GASP: Answer Set Programming with Lazy Grounding

A. Dal Palù¹ A. Dovier² E. Pontelli³ G. Rossi¹

1. Dip. Matematica, Univ. Parma

2. Dip. Matematica e Informatica, Univ. Udine

3. Dept. Computer Science, New Mexico State Univ.

Umbria Jazz 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- We all know the importance of Answer Set Programming for
 - Knowledge representation and reasoning
 - Combinatorial Encoding
 - Emerging Challenging Applications (Bioinformatics, Semantic Web)
- ASP computations are split in two parts
 - ► Grounding (Iparse, Gringo, DLV grounder, ...)
 - Bottom-up Solving (smodels, cmodels, DLV, Clasp, ...)
- For medium/large size applications grounding is a problem of time and mainly of space.
- The GULP community is working in this field

INTRODUCTION

MOTIVATIONS

DE GRAPPA INTRODUCTION PRELIMINARIES ASP COMPUTATIONS IMPLEMENTATION CONCLUSIONS

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We 'lifted' a ground notion of ASP computation from [Liu,Pontelli,Tran,Truszczynski:ICLP07]
- We developed GASP a lazy grounding tool that grounds clauses as needed and only for some values

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The process is implemented by constraint programming on finite domains.

- We 'lifted' a ground notion of ASP computation from [Liu,Pontelli,Tran,Truszczynski:ICLP07]
- We developed GASP a lazy grounding tool that grounds clauses as needed and only for some values

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The process is implemented by constraint programming on finite domains.

- We 'lifted' a ground notion of ASP computation from [Liu,Pontelli,Tran,Truszczynski:ICLP07]
- We developed GASP a lazy grounding tool that grounds clauses as needed and only for some values

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The process is implemented by constraint programming on finite domains.

A general program is a set of clauses of the form

 $H \leftarrow B_1, \ldots, B_m$, not C_1, \ldots , not C_n

- ► *H*, *B_i*, *C_j* are atoms (ground or non-ground)
- If m = 0 and n = 0 they are facts
- ASP programs also contain constraints formulas of the form

$$\leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n$$

For stable models they are equivalent to

$$\rho \leftarrow B_1, \ldots, B_m$$
, not C_1, \ldots , not C_n , not ρ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- A stable model is a minimal Herbrand model S of P.
- Given a ground model P and S, the reduct P^S is defined in the following way: For each clause of P

$$H \leftarrow B_1, \ldots, B_m$$
, not C_1, \ldots , not C_n

- If $\{C_1, \ldots, C_n\} \cap S = \emptyset$ add $H \leftarrow B_1, \ldots, B_m$ in P^S
- If S is the minimum model of P^S (a definite clause program) then S is a stable model of P

- Existence of stable model is NP-complete.
- When looking for stable models, it appears clear that some atoms must be present in all stable models.
- It appears also clear that some atoms cannot be present in any stable model.
- Example:

{q, r} always true. {s} always false. a and b alternatively true or false.

- This suggest a 3-valued view of interpretations:
- The Herbrand base is split into the set I⁺ of surely true, the set I⁻ of surely false, and the others.
- ► The well-founded model technique computes deterministically a unique pair: (*I*⁺, *I*⁻).
- If *I*⁺ ∪ *I*[−] = *B_P* then *I*⁺ is a stable model (in this case *P* has an unique stable model).
- If *I*⁺ ∪ *I*[−] ≠ *B_P* then *I*⁺ is not guaranteed to be 'a model'.
- Anyway, well-founded computation can be seen as the computation of a shared core of stable models.

- Technique from [Zukowski, Brass, and Freitag, 1997]
- Given two sets of atoms I and J, let us define

$$\begin{array}{ll} \mathcal{T}_{\mathcal{P},J}(I) &=& \{ a \in \mathcal{A} \mid (a \leftarrow bd^+, \textbf{not} \, bd^-) \in \mathcal{P}, \\ I \models bd^+, (\forall p \in bd^-)(J \not\models p) \} \end{array}$$

For computing the well-founded model, compute

$$\begin{cases} K_0 = \mathsf{lfp}(T_{P^+,\emptyset}) & U_0 = \mathsf{lfp}(T_{P,K_0}) \\ K_i = \mathsf{lfp}(T_{P,U_{i-1}}) & U_i = \mathsf{lfp}(T_{P,K_i}) & i > 0 \end{cases}$$

where P^+ is the set of definite clauses of P.

