
AUTOMATED REASONING

Agostino Dovier

Università di Udine
CLPLAB

Udine, November 2016

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 1 / 34

ASP SOLVERS

We have seen that detecting if P, ground, has a stable model is
NP complete
What happens if P is not ground?

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 2 / 34

ASP SOLVERS
THE SOLVING PIPELINE

P ground(P) answer
set(s)grounder solver

ground(P) should be finite.
To ensure that, P must fulfill a set of requirements (range restrictions).

This reminds the Minizinc 7→ Flatzinc 7→ Constraint Solving pipeline.

There are two exceptions (Asperix and GASP [DDPR09]) that mix
grounding and search with some advantages and many drawbacks.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 3 / 34

ASP SOLVERS
THE SOLVING PIPELINE

P ground(P) answer
set(s)grounder solver

ground(P) should be finite.
To ensure that, P must fulfill a set of requirements (range restrictions).

This reminds the Minizinc 7→ Flatzinc 7→ Constraint Solving pipeline.

There are two exceptions (Asperix and GASP [DDPR09]) that mix
grounding and search with some advantages and many drawbacks.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 3 / 34

ASP SOLVERS
GROUNDING

What is the size of ground(P)? What is the complexity for
computing it?
If HP is infinite, ground(P) will be infinite. No way
Let us assume that HP be finite (let |HP | = c).
Let r1, . . . , rn be the clauses of P (n ≤ |P|), and let α1, . . . , αn be
the number of the variables occurring in them (αi is the number of
different variables in the clause i)
Then

|ground(P)| =
n∑

i=1

cαi

If k = maxi{αi}, then

|ground(P)| ≤ nck

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 4 / 34

ASP SOLVERS
GROUNDING

What is the size of ground(P)? What is the complexity for
computing it?
If HP is infinite, ground(P) will be infinite. No way
Let us assume that HP be finite (let |HP | = c).
Let r1, . . . , rn be the clauses of P (n ≤ |P|), and let α1, . . . , αn be
the number of the variables occurring in them (αi is the number of
different variables in the clause i)
Then

|ground(P)| =
n∑

i=1

cαi

If k = maxi{αi}, then

|ground(P)| ≤ nck

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 4 / 34

ASP SOLVERS
GROUNDING

What is the size of ground(P)? What is the complexity for
computing it?
If HP is infinite, ground(P) will be infinite. No way
Let us assume that HP be finite (let |HP | = c).
Let r1, . . . , rn be the clauses of P (n ≤ |P|), and let α1, . . . , αn be
the number of the variables occurring in them (αi is the number of
different variables in the clause i)
Then

|ground(P)| =
n∑

i=1

cαi

If k = maxi{αi}, then

|ground(P)| ≤ nck

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 4 / 34

ASP SOLVERS
GROUNDING

What is the size of ground(P)? What is the complexity for
computing it?
If HP is infinite, ground(P) will be infinite. No way
Let us assume that HP be finite (let |HP | = c).
Let r1, . . . , rn be the clauses of P (n ≤ |P|), and let α1, . . . , αn be
the number of the variables occurring in them (αi is the number of
different variables in the clause i)
Then

|ground(P)| =
n∑

i=1

cαi

If k = maxi{αi}, then

|ground(P)| ≤ nck

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 4 / 34

ASP SOLVERS
GROUNDING

If k = maxi{αi}, then

|ground(P)| ≤ nck

Since c can be defined implicitly (e.g., p(1..1000)), grounding
might require exponential time w.r.t. |P|.
These are not bad news . . . we can also encode problems outside
NP using intervals.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 5 / 34

ASP SOLVERS
DOMAIN PREDICATES

We must help the grounder in its process by limiting the scope of
the variables.
The general rule is that any variable occurring in a rule must occur
as argument of a domain predicate that occur positively in its body.
If this is the case the program is said strongly range restricted
For instance, the following rules
p(X).
q(X,Y) :- r(X), not s(Y).

lead to not strongly range restricted programs

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 6 / 34

ASP SOLVERS
DOMAIN PREDICATES

If a predicate is defined extensionally, using a set of ground facts,
it is a domain predicate
If a predicate is defined by strongly range restricted definite
clauses, it is a domain predicate
I suggest to stop here with the notion of domain predicate.
(in literature you can find a “wider” notion)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 7 / 34

ASP SOLVERS
DOMAIN PREDICATES

If a predicate is defined extensionally, using a set of ground facts,
it is a domain predicate
If a predicate is defined by strongly range restricted definite
clauses, it is a domain predicate
I suggest to stop here with the notion of domain predicate.
(in literature you can find a “wider” notion)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 7 / 34

ASP SOLVERS
MAIN TOOLS

P ground(P) answer
set(s)grounder solver

Grounders (front-end) are LPARSE, DLV GROUNDER, GRINGO

The solvers are SMODELS (the first one), CMODELS, DLV SOLVER,
CLASP.

