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GLOBAL CONSTRAINTS

Constraints on sets of variables (with some precise meaning) are
called global constraints
Often global constraints can be rewritten as combination of binary
constraints. However, propagation on these binary constraints is
rather poor wrt the constraint viewed as a whole.
Therefore, global constraints are often studied independently.
The most famous is all different.
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ALL DIFFERENT CONSTRAINT

Let X1, . . . ,Xk be variables with domains D1, . . . ,Dk .
The (k -ary) constraint all different(X1, . . . ,Xk ) is defined as
follows:

all different(X1, . . . ,Xk ) = (D1 × · · · × Dk )\
{(a1, . . . ,ak ) ∈ D1 × · · · × Dk : ∃i∃j 1 ≤ i < j ≤ k (ai = aj)}

A CSP is said diff-arc consistent iff every all different-constraint in
it is hyper arc consistent.
Namely, for every i ∈ {1, . . . , k} and every ai ∈ Di there are
a1, . . . ,ai−1,ai+1, . . . ,ak s.t. 〈a1, . . . ,ak 〉 ∈ all different(X1, . . . ,Xk )
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ALL DIFFERENT CONSTRAINT

Let us observe that the two CSP 〈all different(X1, . . . ,Xk );D∈〉 and
〈X1 6= X2,X1 6= X3, . . . ,X1 6= Xk ,X2 6= X3, . . . ,Xk−1 6= Xk ;D∈〉 are
equivalent.
hyper-arc-consistency of all different(X1, . . . ,Xk ) implies (binary)
arc consistency in the second CSP.
The converse does not hold:
〈all different(X1,X2,X3);D1 = D2 = D3 = {0,1}〉 vs
〈X1 6= X2,X1 6= X3,X2 6= X3;D1 = D2 = D3 = {0,1}〉.
Let di = |Di | for i ∈ {1, . . . , k} and d = maxk

i=1{di}.
A propagation algorithm for hyper-arc-consistency based on the
definition has cost O(. . . dk+1).
Not applicable with large k . But is it an intrinsic problem or just a
too naive algorithm?
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Propagation of all different
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BIPARTITE GRAPHS

An bipartite graph is a triple G = 〈X ,Y ,E〉 where X and Y are
disjoint sets of nodes and E ⊆ X × Y is a set of edges
Edges are treated as not directed
A matching M ⊆ E is a set of edges such that there are no pairs of
edges that share the same node.
Given G and M a node is said matched if it is in some edge in M;
otherwise it is free.
A path is a sequence of edges (x1, y1), (y1, x2), (x2, y2), . . .
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BIPARTITE GRAPHS

Given G = 〈X ,Y ,E〉 bipartite graph and M ⊆ E matching, a path
in G is alternating for M if edges of the path are alternatively in M
and not in M.
An alternating path is augmenting for M if it is acyclic and starts
and ends in free nodes.
Observe that every augmenting path starting in a node in X ends
in Y (or vice versa).
If M = ∅, any (set containing a single) edge is an augmenting path
for M.
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BIPARTITE GRAPHS
RESULTS

PROP. Given a matching M and an augmenting path P for M, we have
that: M ′ = M ⊕ P = (M \ P) ∪ (P \M) is a matching such that
|M ′| = |M|+ 1.
Proof.
Let M = {(x1, y1), . . . , (xk , yk ), The part of M in the path

(xk+1, yk+1), . . . , (xn, yn)}
Suppose P is the augmenting path: P =
{(y0, x1), (x1, y1), (y1, x2), (x2, y2), . . . , (yk−1, xk ), (xk , yk ), (yk , x0)}
(wlog, y0 ∈ Y and x0 ∈ X and the path uses the ‘first’ k edges of the
set M).
Let M ′ = (M \ P) ∪ (P \M)

= {(y0, x1), (y1, x2), . . . , (yk−1, xk ), (yk , x0),
(xk+1, yk+1), . . . , (xn, yn)}

M ′ is a matching: x1, . . . , xn, y1, . . . , yn are all different (M is a matching
and x0 and y0 are different since free by hypothesis).
Its length is |M|+ 1. 2
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MAXIMUM MATCHING

