
GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

GASP: ANSWER SET PROGRAMMING

WITH LAZY GROUNDING

A. Dal Palù1 A. Dovier2 E. Pontelli3 G. Rossi1

1. Dip. Matematica, Univ. Parma

2. Dip. Matematica e Informatica, Univ. Udine

3. Dept. Computer Science, New Mexico State Univ.

Umbria Jazz 2008

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

INTRODUCTION
MOTIVATIONS

I We all know the importance of Answer Set
Programming for

I Knowledge representation and reasoning
I Combinatorial Encoding
I Emerging Challenging Applications (Bioinformatics,

Semantic Web)
I ASP computations are split in two parts

I Grounding (lparse, Gringo, DLV grounder, . . .)
I Bottom-up Solving (smodels, cmodels, DLV, Clasp,

. . .)
I For medium/large size applications grounding is a

problem of time and mainly of space.
I The GULP community is working in this field

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

INTRODUCTION
MOTIVATIONS

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

INTRODUCTION
MAIN IDEA

I We ‘lifted’ a ground notion of ASP computation from
[Liu,Pontelli,Tran,Truszczynski:ICLP07]

I We developed GASP a lazy grounding tool that
grounds clauses as needed and only for some values

I The process is implemented by constraint
programming on finite domains.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

INTRODUCTION
MAIN IDEA

I We ‘lifted’ a ground notion of ASP computation from
[Liu,Pontelli,Tran,Truszczynski:ICLP07]

I We developed GASP a lazy grounding tool that
grounds clauses as needed and only for some values

I The process is implemented by constraint
programming on finite domains.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

INTRODUCTION
MAIN IDEA

I We ‘lifted’ a ground notion of ASP computation from
[Liu,Pontelli,Tran,Truszczynski:ICLP07]

I We developed GASP a lazy grounding tool that
grounds clauses as needed and only for some values

I The process is implemented by constraint
programming on finite domains.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
GENERAL/ASP PROGRAMS

I A general program is a set of clauses of the form

H ← B1, . . . , Bm, not C1, . . . , not Cn

I H, Bi , Cj are atoms (ground or non-ground)
I If m = 0 and n = 0 they are facts
I ASP programs also contain constraints formulas of

the form

← B1, . . . , Bm, not C1, . . . , not Cn

I For stable models they are equivalent to

p ← B1, . . . , Bm, not C1, . . . , not Cn, not p

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
STABLE MODELS

I A stable model is a minimal Herbrand model S of P.
I Given a ground model P and S, the reduct PS is

defined in the following way: For each clause of P

H ← B1, . . . , Bm, not C1, . . . , not Cn

• If {C1, . . . , Cn} ∩ S = ∅ add H ← B1, . . . , Bm in PS

I If S is the minimum model of PS (a definite clause
program) then S is a stable model of P

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
SEMANTICS OF GENERAL PROGRAMS

I Existence of stable model is NP-complete.
I When looking for stable models, it appears clear that

some atoms must be present in all stable models.
I It appears also clear that some atoms cannot be

present in any stable model.
I Example:

q .
r :- not s.
a :- not b.
b :- not a.

I {q, r} always true. {s} always false. a and b
alternatively true or false.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
3-VALUED SEMANTICS OF GENERAL PROGRAMS

I This suggest a 3-valued view of interpretations:
I The Herbrand base is split into the set I+ of surely

true, the set I− of surely false, and the others.
I The well-founded model technique computes

deterministically a unique pair: 〈I+, I−〉.
I If I+ ∪ I− = BP then I+ is a stable model (in this case

P has an unique stable model).
I If I+ ∪ I− 6= BP then I+ is not guaranteed to be ‘a

model’.
I Anyway, well-founded computation can be seen as

the computation of a shared core of stable models.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
WELL-FOUNDED MODEL COMPUTATION

I Technique from [Zukowski, Brass, and Freitag, 1997]
I Given two sets of atoms I and J, let us define

TP,J(I) = {a ∈ A | (a← bd+, not bd−) ∈ P,
I |= bd+, (∀p ∈ bd−)(J 6|= p)}

I For computing the well-founded model, compute{
K0 = lfp(TP+,∅) U0 = lfp(TP,K0)
Ki = lfp(TP,Ui−1) Ui = lfp(TP,Ki) i > 0

where P+ is the set of definite clauses of P.
I If (Ki , Ui) = (Ki+1, Ui+1) we stop and

