AUTOMATED REASONING

Agostino Dovier

Università di Udine CLPLAB

Udine, November 2016

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

UDINE, NOVEMBER 2016 1 / 24

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Constraints on sets of variables (with some precise meaning) are called global constraints
- Often global constraints can be rewritten as combination of binary constraints. However, propagation on these binary constraints is rather poor wrt the constraint viewed as a whole.
- Therefore, global constraints are often studied independently.
- The most famous is all_different.

- Let X_1, \ldots, X_k be variables with domains $\mathcal{D}_1, \ldots, \mathcal{D}_k$.
- The (k-ary) constraint all_different(X₁,..., X_k) is defined as follows:

all_different(
$$X_1, \ldots, X_k$$
) = $(\mathcal{D}_1 \times \cdots \times \mathcal{D}_k) \setminus \{(a_1, \ldots, a_k) \in \mathcal{D}_1 \times \cdots \times \mathcal{D}_k : \exists i \exists j \ 1 \le i < j \le k \ (a_i = a_j)\}$

- A CSP is said *diff-arc consistent* iff every all_different-constraint in it is *hyper arc consistent*.
- Namely, for every $i \in \{1, ..., k\}$ and every $a_i \in D_i$ there are $a_1, ..., a_{i-1}, a_{i+1}, ..., a_k$ s.t. $\langle a_1, ..., a_k \rangle \in \text{all_different}(X_1, ..., X_k)$

イロト イポト イヨト イヨト 二日

- Let X_1, \ldots, X_k be variables with domains $\mathcal{D}_1, \ldots, \mathcal{D}_k$.
- The (k-ary) constraint all_different(X₁,..., X_k) is defined as follows:

all_different(
$$X_1, \dots, X_k$$
) = ($\mathcal{D}_1 \times \dots \times \mathcal{D}_k$)\
{ $(a_1, \dots, a_k) \in \mathcal{D}_1 \times \dots \times \mathcal{D}_k : \exists i \exists j \ 1 \le i < j \le k \ (a_i = a_j)$ }

- A CSP is said *diff-arc consistent* iff every all_different-constraint in it is *hyper arc consistent*.
- Namely, for every $i \in \{1, ..., k\}$ and every $a_i \in D_i$ there are $a_1, ..., a_{i-1}, a_{i+1}, ..., a_k$ s.t. $\langle a_1, ..., a_k \rangle \in \text{all_different}(X_1, ..., X_k)$

(日)

- Let us observe that the two CSP $\langle \text{all}_different(X_1, \ldots, X_k); \mathcal{D}_{\in} \rangle$ and $\langle X_1 \neq X_2, X_1 \neq X_3, \ldots, X_1 \neq X_k, X_2 \neq X_3, \ldots, X_{k-1} \neq X_k; \mathcal{D}_{\in} \rangle$ are equivalent.
- hyper-arc-consistency of all_different(X₁,..., X_k) implies (binary) arc consistency in the second CSP.
- The converse does not hold: $\langle \text{all_different}(X_1, X_2, X_3); \mathcal{D}_1 = \mathcal{D}_2 = \mathcal{D}_3 = \{0, 1\} \rangle \text{ vs}$ $\langle X_1 \neq X_2, X_1 \neq X_3, X_2 \neq X_3; \mathcal{D}_1 = \mathcal{D}_2 = \mathcal{D}_3 = \{0, 1\} \rangle.$
- Let $d_i = |\mathcal{D}_i|$ for $i \in \{1, ..., k\}$ and $d = \max_{i=1}^k \{d_i\}$.
- A propagation algorithm for hyper-arc-consistency based on the definition has cost $O(\ldots d^{k+1})$.
- Not applicable with large *k*. But is it an intrinsic problem or just a too naive algorithm?

