predicate in the head is
resolved only with facts in the interpretations
In case of OWA: the body of clauses with that predicate in the head is
resolved both with facts in the interpretations and with clauses in the
theory. If this option is set and the theory is cyclic, EMBLEM may use
a depth bound on SLD derivations to avoid going into infinite loops
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Parameter Learning EMBLEM

EM-based Learning
EMBLEM: EM over Bdds for probabilistic Logic programs Efficient Mining

Problem: given a set of interpretations and a program, find the
parameters maximizing the likelihood of the interpretations

Why do we need EM?
The interpretations record the truth value of ground atoms, not of the
(latent) random variables
Unseen (or "missing") data: the number of times that i-th head atom
has been selected from groundings of the clauses used in the proof of
the queries
An iterative method for problems with incomplete data is needed
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Parameter Learning EMBLEM

EM-based Learning
EMBLEM: EM over Bdds for probabilistic Logic programs Efficient Mining

Expectation-Maximization (EM) algorithm:
Expectation step: the distribution of the unseen variables is
computed given the observed data and the current estimate of
parameters
Maximization step: new parameters are computed from the
estimates of the E step using relative frequency
Ends when likelihood does not improve anymore
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Parameter Learning EMBLEM

EMBLEM
EM over Bdds for probabilistic Logic programs Efficient Mining

EMBLEM is based on Knowledge Compilation to BDDs
EMBLEM generates a BDD for each example in
E = {e1, . . . , eT ,∼ eT+1, . . . ,∼ eQ}.
Each example is a query, and the BDD encodes its explanations
Then it enters the EM cycle, in which the steps of Expectation and
Maximization are repeated until the log-likelihood of the examples
reaches a local maximum
Expectations computed with two passes directly over the BDDs →
efficient
BDDs have to be compiled only once, before the EM cycle, so can be
reused in all further iterations
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Parameter Learning EMBLEM

EMBLEM
EM over Bdds for probabilistic Logic programs Efficient Mining

To use binary random variables: CUDD library
https://www.cs.rice.edu/~lm30/RSynth/CUDD/cudd/doc/

Encoding of multi-valued random variable with Boolean random
variables

πi1 = P(Xij1) = P(Xij = 1)

...

πik = P(Xijk) =
P(Xij = k)∏k−1

l=1 (1− P(Xijl))
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Parameter Learning EMBLEM

EMBLEM
EM over Bdds for probabilistic Logic programs Efficient Mining

Expectation: compute E[cik0|e] and E[cik1|e] for all examples e, rules
Ci and k = 1, . . . , ni − 1, where cikx is the number of times a Boolean
variable Xijk takes value x for x ∈ {0, 1}, with j ∈ g(i) = {j |θj is a
substitution grounding Ci}.

E[cikx |e] =
∑
j∈g(i)

P(Xijk = x |e)

Maximization: update parameters πik representing P(Xijk = 1) for all
rules Ci and k = 1, . . . , ni − 1

πik =

∑
e∈E E[cik1|e]∑

e∈E E[cik1|e] + E[cik0|e]
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Parameter Learning EMBLEM

EMBLEM
EM over Bdds for probabilistic Logic programs Efficient Mining

P(Xijk = x |e) is given by P(Xijk=x,e)
P(e)

P(Xijk = x , e): probability of the paths passing through the x-child of a
node n associated with variable Xijk so

P(Xijk = x , e) =
∑

n∈N(Xijk )

πikxF (n)B(childx(n)) =
∑

n∈N(Xijk )

ex(n)

F (n) is the forward probability, the probability mass of the paths from the
root to n (computed with one recursive pass on the BDD)

B(n) is the backward probability, the probability mass of paths from n to
the 1-leaf (computed with a second recursive pass on the BDD)

P(e) = B(root): the sum of the probabilities of all the paths in the BDD
from the root to a 1-leaf, where the probability of a path is defined as the
product of the probabilities of the individual choices along the path
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Parameter Learning EMBLEM

EMBLEM
EM over Bdds for probabilistic Logic programs Efficient Mining

1: function EMBLEM(E ,P, ε, δ)
2: build BDDs for examples in E
3: LL = −inf
4: repeat
5: LL0 = LL
6: LL = Expectation(BDDs)
7: Maximization
8: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
9: return LL, πik for all i , k

10: end function
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Parameter Learning EMBLEM

EMBLEM Example
C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X ), cold .
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Clause C1: 2 groundings (X/david ,X/robert). R.v.: X111 and X112 for the
1st grounding, X121 and X122 for the 2nd grounding

C2: single grounding, random variable X211

BDD for e = epidemic :

X111 n1

X121 n2

X211 n3

1 0
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Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1

