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LANGUAGES
DEFINITE PROGRAMS

A definite program is a set of rules:

A← B1, . . . ,Bm

where A,Bi are (positive) atoms.
If P is definite, it has a unique stable model, which is its minimum
(w.r.t. ⊆) Herbrand model.
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LANGUAGES
GENERAL PROGRAMS

A general program is a set of rules:

A← B1, . . . ,Bm,not C1, . . . ,not Cn

where A,Bi ,Cj are atoms.
Stable models are looked for in the Herbrand models that are minimal
(w.r.t. ⊆)
Let us recall that S is a stable model of P if and only if it is the
minimum Herbrand model of PS (reduct of P w.r.t. S). PS is obtained:

1 removing any rule whose body contains a naf-literal not L s.t.
L ∈ S;

2 removing any naf-literal from the bodies of the remaining rules.
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LANGUAGES
DISJUNCTIVE PROGRAMS WITHOUT not

Disjunctive programs without not are conjunctions of rules:

A1or · · · or Am ← B1, . . . ,Bn

where Ai ,Bj are (positive) atoms.
If m = 0 the rule is interpreted as a constraint.

If P is a Disjunctive programs without not , its stable models are all its
minimal (w.r.t. ⊆) Herbrand models
(of course, or is interpreted as ∨, while “,” is interpreted as ∧).
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LANGUAGES
DISJUNCTIVE PROGRAMS WITHOUT not

living(X) or dead(X) :- man(X).
man(lazzarus).

Its Herbrand models are:
1. {man(lazzarus),living(lazzarus)}
2. {man(lazzarus),dead(lazzarus)}
3. {man(lazzarus),dead(lazzarus),living(lazzarus) }.
The latter is not minimal.

The general program:

dead(X) :- man(X), not living(X).
man(lazzarus).

is “logically” equivalent, but its unique stable model is only the second
one (we have no justification for stating that lazzarus is living).
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LANGUAGES
DISJUNCTIVE PROGRAMS WITHOUT not

a or b.
b or c :- a.

Choose a in the first rule. Then b or c can be chosen from the second
rule. It seems that {a,b} and {a,c} are stable models.
Choose b in the first rule, the second rule is true since the body is
false, thus {b} seems a minimimal model, hence stable.
Therefore {a,b} is not stable!
Similarly, {b,c} is not stable (not minimal).
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LANGUAGES
DISJUNCTIVE PROGRAMS WITHOUT not

Consider a graph G

node(a). node(b). node(c). ....
edge(a,b). edge(a,c). ....

and a set of (three) colors RGB

color(red). color(green). color(blue).

Let us model the 3-coloring problem as follows:

colored(X,red) or colored(X,green) or colored(X,blue) :- node(X).
:- color(C), edge(A,B), colored(A,C), colored(B,C).

Its stable models (if any) are the solutions to the 3-coloring problem.
(So What?)
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LANGUAGES
GENERAL DISJUNCTIVE PROGRAMS

General disjunctive programs are sets of rules:

A1or · · · or Am ← B1, . . . ,Bm,not C1, · · · ,not Cn

where Ai ,Bj ,Ck are atoms.
If P is a general disjunctive program, its stable models should be
looked for in the minimal (w.r.t. ⊆) Herbrand models.
S is a stable model of P if and only if S is a minimal model of PS

reduct of P w.r.t. S, defined as follows:

1 removing any rule whose body contains a naf-literal not L s.t.
L ∈ S;

2 removing any naf-literal from the bodies of the remaining rules.
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LANGUAGES
STRATEGIC COMPANIES

C = {c1, . . . , cm} (m ≥ 1) is a set of companies; each company
produces some goods in a set G, and each company ci ∈ C is possibly
controlled by a set of owner companies Oi ⊆ C.
A set S ⊆ C is a strategic set iff it is a minimal set satisfying:

companies in S produce all goods in G
If Oi ⊆ S then ci ∈ S

In the instances proposed in the ASP competition, moreover, each
product is produced by at most four companies and each company is
controlled by at most four companies. Even with these restriction the
problem is NPNP complete.
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LANGUAGES
STRATEGIC COMPANIES

Instances:
producedBy(p, c1, c2, c3, c4) if product p is produced by
companies c1, c2, c3, c4 Repetitions are used if less than 4
companies produce p.
controlledBy(c, c1, c2, c3, c4) if a company c is controlled by
companies c1, c2, c3, c4. Repetitions are used if less than 4
companies control c.
A fact strategic pair(ci , cj) forces to look for a a strategic S
such that {ci , cj} ⊆ S.

strategic(W) :- controlled_by(W,X1,X2,X3,X4),
strategic(X1), strategic(X2), strategic(X3), strategic(X4).

