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ACTION DESCRIPTION LANGUAGES
BASICS

Formal models to represent knowledge on actions and change.

STRIPS (STanford Research Institute Problem Solver)
1971–Richard Fikes and Nils Nilsson
A classification by Gelfond and Lifschitz, 1998 (e.g., A and B)
The standard de facto: PDDL

Specifications are given through declarative assertions that permit
to describe actions and their effects on states
to express queries on the underlying transition system
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ACTION DESCRIPTION LANGUAGES
PLANNING

A planning problem can be described through an action description,
which defines the notions of

FLUENTS i.e., variables describing the state of the world, and whose
value can change

STATES i.e., possible configurations of the domain of interest: an
assignment of values to the fluents

ACTIONS that affect the state of the world, and thus cause the
transition from a state to another

A complete (or partial) description of the initial and final states is given
in input as a query.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, DECEMBER 2016 4 / 37



EXAMPLE: THE THREE-BARRELS PROBLEM
STATEMENT

“There are three barrels of capacity N (even number), N/2 + 1, and N/2− 1,
resp. At the beginning the largest barrel is full of Taylor’s Porto, the other two
are empty. We wish to reach a state in which the two largest barrels contain
the same amount of porto. The only permissible action is to pour porto from
one barrel to another, until the latter is full or the former is empty.”
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EXAMPLE: THE THREE-BARRELS PROBLEM
FLUENTS, STATES, AND ACTION

contains(12,12) pour(12,7) contains(12,5)
contains(7,0) contains(7,7)
contains(5,0) contains(5,0)
¬ contains(12,0) ¬ contains(12,0)

. . . . . .
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THE LANGUAGE B
ACTION DESCRIPTION

An action signature consists of:
a set A of actions,
a set F of fluent names,
and a set V of values for fluents in F
(in B, we consider V = {0,1})

An action description on an action signature is a set of
executability conditions, static, and dynamic laws.
A specific planning problem is an action description D along with a
description of the initial and the final state.
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THE LANGUAGE B
ACTION DESCRIPTION

Let a be an action and f be a Boolean fluent. We have:
Executability conditions:
executable(a, [list-of-preconditions])
asserting that the given preconditions have to be satisfied in the
current state for the action a to be executable
Dynamic causal laws:
causes(a, f, [list-of-preconditions])
describes the effect (the fluent literal f) of the execution of action
a in a state satisfying the given preconditions
Static causal laws:
caused([list-of-preconditions], f)
describes the fact that the fluent literal f is true in a state
satisfying the given preconditions
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THE LANGUAGE B
BARRELS AND PORTO

executable(pour(X,Y),
[contains(X,LX),contains(Y,LY)]) :-

action(pour(X,Y)),
fluent(contains(X,LX)),
fluent(contains(Y,LY)),
LX > 0, LY < Y.

caused([contains(X,LX) ],neg(contains(X,LY))):-
fluent(contains(X,LX)),
fluent(contains(X,LY)),
barrel(X),liters(LX),liters(LY),
neq(LX,LY).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, DECEMBER 2016 9 / 37



THE LANGUAGE B
BARRELS AND PORTO

executable(pour(X,Y),
[contains(X,LX),contains(Y,LY)]) :-

action(pour(X,Y)),
fluent(contains(X,LX)),
fluent(contains(Y,LY)),
LX > 0, LY < Y.

caused([contains(X,LX) ],neg(contains(X,LY))):-
fluent(contains(X,LX)),
fluent(contains(X,LY)),
barrel(X),liters(LX),liters(LY),
neq(LX,LY).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, DECEMBER 2016 9 / 37



THE LANGUAGE B
BARRELS AND PORTO

causes(pour(X,Y), contains(X,0),
[contains(X,LX),contains(Y,LY)]):-

action(pour(X,Y)),
fluent(contains(X,LX)),
fluent(contains(Y,LY)),
Y-LY >= LX.

causes(pour(X,Y), contains(Y,LYnew),
[contains(X,LX),contains(Y,LY)]):-

action(pour(X,Y)),
fluent(contains(X,LX)),
fluent(contains(Y,LY)),
Y-LY >= LX,
LYnew is LX + LY.
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THE LANGUAGE B
BARRELS AND PORTO
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THE LANGUAGE B
GOAL

Initial state

initially(f)

asserts that f holds in the initial state.
Goal

goal(f)

asserts that f is required to hold in the final state.
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THE LANGUAGE B
SEMANTICS

If f ∈ F is a fluent, and S is a set of fluent literals, we say that
S |= f iff f ∈ S and S |= neg(f ) iff neg(f ) ∈ S.
Lists of literals L = [`1, . . . , `m] denote conjunctions of literals,
hence S |= L iff S |= `i for all i ∈ {1, . . . ,m}.
We denote with ¬S the set

{f ∈ F : neg(f ) ∈ S} ∪ {neg(f ) : f ∈ S ∩ F}.