0.6

0.4

X121 n2

0.6

0.4X211 n3

0.7

0.3

1 0

Start from the first level (root): F (n1) = 1

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 18 / 99



Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.6

0.7

0.3

1 0

Compute F for the 0- and 1-child:
F (n2) = 1 ∗ 0.4 = 0.4; F (n3) = 1 ∗ 0.6 = 0.6

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 19 / 99



Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84

0.7

0.3

1 0

Move to the second level (n2) and compute F for the 0- and 1-child:
0-leaf is skipped; F (n3) = 0.6 + 0.4 ∗ 0.6 = 0.84
Move to the third level (n3): children of n3 are leaves so nothing is done
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Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

Start from the leaves and go up one level at a time recursively
B(n3) = 1 ∗ 0.7 ∗ 0 ∗ 0.3 = 0.7
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Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

B(n2) = 0.7 ∗ 0.6 + 0 ∗ 0.4 = 0.42
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Parameter Learning EMBLEM

EMBLEM Example

X111 n1
F=1
B=0.588

0.6

0.4

X121 n2
F=0.4
B=0.42

0.6

0.4X211 n3
F=0.84
B=0.7

0.7

0.3

1 0

B(n1) = 0.7 ∗ 0.6 + 0.4 ∗ 0.42 = 0.588 = P(e)
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Parameter Learning EMBLEM

Example: Bongard Problems

Introduced by the Russian scientist M. M. Bongard
Two sets of relatively simple diagrams, say A and B, are given
All the diagrams from set A (positive ex) have a common factor or
relationship or attribute, which is lacking in all the diagrams of set B
(negative ex)
Problem: discriminate the two
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Parameter Learning EMBLEM

Example: Bongard Problems
Data

Each mega-example encodes a single picture.

begin(model(2)). begin(model(3)).
pos. neg(pos).
triangle(o5). circle(o4).
config(o5, up). circle(o3).
square(o4). in(o3, o4).
in(o4, o5). square(o2).
circle(o3). circle(o1).
triangle(o2). in(o1, o2).
config(o2, up). end(model(3)).
in(o2, o3).
triangle(o1).
config(o1, up).
end(model(2)).
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Parameter Learning EMBLEM

Example: Bongard Problems
LPAD

pos : 0.5 : − circle(A), in(B,A).
pos : 0.5 : − circle(A), triangle(B).

The task is to tune the two parameters.
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Parameter Learning EMBLEM

Hands-on

http://cplint.eu/e/bongard.pl
Learn the parameters and test the result with:
induce_par([train],P),test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

Expected result
AUCPR = 0.674,
AUCROC = 0.800,
LL = -219.099,
P =
pos:0.0841358 :- circle(A),in(B,A).
pos:0.412669 :- circle(A),triangle(B).
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

Full or partial observability of the domain
LFI-ProbLog learns the parameters of ProbLog programs from both
full and partial interpretations (Fierens et al. (2015))
Partial interpretations specify the truth value of some but not
necessarily all ground atoms
Partial interpretation I = (IT , IF ): the atoms in IT are true and those
in IF are false
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

The probability of a partial interpretation is the sum of the
probabilities of all possible worlds consistent with the known atoms
The known atoms can be represented by the conjunction:
q(I ) =

∧
a∈IT ∧

∧
a∈IF ∼ a

Definition (LFI-ProbLog learning problem)

Given a ProbLog program P with unknown parameters and a set
E = {I1, . . . , IT} of partial interpretations (the examples), find the value of
the parameters Π of P that maximize the likelihood of the examples, i.e.,
solve

argmaxΠP(E ) = argmaxΠ

T∏
t=1

P(q(It))
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

p1 :: burglary .
p2 :: earthquake.
p3 :: hears_alarm(X )← person(X ).
alarm← burglary .
alarm← earthquake.
calls(X )← alarm, hears_alarm(X ).
person(mary).
person(john).

IT1 = {alarm}, IT2 = {earthquake, calls(mary)}, IT3 = {calls(john)}
We may not know whether a burglary occurred.
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

Partially observed data → EM algorithm
A d-DNNF circuit is built for each partial interpretation It with the
evidence q(I )

A Boolean random variable Xij for each ground probabilistic fact fiθj

E-step:

E[cix ] =
T∑
t=1

E[cix |It ]

where
E[cix |It ] =

∑
j∈g(i)

P(Xij = x |It)
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

E[cix |I ] is the expected value given example I of the number of times
variable Xij takes value x for any j in g(i), the set of grounding
substitutions of fi

E[cix ] is the expected value given all the examples
M-step: parameters πi of probabilistic facts fi can be computed as

πi =
E[ci1]

E[ci0] + E[ci1]

The algorithm keeps on updating the parameters until the log
likelihood of the interpretations is maximal
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Parameter Learning LFI-ProbLog

EM-based Learning
LFI-ProbLog: Learning From Interpretations-ProbLog

P(Xij = x |I ) =
P(Xij=x ,It)
P(q(I ))