:- strategic_pair(X,Y), not strategic(X).
:- strategic_pair(X,Y), not strategic(Y).
% DISJUNCTIVE RULE:
strategic(X1) or strategic(X2) or strategic(X3) or strategic(X4) :-

produced_by(X,X1,X2,X3,X4).
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CONSISTENCY PROBLEM

Given a ground program P establish
whether there is (or not) a stable
model for P.
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CONSISTENCY PROBLEM
DEFINITE PROGRAMS

We have seen that a definite program P admits always a unique
minimum Herbrand model MP

MP is also its stable model.
Thus the answer is simply yes.
Trivial problem (computing MP is another problem).
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BACKGROUND
THE CLASS NP

A problem/language L belongs to the class NP if, for each x ∈ L, there
exists a succint certificate (guess) c for x that allows us to prove that
x ∈ L (verify) in polynomial time.

Finding the certificate is typically the hard task. For NP complete
problems (currently) we need to visit a search space of exponential
size w.r.t. |x |.

A problem L in NP is NP-complete if any problem in NP can be
reduced to L. SAT is NP-complete. The certificate c for x is the
Boolean assignment for the variables.
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CONSISTENCY PROBLEM
GENERAL PROGRAMS

THEOREM

The problem of establishing whether a general ground program admits
a stable model is NP-complete.

NP Let P ground program, a candidate stable model S will contain only
atoms occurring in P, thus |S| ≤ |P|. Computing PS, the fixpoint
computation of MPS , and checking if S = MPS therefore polynomial
w.r.t. |P|. Thus the problem is in NP.
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CONSISTENCY PROBLEM
GENERAL PROGRAMS

THEOREM

The problem of establishing whether a general ground program admits
a stable model is NP-complete.

Hardness Let us consider an instance ϕ of 3SAT:

(A ∨ ¬B ∨ C)︸ ︷︷ ︸
c1

∧ (¬A ∨ B ∨ ¬C)︸ ︷︷ ︸
c2

and define accordingly the program Pϕ:

a :- not na. na :- not a.
b :- not nb. nb :- not b.
c :- not nc. nc :- not c.
c1 :- a. c1 :- nb. c1 :- c.
c2 :- na. c2 :- b. c2 :- nc.
:- not c1. :- not c2.

Pϕ can be computed in LOGSPACE and it is immediate to check that it
admits a stable model iff ϕ is satisfiable.
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CONSISTENCY PROBLEM
DISJUNCTIVE PROGRAMS WITHOUT not

THEOREM

The problem of establishing whether a disjunctive programs without
not P admits a stable model is NP-complete.

NP. Given P ground, a candidate stable model S will contain only
atoms occurring in P. Thus, |S| ≤ |P|.
Checking whether S is or not a model of P can be made in polynomial
time on P. S could be not minimal. However, if this is the case, another
minimal model would exist. Thus, checking S can be made in
polynomial time (hence the problem is in NP).

Let us observe that in absence of constraints BP is always a model
and therefore a minimal model would exist always.
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(A ∨ ¬B ∨ C)︸ ︷︷ ︸
c1

∧ (¬A ∨ B ∨ ¬C)︸ ︷︷ ︸
c2

∧ (¬A ∨ ¬B)︸ ︷︷ ︸
c3

Let us define the program P:

a or c :- b. b :- a,c. :- a,b.

It is immediate to see that P has a model (and, therefore it has a
minimal model) iff ϕ is satisfiable.
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BACKGROUND
THE POLYNOMIAL HIERARCHY

The polynomial hierarchy (for complexity) is defined in a similar way as
Kleene defined the arithmetical hierarchy (for computability).

ΣP
0 = ΠP

0 = P

ΣP
k+1 = NPΣP

k ,ΠP
k+1 = co-ΣP

k+1

A problem/language L belongs to NPC if there is an algorithm such that
for all x , it allows to prove that x ∈ L (verify) in a polynomial number of
steps. At every step the algorithm can require the help of a oracle that
answers in constant time a membership check in the class C.
A problem/language L belongs to co-NPC if there is an algorithm
capable of verifying the non memberhip to L with the same rules
above.
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BACKGROUND
THE POLYNOMIAL HIERARCHY

B[~v ] denotes a Boolean formula (without quantifiers) on the
variables ~v = v1, . . . , vk

