

Università "G. D'Annunzio", 5 maggio 2005

Local search meta-heuristics for combinatorial problems

Luca Di Gaspero

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica Università degli Studi di Udine <u>1.digaspero@uniud.it</u> <u>http://www.diegm.uniud.it/digaspero/</u>

Local search meta-heuristics for combinatorial problems

Constraint Satisfaction Problems

• Given:

- A set of variables $X = \{x_1, ..., x_n\};$
- For each variable x_i a corresponding domain $D_i = \{d_{i_1}, ..., d_{i_n}\};$
- A set of constraints $C = \{C_1, ..., C_m\}, C_i \subseteq D_{i_1} \times ... \times D_{i_k};$
- A CSP is the problem of finding an assignment $x_i := d_{ij}$ such that all constrains are satisfied.

Local search meta-heuristics for combinatorial problems

Constrained Optimization Problems

- In the same settings as for CSP:
 - Given a cost function $f: D_1 \times ... \times D_n \rightarrow ;$
 - A solution for a COP is an assignment that minimizes the cost function
- Common features of these problems:
 - Combinatorial problems (possibly $|D_1| \cdot ... \cdot |D_n|$ solutions);
 - In general, computationally intractable (NP-complete)

Local search meta-heuristics for combinatorial problems

Types of constraints

- Mainly two categories:
 - Hard constraints they *must* be satisfied in a feasible solution of the problem
 - Soft constraints: they *might* be not satisfied in a solution, their violation do not lead to an infeasible solution
 - However, the solutions that contain violations of the soft constraints should be penalized within the cost function

Local search meta-heuristics for combinatorial problems

The Graph-Coloring Problem

• Given a graph G = (V, E), and a set of color values, find the minimum number of colors to be assigned to each vertex of the graph so that adjacent vertices are assigned different colors

Variables $c_v, v \in V$

Domains $D_v = ,$ Constraints: $\forall (u,v) \in E c_u \neq c_v$

Objective function: $f(c) = |\{c_v : v \in V\}|$

6

Local search meta-heuristics for combinatorial problems

Solution techniques

- Constructive search methods:
 - Exhaustive (backtracking-based): Forward checking, Backjumping, Branch & bound, ...
 - Incomplete (backtracking-free): Greedy construction, Heuristic repair, ...
- Selective search methods:
 - Single solution (Local Search): Hill-Climbing, Simulated Annealing, Tabu Search, ...
 - Population based (Evolutionary Algorithms): Genetic/Memetic Algorithms, Ant Colony
- Others: Integer Programming, ...

Local search meta-heuristics for combinatorial problems

Main features

- Constructive techniques
 - More natural: better understanding of the automatic search
 - Reasonably fast for easy cases
 - Better control on the critical steps
- Selective techniques
 - Proved to be effective in many real applications
 - Provide approximate solutions
 - Revise previous solutions

An overview of Local Search

Local search meta-heuristics for combinatorial problems

From CSP/COPs to Local Search problems

- Search Space S: each element of it represents a possible solution of the problem. It should contain at least one feasible (or optimal) solution.
- Neighborhood Relation *N*(*s*): how to move from a solution to a "close" one.
- Cost Function *F*(*s*): assess the quality of each solution. Embeds distance from feasibility and, possibly, drives the search toward feasible regions.

bcal search meta-heuristics for combinatorial problems
bcal search meta-heuristics for combinatorial problems
bcal search meta-heuristics for combinatorial problems
b Basici
b Basici<

Local search meta-heuristics for combinatorial problems