If
$$(K_i, U_i) = (K_{i+1}, U_{i+1})$$
 we stop and
 $I^+ = K_i, I^- = B_P \setminus U_i$ is the well-founded model.

・ロト・日本・日本・日本・日本・日本

- Consider $P = \{p \leftarrow \text{not } q. \quad q \leftarrow \text{not } p\}$
- ► It admits three Herbrand models {p}, {q}, {p, q}
- {p} and {q} are its stable models
- ▶ Its well-founded (partial) model is $I^+ = \emptyset$, $I^- = \emptyset$
- One can start from I⁺ and I⁻ of the well-founded model to compute stable models guessing the remaining atoms.

ASP COMPUTATION GROUND

►
$$I \models b_1, \ldots, b_m$$
, not c_1, \ldots , not c_n iff $\{b_1, \ldots, b_m\} \subseteq I$ and $\{c_1, \ldots, c_n\} \cap I = \emptyset$

a ∈ T_P(I) iff there is a ground clause a ← Body in P
 s.t. I ⊨ Body

A computation of a program *P* is a sequence of 2 valued-interpretations $\emptyset = I_0, I_1, I_2, ...$ such that:

- ► $I_i \subseteq I_{i+1}$ for all $i \ge 0$ (*Persistence of Beliefs*)
- ► $\bigcup_{i=0}^{\infty} I_i$ is a model of *P* (*Convergence*)
- $I_{i+1} \subseteq T_P(I_i)$ for all $i \ge 0$ (*Revision*)
- If a ∈ I_{i+1} \ I_i then there is a rule a ← Body in P such that I_j ⊨ Body for each j ≥ i (Persistence of Reason).

Given a rule $a \leftarrow body$ and 3 valued-interpretation *I*, we say that the rule is applicable w.r.t. *I* if

$$body^+ \subseteq I^+$$
 and $body^- \cap I^+ = \emptyset$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

We extend the definition of applicable to a non ground rule R w.r.t. *I* iff there exists a grounding r of R that is applicable w.r.t. *I*.

A GASP computation of a program *P* is a sequence of 3-interpretations $l_0, l_1, l_2, ...$ that satisfies the following properties:

- $\blacktriangleright I_0 = wf(P)$
- $I_i \subseteq I_{i+1}$ (Persistence of Beliefs)
- if *I* = ∪[∞]_{*i*=0} *I_i*, then ⟨*I*⁺, *A* \ *I*⁺⟩ is a model of *P* (*Convergence*)
- For each i ≥ 0 there exists a rule a ← body in P that is applicable w.r.t. I_i and I_{i+1} = wf(P ∪ I_i ∪ ⟨body⁺, body⁻⟩) (Revision)
- if a ∈ l_{i+1} \ l_i then there is a rule a ← body in P which is applicable w.r.t. l_j, for each j ≥ i (Persistence of Reason).
- GASP computations lead to stable models

- The implementation is based on CLP(FD)
- All constants are numbers in [0, M 1].
- ► For each predicate *p* of arity *n* we need to store two sets of tuples (*t*₁,..., *t_n*)
- We convert them into a unique value $\tau(t_1, \ldots, t_n)$:

$$t_1 M^{n-1} + t_2 M^{n-2} + \dots + t_{n-1} M + t_n$$

- In this way, computing T_P we will skip set operations (projections, intersections, joins, etc) and exploit constraint-based primitives.
- Each predicate p is associated to an atom: atom(p, n, {τ(true tuples)}, {τ(false tuples)})
- A 3-valued interpretation is a list of these atoms

- The sets of tuples are stored as FDSETS
- The set {0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15} is stored compactly as a list of disjoint intervals:

[[0|7], [11|15]]

- This allows to sensibly reduce representation space of sets/domains and also allows fast implementation of constraint propagation
- Several FDSETS primitives are available in SICStus Prolog.