(ロ) (同) (三) (三) (三) (○) (○)

- Let us observe that the two CSP $\langle \text{all}_different(X_1, \ldots, X_k); \mathcal{D}_{\in} \rangle$ and $\langle X_1 \neq X_2, X_1 \neq X_3, \ldots, X_1 \neq X_k, X_2 \neq X_3, \ldots, X_{k-1} \neq X_k; \mathcal{D}_{\in} \rangle$ are equivalent.
- hyper-arc-consistency of all_different(*X*₁,...,*X*_k) implies (binary) arc consistency in the second CSP.
- The converse does not hold: $\langle \text{all}_\text{different}(X_1, X_2, X_3); \mathcal{D}_1 = \mathcal{D}_2 = \mathcal{D}_3 = \{0, 1\} \rangle \text{ vs}$ $\langle X_1 \neq X_2, X_1 \neq X_3, X_2 \neq X_3; \mathcal{D}_1 = \mathcal{D}_2 = \mathcal{D}_3 = \{0, 1\} \rangle.$
- Let $d_i = |\mathcal{D}_i|$ for $i \in \{1, ..., k\}$ and $d = \max_{i=1}^k \{d_i\}$.
- A propagation algorithm for hyper-arc-consistency based on the definition has cost O(... d^{k+1}).
- Not applicable with large *k*. But is it an intrinsic problem or just a too naive algorithm?

(ロ) (同) (三) (三) (三) (○) (○)

Propagation of all_different

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

UDINE, NOVEMBER 2016 5 / 24

э

5900

イロト イポト イヨト イヨト

- An *bipartite graph* is a triple G = ⟨X, Y, E⟩ where X and Y are disjoint sets of nodes and E ⊆ X × Y is a set of edges
- Edges are treated as not directed
- A matching M ⊆ E is a set of edges such that there are no pairs of edges that share the same node.
- Given *G* and *M* a node is said *matched* if it is in some edge in *M*; otherwise it is *free*.
- A *path* is a sequence of edges $(x_1, y_1), (y_1, x_2), (x_2, y_2), ...$

- Given $G = \langle X, Y, E \rangle$ bipartite graph and $M \subseteq E$ matching, a path in *G* is *alternating* for *M* if edges of the path are alternatively in *M* and not in *M*.
- An alternating path is *augmenting* for *M* if it is *acyclic* and starts and ends in free nodes.
- Observe that every augmenting path starting in a node in *X* ends in *Y* (or vice versa).
- If $M = \emptyset$, any (set containing a single) edge is an augmenting path for *M*.

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

UDINE, NOVEMBER 2016 8 / 24

◆□ > ◆□ > ◆豆 > ◆豆 > □ = − つへぐ

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

UDINE, NOVEMBER 2016 8 / 24

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

UDINE, NOVEMBER 2016 8 / 24

◆□ > ◆□ > ◆豆 > ◆豆 > □ = − つへぐ

BIPARTITE GRAPHS

RESULTS

PROP. Given a matching *M* and an augmenting path *P* for *M*, we have that: $M' = M \oplus P = (M \setminus P) \cup (P \setminus M)$ is a matching such that |M'| = |M| + 1.

Let $M = \{(x_1, y_1), \dots, (x_k, y_k),$ The part of M in the path $(x_{k+1}, y_{k+1}), \dots, (x_n, y_n)\}$

 $\{(y_0, x_1), (x_1, y_1), (y_1, x_2), (x_2, y_2), \dots, (y_{k-1}, x_k), (x_k, y_k), (y_k, x_0)\}\$ (wlog, $y_0 \in Y$ and $x_0 \in X$ and the path uses the 'first' k edges of the set M).

Let
$$M' = (M \setminus P) \cup (P \setminus M)$$

= { $(y_0, x_1), (y_1, x_2), \dots, (y_{k-1}, x_k), (y_k, x_0), (x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$ }

M' is a matching: $x_1, \ldots, x_n, y_1, \ldots, y_n$ are all different (*M* is a matching and x_0 and y_0 are different since free by hypothesis). Its length is |M| + 1.

