CONSTRAINT PROGRAMMING & PLANNING

Agostino Dovier

Università di Udine Dipartimento di Matematica e Informatica

Udine, GENNAIO 2013

- Prima di tutto si fa il grounding
- Poi si fanno le possibili attività polinomiali (modello well founded)
- A questo punto parte la computazione non deterministica
- Vediamo una descrizione ad alto livello dovuta a Yuliya Lierler (Univ. Nebraska at Omaha):

For a set σ of atoms, a record relative to σ is an ordered set M of literals over σ , some possibly annotated by Δ , which marks them as decision literals. A state relative to σ is a record relative to σ possibly preceding symbol \bot . For instance, some states relative to a singleton set $\{a\}$ of atoms are

$$\emptyset, \quad a, \quad \neg a, \quad a^{\Delta}, \quad a \ \neg a, \quad \bot, \quad a\bot, \quad \neg a\bot, \quad a^{\Delta}\bot, \quad a \ \neg a\bot.$$

We say that a state is inconsistent if either \bot or two complementary literals occur in it. For example, states $a \neg a$ and $a \bot$ are inconsistent.

By $Bodies(\Pi,a)$ we denote the set of the bodies of all rules of a regular program Π with the head a. We recall that a set U of atoms occurring in a regular program Π is unfounded [18, 19] on a consistent set M of literals with respect to Π if for every $a \in U$ and every $B \in Bodies(\Pi,a), M \models \overline{B}$ (where B is identified with the conjunction of its elements), or $U \cap B^{pos} \neq \emptyset$.

For a set σ of atoms, a record relative to σ is an ordered set M of literals over σ , some possibly annotated by Δ , which marks them as decision literals. A state relative to σ is a record relative to σ possibly preceding symbol \bot . For instance, some states relative to a singleton set $\{a\}$ of atoms are

$$\emptyset, \quad a, \quad \neg a, \quad a^{\Delta}, \quad a \ \neg a, \quad \bot, \quad a\bot, \quad \neg a\bot, \quad a^{\Delta}\bot, \quad a \ \neg a\bot.$$

We say that a state is inconsistent if either \bot or two complementary literals occur in it. For example, states $a \neg a$ and $a \bot$ are inconsistent.

By $Bodies(\Pi,a)$ we denote the set of the bodies of all rules of a regular program Π with the head a. We recall that a set U of atoms occurring in a regular program Π is unfounded [18, 19] on a consistent set M of literals with respect to Π if for every $a \in U$ and every $B \in Bodies(\Pi,a), M \models \overline{B}$ (where B is identified with the conjunction of its elements), or $U \cap B^{pos} \neq \emptyset$.

```
Unit Propagate:
```

$$M \Longrightarrow M \ l \ \text{if} \quad C \lor l \in \Pi^{cl} \text{ and } \overline{C} \subseteq M$$

Decide:

$$M \implies M l^{\Delta}$$
 if l is unassigned by M

Fail:

$$M \implies \bot$$
 if $\begin{cases} M \text{ is inconsistent and different from } \bot, \\ M \text{ contains no decision literals} \end{cases}$

Backtrack:

$$P\ l^{\Delta}\ Q \Longrightarrow P\ \overline{l} \ \ \text{if} \ \left\{ \begin{array}{l} P\ l^{\Delta}\ Q \ \text{is inconsistent, and} \\ Q \ \text{contains no decision literals} \end{array} \right.$$

Unfounded:

$$M \Longrightarrow M \neg a$$
 if $a \in U$ for a set U unfounded on M w.r.t. Π