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Cumulative Scheduling
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CUMULATIVE SCHEDULING

TASK 1

TASK2 TASK 3

TASK 4

TASK5

TASK6

There are k tasks, where each task has a fixed duration and a fixed
amount of use resource. The goal is to find a schedule that minimizes
the completion time for the schedule while not exceeding the capacity
c of the resource (time in x-axis, resource in y -axis)
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CUMULATIVE SCHEDULING

We introduce the problem with a concrete example. There are 7 tasks
where each task has a fixed duration and a fixed amount of use
resource:

Task Duration Resource
1 16 2
2 6 9
3 13 3
4 7 7
5 5 10
6 18 1
7 4 11

The goal is to find a schedule that minimizes the completion time for
the schedule while not exceeding the capacity 13 of the resource.

Of course other constraints can be added on precedences between
tasks.
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CUMULATIVE SCHEDULING

The resource constraint is succinctly captured by cumulative global
constraint.

cumulative(array[int] of var int: s,
array[int] of var int: d,
array[int] of var int: r,
var int: b)

Requires that a set of tasks given by start times s, durations d, and
resource requirements r, never require more than a global resource
bound b at any one time.
Aborts if s, d, and r do not have identical index sets.
Aborts if a duration or resource requirement is negative.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 5 / 25



Haplotype Inference

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 6 / 25



HAPLOTYPE INFERENCE

Genes are packaged in bundles called chromosomes.
(Chromosomes are therefore regions of DNA)
In Diploid organisms (like humans) there are almost identical
chromosome pairs. Each pair is made of an inherited
chromosome from the father and another one from the mother.
A haplotype is a DNA sequence that has been inherited from one
parent.
A genotype is a pairing of two corresponding haplotypes.
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HAPLOTYPE INFERENCE

Each person inherits two haplotypes (from the mother and from the
father) for most regions of the genome.

· · · G A T C T G T A C T G A G T · · ·
· · · G A T C T G T A C T G A A T · · ·

⇑ ⇑ ⇑

In some typical positions, the bases are subject to mutations.

In the most common case, there is a Single Nucleotide Polymorphism
(SNP).

Mutations are C ↔ T and A↔ G
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HAPLOTYPE INFERENCE

The genome (genotype) is easier and cheaper to be obtained.
We need computational methods to guess haplotypes
The Haplotype Inference problem is introduced to investigate
genetic variations in a population.
Typically SNPs sites are the target of the analysis
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HAPLOTYPE INFERENCE
SINGLE NUCLEOTIDE POLYMORPHISM (SNP)

Each person has two haplotypes (from the mother and from the father)
for most regions of the genome:

G A A T C T T C G T A C T G A G T
G A A T C T T C G T A C T G A A T

Let us focus on the SNPs:
A C T G
A C T A

We encode SNPs according to: A 7→ 0 C 7→ 0 G 7→ 1 T 7→ 1
0 0 1 1
0 0 1 0

0 0 1 2 The genotype is set to 2 if there is a mismatch
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HAPLOTYPE INFERENCE
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HAPLOTYPE INFERENCE
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HAPLOTYPE INFERENCE

A string of {0,1}∗ is called a haplotype
A string of {0,1,2}∗ is called a genotype
Two equal length haplotypes generate a unique genotype
The rules are 0⊕ 0 = 0, 1⊕ 1 = 1, 0⊕ 1 = 1⊕ 0 = 2
E.g., 0010,0101⇒ 0222
If we have a genotype, we can only conjecture (potentially
exponentially many) pairs ofhaplotypes that generated it
(observe that, e.g., 0110,0001⇒ 0222)
Biological experiments allow us to know genotypes!
Since genotypes are introduced in evolution, it is reasonable to
find minimal sets of haplotypes explaining the known genotypes.
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HAPLOTYPE INFERENCE

Let H ⊆ {0,1}n be a set of haplotypes and
G ⊆ {0,1,2}n be a set of genotypes.
Given h1,h2 ∈ H and g ∈ G, {h1,h2} explains g if and only if
|h1| = |h2| = |g| and ∀i ∈ [1..n]:

g[i] ≤ 1 −→ h1[i] = h2[i] = g[i]
g[i] = 2 −→ h1[i] 6= h2[i]