ΣP
1 = NPP = NP. Typical problem: SAT, namely establishing

whether
∃x1 · · · ∃xnB[~x ]

ΠP
1 = co-NPP = co-NP. Typical problem: VALIDITY, namely

establishing whether
∀x1 · · · ∀xnB[~x ]

ΣP
2 = NPNP. Typical problem: establishing whether

∃x1 · · · ∃xn∀y1 · · · ∀ymB[~x , ~y ]

ΠP
2 = co-NPNP. Typical problem: establishing whether

∀x1 · · · ∀xn∃y1 · · · ∃ymB[~x , ~y ]
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CONSISTENCY PROBLEM
GENERAL DISJUNCTIVE PROGRAMS

THEOREM

The problem of establishing whether a general disjunctive program
admits a stable model is ΣP

2 -complete.

We first show that the problem belongs to ΣP
2 .

Given a candidate stable model S we should be able to check it in a
polynomial number of steps possibly querying an oracle in NP.
The reduct PS is obtained in polynomial time and it is a disjunctive
program without not .
Now we need to check if S is a model of PS (again, polynomial). It
remains to check if it is minimal, namely that does not exist S′ ⊂ S that
is a model of PS.
Stating whether such a S′ exists is NP (if you have it, you can verify it
easily), thus, if the oracle answers no, we have checked that S is a
stable model with a polynomial number of steps.
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CONSISTENCY PROBLEM
GENERAL DISJUNCTIVE PROGRAMS

THEOREM

The problem of establishing whether a general disjunctive program
admits a stable model is ΣP

2 -complete.

For the ΣP
2 hardness, we reduce the problem of validity of

ϕ ≡ ∃x1 · · · ∃xn∀y1 · · · ∀ymB[~x , ~y ]

to the problem of existence of a stable model for a program obtained
from ϕ.
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CONSISTENCY PROBLEM
GENERAL DISJUNCTIVE PROGRAMS: ΣP

2 HARDNESS

To fix the ideas, let us consider ϕ:

∃x1∃x2∃x3∀y1∀y2((x1 ∧ ¬x2 ∧ y1) ∨ (¬x1 ∧ x3 ∧ ¬y1 ∧ y2))

Let us introduce variables x ′1, x
′
2, x
′
3, y
′
1, y
′
2,w and let us define P(ϕ):

x1 ∨ x ′1 ← x2 ∨ x ′2 ← x3 ∨ x ′3 ←
y1 ∨ y ′1 ← y2 ∨ y ′2 ←
y1 ← w . y2 ← w . y ′1 ← w . y ′2 ← w .
w ← x1, x ′2, y1.
w ← x ′1, x3, y ′1, y2.
w ← not w .

x ′i stands for ¬xi .
y ′i stands intuitively for ¬yi ; in this case w can force both of them to be
true.
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CONSISTENCY PROBLEM
PROGRAMMI DISGIUNTIVI GENERALI: ΣP

2 HARDNESS

∃x1∃x2∃x3∀y1∀y2((x1 ∧ ¬x2 ∧ y1) ∨ (¬x1 ∧ x3 ∧ ¬y1 ∧ y2))

x1 ∨ x ′
1 ← x2 ∨ x ′

2 ← x3 ∨ x ′
3 ←

y1 ∨ y ′
1 ← y2 ∨ y ′

2 ←
y1 ← w . y2 ← w . y ′

1 ← w . y ′
2 ← w .

w ← x1, x ′
2, y1. (D1)

w ← x ′
1, x3, y ′

1, y2. (D2)
w ← not w .

Assume S is a stable model of P(ϕ). The last rule ensures that w cannot be false. Thus, w must
be supported by one of the rules (D1), (D2) (think to P(ϕ)S) and therefore all yi and y ′

i are true in
S for i = 1 and i = 2.
Consider now an interpretation (set of atoms) I that coincides with S on xj , x ′

j and such that, for
every i choose one and only one in yi and y ′

i and that does not contain w (there are 4 of them in
this example).
I is not a model of P(ϕ)S , otherwise, since S ⊃ I, S would not be stable contradicting the
hypothesis.
For being not a model (by case analysis) I makes true (at least) one of the bodies of (D1) and
(D2).

Therefore, we have proved that there are x1, x2, x3 such that any value assigned to ~y makes true

the Boolean disjunction of ϕ. Thus ϕ is valid.
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∃x1∃x2∃x3∀y1∀y2((x1 ∧ ¬x2 ∧ y1) ∨ (¬x1 ∧ x3 ∧ ¬y1 ∧ y2))

x1 ∨ x ′
1 ← x2 ∨ x ′

2 ← x3 ∨ x ′
3 ←

y1 ∨ y ′
1 ← y2 ∨ y ′

2 ←
y1 ← w . y2 ← w . y ′

1 ← w . y ′
2 ← w .

w ← x1, x ′
2, y1. (D1)

w ← x ′
1, x3, y ′

1, y2. (D2)
w ← not w .

