AUTOMATED REASONING

Agostino Dovier

Università di Udine
CLPLAB
Udine, October 2016

Constraint Solving

As seen in DPLL for SAT, solution search alternates two stages: non-deterministic choices and constraint propagation (aiming at reaching some form of local consistency).
\odot A variable is chosen (using a suitable heuristics) and its domain is reduced (typically, by chhosing it a value, but other possibilities are considered e.g., splitting the value in two parts, etc.)

- Alternatively (less frequent in implementations) a constraint is chosen and split
- Then propagation is applied
- If a domain become empty (fail) backtracking!
- If there are no longer uninstantiated variables, the solution is returned.
- Otherwise, go to \odot

Size and shape of the search tree depend on variable selection, on the kind of propagation used, on the kind of assignment/domain reduction rules employed.

Constraint Solving

Domain Splitting Rules

(1) (domain) labeling:

$$
\frac{X \in\left\{a_{1}, \ldots, a_{k}\right\}}{X \in\left\{a_{1}\right\}|\cdots| X \in\left\{a_{k}\right\}}
$$

(2) (domain) enumeration:

$$
\frac{X \in \mathcal{D}}{X \in\{a\} \mid X \in \mathcal{D} \backslash\{a\}}
$$

where $a \in \mathcal{D}$
(3) (domain) bisection:

$$
\frac{X \in \mathcal{D}}{X \in \min (\mathcal{D}) . . a \mid X \in b . . \max (\mathcal{D})}
$$

where $a, b \in \mathcal{D}$, and b is the element following a in \mathcal{D}. If \mathcal{D} is an interval x.. y choose $a=\lfloor(x+y) / 2\rfloor$ and $b=a+1$.

Constraint Solving

Constraint Splitting rules (EXAmples)

(1) implicazione:

$$
\frac{\left(C_{1} \rightarrow C_{2}\right)}{\neg C_{1} \mid C_{2}}
$$

(2) Absolute value:

$$
\frac{|e|=X}{X=e \mid X=-e}
$$

(3) Inequality:

$$
\frac{e_{1} \neq e_{2}}{e_{1}<e_{2} \mid e_{2}<e_{1}}
$$

Constraint Solving

prop-labeling-tree for $\mathcal{P}=\langle X<Y ; X \in\{1,2\}, Y \in\{1,2,3\}\rangle$.

Constraint Solving

prop-labeling-tree for $\mathcal{P}=\langle X<Y ; X \in\{1,2\}, Y \in\{1,2,3\}\rangle$.

Constraint Solving

- The construction and the visit of the prop-labeling-tree is called by calling a built-in (labeling in CLPFD, solve in Minizinc).
- Every constraint solver has a set of parameters
- How choosing a variable (leftmost, ff, etc)
- How choosing the value in the domain (min, max, med, etc)
- Other parameters (approximated search, LNS, timeout etc)

Constraint Solving

BRanch and Bound for Cop

$$
\mathcal{C}=17 G+10 W+4 C<50, f(W, G, C)=10 G+6 W+2 C
$$

$\left.\begin{array}{l}G=1, W=2, C \text { in } 1 . .5, k=32 \\ G=1, W=2, C \text { in } 1 . .3, k=28\end{array}\right\} \begin{array}{r}G=1, W=1, C \text { in } 1 . .5, k=32 \\ G=1, W=1, C \text { in } 1 . .5, k=26\end{array}$
$\left.\begin{array}{l}G=1, W=2 \\ G=1, W=2\end{array}\right\} \begin{aligned} & \text { fail node: } 26<28 \\ & C=2, k=28 \\ & C=2, k=26\end{aligned} \quad\left\{\begin{array}{l}G=1, W=2, C=1, k=28 \\ G=1, W=2, C=1, k=24\end{array}\right.$
$G=1, W=2, C=3, k=28$
$G=1, W=2, C=3, k=28$
Solution: value $=28$
fail node: $26<28$ fail node: $24<28$

$$
\operatorname{Max}=28
$$

Minizinc

- Minizinc is defined, implemented and mantained by NICTA
- You can download it from http://www.minizinc.org/
- Youll find a tutorial by Marriott and Stuckey
- Typically, a Minizinc model is first translated to Flatzinc using mzn2fzn
- A Flatzinc model is an unfolded version of the Minizinc one; basically it is a sequence of simple (flat) constraints
- Any modern constraint solver reads Flatzinc models as input (Minizinc challenge is organized yearly since 2008)