AGOSTINO DOVIER (CLPLAB)

BIPARTITE GRAPHS

RESULTS

PROP. Given a matching *M* and an augmenting path *P* for *M*, we have that: $M' = M \oplus P = (M \setminus P) \cup (P \setminus M)$ is a matching such that |M'| = |M| + 1. **Proof.**

Let $M = \{(x_1, y_1), \dots, (x_k, y_k),$ The part of M in the path $(x_{k+1}, y_{k+1}), \dots, (x_n, y_n)\}$ Suppose P is the augmenting path: P =

Suppose *P* is the augmenting path: $P = \{(y_0, x_1), (x_1, y_1), (y_1, x_2), (x_2, y_2), \dots, (y_{k-1}, x_k), (x_k, y_k), (y_k, x_0)\}\$ (wlog, $y_0 \in Y$ and $x_0 \in X$ and the path uses the 'first' *k* edges of the set *M*).

Let
$$M' = (M \setminus P) \cup (P \setminus M)$$

= { $(y_0, x_1), (y_1, x_2), \dots, (y_{k-1}, x_k), (y_k, x_0), (x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$ }

M' is a matching: $x_1, \ldots, x_n, y_1, \ldots, y_n$ are all different (*M* is a matching and x_0 and y_0 are different since free by hypothesis). Its length is |M| + 1.

AGOSTINO DOVIER (CLPLAB)

- We are interested in matching of maximum size *maximum bipartite matching*.
- Of course the size of the maximum matching is $\leq \min\{|X|, |Y|\}$.
- Theorem (Berge–1957). Given a bipartitite graph G = (X, Y, E), (M is a maximum matching) if and only if (there are not augmenting paths for M).
- (→) To show A → B we prove ¬B → ¬A.
 Suppose there is an augmenting path for M.
 Then (previous Prop) we can define a matching M' of size |M| + 1, thus M is not of maximum size.

- (←) To show A ← B we prove that ¬A → ¬B. Namely, if M is a matching not of maximum size, then there is an augmenting path for M. Let M be a not maximal matching. Then there is a matching M' of bigger size (|M'| > |M|). Now let U = ⟨X, Y, M ⊕ M'⟩.
 - Being *M* and *M'* matchings, at most one edge of *M* and one of *M'* might incide on a node in *U*. Thus the degree of a node in *U* is ≤ 2 .
 - The graph U can have cycles. In this case half of the edges are from M and the other from M' (and the length of the cycle is even).
- Now, removing the cycles, the paths use alternatively edges from M and from M'. Since |M'| > |M| there must be at least one path with more edges from M' than from M.
- That path starts and ends with edges in *M*' starting and ending with two nodes free for *M*: There is an augmenting path for *M*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $n = \min\{|X|, |Y|\}$ and m = |E|.

 $Max_Matching_Naive(\langle X, Y, E \rangle)$

- 1 $M \leftarrow \emptyset$;
- 2 while (there is an augmenting path P for M)
- 3 **do**
- 4 $M \leftarrow M \oplus P$;
- 5 **return** *M*;

The algorithm terminates in $\leq n$ iterations. Let us analyze briefly the cost of each iteration.

MAXIMUM MATCHING

NAIVE ALGO

```
Find_Augmenting_Path(\langle X, Y, E \rangle, M)
```

- 1 $S \leftarrow X; A \leftarrow E;$
- 2 *trovato* \leftarrow false;
- 3 while (S contains a free node $\land \neg$ trovato)

4 **do**

- 5 choose a free node x in S;
- 6 depth first search of an augmenting path for M in (S, Y, A);
- 7 let E(x) be the set of edges visited starting from x;
- 8 if (a path is found)
- 9 then
- 10 *trovato* ← true
- 11 else $S \leftarrow S \setminus \{x\}; A \leftarrow A \setminus E(x);$
- 12 return trovato/path

O(|E|): globally we have O(nm). Hopcroft-Karp: $O(m\sqrt{n}) = O(n^2\sqrt{n})$. Applying these results to the propagation of the all_different constraint

Given all_different(X_1, \ldots, X_k), with domains $\mathcal{D}_1, \ldots, \mathcal{D}_k$, let us define the bipartite graph $GV(C) = \langle X_C, Y_C, E_C \rangle$ as follows:

