AUTOMATED REASONING

Agostino Dovier

Università di Udine
CLPLAB
Udine, November 2016

Global Constraints

- Constraints on sets of variables (with some precise meaning) are called global constraints
- Often global constraints can be rewritten as combination of binary constraints. However, propagation on these binary constraints is rather poor wrt the constraint viewed as a whole.
- Therefore, global constraints are often studied independently.
- The most famous is all_different.

All Different Constraint

- Let X_{1}, \ldots, X_{k} be variables with domains $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$.
- The (k-ary) constraint all_different $\left(X_{1}, \ldots, X_{k}\right)$ is defined as follows:

$$
\begin{aligned}
& \text { all_different }\left(X_{1}, \ldots, X_{k}\right)=\left(\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{k}\right) \backslash \\
& \qquad\left\{\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{D}_{1} \times \cdots \times \mathcal{D}_{k}: \exists i \exists j 1 \leq i<j \leq k\left(a_{i}=a_{j}\right)\right\}
\end{aligned}
$$

- A CSP is said diff-arc consistent iff every all_different-constraint in it is hyper arc consistent.

All Different Constraint

- Let X_{1}, \ldots, X_{k} be variables with domains $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$.
- The (k-ary) constraint all_different $\left(X_{1}, \ldots, X_{k}\right)$ is defined as follows:

$$
\begin{aligned}
& \text { all_different }\left(X_{1}, \ldots, X_{k}\right)=\left(\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{k}\right) \backslash \\
& \qquad\left\{\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{D}_{1} \times \cdots \times \mathcal{D}_{k}: \exists i \exists j 1 \leq i<j \leq k\left(a_{i}=a_{j}\right)\right\}
\end{aligned}
$$

- A CSP is said diff-arc consistent iff every all_different-constraint in it is hyper arc consistent.
- Namely, for every $i \in\{1, \ldots, k\}$ and every $a_{i} \in \mathcal{D}_{i}$ there are $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k}$ s.t. $\left\langle a_{1}, \ldots, a_{k}\right\rangle \in \operatorname{all}$ different $\left(X_{1}, \ldots, X_{k}\right)$

All Different Constraint

- Let us observe that the two CSP $\left\langle\operatorname{all}\right.$ different $\left.\left(X_{1}, \ldots, X_{k}\right) ; \mathcal{D}_{\epsilon}\right\rangle$ and $\left\langle X_{1} \neq X_{2}, X_{1} \neq X_{3}, \ldots, X_{1} \neq X_{k}, X_{2} \neq X_{3}, \ldots, X_{k-1} \neq X_{k} ; \mathcal{D}_{\in}\right\rangle$ are equivalent.
- hyper-arc-consistency of all_different $\left(X_{1}, \ldots, X_{k}\right)$ implies (binary) arc consistency in the second CSP.
- The converse does not hold: $\left\langle\right.$ all_different $\left.\left(X_{1}, X_{2}, X_{3}\right) ; \mathcal{D}_{1}=\mathcal{D}_{2}=\mathcal{D}_{3}=\{0,1\}\right\rangle$ vs $\left\langle X_{1} \neq X_{2}, X_{1} \neq X_{3}, X_{2} \neq X_{3} ; \mathcal{D}_{1}=\mathcal{D}_{2}=\mathcal{D}_{3}=\{0,1\}\right\rangle$.