A set of fluent literals is consistent if there are no fluents f s.t.
S |= f and S |= neg(f ).
If S ∪ ¬S ⊇ F then S is complete.
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THE LANGUAGE B
SEMANTICS

A set S of literals is closed under a set of static laws
SL = {caused(C1, `1), . . . ,caused(Cm, `m)}, if for all
i ∈ {1, . . . ,m} it holds that S |= Ci ⇒ S |= `i .
The set CloSL(S) is defined as the smallest set of literals
containing S and closed under SL.
It can be obtained by repeatedly applying the static laws until a
fixpoint is reached
CloSL(S) is uniquely determined and not necessarily consistent.
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THE LANGUAGE B
SEMANTICS

The semantics of an action language on the action signature
〈V,F ,A〉 is given in terms of a transition system 〈S, v ,R〉
〈S, v ,R〉 consists of

a set S of states,
a total interpretation function v : F × S → V, and
a transition relation R ⊆ S ×A× S. Given a transition system
〈S, v ,R〉 and a state s ∈ S,

Let (it is consistent and complete):

Lit(s) = {f ∈ F : v(f , s) = 1} ∪ {neg(f ) : f ∈ F , v(f , s) = 0}.

Given a set of dynamic laws
DL = {causes(a, `1,C1), . . . ,causes(a, `m,Cm)} for the action
a ∈ A and a state s ∈ S, we define the effect of a in s as follows:

E(a, s) = {`i : 1 6 i 6 m,Lit(s) |= Ci}.
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SEMANTICS OF B

Let D be an action description defined on the action signature
〈V,F ,A〉, composed of dynamic laws DL, executability conditions EL,
and static causal laws SL. The transition system 〈S, v ,R〉 described
by D is a transition system such that:
• If s ∈ S, then Lit(s) is closed under SL;
• R is the set of all triples 〈s,a, s′〉 such that

Lit(s′) = CloSL(E(a, s) ∪ (Lit(s) ∩ Lit(s′)))

and Lit(s) |= C for at least one condition executable(a,C)
in EL.

Let 〈D,O〉 be a planning problem instance, where
{` | initially(`) ∈ O} is a consistent and complete set of fluent
literals.
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SEMANTICS OF B

A trajectory is a sequence s0a1s1a2 . . . ansn such that 〈si−1,ai , si〉 ∈ R
for all i ∈ {1, . . . ,n}. A sequence of actions a1, . . . ,an is a solution (a
plan) to the planning problem 〈D,O〉 if there is a trajectory
s0a1s1 . . . ansn in 〈S, v ,R〉 such that:
• Lit(s0) |= r for each initially(r) ∈ O, and
• Lit(sn) |= ` for each goal(`) ∈ O.

The plans characterized in this definition are sequential—i.e., we
disallow concurrent actions; observe also that the desired plan length
n is assumed to be given.
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SEMANTICS OF B

Without static causal laws, the semantics is deterministic. Given S
and a, compute E(a,S). E(a,S) must be consistent for the action
can be applied. Then S′ = E(a,S) ∪ S \ (E(a,S) ∪ ¬E(a,S)).
With static causal laws the semantics can be non-deterministic.
Consider, for instance: S = {a,b,c}, the action x that has neg(a)
as its effect.
Assume there are the static laws
caused([neg(a),b],neg(c)) and
caused([neg(a),c],neg(b)).
Then S′ = {neg(a),b,neg(c)} and S′′ = {neg(a),c,neg(b)} are
such that 〈S, x ,S′〉 and 〈S, x ,S′′〉 are in the transition system
The programmer should take care of these cases.
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SOLVERS FOR B-LIKE LANGUAGES

We will see the basic encoding of B in ASP, and
in Constraint Programming (hence, SAT)