DLV [Vienna and Rende] is equipped with an IDE (ASPIDE)
We’ll use CLINGO (= gringo+clasp) [developed in Potsdam
University: the fastest tool]

We’ll analyze later how (clever) the solvers are implemented

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 8 / 34

ASP PROGRAMMING
EXECUTING A PROGRAM

Assume P is written in the file asp.lp.
You can run it by invoking the command

clingo asp.lp n
(or simply clingo asp.lp — default case)
n indicates how many stable models you want it computes. n = 1
is the default. n = 0 means “all”
As we’ll see you can assign values to constants (e.g. clingo -c
n=15 asp.lp)
At the end of the file you can ask which predicate are produced
explicitly in the output. E.g. #show p/2. requires to print the
atoms based on the predicate p of arity 2 that holds in the answer
set(s). Without this declaration all atoms are printed.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 9 / 34

ASP PROGRAMMING
RANGES

It is rather common using intervals of (integer) values when
encoding
For instance a predicate that holds on the integer coordinates of a
square of size 4 can be defined extensionally:
lato(1). lato(2). lato(3). lato(4).

Or intensionally
lato(1..4).

You can also use a constant that will be instantiated at runtime (for
parametric programs):
lato(1..n).

(For instance, if you want to run with n=4, just call:
clingo -c n=4 nomefile.lp)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 10 / 34

ASP PROGRAMMING
RANGES

It is rather common using intervals of (integer) values when
encoding
For instance a predicate that holds on the integer coordinates of a
square of size 4 can be defined extensionally:
lato(1). lato(2). lato(3). lato(4).

Or intensionally
lato(1..4).

You can also use a constant that will be instantiated at runtime (for
parametric programs):
lato(1..n).

(For instance, if you want to run with n=4, just call:
clingo -c n=4 nomefile.lp)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 10 / 34

ASP PROGRAMMING
RANGES

It is rather common using intervals of (integer) values when
encoding
For instance a predicate that holds on the integer coordinates of a
square of size 4 can be defined extensionally:
lato(1). lato(2). lato(3). lato(4).

Or intensionally
lato(1..4).

You can also use a constant that will be instantiated at runtime (for
parametric programs):
lato(1..n).

(For instance, if you want to run with n=4, just call:
clingo -c n=4 nomefile.lp)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 10 / 34

ASP PROGRAMMING
SETS

If instead you have a set of values which is not an interval, e.g.
primo(2). primo(3). primo(5). primo(7).

you can use the syntactic sugar
primo(2;3;5;7).

Use this possibility with parsimony. I’d suggest to use it only in
facts (the “;” in bodies can have unexpected results)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 11 / 34

ASP PROGRAMMING
CARDINALITY CONSTRAINT

A Ground cardinality constraint can be used as a positive atom:

n{L1;...;Lh; not H1;...; not Hk}m

where L1,...,Lh,H1,...,Hk are atoms and n and m are integer
numbers (one or both can be omitted).
Assume to have a set of atoms S and a cardinality constraint C, then

val(C,S) =| S ∩ {L1,...,Lh} | +(k− | S ∩ {H1,...,Hk} |).

C is true in S if n 6 val(C,S) 6 m.

A cardinality constraint can be also not ground (for understanding its
meaning we might think to its grounding).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 12 / 34

ASP PROGRAMMING
CARDINALITY CONSTRAINT

A Ground cardinality constraint can be used as a positive atom:

n{L1;...;Lh; not H1;...; not Hk}m

where L1,...,Lh,H1,...,Hk are atoms and n and m are integer
numbers (one or both can be omitted).
Assume to have a set of atoms S and a cardinality constraint C, then

val(C,S) =| S ∩ {L1,...,Lh} | +(k− | S ∩ {H1,...,Hk} |).

C is true in S if n 6 val(C,S) 6 m.