P(q(I )) = P(root): computed bottom-up on the d-DNNF
P(Xij = x , I ): computed top-down for all variables Xij and values x on
the d-DNNF
As, BDDs, d-DNNFs have to be compiled only once, before the EM
cycle, so can be reused in all further iterations
A previous version (Gutmann et al. (2011)) used BDDs instead of
d-DNNFs, but this algorithm scales better
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Parameter Learning LeProbLog

Gradient Descent-based Learning
LeProbLog

Parameter learning system that starts from a set of examples
annotated with a probability
It derives from probabilistic databases, i.e., generalizations of
traditional relational databases that can deal with uncertainty
"Dirty" databases arise when integrating data from various sources,
when analyzing social, biological, and chemical networks
Probabilistic databases associate probabilities to facts, indicating the
probabilities with which these facts hold
This information is then used to compute the success probability of
queries
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Parameter Learning LeProbLog

Gradient Descent-based Learning
LeProbLog: Example

A graph with uncertain edges can be expressed in ProbLog as:

0.8 : edge(a, c). 0.7 : edge(a, b). 0.8 : edge(c , e).
0.6 : edge(b, c). 0.9 : edge(c, d). 0.5 : edge(e, d).

Aim: finding the value of the parameters Π of a ProbLog program so
that the probability assigned by the program to the examples is as
close as possible to the one given

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 35 / 99



Parameter Learning LeProbLog

Gradient Descent-based Learning
LeProbLog

Definition (LeProbLog learning problem)

Given a ProbLog program P and a set of training examples
E = {(e1, p1), . . . , (eT , pT )} where et is a ground atom and pt ∈ [0, 1] for
t = 1, . . . ,T , find the parameters of the program so that the mean squared
error

MSE =
1
T

T∑
t=1

(P(et)− pt)
2

is minimized.
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Parameter Learning LeProbLog

Gradient Descent-based Learning
LeProbLog

Gradient descent is a standard way of minimizing a given error function
LeProbLog iteratively updates the parameters in the opposite direction
of the gradient of the error

∂MSE

∂Πj
=

2
T

T∑
t=1

(P(et)− pt) ·
∂P(et)

∂Πj

Πj are the parameters of the ProbLog program
LeProbLog compiles queries to BDDs, therefore P(et) can be
computed with Function PROB
It uses the k-best explanations for each example et
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Parameter Learning LeProbLog

Gradient Descent-based Learning
LeProbLog

∂P(et)
∂Πj

is computed by a dynamic programming algorithm that traverses the
BDD bottom up, as

∂P(et)

∂Πj
=
∂P(f (X))

∂Πj

where f (X) is the Boolean function represented by the BDD

When performing gradient descent, the parameters must remain in the [0,1]
interval

Reparameterization with the sigmoid function σ(x) = 1
1+e−x that takes a

real value x ∈ (−∞,+∞) and returns a real value in (0, 1)

When using the k-best explanations, the set of k best proofs may change
due to parameter updates → recompute the set of proofs and the
corresponding BDD
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Structure Learning

Structure Learning for PLP

For LPADs: SLIPCOVER (Structure LearnIng of Probabilistic logic
program by searching OVER the clause space (Bellodi and Riguzzi
(2015)))
For ProbLog: ProbFOIL and ProbFOIL+ (De Raedt and Thon
(2011),De Raedt et al. (2015)): learn rules from probabilistic examples
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Structure Learning

SLIPCOVER

Two-phase algorithm
1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the LL

of the data

Discriminative learner : the search for clauses is directly guided by the
goal of maximizing the predictive accuracy of the resulting theory on
the target predicates
Input: a set of mega-examples containing positive and negative
examples for all predicates that may appear in the head of clauses,
either target or non-target (background predicates); an indication of
which predicates are target, i.e., those for which we want to optimize
the predictions of the final theory
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Structure Learning

SLIPCOVER

Beam search starts with a set of beams
The initial set of beams is generated by building a set of bottom
clauses as in Progol (Muggleton (1995))
This requires a user-defined language bias, based on mode declarations
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Structure Learning

Language Bias

Syntax

modeh(RecallNumber,PredicateMode). [for head]
modeb(RecallNumber,PredicateMode). [for body]

RecallNumber can be a number or *. Usually *. Maximum number of
answers to queries to include in the bottom clause
PredicateMode: template

p(ModeType1,ModeType2,...)
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Structure Learning

Language Bias

p is a predicate of the domain
ModeType can be:

Simple:
+T input variables of type T;
-T output variables of type T; or
#T, -#T constants of type T. (They behave differently during the
generation of bottom clauses)

Structured: of the form f(..) where f is a function symbol and every
argument can be either simple or structured.
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Structure Learning

Language Bias

Examples:

modeb(1,mem(+number,+list)).
modeb(2,mem(+number,[+number|+list])).
modeb(5,(+integer)=(#integer)).
modeb(*,advisedby(-stud,+prof)).
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Structure Learning