We are interested in matching of maximum size maximum
bipartite matching.
Of course the size of the maximum matching is ≤ min{|X |, |Y |}.
Theorem (Berge–1957). Given a bipartitite graph G = 〈X ,Y ,E〉,
(M is a maximum matching) if and only if (there are not
augmenting paths for M).
(→) To show A→ B we prove ¬B → ¬A.
Suppose there is an augmenting path for M.
Then (previous Prop) we can define a matching M ′ of size |M|+ 1,
thus M is not of maximum size.
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MAXIMUM MATCHING
BERGE’S THEOREM

(←) To show A← B we prove that ¬A→ ¬B. Namely, if M is a matching
not of maximum size, then there is an augmenting path for M. Let M be
a not maximal matching. Then there is a matching M ′ of bigger size
(|M ′| > |M|). Now let U = 〈X ,Y ,M ⊕M ′〉.

1 Being M and M ′ matchings, at most one edge of M and one of M ′

might incide on a node in U. Thus the degree of a node in U is ≤ 2.
2 The graph U can have cycles. In this case half of the edges are

from M and the other from M ′ (and the length of the cycle is even).

Now, removing the cycles, the paths use alternatively edges from M and
from M ′. Since |M ′| > |M| there must be at least one path with more
edges from M ′ than from M.

That path starts and ends with edges in M ′ starting and ending with two
nodes free for M: There is an augmenting path for M. 2
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MAXIMUM MATCHING
NAIVE ALGO

Let n = min{|X |, |Y |} and m = |E |.

Max Matching Naive(〈X ,Y ,E〉)
1 M ← ∅;
2 while (there is an augmenting path P for M)
3 do
4 M ← M ⊕ P;
5 return M;

The algorithm terminates in ≤ n iterations.
Let us analyze briefly the cost of each iteration.
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MAXIMUM MATCHING
NAIVE ALGO

Find Augmenting Path(〈X ,Y ,E〉,M)
1 S ← X ;A← E ;
2 trovato ← false;
3 while (S contains a free node ∧ ¬trovato)
4 do
5 choose a free node x in S;
6 depth first search of an augmenting path for M in 〈S,Y ,A〉;
7 let E(x) be the set of edges visited starting from x ;
8 if (a path is found)
9 then

10 trovato ← true
11 else S ← S \ {x};A← A \ E(x);
12 return trovato/path

O(|E |): globally we have O(nm).
Hopcroft-Karp: O(m

√
n) = O(n2√n).
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Applying these results to the
propagation of the all different
constraint
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all different CONSTRAINT: BIPARTITE GRAPH

Given all different(X1, . . . ,Xk), with domains D1, . . . ,Dk , let us
define the bipartite graph GV (C) = 〈XC ,YC ,EC〉 as follows:

XC = {X1, . . . ,Xk}
YC =

⋃k
i=1Di

EC = {(Xi ,a) : a ∈ Di}
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ALL DIFFERENT CONSTRAINT
EAMPLE: all different(X1, . . . ,X7)

X1 ∈ 1..2,X2 ∈ 2..3,X3 ∈ {1,3},X4 ∈ {2,4},
X5 ∈ 3..6,X6 ∈ 6..7,X7 ∈ {8}
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ALL DIFFERENT CONSTRAINT
REGIN

Theorem: A CSP P = (C;D∈) is diff-arc consistent if and only if forall
all different-constraint C in C any edge in GV (C) belongs to (at least)
one matching of the same size of the set of variables of C.
Proof:
(→) Let C in C a all different-constraint. Let X1, . . . ,Xk be its variables.
Let (Xi ,ai) in GV (C) (this implies that ai ∈ Di ). Since P is diff-arc
consistent, C is hyper-arc consistent. Thus, there are
a1, . . . ,ai−1,ai+1, . . . ,ak such that X1 = a1, . . . ,Xk = ak is a solution of
C. This solution is a matching of the desired size to which the edge
(Xi ,ai) belongs.
(←) For any all different-constraint C (assume it has k vars) consider
an edge (Xi ,ai) belonging to a matching of size k . From that matching
we obtain the values for the other variables to guarantee the hyper-arc
consistency property. 2
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ALL DIFFERENT CONSTRAINT
FILTERING