Assume S is a stable model of P(ϕ). The last rule ensures that w cannot be false. Thus, w must
be supported by one of the rules (D1), (D2) (think to P(ϕ)S) and therefore all yi and y ′

i are true in
S for i = 1 and i = 2.
Consider now an interpretation (set of atoms) I that coincides with S on xj , x ′

j and such that, for
every i choose one and only one in yi and y ′

i and that does not contain w (there are 4 of them in
this example).
I is not a model of P(ϕ)S , otherwise, since S ⊃ I, S would not be stable contradicting the
hypothesis.
For being not a model (by case analysis) I makes true (at least) one of the bodies of (D1) and
(D2).

Therefore, we have proved that there are x1, x2, x3 such that any value assigned to ~y makes true

the Boolean disjunction of ϕ. Thus ϕ is valid.
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Conversely, if ϕ is valid, given an assignment for ~x it is immediate to find a
stable model (complete the details looking at the previous slide).
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CONCLUSIONS

We have seen 4 families of logic programs for KR
Each of them allows different expressivity and allows to deal with
problems at different complexity
All these languages are correctly interpreted by modern ASP
solvers (DLV and clingo)
Other families of logics have been used in AI. E.g.,
modal/temporal logics (subject of the course on verification) and
description logics (foundation of Semantic Web).
For the sake of completeness in the slides you can find the results
of the four languages seen today on a different problem: the
Decision Problem. [Remaining slides are in Italian but you can find
the material in Eiter and Gottlob. On the Computational Cost of
Disjunctive Logic Programming: Propositional Case. Annals of
Mathematics and Artificial Intelligence, 15(3/4):289-323, 1995]
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DECISION PROBLEM

Dato un programma ground P, e un letterale L, il problema è quello di
stabilire se P |=sm L, ovvero che L è vero in ogni modello stabile di P.

(Se L = A allora L è vero in S sse A ∈ S. Se L = ¬A allora L è vero in
S sse A /∈ S)

Se P è inconsistent (o incoerente), allora P |=sm L per ogni letterale L
(e per ogni altra formula)
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DECISION PROBLEM
PROGRAMMI DEFINITI

Dato un programma definito ground P, e un atomo A, stabilire se
P |=sm A equivale a dire se A ∈ MP

Usando la TP questo si verifica in tempo polinomiale.

In più, sappiamo che A ∈ MP sse P ∪ {¬A} è insoddisfacibile.
Ma la verifica di soddisfacibilità di una teoria di clausole di Horn
(HORNSAT) è un problema lineare [Dowling and Gallier, JLP
1:267–284, 1984—riduzione ad un problema di cammini su grafo.]

Il problema P |=sm ¬A si riduce in questo caso a A /∈ MP : stesse
considerazioni di sopra.
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DECISION PROBLEM
PROGRAMMI GENERALI

THEOREM

Dato un programma generale ground P, e un atomo A, stabilire se
P |=sm A è co-NP completo.

co-NP Ragioniamo su P 6|=sm A. Ciò accade quando esiste un modello
stabile S di P tale che A /∈ S.

Dato S (guess) verificare che S è modello stabile di P e A /∈ S è
polinomiale in P (ed in S, ma S contiene un sottoinsieme degli atomi
presenti in P).

Dunque stabilire se P 6|=sm A è NP e pertanto P |=sm A è co-NP.
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DECISION PROBLEM
PROGRAMMI GENERALI

THEOREM

Dato un programma generale ground P, e un atomo A, stabilire se
P |=sm A è co-NP completo.

Mostriamo che stabilire se P 6|=sm A è NP hard.
Uso la riduzione da SAT usata per la NP-completezza dell’esistenza
del modello stabile.
Aggiungiamo: nonphi :- not phi.
Se P ha modelli stabili, in nessuno ci può essere nonphi:
P 6|=sm nonphi.
Se P non ha modelli stabili, allora tutti contengono nonphi
(banalmente): P |=sm nonphi .
Dunque, per la riduzione già studiata, ϕ è soddisfacibile sse
P 6|=sm nonphi.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, JANUARY 2017 26 / 29



DECISION PROBLEM
PROGRAMMI GENERALI

THEOREM

Dato un programma generale ground P, e un letterale negativo ¬A,
stabilire se P |=sm ¬A è co-NP completo.