Bottom Clause ⊥

Most specific clause covering an example e: e ← B

B : set of ground literals that are true for example e

B obtained by considering the constants in e and querying the
predicates of the background for true atoms regarding these
constants
A map from types to lists of constants is kept is enlarged with
constants in the answers to the queries
Values for output arguments (-T) are used as input arguments (+T)
for other predicates
-#T constants can be used as input constant arguments for other
predicates, #T can’t
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Structure Learning

Bottom Clause ⊥

Procedure

1 Initialize a map m from types to lists of values to ∅
2 Pick a modeh(r , s) and an example e matching s

3 Add to m(T) the values of +T arguments in e
4 For i = 1 to d

For each modeb(r , s) select ground facts matching s and the values of
+T arguments found in m(T )

You’ll get a clause e : −b1, ..., bm , typically with m large
SLIPCOVER allows to use more than one example e for each modeh(r , s)
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Structure Learning

Bottom Clause ⊥: Example

modeh(*,father(+person,+person)).
modeb(*,parent(+person,-person)).
modeb(*,parent(-#person,+person)).
modeb(*,male(+person)).
modeb(*,female(#person)).

e = father(john,mary)
KB={parent(john,mary),parent(david,steve),parent(kathy,mary),

female(kathy),male(john),male(david)}

⊥ = e ← B :
father(john ,mary) ← parent(john ,mary),

parent(kathy ,mary),male(john),female(kathy).
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Structure Learning

Bottom Clause ⊥

The resulting ground clause ⊥ is then processed by replacing each
term in a + or - placemarker with a variable, using the same
variable for identical terms
A constant (#T or -#T) is not replaced by a variable

e ← B :
father(X,Y) ← parent(X,Y),male(X),

parent(kathy ,Y),female(kathy ).
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Structure Learning

Language Bias

To generate clauses with more than two head atoms:

modeh(r , [s1, . . . , sn], [a1, . . . , an], [P1/Ar1, . . . ,Pk/Ark ])

s1, . . . , sn are schemas
a1, . . . , an are atoms such that ai is obtained from si by replacing
placemarkers with variables
a1, . . . , an are used to indicate which variables should be shared by the
atoms in the head
Pi/Ari are the predicates admitted in the body
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Structure Learning

Language Bias

The generation of a bottom clause is the same except for the fact that
the goal to call is composed of more than one atom
Goal a1, . . . , an is called and r answers that ground all ai s are kept
Resulting bottom clause: a1 ; . . . ; an :− b1, . . . , bm

Ex.:
modeh(*,[advisedby(+person,+person),tempadvisedby(+person,
+person)], [advisedby(A,B),tempadvisedby(A,B)],
[professor/1,student/1,hasposition/2,inphase/2,
publication/2,taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).
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Structure Learning

SLIPCOVER
Beam search in the space of clauses

Consider the bottom clauses built as
e : −b1, ..., bm or a1 ; . . . ; an :− b1, . . . , bm

For each predicate that appears in a modeh declaration (either target
or background) a beam is created as a set {(Cl , Literals)} where:
Cl = e : 0.5 : −true. (disj. clause with 2 heads), or
Cl = a1 : 1

n+1 ; . . . ; an : 1
n+1 : −true. (disj. clause with >2 heads)

Literals = {b1, . . . , bm}
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Structure Learning

SLIPCOVER
Beam search in the space of clauses

Cycle over each beam to refine the bottom clauses, for a predefined
number of iterations or until the beams are not empty
For each clause Cl , refinements are computed by adding a literal
from b1, . . . , bm to its body or deleting an atom from the head in the
case of a multiple-head clause
Refinements must respect the input-output modes of the bias
declarations
Refinements must be connected (i.e., each body literal must share a
variable with the head or a previous body literal)
(Cl ′, Literals ′): Cl ′ is Cl with a new body or head, Literals ′ is Literals
with a body literal removed
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Structure Learning

SLIPCOVER
Beam search in the space of clauses

EMBLEM is executed on the LPAD containing Cl ′ to optimize its
parameters → Cl ′′

Log-likelihood (LL) is used as the score of Cl ′′

Two lists for the promising clauses: TC for target predicates and
BC for background predicates, with a maximum size
Cl ′′ is inserted in TC if a target predicate appears in its head,
otherwise in BC , in order of LL
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Structure Learning

SLIPCOVER
Greedy search in the space of theories

Starts with an empty theory and adds a target clause at a time
from the list TC

After each addition, runs EMBLEM and computes the LL of the data
as the score of the resulting theory
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded

After the cycle, SLIPCOVER adds all the clauses in BC to the theory
and performs a final parameter learning on the resulting theory
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Structure Learning

SLIPCOVER
Execution Example

UW-CSE dataset: University of Washington Department of Computer
Science and Engineering described through 22 different predicates
Target predicate: advisedby/2