- Let p be of arity 3
- ▶ Let M = 10

Assume that p(0,0,1), p(0,0,2), p(0,0,3), p(0,0,8), p(0,0,9), p(0,1,0), p(0,1,1), p(0,1,2) hold.

Then:

{ τ (0,0,1), τ (0,0,2), τ (0,0,3), τ (0,0,8), τ (0,0,9), τ (0,1,0), τ (0,1,1), τ (0,1,2)} can be represented simply by:

[[1|3], [8|12]]

IMPLEMENTATION

 T_P COMPUTATION: MAIN IDEA

- Assume: atom(p, 2, PosP, _), atom(q, 2, PosQ, _), atom(r, 1, PosR, _)
- Consider r(X) : -p(X, Y), q(Y, Z)
- We introduce FD constraints:
- ► $X \in 0..M 1, Y \in 0..M 1, Z \in 0..M 1$
- $\blacktriangleright \ \mathbb{M} * X + Y \in \textit{PosP} \land \mathbb{M} * Y + Z \in \textit{PosQ} \land X \notin \textit{PosR} \Rightarrow \textit{add}(X,\textit{PosR})$
- Namely, add to PosR all the values of X such that τ(X, Y) ∈ PosP and τ(Y, Z) ∈ PosQ that are not already in PosR
- No need of joins, intersections, etc.

ASP computations mplementation

CONCLUSIONS

T_P COMPUTATION: RULE APPLICATION T_P in Sicstus

```
apply def rule(rule([H], PBody, []), I,
                [atom(F,ARITY,NEWPDOM,NEG)|PARTI]) :-
      copy term([H,PBody],[H1,PBody1]),
      term_variables([H1,PBody1],VARS),
      bigM(M),M1 is M-1,domain(VARS,0,M1),
      build constraint (PBody1, I, C1, pos),
      H1 = .. [F|ARGS],
      build arity (ARGS, VAR, ARITY),
      select(atom(F,ARITY,OLD,NEG),I,PARTI),
      nin set(ARITY,VAR,OLD,C2),
      findall(X,
         (C1+C2 #= 2, X #= VAR, labeling([ff], VARS)),
         LIST).
      list to fdset(LIST,SET),
      fdset union (OLD, SET, NEWPDOM).
```

T_P COMPUTATION: RULE APPLICATION

 T_P COMPUTATION: CONSTRAINTS

```
build_constraint([R|Rs],I,C,pos):-
      R = .. [F|ARGS], !.
      build arity (ARGS, VAR, ARITY),
      member(atom(F,ARITY,DOMF,NDOMF),I),
      C2 #<=> VAR in_set DOMF,
      build constraint (Rs, I, C1, Sign),
      C \# <=> C1 \# / C2.
build arity (ARGS, VAL, ARITY) :-
        (ARGS = [], !, VAL=0, ARITY=0;
        ARGS = [VAL], !, ARITY=1;
        ARGS = [Arg1, Arg2], !, bigM(M),
                ARITY=2, VAL #= M*Arg1+Arg2;
        ARGS = [Arg1, Arg2, Arg3], biqM(M),
                 ARITY=3, VAL #= M*M*Arg1+M*Arg2+Arg3).
```

GASP DE GRAPPA INTRODUCTION PRELIMINARIES ASP COMPUTATIONS IMPLEMENTATION CONCLUSIONS

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 T_P FOR WELL-FOUNDED

```
alternating apply rule(rule([H], PBody, NBody),
          J.I. [atom (F. ARITY, NEWPDOM, NEG) | PARTI]) :-
      copy term([H,PBody,NBody],[H1,PBody1,NBody1]),
      term_variables([H1,PBody1],VARS),
      bigM(M),M1 is M-1,domain(VARS,0,M1),
      build constraint (PBody1, I, C1, pos),
      build constraint (NBody1, J, C2, neg),
      H1 = .. [F | ARGS],
      build arity (ARGS, VAR, ARITY),
      select(atom(F,ARITY,OLD,NEG),I,PARTI),
      nin_set(ARITY,VAR,OLD,C3),
      findall(X.
           (C1+C2+C3 #= 3, X #= VAR, labeling([ff], VARS)),
          LIST).
      list to fdset(LIST,SET),
      fdset union (OLD, SET, NEWPDOM) .
```