A cardinality constraint can be also not ground (for understanding its
meaning we might think to its grounding).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 12 / 34

ASP PROGRAMMING
CARDINALITY CONSTRAINT: TYPICAL CASE

coord(1..2).
valore(1..3).
1 {assegna(X,Y,V) : valore(V) } 1 :- coord(X),coord(Y).

It states that for each point identified by its x and Y coordinates, one
and only one value (valore) V is assigned.
assegna is a function. It is the same as:

1 {assegna(X,Y,1);assegna(X,Y,2);assegna(X,Y,3)} 1 :-
coord(X),coord(Y).

which in turn it is equivalent to:

1 {assegna(1,1,1);assegna(1,1,2);assegna(1,1,3)} 1.
1 {assegna(1,2,1);assegna(1,2,2);assegna(1,2,3)} 1.
1 {assegna(2,1,1);assegna(2,1,2);assegna(2,1,3)} 1.
1 {assegna(2,2,1);assegna(2,2,2);assegna(2,2,3)} 1.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 13 / 34

ASP PROGRAMMING
CARDINALITY CONSTRAINT: TYPICAL CASE

coord(1..2).
valore(1..3).
1 {assegna(X,Y,V) : valore(V) } 1 :- coord(X),coord(Y).

It states that for each point identified by its x and Y coordinates, one
and only one value (valore) V is assigned.
assegna is a function. It is the same as:

1 {assegna(X,Y,1);assegna(X,Y,2);assegna(X,Y,3)} 1 :-
coord(X),coord(Y).

which in turn it is equivalent to:

1 {assegna(1,1,1);assegna(1,1,2);assegna(1,1,3)} 1.
1 {assegna(1,2,1);assegna(1,2,2);assegna(1,2,3)} 1.
1 {assegna(2,1,1);assegna(2,1,2);assegna(2,1,3)} 1.
1 {assegna(2,2,1);assegna(2,2,2);assegna(2,2,3)} 1.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 13 / 34

ASP PROGRAMMING
CARDINALITY CONSTRAINT:REWRITING

1{ p; q; r } 1.

can be transformed in:

p :- not np. np :- not p.
q :- not nq. nq :- not q.
r :- not nr. nr :- not r.

(non deterministic choice viewed in the last lesson) plus

:- p, q.
:- p, r.
:- q, r

Constraint. It is not possible that both p and q holds, it is not possible
that both p and r holds, It is not possible that both q and r holds.
Exercise Try a similar rewriting of 2 { p; q; r; not s } 3.
Verify your encoding using clingo filename.pl 0

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 14 / 34

PROGRAMMAZIONE IN ASP
NON DETERMINISTIC CHOICE

The cardinality constraint used as 0 . . . 1

0 { good(X,Y) } 1 :- coord(X), coord(Y).

introduces the nondeterministic choice
(good(X,Y) can either hold or not).
You can also write it this way:

{ good(X,Y) } :- lato(X), lato(Y).

(and of course you can define it defining a new predicate nogood as
not good, and vice versa)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 15 / 34

PROGRAMMAZIONE IN ASP
NON DETERMINISTIC CHOICE

The cardinality constraint used as 0 . . . 1

0 { good(X,Y) } 1 :- coord(X), coord(Y).

introduces the nondeterministic choice
(good(X,Y) can either hold or not).
You can also write it this way:

{ good(X,Y) } :- lato(X), lato(Y).

(and of course you can define it defining a new predicate nogood as
not good, and vice versa)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 15 / 34

ASP PROGRAMMING
ARITHMETICS

http://sourceforge.net/projects/potassco/files/guide/

There are the following built ins:

plus L + R minus L - R
uminus - R times L * R
divide L / R modulo L \ R
absolute | R| power L ** R
bitand L & R bitor L ? R
bitxor L ˆ R bitneg ˜ R

They are evaluated during the grounding process.
You can also use your own functions using external (C/C++)
pieces of code

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 16 / 34

http://sourceforge.net/projects/potassco/files/guide/

ASP PROGRAMMING
AGGREGATES

ASP supports aggregates
aggregates allows to defined intensionally numerical functions to
sets of values
count and sum are the two main aggregates.
They are rather expressive. The syntax is not yet stable. We use
the one of GRINGO4 (different from previous versions).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 17 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,3).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(6).

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(3).