All Different Constraint

- Let us observe that the two CSP $\left\langle\operatorname{all}\right.$ different $\left.\left(X_{1}, \ldots, X_{k}\right) ; \mathcal{D}_{\epsilon}\right\rangle$ and $\left\langle X_{1} \neq X_{2}, X_{1} \neq X_{3}, \ldots, X_{1} \neq X_{k}, X_{2} \neq X_{3}, \ldots, X_{k-1} \neq X_{k} ; \mathcal{D}_{\epsilon}\right\rangle$ are equivalent.
- hyper-arc-consistency of all_different $\left(X_{1}, \ldots, X_{k}\right)$ implies (binary) arc consistency in the second CSP.
- The converse does not hold: $\left\langle\right.$ all_different $\left.\left(X_{1}, X_{2}, X_{3}\right) ; \mathcal{D}_{1}=\mathcal{D}_{2}=\mathcal{D}_{3}=\{0,1\}\right\rangle$ vs $\left\langle X_{1} \neq X_{2}, X_{1} \neq X_{3}, X_{2} \neq X_{3} ; \mathcal{D}_{1}=\mathcal{D}_{2}=\mathcal{D}_{3}=\{0,1\}\right\rangle$.
- Let $d_{i}=\left|\mathcal{D}_{i}\right|$ for $i \in\{1, \ldots, k\}$ and $d=\max _{i=1}^{k}\left\{d_{i}\right\}$.
- A propagation algorithm for hyper-arc-consistency based on the definition has cost $O\left(\ldots d^{k+1}\right)$.
- Not applicable with large k. But is it an intrinsic problem or just a too naive algorithm?

Propagation of all_different

Bipartite Graphs

- An bipartite graph is a triple $G=\langle X, Y, E\rangle$ where X and Y are disjoint sets of nodes and $E \subseteq X \times Y$ is a set of edges
- Edges are treated as not directed
- A matching $M \subseteq E$ is a set of edges such that there are no pairs of edges that share the same node.
- Given G and M a node is said matched if it is in some edge in M; otherwise it is free.
- A path is a sequence of edges $\left(x_{1}, y_{1}\right),\left(y_{1}, x_{2}\right),\left(x_{2}, y_{2}\right), \ldots$

Bipartite Graphs

- Given $G=\langle X, Y, E\rangle$ bipartite graph and $M \subseteq E$ matching, a path in G is alternating for M if edges of the path are alternatively in M and not in M.
- An alternating path is augmenting for M if it is acyclic and starts and ends in free nodes.
- Observe that every augmenting path starting in a node in X ends in Y (or vice versa).
- If $M=\emptyset$, any (set containing a single) edge is an augmenting path for M.

Bipartite Graphs

Results

PROP. Given a matching M and an augmenting path P for M, we have that: $M^{\prime}=M \oplus P=(M \backslash P) \cup(P \backslash M)$ is a matching such that $\left|M^{\prime}\right|=|M|+1$.

Bipartite Graphs

Results

PROP. Given a matching M and an augmenting path P for M, we have that: $M^{\prime}=M \oplus P=(M \backslash P) \cup(P \backslash M)$ is a matching such that
$\left|M^{\prime}\right|=|M|+1$.

Proof.

Let $M=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right), \quad\right.$ The part of M in the path

$$
\left.\left(x_{k+1}, y_{k+1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

Suppose P is the augmenting path: $P=$ $\left\{\left(y_{0}, x_{1}\right),\left(x_{1}, y_{1}\right),\left(y_{1}, x_{2}\right),\left(x_{2}, y_{2}\right), \ldots,\left(y_{k-1}, x_{k}\right),\left(x_{k}, y_{k}\right),\left(y_{k}, x_{0}\right)\right\}$ (wlog, $y_{0} \in Y$ and $x_{0} \in X$ and the path uses the 'first' k edges of the set M).
Let $M^{\prime}=(M \backslash P) \cup(P \backslash M)$

$$
=\left\{\left(y_{0}, x_{1}\right),\left(y_{1}, x_{2}\right), \ldots,\left(y_{k-1}, x_{k}\right),\left(y_{k}, x_{0}\right),\right.
$$

$$
\left.\left(x_{k+1}, y_{k+1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

M^{\prime} is a matching: $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are all different (M is a matching and x_{0} and y_{0} are different since free by hypothesis).
Its length is $|M|+1$.

MAXIMUM MATCHING

- We are interested in matching of maximum size maximum bipartite matching.
- Of course the size of the maximum matching is $\leq \min \{|X|,|Y|\}$.
- Theorem (Berge-1957). Given a bipartitite graph $G=\langle X, Y, E\rangle$, (M is a maximum matching) if and only if (there are not augmenting paths for M).
- (\rightarrow) To show $A \rightarrow B$ we prove $\neg B \rightarrow \neg A$.