A. Dovier, A. Formisano, E. Pontelli. Perspectives on Logic-based
Approaches for Reasoning About Actions and Change. In Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning,
Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday.
LNCS 6565, Springer Verlag, pp. 259-279, 2011.
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COMPILING ACTION THEORIES IN ASP

fluent and action definitions are already in ASP syntax.
We need a notion of Time to be associated to each state.
A fluent literal FL holds or not in a state i. We define therefore the
predicate holds(FL,Time).
An action a occurs or not between state i and i+1. We define the
predicate occ(Action,Time).
If initially(FL) then holds(FL,0).
If an action a setting the fluent literal FL is executed between state
i and i+1 (i.e. occ(a,i)) then holds(FL,i+1).
Other conditions (inertia, static causal laws)
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COMPILING ACTION THEORIES IN ASP

The executability conditions
executable(a , [ p1, neg(r)]).
executable(a , [ q1, neg(s)]).

are translated as follows:
exec(a,Ti) :- time(Ti),

holds(p1,Ti),holds(neg(r),Ti).
exec(a,Ti) :- time(Ti),

holds(q1,Ti) ,holds(neg(s),Ti).
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COMPILING ACTION THEORIES IN ASP

The Dynamic Laws:
causes( a , f, [ p1, neg(p2)]).
causes( a , g, [ q1, q2]).

are translated as follows:
causes(a,f).
ok(a,f,Ti) :- time(Ti),

hold(p1,Ti), hold(neg(p2),Ti).
causes(a,g).
ok(a,g,Ti) :- time(Ti),

hold(q1,Ti), hold(q2,Ti).
hold(Fl,Ti+1) :- time(Ti), literal(Fl),

occ(Act,Ti), causes(Act,Fl),
ok(Act,Fl,Ti), exec(Act,Ti).
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COMPILING ACTION THEORIES IN ASP

The Static Law:
caused( [ p1, neg(p2)], f).

is simply translated as follows:
hold(f,Ti) :- time(Ti),

hold(p1,Ti), hold(neg(p2),Ti).

It can be proved that stable model semantics ensures the correct
semantics of state changing with static laws.
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COMPILING ACTION THEORIES IN ASP

At each time exactly one between f and neg(f):
1{holds(F,T),holds(neg(F),T)}1 :-

time(T), T < maxtime, fluent(F).
At each time exactly one action must be executed, and its
preconditions must be fulfilled:

1{occ(Act,Ti):action(Act)}1 :-
time(Ti), Ti < maxtime.

:- occ(Act,Ti), action(Act),
time(Ti), not exec(Act,Ti).

If the goal state is characterized by fluents f1,...,fk then we
define the predicate:
goal :- holds(f1,n),...,holds(fk,n).
:- not goal.
The translator is a Prolog program available on-line.
Answer sets of the obtained ASP program are exactly the plans
for the action theory.
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MODELLING B IN CP

An action theory is consulted by a constrain & generate CLP(FD)
program.
Looking for a plan of N states, p fluents, and m actions,
Np + (N − 1)m Boolean variables are introduced, organized in
A list States, containing N lists, each composed of p terms of
the type fluent(fluent name, Bool var), and in
A list ActionsOcc, containing N − 1 lists, each composed of m
terms of the form action(action name,Bool var).
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MODELLING B IN CP

Action descriptions are mapped to finite domain constraints
Constrained variables are introduced for fluents and action
occurrences
Executability conditions and causal laws are rendered by imposing
constraints
Solutions of the constrains identify plans
Soundness and completeness of the planner w.r.t. semantics of B
is proved
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MODELLING B IN CP
SOME CONSTRAINTS
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MODELLING B IN CLP(FD)
SOME CONSTRAINTS

FromSt#
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DynPf ↔
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i=1(IVαi ∧ VAti ) StatPf ↔
∨h

i=1 EVγi

DynNf ↔
∨o

i=1(IVβi ∧ VAfi ) StatNf ↔
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Posfiredf ↔ DynPf ∨ StatPf

