
AUTOMATED REASONING

Agostino Dovier

Università di Udine
CLPLAB

Udine, October 2016

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 1 / 17

CONSTRAINT SOLVING

As seen in DPLL for SAT, solution search alternates two stages:
non-deterministic choices and constraint propagation (aiming at
reaching some form of local consistency).
♥ A variable is chosen (using a suitable heuristics) and its domain is

reduced (typically, by chhosing it a value, but other possibilities
are considered e.g., splitting the value in two parts, etc.)
Alternatively (less frequent in implementations) a constraint is
chosen and split
Then propagation is applied
If a domain become empty (fail) backtracking!
If there are no longer uninstantiated variables, the solution is
returned.
Otherwise, go to ♥

Size and shape of the search tree depend on variable selection, on the
kind of propagation used, on the kind of assignment/domain reduction
rules employed.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 2 / 17

CONSTRAINT SOLVING
DOMAIN SPLITTING RULES

1 (domain) labeling:

X ∈ {a1, . . . ,ak}
X ∈ {a1}| · · · |X ∈ {ak}

2 (domain) enumeration:

X ∈ D
X ∈ {a}|X ∈ D \ {a}

where a ∈ D
3 (domain) bisection:

X ∈ D
X ∈ min(D)..a|X ∈ b..max(D)

where a,b ∈ D, and b is the element following a in D. If D is an
interval x ..y choose a = b(x + y)/2c and b = a + 1.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 3 / 17

CONSTRAINT SOLVING
CONSTRAINT SPLITTING RULES (EXAMPLES)

1 implicazione:
(C1 → C2)

¬C1|C2

2 Absolute value:
|e| = X

X = e|X = −e
3 Inequality:

e1 6= e2

e1 < e2|e2 < e1

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 4 / 17

CONSTRAINT SOLVING
PROP-LABELING-TREE

tX ∈ 1..2,Y ∈ 1..3
ACtX ∈ 1..2,Y ∈ 2..3��

��

HH
HHtX=1,Y ∈ 2..3

AC

tX=2,Y ∈ 2..3
ACtX=1,Y ∈ 2..3

@
@

tX=2,Y ∈ 3..3
@
@t t t

1

2

3

4

5
X=1
Y =2

X=1
Y =3

X=2
Y =3

prop-labeling-tree for P = 〈X < Y ;X ∈ {1,2},Y ∈ {1,2,3}〉.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 5 / 17

CONSTRAINT SOLVING
PROP-LABELING-TREE

1

2

3

4

5

tY ∈ 1..3,X ∈ 1..2
ACtY ∈ 2..3,X ∈ 1..2HH
HHtY=2 X ∈ 1..2

AC

tY =3,X ∈ 1..2
ACtY=2 X ∈ 1..1

�
�

tY =3,X ∈ 1..2
@
@t t t

Y =2
X=1

Y =3
X=1

Y =3
X=2

prop-labeling-tree for P = 〈X < Y ;X ∈ {1,2},Y ∈ {1,2,3}〉.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 6 / 17

CONSTRAINT SOLVING
PROP-LABELING-TREE

The construction and the visit of the prop-labeling-tree is called by
calling a built-in (labeling in CLPFD, solve in Minizinc).
Every constraint solver has a set of parameters
How choosing a variable (leftmost, ff, etc)
How choosing the value in the domain (min, max, med, etc)
Other parameters (approximated search, LNS, timeout etc)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 7 / 17

CONSTRAINT SOLVING
BRANCH AND BOUND FOR COP

C = 17G + 10W + 4C < 50, f (W , G, C) = 10G + 6W + 2CsG in 1..5, W in 1..5, C in 1..5, k = ∞sG in 1..2, W in 1..2, C in 1..5, k = 42�������

XXXXXXXsG = 1, W in 1..2, C in 1..5, k = 42 sG = 1, W in 1..2, C in 1..5, k = 32XXXXXXXsG = 1, W = 2, C in 1..5, k = 32s sG = 1, W = 1, C in 1..5, k = 32sG = 1, W = 1, C in 1..5, k = 26
fail node: 26 < 28

sG = 1, W = 2, C in 1..3, k = 28�������sG=1, W =2, C =3, k =28 sG=1, W =2, C =3, k =28

Solution: value = 28
Max = 28

sG = 1, W = 2 C = 2, k = 28sG = 1, W = 2 C = 2, k = 26

fail node: 26 < 28

XXXXXXXsG = 1, W = 2, C = 1, k = 28sG = 1, W = 2, C = 1, k = 24

fail node: 24 < 28

sG = 2, W in 1..2, C in 1..5, k = 42sG = 2, W in 1..1, C in 1..1, k = 28
Solution: value = 28