Suppose there is an augmenting path for M.
Then (previous Prop) we can define a matching M^{\prime} of size $|M|+1$, thus M is not of maximum size.

MAXIMUM MATCHING

Berge's Theorem

- (\leftarrow) To show $A \leftarrow B$ we prove that $\neg A \rightarrow \neg B$. Namely, if M is a matching not of maximum size, then there is an augmenting path for M. Let M be a not maximal matching. Then there is a matching M^{\prime} of bigger size $\left(\left|M^{\prime}\right|>|M|\right)$. Now let $U=\left\langle X, Y, M \oplus M^{\prime}\right\rangle$.
(1) Being M and M^{\prime} matchings, at most one edge of M and one of M^{\prime} might incide on a node in U. Thus the degree of a node in U is ≤ 2.
(2) The graph U can have cycles. In this case half of the edges are from M and the other from M^{\prime} (and the length of the cycle is even).
- Now, removing the cycles, the paths use alternatively edges from M and from M^{\prime}. Since $\left|M^{\prime}\right|>|M|$ there must be at least one path with more edges from M^{\prime} than from M.
- That path starts and ends with edges in M^{\prime} starting and ending with two nodes free for M : There is an augmenting path for M.

MAXIMUM MATCHING
 naive Algo

Let $n=\min \{|X|,|Y|\}$ and $m=|E|$.
Max_Matching_Naive $(\langle X, Y, E\rangle)$
$1 \quad M \leftarrow \emptyset$;
2 while (there is an augmenting path P for M)
3 do
$4 \quad M \leftarrow M \oplus P$;
5 return M;
The algorithm terminates in $\leq n$ iterations.
Let us analyze briefly the cost of each iteration.

MAXIMUM MATCHING

NAIVE ALGO

Find_Augmenting_Path($\langle X, Y, E\rangle, M)$
$1 S \leftarrow X ; A \leftarrow E$;

2 trovato \leftarrow false;
3 while (S contains a free node $\wedge \neg$ trovato)
4 do
5 choose a free node x in S;
6 depth first search of an augmenting path for M in $\langle S, Y, A\rangle$;
7 let $E(x)$ be the set of edges visited starting from x;
8 if (a path is found)
9 then
10
$11 \quad$ else $S \leftarrow S \backslash\{x\} ; A \leftarrow A \backslash E(x)$;
12 return trovato/path
$O(|E|)$: globally we have $O(n m)$.
Hopcroft-Karp: $O(m \sqrt{n})=O\left(n^{2} \sqrt{n}\right)$.

Applying these results to the propagation of the all_different constraint

all_different CONSTRAINT: BIPARTITE GRAPH

Given all_different $\left(X_{1}, \ldots, X_{k}\right)$, with domains $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$, let us define the bipartite graph $G V(C)=\left\langle X_{C}, Y_{C}, E_{C}\right\rangle$ as follows:

- $X_{C}=\left\{X_{1}, \ldots, X_{k}\right\}$
- $Y_{C}=\bigcup_{i=1}^{k} \mathcal{D}_{i}$
- $E_{C}=\left\{\left(X_{i}, a\right): a \in \mathcal{D}_{i}\right\}$

All Different Constraint

Eample: all_different $\left(X_{1}, \ldots, X_{7}\right)$

$$
\begin{aligned}
& x_{1} \in 1 . .2, x_{2} \in 2 . .3, x_{3} \in\{1,3\}, X_{4} \in\{2,4\}, \\
& x_{5} \in 3 . .6, x_{6} \in 6 . .7, x_{7} \in\{8\}
\end{aligned}
$$

All Different Constraint
 Regin

Theorem: A CSP $\mathcal{P}=\left(\mathcal{C} ; \mathcal{D}_{\epsilon}\right)$ is diff-arc consistent if and only if forall all_different-constraint \mathcal{C} in \mathcal{C} any edge in $G V(C)$ belongs to (at least) one matching of the same size of the set of variables of C.

