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PROGRAMS WITH NEGATION

Let us consider programs consisting of rules of the kind:

H<+ By,...,Bmn,not Cyq,...,not Cp (1)

where H, B;, C; are atoms, n > 0, m > 0 is said an (ASP) rule.

Sets of these rules are called general programs.

An extended Tp can be defined:

{ a<« by,...,bm,—cCy,...,—Cn € ground(P), }
a

{b1,719rn}gl7
{c1,...,cntN1=10

Te(l) =
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PROGRAMS WITH NEGATION

Let P = p(a) < not p(b) (it's the theory: T = p(a) v p(b)).
There are 4 Herbrand interpretations:

{p(a), p(b)}
/
{p(a)}

N
N

{p(b)}
/
0
3 of them are models. There is no Asuch that T = A.

Moreover, Tp(0) = {p(a)}, Tp({p(b)}) = 0: this is not monotone.
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PROGRAMS WITH NEGATION

Let P = p(a) < not p(b) (it's the theory: T = p(a) v p(b)).
There are 4 Herbrand interpretations:

{p(a), p(b)}
/ N
{p(a)} {p(b)}
N ' /

3 of them are models. There is no Asuch that T = A.

Moreover, Tp(0) = {p(a)}, Tp({p(b)}) = 0: this is not monotone.

We need other techniques for reasoning on the semantics of programs
with Negation (stable model semantics).
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student (alberto)

course (fondamenti)
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student (alberto) .
course (fondamenti) .

studied (alberto,

studied(carlo, asd) .

student (bruno) .

course (asd) .

fondamenti) .

studied (bruno,

student (carlo) .

fondamenti) .
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student (alberto) . student (bruno) .
course (fondamenti) . course (asd) .

student (carlo) .

studied(alberto, fondamenti). studied (bruno,

fondamenti) .
studied(carlo, asd) .
can_participate_exam(S,E) :-
student (S), course(E),
studied(S,E),
not fail_selftest (S,E).
fail _selftest (S,E) :- test(S,E,VOTO), VOTO < 15.

What can we deduce?
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student (alberto) . student (bruno) .
course (fondamenti) . course (asd) .

student (carlo) .

studied(alberto, fondamenti). studied (bruno,

fondamenti) .
studied(carlo, asd) .

can_participate_exam(S,E) :-
student (S), course(E),
studied(S,E),
not fail_selftest (S,E).
fail _selftest (S,E) :- test(S,E,VOTO), VOTO < 15.

What can we deduce? And if now knew that test (carlo, asd, 10) .
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SEMANTICS OF GENERAL PROGRAMS

WHAT IS THE EFFECT OF THE LOSS OF MONOTONICITY ?

student (alberto) . student (bruno) . student (carlo) .
course (fondamenti) . course (asd) .
studied(alberto, fondamenti). studied(bruno, fondamenti).

studied (carlo, asd) .
can_participate_exam(S,E) :-
student (S), course(E),
studied(S,E),
not fail_selftest (S,E).
fail _selftest (S,E) :- test(S,E,VOTO), VOTO < 15.

What can we deduce? And if now knew that test (carlo, asd, 10) . And if
now knew that test (alberto, fondamenti, 5) . ???
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Given a program P:

r C).

d) .

:— r(X,Y), not s(Y).
:— not p(b).

:— not p(a).

[

T T QR B
>

«0O>» «F»>» «E» «E>» E YA



it is normalized, obtaining norm(P):

r(Xq,Xo) :— Xq=a, Xo=c.
r(Xqy,X2) :— Xq=a, Xo=d.
g(Xq) :— r(X4,Y), not s(Y).
p(Xq) :— Xy=a, not p(b).
p(X1) :— X4=b, not p(a).
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Let us collect equal heads and add iff and explicit quantifiers,
obtaining iff(P):

r(Xq1,X2) < (Xy=a A Xo=c) V (Xq=a A Xo=d)
a(X1) < 3 Y (r(X4,¥) A = s(Y))

p(X1) & (Xy=a A 7 p(b)) V (X1=b A = p(a))
s(Xq) ¢+ false



The completion of P is:

r(Xq,X2) < (Xy=a A Xo=c) V (Xq=a A Xo=d)
g(Xq) < Y (r(Xq1,Y) A = s(Y))

p(X1) & (Xy=a A 7 p(b)) V (X1=b A = p(a))
s(Xq) ¢ false

(plus the so-called freeness axioms)



SEMANTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

r(Xq1,X2) < (Xy=a A Xo=c) V (X4=a A Xo=d)
a(Xy) < Y (r(Xy,Y) A = s(Y))
pP(X1) < (Xy=a A = p(b)) V (X4=b A = p(a))
s(Xy1) < false
We need to consider 28 atoms:
s(@) s(b) s(c) s(d)
p(@) p() plc) p(d)
q@ ql) aqlc) q(d)
r(@a,a) r(a,b) r(a,c) r(a,d)
r(o,a) r(b,b) r(b,c) r(b,d)
r(c,a) r(c,b) r(c,c) r(c,d)

r(d,a) r(d,b) r(d,c) r(d,d)
Which of them are in all models of the completions?
Which one in no-one?
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SEMA

NTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

r(Xq1,X2) < (Xy=a A Xo=c) V (X4=a A Xp=d)
a(Xy) < Y (r(Xq,Y) A = s(Y))
pP(X1) < (Xy=a A = p(b)) V (X4=b A = p(a))
s(Xy1) < false
s@F s(b)F s(c)F s(d)F
p(@  pb) p) p(d)
q@ ql) qlc) q(d)
r(a,a) r(a,b) r(a,c) r(a,d)
r(b,a) r(b,b) r(bc) r(b,d)
ric,a) r(c,b) r(c,c) r(c,d)
r(d,a) r(d,b) r(d,c) r(d,d)
Let’'s analyze s
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V (X1=a A Xo=d)

:c)

b A= p(a))

(X1=
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SEMANTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

, Xo) = (X4=a A Xo=c) V (Xy=a A Xo=d)

) & Y (r(Xq,Y) A 2 s(Y))

) ¢ (X1=a A = p(b)) V (X1=b A - p(a))
) « £

s(a) F s(b) F s(c) F s(d) F
p(a) p(b) p(c) p(d)
g@T ab)F qlc)F qdF
r@a)F r(ab)F r(@c)T r(ad)T
r(b,a) F r(b,b) F r(b,c) F r(b,d)F
rc,a)F r(cb)F r(cc)F r(cd)F
r(d,a)F r(d,b)F r(d,c)F r(dd)F

Let’s analyze q
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SEMANTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

=a N Xo=c) V (Xy=a A Xo=d)

(X4
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r(Xq,X2)

r(d,a) F
Let’s analyze p
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SEMANTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

e Three sets of atoms emerge:
e Those true in all Herbrand models of the completion
e Those false in all Herbrand models of the completion
e The others (true in some models, false in others models)
e This suggest a data structure storing the set /™ (always true) and
I~ (always false). This is sometimes called Fitting 3-valued
semantics
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SEMANTICS OF GENERAL PROGRAMS

HERBRAND MODELS OF THE COMPLETION

e Three sets of atoms emerge:

e Those true in all Herbrand models of the completion
e Those false in all Herbrand models of the completion
e The others (true in some models, false in others models)

e This suggest a data structure storing the set /™ (always true) and
I~ (always false). This is sometimes called Fitting 3-valued
semantics

e These sets can be computed using the notion of well-founded
model.

e The well-founded model is a pair (/*, /=) which is unique and
computable in polynomial time on the ground program.

e If I U I~ # Bp the well-founded model is not a real model!
e If itis a model it will be the unique stable model
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SEMANTICS OF GENERAL PROGRAMS

GROUNDING

e We have already used the notion of ground program
e We will start our reasoning on the ground version of the program

e Given a general program P, ground(P) is the set of all ground
instances of P obtained replacing the variables in the clauses with
all elements of Hp

e Later we’ll see the complexity of computing ground(P).
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODELS

e Let Pbe
p :— not g.
We know that P has two minimal models: {p} e {q}.

e {q} does not capture the meaning “if you have no reasons for
believing in g, then believe in p”). There are no info in P to justify
that q is true.

e We would like to have as unique model {p} (it is also the
well-founded model).

o If Pis:
p :— not g. g :— not p.
then well-founded simply states /™ = ), I~ = 0 (i.e., nothing)
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

e Given a general program P and a model S, let us define
PS (the reduct of P w.r.t. S) as follows:
@ remove every rule that contains a naf-literal not L in the body such
that L € S;
© remove every naf-literal from the bodies of the remaining rules.
e Let us observe that PS is a definite program. We can compute its
minimum model Mps. If Mps = S then Sis a stable model (a.k.a.
answer set) for P.
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Let us consider the program P

p - a.
a :— not b.
b :

— not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.



SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

@ We have that P? = {p < a. a. b.}. 0 is not the minimum model of
P, Thus 0 is not an answer set of P.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

{a} We have that P18 = {p « a. a.}. {a} is not the minimum model
of P{8, Thus {a} is not an answer set of P.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

{b} We have that P{?} = {p <~ a. b.}. {b} is the minimum model of
P{b} Thus, {b} is an answer set of P.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

{p} We have that PP} = {p < a. a. b.}. {p} is not the minimum
model of PP}, Thus, {p} is not an answer set of P.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

{p, a} We have that P{P@} = {p « a. a.}. {p, a} is the minimum
model of P{P@} Thus, {p, a} is an answer set of P.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— a.
a :— not b.
b :- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}.