Anything strange? Semantics is based on sets, not on multi-sets.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 18 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,3).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(6).

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(3).

Anything strange? Semantics is based on sets, not on multi-sets.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 18 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,3).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(6).

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(3).

Anything strange? Semantics is based on sets, not on multi-sets.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 18 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,3).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(6).

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(3).

Anything strange? Semantics is based on sets, not on multi-sets.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 18 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,3).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(6).

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y : dom(X), p(X,Y) }.

The output is somma(3).

Anything strange? Semantics is based on sets, not on multi-sets.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 18 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y,X : dom(X), p(X,Y) }.

The output is somma(5).

We have fixed collecting “pairs” and counting pairs.
Not all of us is happy with this new semantics. In particular Vladimir
Lifschitz whose (previous year) programs did not run correctly in front
of his students . . . very embarrassing for the “boss” of the area.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 19 / 34

ASP PROGRAMMING
AGGREGATES

dom(1..3).
p(1,1). p(2,2). p(3,2).
somma(S) :- S = #sum { Y,X : dom(X), p(X,Y) }.

The output is somma(5).

We have fixed collecting “pairs” and counting pairs.
Not all of us is happy with this new semantics. In particular Vladimir
Lifschitz whose (previous year) programs did not run correctly in front
of his students . . . very embarrassing for the “boss” of the area.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 19 / 34

ASP PROGRAMMING
AGGREGATES

count has similar syntax and problems. It counts the number of atoms
that satisfy a condition.

dom(1..3).
p(1,1). p(2,2). p(3,3).
conta(S) :- S = #count{ p(X,Y):dom(X),p(X,Y),Y > 2 }.

The output is conta(1).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 20 / 34

Modeling CSP with ASP

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 21 / 34

MAGIC SQUARE

Problem: Fill an n × n matrix (square) with the numbers 1, . . . ,n2 in
such a way that each number is used once and the sum of each row,
of each column, and of each of the two diagonals is the same.
Since the global sum is

n2∑
i=1

i =
n2(n2 + 1)

2

each one of these sums amounts at S = n2(n2+1)
2n .

E.g., with n = 3, S = 15.

2 7 6
9 5 1
4 3 8

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 22 / 34

MAGIC SQUARE

Problem: Fill an n × n matrix (square) with the numbers 1, . . . ,n2 in
such a way that each number is used once and the sum of each row,
of each column, and of each of the two diagonals is the same.
Since the global sum is

n2∑
i=1

i =
n2(n2 + 1)

2

each one of these sums amounts at S = n2(n2+1)
2n .

E.g., with n = 3, S = 15.

2 7 6
9 5 1
4 3 8

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 22 / 34

AN IMPERATIVE SOLUTION
SCAN PERMUTATIONS

int main(){

int i=0, j=0, found;
long int max;
int quad [n*n];

for(i=0;i<n;i++)
for(j=0;j<n;j++)

quad[i*n+j] = n*i+j+1;

found = 0;
max = fact(n*n);
printf("Tentativi massimi: %ld\n",max);

while(!found && max>0) {
if (check_sum(quad))

found = 1;
else {

increment(quad);
max--;

}
}

if (found)
stampamat(quad);

else printf("No solution \n");
}

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 23 / 34

AN IMPERATIVE SOLUTION
CHECK

const int n=3;
int MAGIC=((n*n)*((n*n)+1))/(2*n);

int check_sum(int M [n*n]){
int i,j, temp;
int correct=1;

// ROWS
for(i=0;i<n;i++){

temp=0;
for(j=0;j<n;j++)

temp=temp+M[n*i+j];
if(temp != MAGIC)

correct=0;
}

// COLS
if (correct){

for(j=0;j<n;j++){
temp=0;
for(i=0;i<n;i++)

temp=temp+ M[n*i+j];
if(temp != MAGIC)

correct=0;
}

}

//DIAG 1
if (correct){

temp=0;
for(i=0;i<n;i++)

temp=temp+ M[n*i+i];
if(temp != MAGIC)

correct=0;
}

// DIAG2
if (correct){

temp=0;
for(i=0;i<n;i++)

temp=temp+ M[n*i+n-i-1];
if(temp != MAGIC)

correct=0;
}

return correct;
}

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 24 / 34

AN IMPERATIVE SOLUTION
DIJKSTRA, A DISCIPLINE OF PROGRAMMING, PRENTICE-HALL, 1997, PP. 71

void increment(int M [n*n]){
int i,j,t;

i = n*n - 1;
while (M[i-1] > M[i]) i--;

j = n*n;
while (M[j-1] <= M[i-1]) j--;