I+ = Ki , I− = BP \ Ui is the well-founded model.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

PRELIMINARIES
EXAMPLE

I Consider P = {p ← not q. q ← not p}
I It admits three Herbrand models {p}, {q}, {p, q}
I {p} and {q} are its stable models
I Its well-founded (partial) model is I+ = ∅, I− = ∅
I One can start from I+ and I− of the well-founded

model to compute stable models guessing the
remaining atoms.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

ASP COMPUTATION
GROUND

I I |= b1, . . . , bm, not c1, . . . , not cn iff
{b1, . . . , bm} ⊆ I and {c1, . . . , cn} ∩ I = ∅

I a ∈ TP(I) iff there is a ground clause a← Body in P
s.t. I |= Body

A computation of a program P is a sequence of 2
valued-interpretations ∅ = I0, I1, I2, . . . such that:

I Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)
I

⋃∞
i=0 Ii is a model of P (Convergence)

I Ii+1 ⊆ TP(Ii) for all i ≥ 0 (Revision)
I if a ∈ Ii+1 \ Ii then there is a rule a← Body in P such

that Ij |= Body for each j ≥ i (Persistence of
Reason).

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

ASP COMPUTATION
APPLICABILITY FOR 3 VALUED

Given a rule a← body and 3 valued-interpretation I, we
say that the rule is applicable w.r.t. I if

body+ ⊆ I+ and body− ∩ I+ = ∅ .

We extend the definition of applicable to a non ground
rule R w.r.t. I iff there exists a grounding r of R that is
applicable w.r.t. I.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

ASP COMPUTATION
NON GROUND

A GASP computation of a program P is a sequence of
3-interpretations I0, I1, I2, . . . that satisfies the following
properties:

I I0 = wf(P)

I Ii ⊆ Ii+1 (Persistence of Beliefs)
I if I =

⋃∞
i=0 Ii , then 〈I+,A \ I+〉 is a model of P

(Convergence)
I for each i ≥ 0 there exists a rule a← body in P that

is applicable w.r.t. Ii and
Ii+1 = wf(P ∪ Ii ∪ 〈body+, body−〉) (Revision)

I if a ∈ Ii+1 \ Ii then there is a rule a← body in P
which is applicable w.r.t. Ij , for each j ≥ i
(Persistence of Reason).

GASP computations lead to stable models

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
INTERPETATIONS

I The implementation is based on CLP(FD)
I All constants are numbers in [0, M− 1].
I For each predicate p of arity n we need to store two

sets of tuples 〈t1, . . . , tn〉
I We convert them into a unique value τ(t1, . . . , tn):

t1Mn−1 + t2Mn−2 + · · ·+ tn−1M + tn

I In this way, computing TP we will skip set operations
(projections, intersections, joins, etc) and exploit
constraint-based primitives.

I Each predicate p is associated to an atom:
atom(p, n, {τ(true tuples)}, {τ(false tuples)})

I A 3-valued interpretation is a list of these atoms

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
FDSETS

I The sets of tuples are stored as FDSETS
I The set {0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15} is

stored compactly as a list of disjoint intervals:

[[0|7], [11|15]]

I This allows to sensibly reduce representation space
of sets/domains and also allows fast implementation
of constraint propagation

I Several FDSETS primitives are available in SICStus
Prolog.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
FDSETS: EXAMPLE

I Let p be of arity 3
I Let M = 10
I Assume that

p(0, 0, 1), p(0, 0, 2), p(0, 0, 3), p(0, 0, 8),
p(0, 0, 9), p(0, 1, 0), p(0, 1, 1), p(0, 1, 2)
hold.