Minizinc

Syntax

- Variables (and parameters/constants) need to be typed. E.g.
par int: $a=3$;
var int: b;
Parameters should be assigned asap and are assigned once. par is the default value. var should be made explicit.
- Possible types for var/par are (plus string):

INT: integer variables (e.g. FD)
BOOL: Boolean variables (particular cases of FD)
FLOAT: floating point variables (for hybrid modeling)

- A variable should be assigned to a domain. E.g., var 0..100:v; for intervals domain (typical case) $\operatorname{var}\{0,2,4,6\}: w$; for explicitly listed domains

Minizinc

Syntax

You can define single/multi-dimensional arrays of variables:

- array [indexset1, indexset2, . . .] of var type: varname;
- For instance:
array [0..2] of var 1..5 : v;
array [1..5,1..5] of var 0..2 : M;
arrays are accessed as V[i], M[i,j].
- Set of integers as domains are allowed.
set of $1 . .8$: s;
s is any subset of $\{1, \ldots, 8\}$. You can use membership (in), set inclusion (subset, superset), union (union), intersection (inter), set difference (diff), symmetric difference (symdiff) and cardinality (card) to build expressions with set variables.

Minizinc

Syntax

Constraints are added explicitly either in a flat or compact way. E.g.,

- constraint $a+b<100 ;$
- constraint $a \backslash / b$; (this means $a \vee b$ for Boolean variables)
- constraint alldifferent (V); (where V is an array of variables: the global constraint should be imported using import ... more details in next lessons)
- constraint forall (EXPRESSION) ; (where EXPRESSION is a complex statement, such as a list comprehension). E.g. forall([v[i] != v[j] | i , j in 1..3 where i < j]) ; (You should read the manual for the syntax of EXPRESSIONs, of course)
- There is a simplified, user-friendly version:

$$
\begin{gathered}
\text { forall(i,j in } 1 \ldots 3 \text { where } i<j) \\
(v[i]!=v[j]) ;
\end{gathered}
$$

Minizinc
 Syntax

You can choose the built-in search directives:

- solve satisfy;
- solve maximize(\langle Arithmetic EXPRESSION \rangle);
- solve minimize(\langle Arithmetic EXPRESSION \rangle);

Example of expressions can be a single variable or a function.

Minizinc

```
int_search(variables, varchoice, constrainchoice, strategy)
```

- variables is an one dimensional array of var int,
- varchoice is a variable choice annotation
- constrainchoice is a choice of how to constrain a variable
- strategy is a search strategy (for now use complete).

Minizinc

- input_order Search variables in the given order
- occurrence Choose the variable with the largest number of attached constraints
- first_fail/anti_first_fail Choose the variable with the smallest/largest domain
- most_constrained Choose the variable with the smallest domain, breaking ties using the number of attached constraints
- dom_w_deg Choose the variable with largest domain, divided by the number of attached constraints weighted by how often they have caused failure
- impact Choose the variable with the highest impact so far during the search
- max_regret Choose the variable with largest difference between the two smallest values in its domain
- smallest/largest Choose the variable with the smallest/larger value in its domain

Minizinc

- indomain Assign values in ascending order
- indomain_interval If the domain consists of several contiguous intervals, reduce the domain to the first interval. Otherwise bisect the domain.
- indomain_max Assign the largest value in the domain
- indomain median Assign the middle value in the domain
- indomain_middle Assign the value in the domain closest to the mean of its current bounds
- indomain_min Assign the smallest value in the domain
- indomain_random Assign a random value from the domain

Minizinc

- indomain_reverse_split Bisect the domain, excluding the lower half first
- indomain_split Bisect the domain, excluding the upper half first
- indomain_split_random Bisect the domain, randomly selecting which half to exclude first
- outdomain max Exclude the largest value from the domain
- outdomain_median Exclude the middle value from the domain
- outdomain_min Exclude the smallest value from the domain
- outdomain_random Exclude a random value from the domain