// swap values at positions (i-1) and (j-1)
t = M[i-1];
M[i-1] = M[j-1];
M[j-1] = t;

i++;
j = n*n;
while (i < j) {

// swap values at positions (i-1) and (j-1)
t = M[i-1];
M[i-1] = M[j-1];
M[j-1] = t;
i++;
j--;

}
}

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 25 / 34

AN IMPERATIVE SOLUTION
AUXILIARY PROCEDURES

long int fact(int m){
int i;
long int t=1;
for(i=1;i <=m; i++) t=t*i ;
return t;

}

void stampamat(int quad [n*n]){
int i, j;

for(i=0;i<n;i++){
printf("| ");
for(j=0;j<n;j++)

printf(" %d |",quad[i*n+j]);
printf("\n ---- \n");

}
}

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 26 / 34

ASP MODELING
JUST A QUICK VIEW — WE’LL SEE DETAILS LATER

lato(1..n).
valore(1..n*n).
diag(1..2).
magicval(((n*n)*(n*n+1))/(2*n)).

1 { magic(X,Y,V) : valore(V) } 1 :- lato(X),lato(Y).
1 { magic(X,Y,V) : lato(X),lato(Y) } 1 :- valore(V).

sum_cols(X, S) :- S = #sum{ V : magic(X,L,V), lato(L)}, lato(X).
sum_rows(Y, S) :- S = #sum{ V : magic(L,Y,V), lato(L)}, lato(Y).
sum_diag(1, S) :- S = #sum{ V : magic(L,L,V), lato(L)}.
sum_diag(2, S) :- S = #sum{ V : magic(L,n-L+1,V), lato(L)}.

:- lato(X), sum_cols(X,V), magicval(T), V != T.
:- lato(X), sum_rows(X,V), magicval(T), V != T.
:- diag(D), sum_diag(D,V), magicval(T), V != T.

#show magic/3.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 27 / 34

EFFICIENCY

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 28 / 34

EFFICIENCY

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 28 / 34

EFFICIENCY

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 28 / 34

LESSON LEARNT

If you don’t have a great idea, direct encoding in C/JAVA etc is
useless
This applies to all NP complete problems
ASP solvers (and SAT solvers and CP solvers) are nowadays
much more clever than any heuristic we can develop, implement
and test in a reasonable time

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 29 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

“domain” predicates:

lato(1..3).
valore(1..9).
diag(1..2).
magicval(15).

We define the predicate magic. Intuitively, magic(X ,Y ,V) should be
true if in cell (X ,Y) the value is V .
For each cell, assign one and only one value:

1 { magic(X,Y,V) : valore(V) } 1 :- lato(X),lato(Y).

For each value, assign it to one and only one cell:

1 { magic(X,Y,V) : lato(X),lato(Y) } 1 :- valore(V).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 30 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

“domain” predicates:

lato(1..3).
valore(1..9).
diag(1..2).
magicval(15).

We define the predicate magic. Intuitively, magic(X ,Y ,V) should be
true if in cell (X ,Y) the value is V .
For each cell, assign one and only one value:

1 { magic(X,Y,V) : valore(V) } 1 :- lato(X),lato(Y).

For each value, assign it to one and only one cell:

1 { magic(X,Y,V) : lato(X),lato(Y) } 1 :- valore(V).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 30 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

Compute the sum on rows, columns, diagonals.

sum_col(X,V1+V2+V3) :- magic(X,1,V1), magic(X,2,V2), magic(X,3,V3).
sum_row(Y,V1+V2+V3) :- magic(1,Y,V1), magic(2,Y,V2), magic(3,Y,V3).
sum_diag(1,V1+V2+V3) :- magic(1,1,V1), magic(2,2,V2), magic(3,3,V3).
sum_diag(2,V1+V2+V3) :- magic(1,3,V1), magic(2,2,V2), magic(3,1,V3).

A flag diff sum capturing a wrong sum is introduced.

diff_sum :- lato(X), sum_col(X,V), magicval(S), V != S.
diff_sum :- lato(X), sum_row(X), magicval(S), V != S.
diff_sum :- sum_diag(1,V),magicval(S), V != S.
diff_sum :- sum_diag(2,V),magicval(S), V != S.