All Different Constraint

Regin

Theorem: A CSP $\mathcal{P}=\left(\mathcal{C} ; \mathcal{D}_{\epsilon}\right)$ is diff-arc consistent if and only if forall all_different-constraint \mathcal{C} in \mathcal{C} any edge in $\operatorname{GV}(C)$ belongs to (at least) one matching of the same size of the set of variables of C.

Proof:

(\rightarrow) Let C in \mathcal{C} a all_different-constraint. Let X_{1}, \ldots, X_{k} be its variables.
Let $\left(X_{i}, a_{i}\right)$ in $G V(C)$ (this implies that $\left.a_{i} \in \mathcal{D}_{i}\right)$. Since \mathcal{P} is diff-arc
consistent, C is hyper-arc consistent. Thus, there are
$a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k}$ such that $X_{1}=a_{1}, \ldots, X_{k}=a_{k}$ is a solution of C. This solution is a matching of the desired size to which the edge $\left(X_{i}, a_{i}\right)$ belongs.
(\leftarrow) For any all_different-constraint C (assume it has k vars) consider an edge $\left(X_{i}, a_{i}\right)$ belonging to a matching of size k. From that matching we obtain the values for the other variables to guarantee the hyper-arc consistency property.

All Different Constraint

Filtering

- For building $G V(C)$, we introduce k nodes (for the variables), $\left|\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{k}\right|$ for the domain objects, and $e=d_{1}+\cdots+d_{k} \leq k d$ edges.
- A constraint $C=$ all_different $\left(X_{1}, \ldots, X_{k}\right)$ is hyper-arc consistent if and only if any edge in $G V(C)$ belongs to a matching of size k (maximum).
- We know that we can find ONE maximum matching in time $O(\sqrt{k} e)=O\left(k^{3 / 2} d\right)$.

All Different Constraint

Filtering

- For building $G V(C)$, we introduce k nodes (for the variables), $\left|\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{k}\right|$ for the domain objects, and $e=d_{1}+\cdots+d_{k} \leq k d$ edges.
- A constraint $C=$ all_different $\left(X_{1}, \ldots, X_{k}\right)$ is hyper-arc consistent if and only if any edge in $G V(C)$ belongs to a matching of size k (maximum).
- We know that we can find ONE maximum matching in time $O(\sqrt{k} e)=O\left(k^{3 / 2} d\right)$.
- We are interested in edges that belong to at least one maximum matching.
- We need a new idea here!

All Different Constraint

Berge 2

Teorema: [Berge-1970] Let $G=\langle X, Y, E\rangle$ be a bipartire graph. An edge e belongs to some but not to all maximum matchings if and only if for an arbitrary maximum matching M, e belongs to:

- an acyclic even length alternating path that starts in a free vertex OR
- an alternating cycle (of course of even length).

Proof. (\Leftarrow) Let M be a maximum matching.
(1) Let P an alternating even length path with a free extreme (the other is not free). Let $M^{\prime}=M \oplus P$ another matching with the same size. Half of the edges of the path P are in M, the other half in M^{\prime}.
(2) Let P be an alternating cycle. Similar.

All Different Constraint

An edge e belongs to some but not to all maximum matchings \Rightarrow for an arbitrary maximum matching M, e belongs to: an acyclic even length alternating path that starts in a free vertex OR an alternating cycle (of course of even length).

Let $\left(x_{0}, x_{1}\right)$ be an edge that belongs to some but not to all maximum
matchings.
Let M a gene ric max matching s.t. $\left(x_{0}, x_{1}\right) \in M$ and M^{\prime} a generic max
matching s.t. $\left(x_{0}, x_{1}\right) \notin M$.
By hypothesis, at least one of such M and M^{\prime} exists.
Now, let $M^{\prime \prime}=M \oplus M^{\prime}$. We have that $\left(x_{0}, x_{1}\right) \in M^{\prime \prime}$
We already know that the degree of each node in $M^{\prime \prime}$ is ≤ 2. Iteratively choose nodes $x_{2}, x_{3}, x_{4}, x_{5}, \ldots, x_{m}$ such that $\left(x_{i}, x_{i+1}\right) \in M^{\prime \prime}$ and

Stop when there are no longer nodes to be chosen or when x_{m} has been previously chosen.