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 8 / 17

MINIZINC

Minizinc is defined, implemented and mantained by NICTA
You can download it from http://www.minizinc.org/

Youll find a tutorial by Marriott and Stuckey
Typically, a Minizinc model is first translated to Flatzinc using
mzn2fzn

A Flatzinc model is an unfolded version of the Minizinc one;
basically it is a sequence of simple (flat) constraints
Any modern constraint solver reads Flatzinc models as input
(Minizinc challenge is organized yearly since 2008)

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 9 / 17

http://www.minizinc.org/

MINIZINC
SYNTAX

Variables (and parameters/constants) need to be typed. E.g.
par int: a = 3;
var int: b;
Parameters should be assigned asap and are assigned once. par
is the default value. var should be made explicit.
Possible types for var/par are (plus string):

INT: integer variables (e.g. FD)
BOOL: Boolean variables (particular cases of FD)

FLOAT: floating point variables (for hybrid modeling)
A variable should be assigned to a domain. E.g.,
var 0..100:v; for intervals domain (typical case)
var {0,2,4,6}:w; for explicitly listed domains

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 10 / 17

MINIZINC
SYNTAX

You can define single/multi-dimensional arrays of variables:
array [indexset1, indexset2, . . .] of var
type: varname;

For instance:
array [0..2] of var 1..5 : v;
array [1..5,1..5] of var 0..2 : M;
arrays are accessed as V[i], M[i,j].
Set of integers as domains are allowed.
set of 1..8 : s;
s is any subset of {1,. . . , 8}. You can use membership (in), set
inclusion (subset, superset), union (union), intersection (inter), set
difference (diff), symmetric difference (symdiff) and cardinality
(card) to build expressions with set variables.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 11 / 17

MINIZINC
SYNTAX

Constraints are added explicitly either in a flat or compact way. E.g.,
constraint a + b < 100;

constraint a\/b; (this means a ∨ b for Boolean variables)
constraint alldifferent(V); (where V is an array of
variables: the global constraint should be imported using import
. . . more details in next lessons)
constraint forall(EXPRESSION); (where EXPRESSION is a
complex statement, such as a list comprehension). E.g.
forall([v[i] != v[j] | i , j in 1..3 where
i < j]); (You should read the manual for the syntax of
EXPRESSIONs, of course)
There is a simplified, user-friendly version:
forall(i,j in 1..3 where i<j)

(v[i] != v[j]);

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 12 / 17

MINIZINC
SYNTAX

You can choose the built-in search directives:
solve satisfy;
solve maximize(〈Arithmetic EXPRESSION〉);
solve minimize(〈Arithmetic EXPRESSION〉);

Example of expressions can be a single variable or a function.

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 13 / 17

MINIZINC
int search PARAMETERS

int search(variables, varchoice,
constrainchoice, strategy)

variables is an one dimensional array of var int,
varchoice is a variable choice annotation
constrainchoice is a choice of how to constrain a variable
strategy is a search strategy (for now use complete).

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 14 / 17

MINIZINC
varchoice

input order Search variables in the given order
occurrence Choose the variable with the largest number of
attached constraints
first fail/anti first fail Choose the variable with the
smallest/largest domain
most constrained Choose the variable with the smallest
domain, breaking ties using the number of attached constraints
dom w deg Choose the variable with largest domain, divided by
the number of attached constraints weighted by how often they
have caused failure
impact Choose the variable with the highest impact so far during
the search
max regret Choose the variable with largest difference between
the two smallest values in its domain
smallest/largest Choose the variable with the smallest/larger
value in its domain

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 15 / 17

MINIZINC
constrainchoice

indomain Assign values in ascending order
indomain interval If the domain consists of several
contiguous intervals, reduce the domain to the first interval.
Otherwise bisect the domain.
indomain max Assign the largest value in the domain
indomain median Assign the middle value in the domain
indomain middle Assign the value in the domain closest to the
mean of its current bounds
indomain min Assign the smallest value in the domain
indomain random Assign a random value from the domain

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 16 / 17

MINIZINC
constrainchoice

indomain reverse split Bisect the domain, excluding the
lower half first
indomain split Bisect the domain, excluding the upper half first
indomain split random Bisect the domain, randomly selecting
which half to exclude first
outdomain max Exclude the largest value from the domain
outdomain median Exclude the middle value from the domain
outdomain min Exclude the smallest value from the domain
outdomain random Exclude a random value from the domain

AGOSTINO DOVIER (CLPLAB) AUTOMATED REASONING UDINE, OCTOBER 2016 17 / 17

