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Competitions

There are three main competitions related to the topics of this course

1 ASP competition: organized in “odd” years, together with the
conference LPNMR. Two main tracks: modeling (any dialect of a
logic programming language is allowed) and solving (the models
are given as ASP program as inputs for participating solvers)

2 Minizinc challenge: it is the competition for CP solvers. Models
are written in Minizinc and solvers should be able to understand
them. Organized yearly together with CP.

3 International Planning Competition (IPC): organized every
three years (2014, the last one) within the ICAPS conference.
Models are written in PDDL.
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Minizinc

Minizinc

Minizinc is defined by NICTA
You can download it from http://www.minizinc.org/

You’ll find a tutorial by Marriott and Stuckey there
Typically a Minizinc model is first translated to Flatzinc using
mzn2fzn

A Flatzinc model is an unfolded version of the Minizinc one;
basically it is a sequence of simple (flat) constraints
Any modern constraint solver reads Flatzinc models as input
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Minizinc

Syntax

Variables (and parameters/constants) need to be typed. E.g.
par int: a = 3;
var int: b;
Parameters should be assigned asap and are assigned once.
par is the default value. var should be made explicit.
Possible types for var/par are (plus string):

int : integer variables (e.g. FD)
bool : Boolean variables (particular cases of FD)
float : floating point variables (for hybrid modeling)

A variable should be assigned to a domain. E.g.,
var 0..100:v; for intervals domain (typical case)
var {0,2,4,6}:w; for explicitly listed domains
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Minizinc

Syntax

You can define single/multi-dimensional arrays of variables:
array [ indexset1, indexset2, . . . ] of var type: varname;
For instance:
array [0..2] of var 1..5 : v;
array [1..5,1..5] of var 0..2 : M;
arrays are accessed as V[i], M[i,j].
Set of integers as domains are allowed.
set of 1..8 : s;
s is any subset of {1, . . . ,8}. You can use membership (in), set
inclusion (subset, superset), union (union), intersection (inter), set
difference (diff), symmetric difference (symdiff) and cardinality
(card) to build expressions with set variables.
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Minizinc

Syntax

Constraints are added explicitly either in a flat or compact way. E.g.,
constraint a + b < 100;
constraint a\/b; (this means a ∨ b for Boolean variables)
constraint alldifferent(V); (where V is an array of variables: the
global constraint should be imported using import)
constraint forall(EXPRESSION); (where EXPRESSION is a
complex statement, such as a list comprehension). E.g.
forall( [ v[ i ] != v[ j ] | i , j in 1..3 where i <

j ] );

(You should to read the manual for the syntax of EXPRESSIONs,
of course)
There is a simplified, user-friendly version:
forall(i,j in 1..3 where i<j) (v[ i ] != v[ j ]);

A. Dovier (DIMI) CP& P Udine, DICEMBRE 2014 6 / 16



Minizinc

Syntax

You can choose the search directive:

solve satisfy;
solve maximize(<Arithmetic EXPRESSION>);
solve minimize(<Arithmetic EXPRESSION>);
Example of expressions can be a single variable or a function.

A. Dovier (DIMI) CP& P Udine, DICEMBRE 2014 7 / 16



Minizinc

n-Queens

include "alldifferent.mzn";

int: n = 8;
array [1..n] of var 1..n: queens;

constraint alldifferent(queens);
constraint forall(i,j in 1..n where i<j)

(j-i != abs(queens[i]-queens[j]));

solve satisfy;

output ["\n Queens:", show(queens), "\n"];
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Minizinc

n-Queens
with maximization example

include "alldifferent.mzn";

int: n = 8;
array [1..n] of var 1..n: queens;

constraint alldifferent(queens);
constraint forall(i,j in 1..n where i<j)

(j-i != abs(queens[i]-queens[j]));

solve maximize queens[1]+queens[2]+queens[3];

output ["\n Queens:", show(queens), "\n"];
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PDDL

PDDL

Planning Domain Definition Language (PDDL) is a “standard”
action description language introduced in 1988 by a group of top
researchers in AI (Ghallab, Howe, Knoblock, Drew McDermott,
Ram, Veloso, Weld, Wilkins).
The programming style is functional (declarative, but not logic
programming)
There is a tradition of functional programming within the “hard
core” of AI and Planning due to Mc Carthy school.
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PDDL

PDDL
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PDDL

PDDL: domain definition

(define (domain DOMAIN_NAME)
(:requirements [:strips] [:equality] [:typing] [:adl])
(:predicates

(PREDICATE_1_NAME ?A1 ?A2 ... ?AN)
(PREDICATE_2_NAME ?A1 ?A2 ... ?AN)

...
)

(:action ACTION_1_NAME
[:parameters (?P1 ?P2 ... ?PN)]
[:precondition PRECOND_FORMULA]
[:effect EFFECT_FORMULA]

)

(:action ACTION_2_NAME
...)

)
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PDDL

PDDL: formulas

For STRIPS domains, a precondition formula may be: an atomic
formula (PREDICATE_NAME ARG1 ... ARGN) or a
conjunction of atomic formulas: (and ATOM1 ... ATOMN)

For ADL domains, a precondition may in addition be: A general
negation, conjunction or disjunction:
(not CONDITION_FORMULA) (and CONDITION_FORMULA1
... CONDITION_FORMULAN) (or CONDITION_FORMULA1
... CONDITION_FORMULAN)
A quantified formula:
(forall (?V1 ?V2 ...) CONDITION_FORMULA)
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PDDL

PDDL: formulas

For STRIPS domains, an effect formula may be: An added atom:
(PREDICATE_NAME ARG1 ... ARGN) The predicate
arguments must be parameters of the action (or constants
declared in the domain, if the domain has constants). A deleted
atom: (not (PREDICATE_NAME ARG1 ... ARGN)) A
conjunction of atomic effects: (and ATOM1 ... ATOMN)

For ADL domains an effect formula may in addition contain: A
conditional effect: (when CONDITION_FORMULA
EFFECT_FORMULA) or a universally quantified formula: (forall
(?V1 ?V2 ...) EFFECT_FORMULA)
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PDDL

PDDL: Problem Definition

The problem definition contains the objects present in the problem
instance, the initial state description and the goal:

(define (problem PROBLEM_NAME)
(:domain DOMAIN_NAME)
(:objects OBJ1 OBJ2 ... OBJ_N)
(:init ATOM1 ATOM2 ... ATOM_N)
(:goal CONDITION_FORMULA)
)

Other options such as action/plan cost can be set.
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PDDL

PDDL: Example

(:objects rooma roomb ball1 ball2 ball3 ball4 left right)

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER ?x) (at-robby ?x)
(at-ball ?x ?y) (free ?x) (carry ?x ?y))

(:init (ROOM rooma) (ROOM roomb) (at-robby rooma)
(BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma))

(:goal (and (at-ball ball1 roomb) (at-ball ball2 roomb)
(at-ball ball3 roomb) (at-ball ball4 roomb)))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))
:effect (and (carry ?z ?x)

(not (at-ball ?x ?y)) (not (free ?z))))
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