Negfiredf ↔ DynNf ∨ StatNf

¬Posfiredf ∨ ¬Negfiredf

EVf ↔ Posfiredf ∨ (¬Negfiredf ∧ IVf )
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MODELLING B IN CLP(FD)
MAIN PREDICATE (WITHOUT TIMING AND PRINTS)

main(N, Actionsocc,States):-
setof(F, fluent(F), Lf),
setof(A, action(A), La),
setof(F, initially(F), Init),
setof(F, goal(F), Goal),
make_states(N,Lf,States),
make_action_occurrences(N,La,Actionsocc),
set_initial(Init,States),
set_goal(Goal,States),
set_transitions(Actionsocc,States),
set_executability(Actionsocc,States),
labelling(AllActions).
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MODELLING B IN CLP(FD)
SOME REMARKS

The CLP(FD) interpreter of the B language is implemented in
SICStus/B Prolog and available on-line
www.dimi.uniud.it/dovier/CLPASP/

The underlying CLP(FD) expressivity suggests immediate
generalization of the action language:

multivalued fluents comes naturally into the scenery
constraints could be promoted to first-class objects: use them
directly in the action theory
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PDDL

Planning Domain Definition Language (PDDL) is the standard action
description language introduced in 1988 by a group of top researchers
in AI (Ghallab, Howe, Knoblock, Drew McDermott, Ram, Veloso, Weld,
Wilkins).

The programming style is functional (declarative, but not logic
programming)

There is a tradition of functional programming within the community of
AI and Planning due to Mc Carthy school.
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PDDL
DOMAIN DEFINITION

(define (domain DOMAIN_NAME)
(:requirements [:strips] [:equality] [:typing] [:adl])
(:predicates
(PREDICATE_1_NAME ?A1 ?A2 ... ?AN)
(PREDICATE_2_NAME ?A1 ?A2 ... ?AN)
...

)
(:action ACTION_1_NAME
[:parameters (?P1 ?P2 ... ?PN)]
[:precondition PRECOND_FORMULA]
[:effect EFFECT_FORMULA]

)
(:action ACTION_2_NAME
...)

)
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PDDL
FORMULAS

For STRIPS domains, a precondition formula may be:
an atomic formula (PREDICATE NAME ARG1 ... ARGN) or
a conjunction of atomic formulas: (and ATOM1 ... ATOMN)

For ADL domains, a precondition may in addition be:
A general negation, conjunction or disjunction:
(not CONDITION FORMULA)
(and CONDITION FORMULA1 ... CONDITION FORMULAN)
(or CONDITION FORMULA1 ... CONDITION FORMULAN)
A quantified formula: (forall (?V1 ?V2 ...) CONDITION FORMULA)
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PDDL
FORMULAS

For STRIPS domains, an effect formula may be:
An added atom:
(PREDICATE NAME ARG1 ... ARGN)
The predicate arguments must be parameters of the action (or
constants declared in the domain, if the domain has constants).
A deleted atom:
(not (PREDICATE NAME ARG1 ... ARGN))
A conjunction of atomic effects: (and ATOM1 ... ATOMN)

For ADL domains an effect formula may in addition contain:
A conditional effect:
(when CONDITION FORMULA EFFECT FORMULA) or
a universally quantified formula:
(forall (?V1 ?V2 ...) EFFECT FORMULA)
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PDDL
PROBLEM DEFINITION

The problem definition contains the objects present in the problem
instance, the initial state description and the goal:

(define (problem PROBLEM_NAME)
(:domain DOMAIN_NAME)
(:objects OBJ1 OBJ2 ... OBJ_N)
(:init ATOM1 ATOM2 ... ATOM_N)
(:goal CONDITION_FORMULA)

)

Other options such as action/plan cost can be set.
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PDDL
INSTANCE

(:objects rooma roomb ball1 ball2 ball3 ball4 left right)
(:predicates (ROOM ?x) (BALL ?x) (GRIPPER ?x) (at-robby ?x)

(at-ball ?x ?y) (free ?x) (carry ?x ?y))
(:init (ROOM rooma) (ROOM roomb) (at-robby rooma)

(BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma))

(:goal (and (at-ball ball1 roomb) (at-ball ball2 roomb)
(at-ball ball3 roomb) (at-ball ball4 roomb)))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))
:effect (and (carry ?z ?x)

(not (at-ball ?x ?y)) (not (free ?z))))
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PDDL
CONCLUSIONS

PDDL domains can easily be transformed in B and hence in ASP
programs or solved with CP as just seen
There is the Planning competition website where you can find
benchmarks/examples and the fastest solvers
We will briefly see the logic language Picat and how it can be
used to solve PDDL domains.
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