apply_rule(rule([H],Bpos,Bneg),I1,I2,rule([H1],Bpos1,Bneg1)) :="
Bneg \= [], %%% Must have negative literals
copy_term([H,Bpos,Bneg],[H1,Bpos1,Bneg1]),
H1 =.. [F|ARGS],
term_variables([H1,Bpos1],VARS),
bigM(M), M1 is M-1, domain(VARS,0,M1),
build_constraint(Bpos1,I1,1,pos),
build_constraint(Bneg1,I1,1,neg),
build_arity(ARGS,Arg,ARITY),
member(atom(F,ARITY,PDOM,_),I1),
nin_set(ARITY,Arg,PDOM,1),
labeling([ff],VARS),
dom_update(Bneg1,I1,I2). %%% Update negative part

Problem of permutations... partially solved.

GASP DE GRAPPA INTRODUCTION PRELIMINARIES ASP COMPUTATIONS HIPLEMENTATION CONCLUSIONS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Some extensions

```
1 { function(X,Y): range(Y) } 1 :- domain(X).
```

Naive encoding (assume range (a1), ..., range (an)):

FD encoding: function is associated to a list of pairs $[[X_1, Y_1], \ldots, [X_m, Y_m]]$ where *m* is the size of domain (X), and

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Consider the ASP constraint

It "suggests" the following FD constraints:

for X: number(X) for Y:number(Y) for Z:number(Z) for P1: part(P1) for P2:part(P2) for P3:part(P3) if inpart(X,P1) \land inpart(Y,P2) \land inpart(Z,P3) $\land X + Y = Z$ add the constraint $P1 = P2 \Rightarrow P1 \neq P3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

GASP DE GRAPPA RODUCTION LIMINARIES D

CONCLUSIONS

IMPLEMENTATION

Some results

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

	N (n,p)	Lparse	Smodels	GASP	GASP/Smodels	GASP-fur	1 ^{ASP}
Def	32	0.06	0.03	0.14	4.6	0.14	COMPUTATIONS
	64	0.09	0.12	0.45	3.7	0.45	IMPLEMENTATION
	128	0.26	0.79	1.89	2.4	1.89	CONCLUSIONS
	228	0.75	1.95	6.78	3.5	6.78	
	256	0.65	Error	8.81	-	8.81	
WF	32	0.06	0.08	0.98	12.2	0.98	
	64	0.11	0.23	3.58	27.8	3.58	
	128	0.32	1.07	15.38	14.4	15.38	
	228	0.90	3.39	58.70	17.3	58.70	
	256	0.68	Error	78.34	-	78.34	
Schur	(6,3)	0.04	0.09	1.64	18.2	0.04	
	(7,3)	0.05	0.18	6.59	36.6	0.06	
	(8,3)	0.05	0.25	27.43	109.7	0.06	
	(9,3)	0.06	0.48	113.59	236.65	0.06	
	(10,3)	0.06	0.19	480.85	2530.8	0.09	
	(30,4)	0.09	0.03	∞	-	0.36	
	(35,4)	0.10	0.09	∞	-	0.44	
	(40,4)	0.11	77.31	∞	-	0.50	
	(45,4)	0.15	∞	∞	-	8315	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

CONCLUSIONS

- ► Is GASP a solution?
- Not yet, we should work:

SGRUNT = Senza GRoUNding Totalmente

Alessandro dal Palù Agostino Dovier Enrico Pontelli Gianfranco Rossi DE GRAPPA DE GRAPPA Introduction Preliminaries ASP computations Implementation Conclusions