Last: diff sum cannot be true!

:- diff_sum.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 31 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

Compute the sum on rows, columns, diagonals.

sum_col(X,V1+V2+V3) :- magic(X,1,V1), magic(X,2,V2), magic(X,3,V3).
sum_row(Y,V1+V2+V3) :- magic(1,Y,V1), magic(2,Y,V2), magic(3,Y,V3).
sum_diag(1,V1+V2+V3) :- magic(1,1,V1), magic(2,2,V2), magic(3,3,V3).
sum_diag(2,V1+V2+V3) :- magic(1,3,V1), magic(2,2,V2), magic(3,1,V3).

A flag diff sum capturing a wrong sum is introduced.

diff_sum :- lato(X), sum_col(X,V), magicval(S), V != S.
diff_sum :- lato(X), sum_row(X), magicval(S), V != S.
diff_sum :- sum_diag(1,V),magicval(S), V != S.
diff_sum :- sum_diag(2,V),magicval(S), V != S.

Last: diff sum cannot be true!

:- diff_sum.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 31 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

The diff sum can be expressed by using constraints:

:- lato(X), sum_col(X,V), magicval(S), V != S.

It states that It cannot happen that there is a column X such that its
sum is V and V is different from the magic sum.
Constraints allow to state universal quantification:

(∀X)(∀V)¬(lato(X) ∧ sum col(X ,V) ∧ magicval(S) ∧ V 6= S)

Namely,

(∀X)(∀V)((lato(X) ∧ sum col(X ,V) ∧ magicval(S))→ V 6= S)

Similarly for rows and diagonals:

:- lato(X), sum_row(X,V), magicval(S), V != S.
:- sum_diag(1,V),magicval(S), V != S.
:- sum_diag(2,V),magicval(S), V != S.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 32 / 34

MAGIC SQUARE MODELING
THE CASE n = 3

The diff sum can be expressed by using constraints:

:- lato(X), sum_col(X,V), magicval(S), V != S.

It states that It cannot happen that there is a column X such that its
sum is V and V is different from the magic sum.
Constraints allow to state universal quantification:

(∀X)(∀V)¬(lato(X) ∧ sum col(X ,V) ∧ magicval(S) ∧ V 6= S)

Namely,

(∀X)(∀V)((lato(X) ∧ sum col(X ,V) ∧ magicval(S))→ V 6= S)

Similarly for rows and diagonals:

:- lato(X), sum_row(X,V), magicval(S), V != S.
:- sum_diag(1,V),magicval(S), V != S.
:- sum_diag(2,V),magicval(S), V != S.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 32 / 34

MAGIC SQUARE MODELING
THE GENERAL CASE

lato(1..n).
valore(1..n*n).
diag(1..2).
magicval(((n*n)*(n*n+1))/(2*n)).

1 { magic(X,Y,V) : valore(V) } 1 :- lato(X),lato(Y).
1 { magic(X,Y,V) : lato(X),lato(Y) } 1 :- valore(V).

% Use aggregates for computing the sum in a compact way
sum_cols(X, S) :- S = #sum{ V : magic(X,L,V), lato(L)}, lato(X).
sum_rows(Y, S) :- S = #sum{ V : magic(L,Y,V), lato(L)}, lato(Y).
sum_diag(1, S) :- S = #sum{ V : magic(L,L,V), lato(L)}.
sum_diag(2, S) :- S = #sum{ V : magic(L,n-L+1,V), lato(L)}.

% It cannot happen that for one column the sum is wrong (for all lato(X))
:- lato(X), sum_cols(X,V), magicval(T), V != T.
% It cannot happen that for one row the sum is wrong (for all lato(X))
:- lato(X), sum_rows(X,V), magicval(T), V != T.

% It cannot happen that for one diagonal the sum is wrong (for all diag(D))
:- diag(D), sum_diag(D,V), magicval(T), V != T.

#show magic/3.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 33 / 34

LESSON LEARNT

Use of cardinality constraints 1{· · · }1 for forcing relations to be
functions
Use of cardinality constraints 1{· · · }1 for forcing injectivity.
Use of aggregates (sum) for compact encoding of properties
Use of constraints for removing wrong solutions. They allow us to
express universal quantification.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 34 / 34

	ASP Solvers
	ASP programming
	MODELING
	Magic square