- $X_C = \{X_1, ..., X_k\}$
- $Y_C = \bigcup_{i=1}^k \mathcal{D}_i$
- $E_C = \{(X_i, a) : a \in D_i\}$

ALL DIFFERENT CONSTRAINT EAMPLE: all_different(X_1, \ldots, X_7)

 $X_1 \in 1..2, X_2 \in 2..3, X_3 \in \{1,3\}, X_4 \in \{2,4\},$ $X_5 \in 3..6, X_6 \in 6..7, X_7 \in \{8\}$

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

A B F A B F **UDINE, NOVEMBER 2016** 16/24

< < >> < <</>

Sac

Theorem: A CSP $\mathcal{P} = (\mathcal{C}; \mathcal{D}_{\in})$ is diff-arc consistent if and only if forall all_different-constraint *C* in \mathcal{C} any edge in GV(C) belongs to (at least) one matching of the same size of the set of variables of *C*.

 (\rightarrow) Let *C* in *C* a all_different-constraint. Let X_1, \ldots, X_k be its variables. Let (X_i, a_i) in GV(C) (this implies that $a_i \in D_i$). Since P is diff-arc consistent, *C* is hyper-arc consistent. Thus, there are

 $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_k$ such that $X_1 = a_1, \ldots, X_k = a_k$ is a solution of *C*. This solution is a matching of the desired size to which the edge (X_i, a_i) belongs.

 (\leftarrow) For any all_different-constraint *C* (assume it has *k* vars) consider an edge (X_i, a_i) belonging to a matching of size *k*. From that matching we obtain the values for the other variables to guarantee the hyper-arc consistency property.

nan

Theorem: A CSP $\mathcal{P} = (\mathcal{C}; \mathcal{D}_{\in})$ is diff-arc consistent if and only if forall all_different-constraint *C* in *C* any edge in GV(C) belongs to (at least) one matching of the same size of the set of variables of *C*. **Proof:**

 (\rightarrow) Let *C* in *C* a all_different-constraint. Let X_1, \ldots, X_k be its variables. Let (X_i, a_i) in GV(C) (this implies that $a_i \in D_i$). Since P is diff-arc consistent, *C* is hyper-arc consistent. Thus, there are

 $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_k$ such that $X_1 = a_1, \ldots, X_k = a_k$ is a solution of *C*. This solution is a matching of the desired size to which the edge (X_i, a_i) belongs.

(\leftarrow) For any all_different-constraint *C* (assume it has *k* vars) consider an edge (X_i , a_i) belonging to a matching of size *k*. From that matching we obtain the values for the other variables to guarantee the hyper-arc consistency property.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- For building GV(C), we introduce k nodes (for the variables), $|\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_k|$ for the domain objects, and $e = d_1 + \cdots + d_k \leq kd$ edges.
- A constraint C = all_different(X₁,..., X_k) is hyper-arc consistent if and only if any edge in GV(C) belongs to a matching of size k (maximum).
- We know that we can find ONE maximum matching in time $O(\sqrt{k}e) = O(k^{3/2}d)$.
- We are interested in edges that belong to at least one maximum matching.
- We need a new idea here!

イロト イポト イヨト イヨト 二日

- For building GV(C), we introduce k nodes (for the variables), $|\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_k|$ for the domain objects, and $e = d_1 + \cdots + d_k \leq kd$ edges.
- A constraint C = all_different(X₁,..., X_k) is hyper-arc consistent if and only if any edge in GV(C) belongs to a matching of size k (maximum).
- We know that we can find ONE maximum matching in time $O(\sqrt{k}e) = O(k^{3/2}d)$.
- We are interested in edges that belong to at least one maximum matching.
- We need a new idea here!

Teorema: [Berge–1970] Let $G = \langle X, Y, E \rangle$ be a bipartire graph. An edge *e* belongs to some but not to all maximum matchings if and only if for an arbitrary maximum matching *M*, *e* belongs to:

- an acyclic even length alternating path that starts in a free vertex OR
- an alternating cycle (of course of even length).