Examples of modeh declarations for 2-head clauses

modeh(*,advisedby(+person,+person)).
modeh(*,courselevel(+course,#level)).
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Structure Learning

SLIPCOVER
Execution Example

Examples of modeh declarations for multiple-head clauses (>2)

modeh(*,[advisedby(+person,+person),tempadvisedby(+person,+person)],
[advisedby(A,B),tempadvisedby(A,B)],
[professor/1,student/1,hasposition/2,inphase/2,publication/2,
taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

modeh(*,[student(+person),professor(+person)],
[student(P),professor(P)],
[hasposition/2,inphase/2,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2]).

modeh(*,[inphase(+person,pre_quals),inphase(+person,post_quals),
inphase(+person,post_generals)],

[inphase(P,pre_quals),inphase(P,post_quals),inphase(P,post_generals)],
[professor/1,student/1,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2,hasposition/2]).
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Structure Learning

SLIPCOVER
Execution Example

Examples of modeb declarations
modeb(*,courselevel(+course, -level)).
modeb(*,courselevel(-course, +level)).
modeb(*,courselevel(+course, #level)).
modeb(*,hasposition(+person, -position)).
modeb(*,hasposition(+person, #position)).
modeb(*,taughtby(+course, -person, -quarter)).
modeb(*,taughtby(-course, +person, -quarter)).
modeb(*,taughtby(+course, +person, -quarter)).
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Structure Learning

SLIPCOVER
Execution Example

1 Example of a two-head bottom clause generated from the modeh
declaration modeh(*,advisedby(+person,+person)) and the
example e = advisedby(person155, person101)

advisedby(A,B):0.5 :- professor(B),student(A),hasposition(B,C),
hasposition(B,faculty),inphase(A,D),inphase(A,pre_quals),
yearsinprogram(A,E),taughtby(F,B,G),taughtby(F,B,H),
taughtby(I,B,J),taughtby(I,B,J),taughtby(F,B,G),taughtby(F,B,H),
ta(I,K,L),ta(F,M,H),ta(F,M,H),ta(I,K,L),ta(N,K,O),ta(N,A,P),
ta(Q,A,P),ta(R,A,L),ta(S,A,T),ta(U,A,O),ta(U,A,O),ta(S,A,T),
ta(R,A,L),ta(Q,A,P),ta(N,K,O),ta(N,A,P),ta(I,K,L),ta(F,M,H).
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Structure Learning

SLIPCOVER
Execution Example

2 Example of a multi-head bottom clause generated from the modeh
declaration:
modeh(*,[student(+person),professor(+person)],
[student(P),professor(P)],
[hasposition/2,inphase/2,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2]).

and the examples e = student(person218), professor(person218)

student(A):0.33; professor(A):0.33 :- inphase(A,B),
inphase(A,post_generals),
yearsinprogram(A,C).
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Structure Learning

SLIPCOVER
Execution Example

Example of a refinement from the first bottom clause is
advisedby(A,B):0.5 :- professor(B).

EMBLEM is applied to the theory, the parameter is updated obtaining:
advisedby(A,B):0.108939 :- professor(B).

The clause is further refined to
advisedby(A,B):0.108939 :- professor(B),hasposition(B,C).
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Structure Learning

SLIPCOVER
Execution Example

Example of a refinement that is generated from the second bottom
clause is
student(A):0.33; professor(A):0.33 :- inphase(A,B).

Updated refinement after EMBLEM
student(A):0.5869;professor(A):0.09832 :- inphase(A,B).
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Structure Learning

SLIPCOVER
Execution Example

Suppose that, during the search in the space of theories for the target
predicate advisedby, SLIPCOVER has generated the program:

advisedby(A,B):0.1198 :- professor(B),inphase(A,C).
advisedby(A,B):0.1198 :- professor(B),student(A).

with a LL of -350.01.
After EMBLEM we get:

advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).

with a LL of -318.17.
Since the LL increased, the last clause is retained and at the next iteration a
new clause is added:

advisedby(A,B):0.12032 :- hasposition(B,C),inphase(A,D).
advisedby(A,B):0.05465 :- professor(B),inphase(A,C).
advisedby(A,B):0.06893 :- professor(B),student(A).
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Structure Learning

Experiments - Area Under the PR Curve

System HIV UW-CSE Mondial
SLIPCOVER 0.82± 0.05 0.11± 0.08 0.86± 0.07
SLIPCASE 0.78± 0.05 0.03± 0.01 0.65± 0.06
LSM 0.37± 0.03 0.07± 0.02 -
ALEPH++ - 0.05± 0.01 0.87± 0.07
RDN-B 0.28± 0.06 0.28± 0.06 0.77± 0.07
MLN-BT 0.29± 0.04 0.18± 0.07 0.74± 0.10
MLN-BC 0.51± 0.04 0.06± 0.01 0.59± 0.09
BUSL 0.38± 0.03 0.01± 0.01 -
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Structure Learning

