# AUTOMATED REASONING 

Agostino Dovier

Università di Udine
CLPLAB
Udine, October 2016

## SuDOKU

## WELL-KNOWN. <br> SEE THE MINIZINC MODELING

Observe the definition of predicates in Minizinc

## Knapsack

## WELL-KNOWN. SEE THE MINIZINC MODELING

## Hamming Codes

Given $n, k, d \in \mathbb{N}$, is there a Code made of $k$ different $n$-tuples (of bits) such that each pair of them has a distance of at least $d$ ?

SEE THE MINIZINC MODELING Observe the importance of symmet y breaking.

## Hamming Codes

Given $n, k, d \in \mathbb{N}$, is there a Code made of $k$ different $n$-tuples (of bits) such that each pair of them has a distance of at least $d$ ?

For instance $n=5, k=4, d=3$ :

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 |

SEE THE MINIZINC MODELING
Observe the importance of symmetry breaking.

## Timetable

There are $q$ courses, and each course $i \in\{1, \ldots, q\}$ consists of

- $k_{i}$ lectures, and $p$ periods $1, \ldots, p$.
- For all $i \in\{1, \ldots, q\}$ all lectures $\ell \in\left\{1, \ldots, k_{i}\right\}$ must be assigned to a period $j \in\{1, \ldots, p\}$ in such a way that the following constraints are satisfied:
(1) Conflicts: There is a conflict matrix $M$ such that $M[i, j]=1$ if courses $i$ and $j$ have common students. Lectures of courses $i$ and $j$ must be all scheduled at different times
(0) Availabilities: There is an availability binary matrix $A$ such that $A[i, j]=1$ then lectures of course $i$ cannot be scheduled at period $j$.
- Rooms: There are $r$ rooms available. At most $r$ lectures can be scheduled at period $k$, for each $k \in\{1, \ldots, p\}$.


## SEE THE MINIZINC MODELING

## Traveling Salesman Problem

Input: a complete directed graph with a weight on each edge.
Problem: find the Hamiltonian circuit of minimum cost.
It is crucial to use the global constraint circuit that constraints the elements of $x$ to define a circuit where $x[i]=j$ mean that $j$ is the successor of $i$. SEE THE MINIZINC MODELING