Proof. (\Leftarrow) Let *M* be a maximum matching.

- Let *P* an alternating even length path with a free extreme (the other is not free). Let *M*′ = *M* ⊕ *P* another matching with the same size. Half of the edges of the path *P* are in *M*, the other half in *M*′.
- Let P be an alternating cycle. Similar.

(ロ) (同) (三) (三) (三) (○) (○)

Let (x_0, x_1) be an edge that belongs to some but not to all maximum matchings.

Let *M* a generic max matching s.t. $(x_0, x_1) \in M$ and *M'* a generic max matching s.t. $(x_0, x_1) \notin M$.

By hypothesis, at least one of such M and M' exists.

Now, let $M'' = M \oplus M'$. We have that $(x_0, x_1) \in M''$.

We already know that the degree of each node in M'' is ≤ 2 .

Iteratively choose nodes $x_2, x_3, x_4, x_5, \ldots, x_m$ such that $(x_i, x_{i+1}) \in M''$ and $x_{i+2} \neq x_i$.

Stop when there are no longer nodes to be chosen or when x_m has been previously chosen.

Let (x_0, x_1) be an edge that belongs to some but not to all maximum matchings.

Let *M* a generic max matching s.t. $(x_0, x_1) \in M$ and *M'* a generic max matching s.t. $(x_0, x_1) \notin M$.

By hypothesis, at least one of such *M* and *M'* exists. Now, let $M'' = M \oplus M'$. We have that $(x_0, x_1) \in M''$. We already know that the degree of each node in M'' is ≤ 2 . Iteratively choose nodes $x_2, x_3, x_4, x_5, \ldots, x_m$ such that $(x_i, x_{i+1}) \in M''$ and

 $x_{i+2} \neq x_i$.

Stop when there are no longer nodes to be chosen or when x_m has been previously chosen.

Two cases:

- A cycle has been pointed out (i.e., $x_m = x_1$)
- The sequence is not a cycle. In this case, go back to x₀ and choose a new sequence (that, in a sense, lead to x₀) introducing nodes x₋₁, x₋₂,..., x_{-t} such that (x_{i-1}, x_i) ∈ M^{''}. Also in this case:
 - A cycle has been generated (but this is not possible ... why?)
 - No cycle has been generated.

(ロ) (同) (三) (三) (三) (○) (○)

If there are not cycles, then we have an alternating path both for M and for M'. If the path would be of odd length then it would be augmenting for one of them that would contradict the maximality of M or M'. Then the path is even.

In the case there is a cycle, there are two cases. Either (x_0, x_1) is in the path or not. Assume it is in the path, then there is a node of degree 3 in M'': this is absurdum.

Then (x_0, x_1) belongs to an alternating cycle both for M and for M'.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

If there are not cycles, then we have an alternating path both for M and for M'. If the path would be of odd length then it would be augmenting for one of them that would contradict the maximality of M or M'. Then the path is even.

In the case there is a cycle, there are two cases. Either (x_0, x_1) is in the path or not. Assume it is in the path, then there is a node of degree 3 in M'': this is absurdum.

Then (x_0, x_1) belongs to an alternating cycle both for *M* and for *M'*.

- Find a maximal matching M (time $O(k^{3/2}d)$). If the size is less than k stop with unsat.
- For every free node, find the even alternating paths. All nodes reached and edges vidited are retained.
- All cycles are detected (algorithm for strongly connected components)
- All edges in *M* outside these visits should be in all matchings.
- All edges outside *M* outside these visits are removed.
- Global cost: O(k^{3/2}d)
- Data structure is retained to speed up further visits after some labelings.

イロト イポト イヨト イヨト 二日

EFFICIENT FILTERING

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

EFFICIENT FILTERING

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING

EFFICIENT FILTERING

AGOSTINO DOVIER (CLPLAB)

AUTOMATED REASONING