Experiments - Area Under the PR Curve

System Carcinogenesis Mutagenesis Hepatitis
SLIPCOVER 0.60 0.95± 0.01 0.80± 0.01
SLIPCASE 0.63 0.92± 0.08 0.71± 0.05
LSM - - 0.53± 0.04
ALEPH++ 0.74 0.95± 0.01 -
RDN-B 0.55 0.97± 0.03 0.88± 0.01
MLN-BT 0.50 0.92± 0.09 0.78± 0.02
MLN-BC 0.62 0.69± 0.20 0.79± 0.02
BUSL - - 0.51± 0.03
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Structure Learning

Example: Bongard Problems
SLIPCOVER Settings

:- use_module(library(slipcover)).
:- if(current_predicate(use_rendering/1)).
:- use_rendering(c3).
:- use_rendering(lpad).
:- endif.
:- sc. //initializes SLIPCOVER
:- set_sc(megaex_bottom,20).
:- set_sc(max_iter,3). //no of it. of beam search
:- set_sc(max_iter_structure,10). //no of it. of theory search
:- set_sc(maxdepth_var,4).
:- set_sc(verbosity,1).

See http://cplint.eu/help/help-cplint.html#parameters-1 for the
complete setting list.
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Structure Learning

Example: Bongard Problems
Predicate settings

Folds
Target predicates: output(<predicate>).
Input predicates are those whose atoms you are not interested in
predicting
input_cw(<predicate>/<arity>).

True atoms are those in the interpretations and those derivable from
them using the background knowledge
Open world input predicates are declared with
input(<predicate>/<arity>).
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Structure Learning

Example: Bongard Problems
Predicate settings

fold(train,[2,3,5,...]).
fold(test,[490,491,494,...]).
output(pos/0).
input_cw(triangle/1).
input_cw(square/1).
input_cw(circle/1).
input_cw(in/2).
input_cw(config/2).
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Structure Learning

Example: Bongard Problems
Language Bias

determination(p/n, q/m): atoms for q/m can appear in the body of
rules for p/n

determination(pos/0,triangle/1).
determination(pos/0,square/1).
determination(pos/0,circle/1).
determination(pos/0,in/2).
determination(pos/0,config/2).
modeh(*,pos).
modeb(*,triangle(-obj)).
modeb(*,square(-obj)).
modeb(*,circle(-obj)).
modeb(*,in(+obj,-obj)).
modeb(*,in(-obj,+obj)).
modeb(*,config(+obj,-#dir)).
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Structure Learning

Hands-on

http://cplint.eu/e/bongard.pl
Learn both the structure and the parameters and test the result with:
induce([train],P),test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

Expected result
AUCPR = 0.416,
AUCROC = 0.673,
LL = -104.91,
P =
pos:0.222249 :- triangle(A),config(A,down).
pos:0.124824 :- triangle(A),in(B,A).
pos:0.314871 :- triangle(A).
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Structure Learning

ProbFOIL and ProbFOIL+

Combine the relational rule learner FOIL (first-order inductive learner,
Quinlan (1990)) with ProbLog
FOIL learns function-free Horn clauses C ← L1, ..., Ln, where Li can
be negated
Given positive and negative examples of some target relation, and a
set of background-knowledge predicates, FOIL inductively generates
rules for the target relation
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Structure Learning

ProbFOIL and ProbFOIL+
FOIL

Example

Target relation = can_reach

Examples for the target relation:
E + = {(0, 1), (0, 2), (0, 3), (1, 2), ..},E− = {(1, 0), (0, 7), ...}
KB = {link(0,1), link(0,3), ...}
FOIL learns
can_reach(X ,Y )← link(X ,Y ).
can_reach(X ,Y )← link(X ,Z ), can_reach(Z ,Y ).
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Structure Learning

ProbFOIL and ProbFOIL+

Definition (ProbFOIL/ProbFOIL+ learning problem)

Given
1 a set of training examples E = {(e1, p1), . . . , (eT , pT )} where each ei

is a ground fact for a target predicate, and pi ∈ [0, 1] is the probability
of ei

2 a background theory B containing information about the examples in
the form of a ProbLog program

3 a space of possible clauses L
find a hypothesis H ⊆ L so that the absolute error AE =

∑T
i=1 |P(ei )− pi |

is minimized, i.e.,

argminH∈L

T∑
i=1

|P(ei )− pi |
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Structure Learning

ProbFOIL

Probabilistic rule learning problem: inducing a set of rules that allows
one to predict the probability of a target example from its description
Here the probabilities of the queries are fixed and the structure, that is
the rules, are to be learned
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Structure Learning