Appartenenza: per dire che P 6|=sm ¬A dobbiamo mostrare che esiste
un modello stabile S tale che A ∈ S. Dato S questa verifica si fa in
tempo polinomiale.

Completezza: si pensi alla riduzione di prima. Aggiungiamo p. Se ci
sono modelli stabili, questi contengono p. Dunque ϕ soddisfacibile
implica esistenza di modelli stabili, perciò P 6|=sm ¬p. ϕ insoddisfacibile
implica assenza di modelli stabili, perciò da P si deduce banalmente
tutto, in particolare: P |=sm ¬p.
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tutto, in particolare: P |=sm ¬p.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, JANUARY 2017 27 / 29



DECISION PROBLEM
PROGRAMMI DISGIUNTIVI SENZA not

THEOREM

Sia P programma disgiuntivo senza not e A atomo.
1 Stabilire se P |=sm A è co-NP completo.
2 Stabilire se P |=sm ¬A è ΠP

2 completo.

Si noti l’asimmetria rispetto ai programmi generali.

Per mostrare che P 6|=sm A verifico che un certificato S sia modello di P tale
che A /∈ S. S potrebbe non essere minimale, ma se A /∈ S allora A non
apparterrà nemmeno al minimale.
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DECISION PROBLEM
PROGRAMMI DISGIUNTIVI SENZA not

THEOREM

Sia P programma disgiuntivo senza not e A atomo.
1 Stabilire se P |=sm A è co-NP completo.
2 Stabilire se P |=sm ¬A è ΠP

2 completo.

Mostrare che P |=sm ¬A è più complicato. Ragioniamo al solito su P 6|=sm ¬A.
Significa che devo verificare se un certificato S è modello stabile di P e
contiene A. Che sia modello e che A ∈ S si verifica in tempo polinomiale. Il
problema è che S potrebbe non essere minimale e dunque esistere
S′ ⊆ S \ {A} modello (non necessariamente stabile, ma in caso ce n’è uno
stabile incluso in lui e che dunque non contiene A). Verificare che esista un
tale S′ è proprietà NP.

Dunque, per mostrare che P |=sm ¬A (proprietà co-), analizzo un certificato
(proprietà NP). Per dire che il certificato va bene uso un oracolo in co-NP
(che è lo stesso di un oracolo in NP).
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DECISION PROBLEM
PROGRAMMI DISGIUNTIVI SENZA not

THEOREM

Sia P programma disgiuntivo senza not e A atomo.
1 Stabilire se P |=sm A è co-NP completo.
2 Stabilire se P |=sm ¬A è ΠP

2 completo.

Sorvolo la completezza (Si basa sulle stesse riduzioni viste prima).
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DECISION PROBLEM
PROGRAMMI DISGIUNTIVI GENERALI

THEOREM

Sia P programma disgiuntivo generale e L letterale. Stabilire se
P |=sm L è ΠP

2 completo.

Ragioniamo prima con L = A positivo e concentriamoci su: P 6|=sm A.
Significa che deve esistere S è modello stabile di P e non contiene A.
Dato S (guess), verifico che A /∈ S e dunque calcolo PS in tempo
polinomiale. Verifico che S sia modello di PS in tempo polinomiale. Ma
S deve essere minimale e dunque non deve esistere S′ ⊂ S modello di
PS. Dire se esiste S′ ⊆ S è proprietà NP e dunque ci serve un oracolo
in co-NP (dunque in NP).

Si noti che non basta, in questo caso, dire che S è modello di PS allora
ce n’è uno stabile incluso in lui che non contiene A! E’ proprio la
stabilità si S che va mostrata. D’altro canto un S′ ⊂ S potrebbe non
essere modello di PS′

.
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DECISION PROBLEM
PROGRAMMI DISGIUNTIVI GENERALI

THEOREM

Sia P programma disgiuntivo generale e L letterale. Stabilire se
P |=sm L è ΠP

2 completo.

Con L = ¬A il ragionamento è (in questo caso) analogo, ovvero, dato S
che contiene A, devo dimostrare che non esiste S′ ⊆ S modello di PS.
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DECISION PROBLEM
PROGRAMMI DISGIUNTIVI GENERALI

THEOREM

Sia P programma disgiuntivo generale e L letterale. Stabilire se
P |=sm L è ΠP

2 completo.

La completezza deriva aggiungendo p. al programma usato per il
teorema analogo per i programmi senza not .
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