For building GV (C), we introduce k nodes (for the variables),
|D1 ∪ · · · ∪ Dk | for the domain objects, and e = d1 + · · ·+ dk ≤ kd
edges.
A constraint C = all different(X1, . . . ,Xk ) is hyper-arc consistent if
and only if any edge in GV (C) belongs to a matching of size k
(maximum).
We know that we can find ONE maximum matching in time
O(
√

ke) = O(k3/2d).
We are interested in edges that belong to at least one maximum
matching.
We need a new idea here!
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ALL DIFFERENT CONSTRAINT
BERGE 2

Teorema: [Berge–1970] Let G = 〈X ,Y ,E〉 be a bipartire graph.
An edge e belongs to some but not to all maximum matchings if and
only if for an arbitrary maximum matching M, e belongs to:

an acyclic even length alternating path that starts in a free vertex
OR
an alternating cycle (of course of even length).

Proof. (⇐) Let M be a maximum matching.
1 Let P an alternating even length path with a free extreme (the

other is not free). Let M ′ = M ⊕P another matching with the same
size. Half of the edges of the path P are in M, the other half in M ′.

2 Let P be an alternating cycle. Similar.
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ALL DIFFERENT CONSTRAINT

An edge e belongs to some but not to all maximum matchings⇒ for an
arbitrary maximum matching M, e belongs to: an acyclic even length
alternating path that starts in a free vertex OR an alternating cycle (of course
of even length).

Let (x0, x1) be an edge that belongs to some but not to all maximum
matchings.
Let M a generic max matching s.t. (x0, x1) ∈ M and M ′ a generic max
matching s.t. (x0, x1) /∈ M.
By hypothesis, at least one of such M and M ′ exists.
Now, let M ′′ = M ⊕M ′. We have that (x0, x1) ∈ M ′′.
We already know that the degree of each node in M ′′ is ≤ 2.
Iteratively choose nodes x2, x3, x4, x5, . . . , xm such that (xi , xi+1) ∈ M ′′ and
xi+2 6= xi .
Stop when there are no longer nodes to be chosen or when xm has been
previously chosen.
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ALL DIFFERENT CONSTRAINT

An edge e belongs to some but not to all maximum matchings⇒ for an
arbitrary maximum matching M, e belongs to: an acyclic even length
alternating path that starts in a free vertex OR an alternating cycle (of course
of even length).

Two cases:

A cycle has been pointed out (i.e., xm = x1)

The sequence is not a cycle. In this case, go back to x0 and choose a
new sequence (that, in a sense, lead to x0) introducing nodes
x−1, x−2, . . . , x−t such that (xi−1, xi) ∈ M ′′. Also in this case:

- A cycle has been generated (but this is not possible . . . why?)
- No cycle has been generated.
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ALL DIFFERENT CONSTRAINT

An edge e belongs to some but not to all maximum matchings⇒ for an
arbitrary maximum matching M, e belongs to: an acyclic even length
alternating path that starts in a free vertex OR an alternating cycle (of course
of even length).

If there are not cycles, then we have an alternating path both for M and for
M ′. If the path would be of odd length then it would be augmenting for one of
them that would contradict the maximality of M or M ′. Then the path is even.

In the case there is a cycle, there are two cases. Either (x0, x1) is in the path
or not. Assume it is in the path, then there is a node of degree 3 in M ′′: this is
absurdum.
Then (x0, x1) belongs to an alternating cycle both for M and for M ′.
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ALL DIFFERENT CONSTRAINT
EFFICIENT FILTERING

Find a maximal matching M (time O(k3/2d)). If the size is less
than k stop with unsat.
For every free node, find the even alternating paths. All nodes
reached and edges vidited are retained.
All cycles are detected (algorithm for strongly connected
components)
All edges in M outside these visits should be in all matchings.
All edges outside M outside these visits are removed.
Global cost: O(k3/2d)
Data structure is retained to speed up further visits after some
labelings.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, NOVEMBER 2016 23 / 24



ALL DIFFERENT CONSTRAINT
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