ProbFOIL
Example

The forecast might state that tomorrow the probability of precipitation
(pop) is 20%, the wind will be strong enough with probability 70%,
and the sun is expected to shine 60% of the time

0.2 :: pop(t). 0.7 :: windok(t).
0.6 :: sunshine(t). 0.7 :: surfing(t).

t: identifier of the examples
Target predicate: surfing(t)

The following rules could be induced
surfing(X ) : −not pop(X ),windok(X ).
surfing(X ) : −not pop(X ), sunshine(X ).

and P(surfing(t)) can be computed as
0.8 ∗ 0.7 + 0.8 ∗ 0.6 ∗ (1− 0.7) = 0.704

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 74 / 99



Structure Learning

ProbFOIL

Two nested loops
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Structure Learning

ProbFOIL
Outer or "Covering" Loop

Adds clauses (one at each iteration) to the hypothesis H until adding
further clauses decreases the quality of the hypothesis
Why? Because adding clauses to the hypothesis for the target
predicate is a monotonic operation, that is, it can only increase the
probability of an individual example (adding a clause results in extra
possibilities for proving that the example is true)
Global score(H): accuracy of H over the dataset

accuracyH =
TPH + TNH

T

where T is number of examples and TPH and TNH are, respectively,
the number of true positives and of true negatives
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Structure Learning

ProbFOIL
Outer or "Covering" Loop

How to compute TPH and TNH?
Each example ei is associated with a probability pi

It contributes a part pi to the positive part of the training set and
ni = 1− pi to the negative part:

P =
∑T

i=1 pi and N =
∑T

i=1 ni

Hypothesis H assigns a probability pH,i to each example ei (and
nH,i = 1− pH,i )
Perfect prediction: pH,i = pi , nH,i = ni

If not...
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Structure Learning

ProbFOIL
Outer or "Covering" Loop

...we can build a contingency table for probabilistic examples:
true positive part tpi = min(pi , pH,i )
true negative part tni = min(ni , nH,i )
false positive part fpi = max(0, ni − tni )
the false negative part fni = max(0, pi − tpi )

and then compute

TPH =
T∑
i=1

tpi ,FPH =
T∑
i=1

fpi ,TNH =
T∑
i=1

tni ,FNH =
T∑
i=1

fni
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Structure Learning

ProbFOIL
Outer or "Covering" Loop

if ph,i > pi , the hypothesis overestimates the positive part of the
example, and hence, the true positive part is still pi but the false
positive part will be non-zero;
if ph,i < pi , the true negative part is still ni but the false negative part
will be nonzero
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Structure Learning

ProbFOIL
Inner greedy Loop

Searches greedily for the a clause at a time (lines 5-8) according to a
local scoring function, until some local stopping criterion is satisfied
Starts from a clause c with empty body, and repeatedly adds literals l
to it
To determine the possible literal, a refinement operator ρ is applied to
the current clause and the clause with body [b, l ] is evaluated through
a local score
localstop(H, c) = (TP(H ∪ c)− TP(H) = 0) ∨ (FP(c) = 0) (c does
not cover any extra negative part or any extra positive part any more)

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 80 / 99



Structure Learning

ProbFOIL
Inner greedy Loop

Local score(c) = m-estimate of the precision of c =
TPc+m P

P+N

TPc+FPc+m

Local score(H) = m-estimate of the precision of H =
TPH+m P

P+N

TPH+FPH+m

Local score(H, c) = m-estimate(H ∪ c) - m-estimate(H) (each rule
may only cover fractions of the examples)
m-estimate is more robust against noise in the training data than plain
precision
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Structure Learning

ProbFOIL
Inner greedy Loop

Specializing a clause (adding literals to it) can only decrease the
probability of examples
Traditional deterministic rule learners typically manipulate the set of
examples, e.g. deleting the already covered examples: this operation is
warranted because if one rule in the hypothesis covers the example,
the overall hypothesis will cover the example
ProbFOIL takes into account all examples all the time, as a given rule
may only cover part of the example, and therefore a multi-rule
hypothesis may be needed to cover the full positive part of an example
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Structure Learning

ProbFOIL+

ProbFOIL learns definite clauses, i.e., of the form h← B

ProbFOIL+ learns probabilistic clauses, i.e., of the form x :: h← B ,
with x ∈ [0, 1]

x : the probability that the body of the clause entails its head
It is based, as ProbFOIL, on two nested loops and on the same scoring
functions
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Structure Learning

ProbFOIL+

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 84 / 99



Structure Learning

ProbFOIL+
Computing the probability x

Done in the inner loop: it searches for the clause c(x) = (x :: c) that
maximizes the local scoring function m-estimate(x)=M(x)

x = argmaxx M(x)

m-estimate(x) = TPH∪c(x)+mP/(N+P)