{a, b}, {b,p} e {a, b, p} are not answer sets of P since they include
properly answer sets (e.g., {b}) [This is a theorem. Answer Sets are
always minimal]
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Let us consider the program P

p - a.
a :— not b.
b :

- not a.

the candidate stable models for P are all the subsets of Bp = {a, b, p}
Thus P has two answer sets: {b} and {p, a}.



SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

a :— not b.
b :—= not c.
d.

The set Sy = {b, d} is an answer set of P. As a matter of fact,
PS5t = {b. d.} that has S; as minimum model.

Instead, S» = {a,d} is not an answer set of P: P% = {a. b. d.} has
not S, as minimum model.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— not p, d.
d.

It admits the (logical) model {p, d}. Observe that any model of P must

contain d. Thus we have two possible candidates for being answer
sets:

e S; = {d}:then PS' = {p « d. d.}. Its minimum model is not S;.
o S; = {d,p}: then P% = { d.}. Its minimum model is not S,.
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SEMANTICS OF GENERAL PROGRAMS

STABLE MODEL (GELFOND-LIFSCHITZ 1988)

Let us consider the program P

p :— not p, d.
d.

It admits the (logical) model {p, d}. Observe that any model of P must
contain d. Thus we have two possible candidates for being answer

sets:
e S; = {d}:then PS' = {p « d. d.}. Its minimum model is not S;.

o S; = {d,p}: then P% = { d.}. Its minimum model is not S,.
This program has logical models but it has not stable models!
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SEMANTICS OF GENERAL PROGRAMS

“CONSTRAINTS”

e We should think to the body of an ASP rule as a justification for
supporting the truth of its head.

e Intuitively, “p is in the answer set only if it is supported by the fact
that it is the head of a body which is true in the answer set. The
only exception is that you cannot support p by the presence of
not p in its body”

e Eg.
p :— not p, d.
does not support th etruth of p.
e (but p could be supported by another rule, in case)
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SEMANTICS OF GENERAL PROGRAMS

“CONSTRAINTS”

e From the answer set point of view, if p does not occur elsewhere
in (head of rules of) the program

p :— not p, d.
is equivalent to state that d must be false
e This can be simply stated by

(called constraint)
e constraints are therefore
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SEMANTICS OF GENERAL PROGRAMS

NON-DETERMINISTIC CHOICES

Let us consider the following program:

0 Q0 O w

not
not
not
not

na. na :-—
nb. nb :-
n.c. n.c :-—
nd. nd :-

not
not
not
not

0O Q O w

Its answer sets are all (and only) the sets containing exactly one option

between
@ aandn_a,
@ b and n_b,
@ candn_c,
e dandn_d.

Also for this case we have a
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SEMANTICS OF GENERAL PROGRAMS

COMPLEXITY

THEOREM

Given a ground program P, the problem of establishing whether it
admits answer sets (stable models) is NP-complete.

NP Let P ground program, a candidate stable model S will contain only
atoms occurring in P, thus |S| < |P|. Computing PS, the fixpoint
computation of Mps, and checking if S = Mps therefore polynomial
w.r.t. | P|. Thus the problem is in NP.
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SEMANTICS OF GENERAL PROGRAMS

COMPLEXITY

THEOREM
Given a ground program P, the problem of establishing whether it
admits answer sets (stable models) is NP-complete.
Hardness Let us consider an instance ¢ of 3SAT:
(AV-BV C)A(-AV BV -=C)
cl c2

and define accordingly the program P,_:

a :— not na. na :— not a.

b :— not nb. nb :- not b.

c :— not nc. nc :— not c.

cl :— a. cl :- nb. cl :— c.
c2 :— na. c2 :— b. c2 :- nc.
:— not cl. :— not c2.

P, can be computed in LOGSPACE and it is immediate to check that it

admits a stable model iff ¢ is satisfiable.
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SEMANTICS OF GENERAL PROGRAMS

SUMMARY

e P definite program: unique minimal model Mp. If P is ground and
finite you can compute it in PTIME.

e P general program. Bp is always a logical model, but it is not
interesting.

e P general program.It admits a unique well-founded model. If P is
ground and finite you can compute it in PTIME. If it is total it is also
the unique stable model.

e If instead it is partial, and P is ground and finite establishing the
existence of a stable model is NP complete.

e We have a programming paradigm exactly for the class NP.
e Itis also useful for non monotonic reasoning.
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