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WHERE LOGIC PROGRAMMING CAME FROM?

Logic Programming was born circa 1972, presaged by related
work by Ted Elcock (left), Cordell Green, Pat Hayes and Carl
Hewitt (right) on applying theorem proving to problem solving
(planning) and to question-answering systems.
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WHERE LOGIC PROGRAMMING CAME FROM?

It blossomed from Alan Robinson’s (left) seminal contribution, the
Resolution Principle, all the way into a practical, declarative,
programming language with automated deduction at its core,
through the vision and efforts of Alain Colmerauer and
Bob Kowalski (right) .
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WHERE LOGIC PROGRAMMING CAME FROM?
DEDUCTIVE REASONING AND FORMAL LOGIC

Deductive reasoning argues from the general to a specific instance.
The basic idea is that if something is true of a class of things in
general, this truth applies to all legitimate members of that class.

All human beings are mortal. Socrates is human.
Therefore, Socrates is mortal.

(syllogism by Aristotele)

Formal Logic is a formal version of human deductive logic. It provides
a formal language with an unambiguous syntax and a precise
meaning, and it provides rules for manipulating expressions in a way
that respects this meaning.

∀X (human(X)→ mortal(X)) human(Socrates)
mortal(Socrates)
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WHERE LOGIC PROGRAMMING CAME FROM?
COMPUTATIONAL LOGIC

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned with
the theoretical underpinnings of automated reasoning. Like Formal
Logic, Computational Logic is concerned with precise syntax and
semantics and correctness and completeness of reasoning.

However, it is also concerned with decidability and complexity issues.

mortal(X) :- human(X).
human(socrates).
?- mortal(socrates).
?- yes
?- mortal(Y).
?- Y = socrates ? ;
no
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WHERE LOGIC PROGRAMMING CAME FROM?
THEOREM PROVING

From (Gottfried Wilhelm von) Leibniz dream of automatizing human
reasoning using machines to modern computer-based automatic
theorem proving
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WHAT IS LOGIC PROGRAMMING?
PLANNING

Planner system by Hewitt (1969)
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WHERE LOGIC PROGRAMMING CAME FROM?
AI

John McCarthy (1927–2011)
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WHERE LOGIC PROGRAMMING CAME FROM?
PROGRAMMING LANGUAGES (LATE SIXITIES, EARLY SEVENTIES)

Predicate/Function definition in imperative languages
〈HEAD 〉 〈BODY 〉
Niklaus Wirth: Program = Algorithm + Data Structure

Predicate Logic as a Programming Language
〈HEAD 〉 ← 〈BODY 〉
Bob Kowalski: Algorithm = Logic+Control
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WHAT IS LOGIC PROGRAMMING?

The language Prolog, from the beginning, is a programming
paradigm useful for Knowledge Representation and Reasoning,
Deductive Databases, Computational linguistic, . . . .
Prolog is often identified with Logic Programming (correct in the
seventies, wrong nowadays)
The first efficient implementation of Prolog is due to

D.H.D. Warren (WAM–1983)
Now we have many: BProlog, SICStus Prolog, SWI Prolog, Yap
Prolog, CIAO Prolog, . . . all of them based on the WAM
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WHAT IS LOGIC PROGRAMMING?
PROLOG TOY EXAMPLE: DATABASE (FROM MATHEMATICS GENEALOGY PROJECT)

father(alonzo,martin). father(alonzo,alan).
father(martin,alberto). father(martin,eugenio).
father(alberto,agostino). father(alberto,carla).
father(agostino,alessandro).father(agostino,luca).

ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- father(X,Z),ancestor(Z,Y).

This simple example shows the power of the bi-directionality of predicate
definitions.

ancestor(alonzo,alessandro).

ancestor(X,alessandro).

ancestor(alonzo,Y).

ancestor(X,Y).
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WHAT IS LOGIC PROGRAMMING?
TOY EXAMPLES BUT NOT TOY LANGUAGE

A small subset of Prolog (definite clause programming) is already
Turing complete.

delta(q0,0,qi,1,left).
. . .
delta(qn,1,qj,0,right).

turing(Left,halt,S,Right,Left,halt,S,Right).
turing([L|L_i],Q,S,R_i,L_o,Q_o,S_o,R_o) :-

delta(Q,S,Q1,S1,left),
turing(L_i,Q1,L,[S1|R_i],L_o,Q_o,S_o,R_o).

turing(L_i,Q,S,[R|R_i],L_o,Q_o,S_o,R_o) :-
delta(Q,S,Q1,S1,right),
turing([S1|L_i],Q1,R,R_i,L_o,Q_o,S_o,R_o).

turing([],Q,S,R_i,L_o,Q,S_o,R_o) :-
turing([0],Q,S,R_i,L_o,Q,S_o,R_o).

turing(L_i,Q,S,[],L_o,Q,S_o,R_o) :-
turing(L_i,Q,S,[0],L_o,Q,S_o,R_o).
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WHAT IS LOGIC PROGRAMMING?
TOY EXAMPLES BUT NOT TOY LANGUAGE

Moreover, the same subclass (definite clause programming) has lovely
semantical properties.