TPH∪c(x)+FPH∪c(x)+m

Need to express the contingency table of H ∪ c(x) in function of x

For each example ei , we can decompose TPH∪c(x),i and FPH∪c(x),i in

TPH∪c(x),i = TPH,i + TPc(x),i FPH∪c(x),i = FPH,i + FPc(x),i

where TPc(x) and FPH∪c(x),i indicate the additional contribution of
clause c(x) to the true and false positive rates
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Structure Learning

ProbFOIL+
Computing the probability x

dM(x)
dx is a piecewise function, which is either 0 or different from 0

everywhere in each interval so the maximum of M(x) can only occur
at the xi values that are the endpoints of the intervals
Compute the value of M(x) for each xi and pick the maximum
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Structure Learning

ProbFOIL+
Inner loop: refinements

In order for a refinement to be a viable candidate it has to have
1 a higher local score than the current best rule (line 18)
2 has a significance that is high enough (according to a preset

threshold); it si computed as a function of TP/FP and precision
3 has a better global score than the current rule set without the

additional clause

ProbFOIL+ uses a declarative bias based on modes Muggleton (1995)
to specify syntactic restrictions on the clauses of interest and are used
by the refinement operator during the search process
It uses relational path finding to generate clauses by considering the
connections be- tween the variables in the example literals
ProbFOIL+ computes the probabilities pH,i using the ProbLog2 system
ProbFOIL+ outperforms ProbFOIL
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Applications

PLP Online

cplint on SWISH: for writing and run reasoning tasks on LPADs online

http://cplint.eu/ based on the SWISH web front-end for SWI-Prolog

Inference:
Exact inference with PITA, approximate inference with MCINTYRE
Inference on Hybrid Probabilistic Logic Programs, where some of the
random variables are continuous
Allows to draw BDDs and SLDNF trees
Allows to draw probability density functions when the program has
continuous random variables

Parameter learning: EMBLEM

Structure learning
Aleph (non probabilistic)
SLIPCOVER, LEMUR (Di Mauro et al. (2015))

Allows to draw ROC and PR curves to evaluate performance
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Applications

PLP Online

ProbLog1 (Kimmig et al. (2011)):
https://dtai.cs.kuleuven.be/problog/problog1/problog1.html

integrated in YAP Prolog
employs BDDs

ProbLog2: https://dtai.cs.kuleuven.be/problog/
Written in Python
Employs d-DNNFs
Inference: exact (unconditional, conditional, MAP and MPE) and
approximate (Monte Carlo)
Parameter learning: from partial interpretations (LFI-ProbLog)
Structure Learning: ProbFOIL (can only be downloaded)
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Applications

Applications

Link Prediction: given a (social) network, compute the probability of
the existence of a link between two entities

Example. UWCSE: University of Washington Department of Computer
Science and Engineering

advisedby(X, Y):0.7:- publication(P, X),
publication(P, Y),
student(X).
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Applications

Applications

Classification: classify web pages on the basis of the link structure

Example. WebKB: WWW-pages from computer science departments
of four American universities
coursePage(Page1):0.3:-linkTo(Page2,Page1),coursePage(Page2).
coursePage(Page1):0.6:-linkTo(Page2,Page1),facultyPage(Page2).
coursePage(Page): 0.9:-has(’syllabus’,Page).
...
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Applications

Applications

Entity resolution: identify identical entities in texts or databases
Example. Cora: scientific publications

samebib(A,B):0.9 :-
samebib(A,C), samebib(C,B).
sameauthor(A,B):0.6 :-

sameauthor(A,C), sameauthor(C,B).
sametitle(A,B):0.7 :-

sametitle(A,C), sametitle(C,B).
samevenue(A,B):0.65 :-

samevenue(A,C), samevenue(C,B).
samebib(B,C):0.5 :-

author(B,D),author(C,E),sameauthor(D,E).
samebib(B,C):0.7 :-

title(B,D),title(C,E),sametitle(D,E).
samebib(B,C):0.6 :-

venue(B,D),venue(C,E),samevenue(D,E).
samevenue(B,C):0.3 :-

haswordvenue(B,logic),
haswordvenue(C,logic).

...
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Applications

Applications

Chemistry: given the chemical composition of a substance, predict its
mutagenicity or its carcenogenicity
Example. Mutagenesis

active(A):0.4 :-
atm(A,B,c,29,C),
gteq(C,-0.003),
ring_size_5(A,D).

active(A):0.6:-
lumo(A,B), lteq(B,-2.072).

active(A):0.3 :-
bond(A,B,C,2),
bond(A,C,D,1),
ring_size_5(A,E).

active(A):0.7 :-
carbon_6_ring(A,B).

...
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Applications

Applications

Medicine: diagnose diseases on the basis of patient information
(Hepatitis), influence of genes on HIV, risk of falling of elderly people
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Applications

Conclusions

Exciting field!
Much is left to do:

Lifted inference
Continuous variables
Structure learning search strategies
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