All Different Constraint

An edge e belongs to some but not to all maximum matchings \Rightarrow for an arbitrary maximum matching M, e belongs to: an acyclic even length alternating path that starts in a free vertex OR an alternating cycle (of course of even length).
Let $\left(x_{0}, x_{1}\right)$ be an edge that belongs to some but not to all maximum matchings.
Let M a generic max matching s.t. $\left(x_{0}, x_{1}\right) \in M$ and M^{\prime} a generic max matching s.t. $\left(x_{0}, x_{1}\right) \notin M$.
By hypothesis, at least one of such M and M^{\prime} exists.
Now, let $M^{\prime \prime}=M \oplus M^{\prime}$. We have that $\left(x_{0}, x_{1}\right) \in M^{\prime \prime}$.
We already know that the degree of each node in $M^{\prime \prime}$ is ≤ 2.
Iteratively choose nodes $x_{2}, x_{3}, x_{4}, x_{5}, \ldots, x_{m}$ such that $\left(x_{i}, x_{i+1}\right) \in M^{\prime \prime}$ and $x_{i+2} \neq x_{i}$.
Stop when there are no longer nodes to be chosen or when x_{m} has been previously chosen.

All Different Constraint

An edge e belongs to some but not to all maximum matchings \Rightarrow for an arbitrary maximum matching M, e belongs to: an acyclic even length alternating path that starts in a free vertex OR an alternating cycle (of course of even length).

Two cases:

- A cycle has been pointed out (i.e., $x_{m}=x_{1}$)
- The sequence is not a cycle. In this case, go back to x_{0} and choose a new sequence (that, in a sense, lead to x_{0}) introducing nodes $x_{-1}, x_{-2}, \ldots, x_{-t}$ such that $\left(x_{i-1}, x_{i}\right) \in M^{\prime \prime}$. Also in this case:
- A cycle has been generated (but this is not possible . . . why?)
- No cycle has been generated.

All Different Constraint

An edge e belongs to some but not to all maximum matchings \Rightarrow for an arbitrary maximum matching M, e belongs to: an acyclic even length alternating path that starts in a free vertex OR an alternating cycle (of course of even length).
If there are not cycles, then we have an alternating path both for M and for M^{\prime}. If the path would be of odd length then it would be augmenting for one of them that would contradict the maximality of M or M^{\prime}. Then the path is even.

All Different Constraint

An edge e belongs to some but not to all maximum matchings \Rightarrow for an arbitrary maximum matching M, e belongs to: an acyclic even length alternating path that starts in a free vertex OR an alternating cycle (of course of even length).
If there are not cycles, then we have an alternating path both for M and for M^{\prime}. If the path would be of odd length then it would be augmenting for one of them that would contradict the maximality of M or M^{\prime}. Then the path is even.

In the case there is a cycle, there are two cases. Either $\left(x_{0}, x_{1}\right)$ is in the path or not. Assume it is in the path, then there is a node of degree 3 in $M^{\prime \prime}$: this is absurdum.
Then $\left(x_{0}, x_{1}\right)$ belongs to an alternating cycle both for M and for M^{\prime}.

All Different Constraint

Efficient Filtering

- Find a maximal matching M (time $O\left(k^{3 / 2} d\right)$). If the size is less than k stop with unsat.
- For every free node, find the even alternating paths. All nodes reached and edges vidited are retained.
- All cycles are detected (algorithm for strongly connected components)
- All edges in M outside these visits should be in all matchings.
- All edges outside M outside these visits are removed.
- Global cost: $O\left(k^{3 / 2} d\right)$
- Data structure is retained to speed up further visits after some labelings.

All Different Constraint

Efficient Filtering

All Different Constraint

Efficient Filtering

All Different Constraint

Efficient Filtering