P has a model⇔ P has a Herbrand model

MP =
⋂

M is a Herbrand model of P
= TP ↑ ω(∅)

MP = {A : there is a SLD resolution for A from P}
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WHAT IS LOGIC PROGRAMMING?
TOY EXAMPLES BUT NOT TOY LANGUAGE

Adding negation LP can be used for Knowledge representation and
non monotonic reasoning.

flies(X) :- bird(X), not abnormal_bird(X).
abnormal_bird(Y) :- penguin(Y).
abnormal_bird(Y) :- roadrunner(Y).
bird(Z) :- penguin(Z).
bird(tweety). penguin(pingu).

Semantics become complex: Stable model semantics
(Gelfond-Lifschitz) is the answer and it is NP-computable in programs
that do not use arbitrary function symbols.
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WHAT IS LOGIC PROGRAMMING?
TOY EXAMPLES BUT NOT TOY LANGUAGE

Constraint Logic Programming:

sudoku([X11, . . . ,X99]) : −
domain([X11, . . . ,X99],1,9),
X13 = 1,X23 = 2, . . . ,X97 = 5,
alldifferent([X11, . . . ,X19]),

...
alldifferent([X11, . . . ,X91]),

...
alldifferent([X77, . . . ,X99]).
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WHAT IS LOGIC PROGRAMMING?
TOY EXAMPLES BUT NOT TOY LANGUAGE

The declarative nature allows extensions such as constraint logic
programming, functional logic programming, . . .
All current Prolog systems have complete interfaces with other
languages and/or OS primitives, graphics, DB, etc.
Search in logic programming is naturally parallelized.
Inference techniques are inherited by part of big systems (e.g.,
IBM Watson)
And, since 1999 we have ASP . . .
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LOGIC PROGRAMMING IN THE WORLD
ALP (1986)

website www.logicprogramming.org

International meeting (ICLP) since 1982
International Journal Theory and Practice of Logic Programming
Other meetings (PADL, LOPSTR, ILP, LPNMR, . . . )
International Schools
Newsletter (every 3 months – ask for being included in the mailing
list)
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LOGIC PROGRAMMING IN ITALY
GULP (1985)

website: www.programmazionelogica.it
GULP is the Italian Association for Logic Programming (Gruppo
Utenti e ricercatori di Logic Programming)
GULP is affiliated to ALP (but older!)
AIM: to keep the interest in LP and related themes alive by
promoting various initiatives both in research and education; an
opportunity for young researchers to be introduced into an active
and challenging research area in a very informal and friendly way
Annual meeting (last one in june 2017 in Milano), summer/winter
schools, workshops, student’s grants, PhD theses prizes, . . .

kind president
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Syntax of Logic Programming
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TERMS

Let C be a set of constant symbols
(e.g., a, b, c, socrate, uomo, . . . )
Let V be a set of variable symbols
(e.g., X, Y, Z, X1, X2, . . . )
Let F be a set of function symbols
(e.g., f, g, h, sqrt, piu, per, . . . )
Each symbol f ∈ F has its own arity (number of arguments)
ar(f ) > 0 (e.g., ar(sqrt) = 1,ar(piu) = 2).
We assume that ar(c) = 0 for c ∈ C and ar(X ) = 0 for X ∈ V
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TERMS

If c ∈ C then c is a term
If X ∈ V then X is a term
If f ∈ F and ar(f ) = n and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

A term without variables is said a ground term
E.g., 0, s(s(0)), s(s(X )),sqrt(piu(s(s(Y )), s(0))) are terms
E.g., 0, s(s(0)),sqrt(piu(s(s(0)), s(0))) are ground terms
(ar(s) = ar(sqrt) = 1,ar(piu) = 2)
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ATOMIC FORMULAS (ATOMS)

Let P be a set of predicate symbols (e.g., p, q, r, genitore,
allievo, coetaneo, eq, leq, integer,. . . )
Each symbol p ∈ P has its own arity (number of arguments)
ar(p) ≥ 0
(e.g., ar(leq) = 2,ar(father) = 2,ar(integer) = 1).
If p ∈ P, ar(p) = n, and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula (or, simply, an atom)
E.g., integer(s(s(s(0)))),leq(0, s(s(0))),
father(abramo,isacco),p(X ,Y ,a) are atoms.
A literal is either an atom or not A where A is an atom.
We’ll make use of 0-ary atoms. E.g. p,q, r , . . . This way, we can
encode propositional logics (vs first-order logic)
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RULES

H ← B1, . . . ,Bm,not Bm+1, . . . ,not Bn (1)

where H,B1, . . . ,Bn are atoms, n ≥ 0, m ≥ 0 is said an (ASP) rule.
The comma “,” stands for ∧ (and). The arrow “←” is written “:-”
Terminology:

H︸︷︷︸
head

← B1, . . . ,Bm,not Bm+1, . . . ,not Bn︸ ︷︷ ︸
body

If m = n (i.e. not does not occur in (1)) the rule is said a definite rule
(or definite clause)
If m = n = 0 the rule is said a fact
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RULES

H ← B1, . . . ,Bm,not Bm+1, . . . ,not Bn (1)

From a logical point of view (1) is equivalent to:

H ∨ ¬B1 ∨ · · · ∨ ¬Bm ∨ Bm+1 ∨ · · · ∨ Bn

namely, a disjunction of literals (a.k.a. a clause)

If m = n (i.e. not does not occur in (1)) there is exactly one positive
literal in the clause.
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CONSTRAINTS

← B1, . . . ,Bm,not Bm+1, . . . ,not Bn (2)

where B1, . . . ,Bn are atoms, n ≥ 0, m ≥ 0 is said an (ASP) constraint.

From a logical point of view (2) is equivalent to:

¬B1 ∨ · · · ∨ ¬Bm ∨ Bm+1 ∨ · · · ∨ Bn

again, a disjunction of literals (a.k.a. a clause)
If m = n (i.e. not does not occur in (2)) there are no positive literals.
Horn clauses are those that have at most one.
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PROGRAMS

A program is simply a set of rules (1) and constraints (2) (order does
not matter, in principle).

To start, let us focus on definite clause programs (a.k.a. pure Prolog
programs), namely programs made exclusively by rules

H ← B1, . . . ,Bm (3)

where H,B1, . . . ,Bm are atoms, m ≥ 0.
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PROGRAMS
DATABASES

Here is a simple program giving information about the British Royal
family:

parent(elizabeth, charles).
parent(philip, charles).
parent(diana, william).
parent(diana, harry).
parent(charles, william).
parent(charles, harry).

Here parent is a predicate. All names are (terms consisting of)
constant symbols.
These above rules have empty bodies and thus they are facts. They
allow to populate extensionally a Database.
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PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

VIEW 1 : (Given X and Y) if there exists a Z such that X is parent
of Z, and Z is parent of Y, then X is a grandparent of Y.

VIEW 2 : (Given X and Y and Z) if X is parent of Z, and Z is parent
of Y, then X is a grandparent of Y.
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PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

view 1:

(∀X)(∀Y)
(
(∃Z)(parent(X,Z) ∧ parent(Z,Y))→ granparent(X,Y)

)
view 2:

(∀X)(∀Y)(∀Z)
(
parent(X,Z) ∧ parent(Z,Y)→ granparent(X,Y)

)
Luckily, they are equivalent (exercise!)
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PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

A solver should be able to deduce:

grandparent(elizabeth, william).
grandparent(elizabeth, harry).
grandparent(philip, william).
grandparent(philip, harry).
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PROGRAMS
DATABASES

Let us enlarge the database (order does not matter)

parent(william, george).
parent(william, charlotte).
parent(kate, george).
parent(kate, charlotte).

We can define now the “ancestor” predicate.

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

This is the first use of “recursion”. Recursion is fundamental in
declarative programming (either functional or logic).
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PROGRAMS
DATABASES

Let us define the “married” and “sibling” predicates:

married(X,Y) :- parent(X,Z), parent(Y,Z).
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

Is this definition completely correct?

Are you sibling of yourself?

Patch:

married(X,Y) :- parent(X,Z), parent(Y,Z), X \= Y.
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.
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PROGRAMS
(INFINITE) ARITHMETICS

Let us add some extra information:

female(elizabeth). female(diana).
female(kate). female(charlotte).
male(philip). male(charles).
male(william). male(harry).
male(george).

Then we can define other predicates, e.g.

isfather(X) :- parent(X,Y), male(X).
ismother(X) :- parent(X,Y), female(X).
brother(X,Y) :- sibling(X,Y), male(X).
has_a_sister(X) :- sibling(X,Y), female(Y).
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PROGRAMS
(INFINITE) ARITHMETICS

Let us define the notion of being a natural number “nat”:

nat(0).
nat(s(X)) :- nat(X).

What are we expecting?

nat(0), nat(s(0)), nat(s(s(0))), ...

An infinite set of answers (is it viable?)

In the following, let us denote s(s(· · · (s(︸ ︷︷ ︸
n

0)) · · · )) by n.
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PROGRAMS
(INFINITE) ARITHMETICS

Let us define now the “sum’ predicate’:

sum(X,0,X) :- nat(X).
sum(X,s(Y),s(Z)) :- sum(X,Y,Z).

What are we expecting?

E.g., sum(5,0,5),sum(2,4,6)

An infinite set of answers
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LET’S STOP FOR A WHILE

Infinite sets of answers can be managed (one item per time) by
top-down methods (Prolog).
These methods work very badly when negation is required
For definite clause programs we can use Prolog (a programming
language with top-down solver) and deal with infiniteness —
sometimes
For KR/programs with negation we add a finiteness restriction and
use ASP (a modeling language with bottom-up solver)
Let us see some examples of (simple) Prolog programs
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