A set of haplotypes H explains a set of genotypes G if for all g ∈ G
there are h1,h2 ∈ H such that {h1,h2} explains g.
Given a set of genotypes G and an integer k , the haplotype
inference problem (HIP) by pure parsimony is the problem of
finding a set H that explains G and such that |H| = k (decision
version: NP complete).
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Protein Structure Prediction
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PROTEINS AND CENTRAL DOGMA
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The translation phase starts from a mRNA sequence and
associates a protein sequence
Proteins are made of amino acids (20 common different types)
Amino acids are defined by letters {A, . . . ,Z} \ {B, J,O,U,X ,Z}
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UNIVERSAL CODE
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The translation selects 3 RNA basis and associates 1 amino acid.
The translation rules are encoded in the universal code.
The code contains stop symbol and some redundant RNA triplets.
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PROTEINS
AMINO ACIDS

Proteins are molecules made of a linear sequence of amino acids.
Amino acids are combined through peptide bond.

The purple dots represent the side chains, that depend on the
amino acid type
Side chains have different shape, size, charge, polarity, etc.
A side chain contains from 1 (Glycine) up to 18 (Tryptophan)
atoms.
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PROTEINS
AMINO ACIDS

There are 2 degrees of freedom (black arrows) for each amino
acid
A protein with n amino acids has 2n degrees of freedom!
Typical size range from 50 to 500 amino acids
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THE STRUCTURE PREDICTION PROBLEM

Given the primary structure of a protein (its amino acid sequence)
For each amino acid, output its position in the space (tertiary
structure of a protein)

A L F W K L R R ...

? ⇓ ?
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PROTEINS
FACTS

Proteins FOLD spontaneously (when in their natural environment)
Folding is consistent⇒ same protein folds in the same way
[Anfinsen74]
Folding is fast⇒ 1mS – 1S
Driven by non covalent forces: electrostatic interactions, volume
constraints, Hydrogen Bonding, van der Waals, Salt/disulfide
Bridges
Backbone is rigid, interaction with water, ions and ligands
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THE STRUCTURE PREDICTION PROBLEM

... and this is the hard part:

In nature a protein has a unique/stable 3D conformation
A cost function (that mimics physics laws) can be used to score
each conformation
Searching for the optimal score produces the best candidate is
difficult (NP-complete even in extremely simplified modelings)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 21 / 25



THE PROTEIN STRUCTURE PREDICTION PROBLEM

In this presentation we have two simplifications:
Protein model: only one atom per amino acid, only 2 classes of
amino acids (hydrophobic and polar)

=⇒

Spatial model: 2D square lattice to represent amino acid positions
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THE PROTEIN STRUCTURE PREDICTION PROBLEM
MODEL

The input is a list S of amino acids S = s1, . . . , sn,
where si ∈ {h,p}
Each si is placed on a 2D grid with integer coordinates
Any pair of two amino acids can’t occupy the same position
If two amino acids are at distance 1, they are in contact

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 23 / 25



THE PROTEIN STRUCTURE PREDICTION PROBLEM
MODEL

A folding is a function ω : {1, . . . ,n} −→ N2 where
∀i next(ω(i), ω(i + 1)) and
∀i , j (i 6= j → ω(i) 6= ω(j))
next(〈X1,Y1〉, 〈X2,Y2〉)⇐⇒ |X1 − X2|+ |Y1 − Y2| = 1.
Find a folding that minimizes the (simplified) energy function:

E(S, ω) =
∑

1 ≤ i ≤ n − 2
i + 2 ≤ j ≤ n

Pot(si , sj) · next(ω(i), ω(j))

where Pot(p,p) = Pot(h,p) = Pot(p,h) = 0 and Pot(h,h) = −1.
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THE PROTEIN STRUCTURE PREDICTION PROBLEM
COMPLEXITY

With N2 and HP, establishing whether there is a folding with
energy < k is NP-complete
(Crescenzi, Goldman, Papadimitriou, Piccolboni, Yannakakis. On
the Complexity of Protein Folding. Journal of Computational
Biology 5(3): 423-466 (1998))
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