I Then:
{τ(0, 0, 1), τ(0, 0, 2), τ(0, 0, 3), τ(0, 0, 8),
τ(0, 0, 9), τ(0, 1, 0), τ(0, 1, 1), τ(0, 1, 2)}

can be represented simply by:

[[1|3], [8|12]]

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
TP COMPUTATION: MAIN IDEA

I Assume: atom(p, 2, PosP, _),
atom(q, 2, PosQ, _),atom(r , 1, PosR, _)

I Consider r(X) : −p(X , Y), q(Y , Z)

I We introduce FD constraints:
I X ∈ 0..M− 1, Y ∈ 0..M− 1, Z ∈ 0..M− 1
I M ∗ X + Y ∈ PosP ∧M ∗ Y + Z ∈ PosQ ∧ X /∈

PosR ⇒ add(X , PosR)

I Namely, add to PosR all the values of X such that
τ(X , Y) ∈ PosP and τ(Y , Z) ∈ PosQ that are not
already in PosR

I No need of joins, intersections, etc.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

TP COMPUTATION: RULE APPLICATION
TP IN SICSTUS

apply_def_rule(rule([H],PBody,[]),I,
[atom(F,ARITY,NEWPDOM,NEG)|PARTI]) :-

copy_term([H,PBody],[H1,PBody1]),
term_variables([H1,PBody1],VARS),
bigM(M),M1 is M-1,domain(VARS,0,M1),
build_constraint(PBody1,I,C1,pos),
H1 =..[F|ARGS],
build_arity(ARGS,VAR,ARITY),
select(atom(F,ARITY,OLD,NEG),I,PARTI),
nin_set(ARITY,VAR,OLD,C2),
findall(X,

(C1+C2 #= 2, X #= VAR,labeling([ff],VARS)),
LIST),

list_to_fdset(LIST,SET),
fdset_union(OLD,SET,NEWPDOM).

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

TP COMPUTATION: RULE APPLICATION
TP COMPUTATION: CONSTRAINTS

build_constraint([R|Rs],I,C,pos):-
R =.. [F|ARGS],!,
build_arity(ARGS,VAR,ARITY),
member(atom(F,ARITY,DOMF,NDOMF),I),
C2 #<=> VAR in_set DOMF,
build_constraint(Rs,I,C1,Sign),
C #<=> C1 #/\ C2.

build_arity(ARGS,VAL,ARITY) :-
(ARGS = [],!, VAL=0, ARITY=0;
ARGS = [VAL],!, ARITY=1;
ARGS = [Arg1,Arg2],!, bigM(M),

ARITY=2, VAL #= M*Arg1+Arg2;
ARGS = [Arg1,Arg2,Arg3], bigM(M),

ARITY=3, VAL #= M*M*Arg1+M*Arg2+Arg3).

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
TP FOR WELL-FOUNDED

alternating_apply_rule(rule([H],PBody,NBody),
J,I,[atom(F,ARITY,NEWPDOM,NEG)|PARTI]) :-

copy_term([H,PBody,NBody],[H1,PBody1,NBody1]),
term_variables([H1,PBody1],VARS),
bigM(M),M1 is M-1,domain(VARS,0,M1),
build_constraint(PBody1,I,C1,pos),
build_constraint(NBody1,J,C2,neg),
H1 =..[F|ARGS],
build_arity(ARGS,VAR,ARITY),
select(atom(F,ARITY,OLD,NEG),I,PARTI),
nin_set(ARITY,VAR,OLD,C3),
findall(X,

(C1+C2+C3 #= 3, X #= VAR,labeling([ff],VARS)),
LIST),

list_to_fdset(LIST,SET),
fdset_union(OLD,SET,NEWPDOM).

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
GASP COMPUTATION

apply_rule(rule([H],Bpos,Bneg),I1,I2,rule([H1],Bpos1,Bneg1)) :-
Bneg \= [], %%% Must have negative literals
copy_term([H,Bpos,Bneg],[H1,Bpos1,Bneg1]),
H1 =.. [F|ARGS],
term_variables([H1,Bpos1],VARS),
bigM(M), M1 is M-1, domain(VARS,0,M1),
build_constraint(Bpos1,I1,1,pos),
build_constraint(Bneg1,I1,1,neg),
build_arity(ARGS,Arg,ARITY),
member(atom(F,ARITY,PDOM,_),I1),
nin_set(ARITY,Arg,PDOM,1),
labeling([ff],VARS),
dom_update(Bneg1,I1,I2). %%% Update negative part

Problem of permutations... partially solved.

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
SOME EXTENSIONS

1 { function(X,Y): range(Y) } 1 :- domain(X).

Naive encoding (assume range(a1),...,range(an)):

function(X,a1) :- domain(X),
not function(X,a2), ..., not function(X,an).

...
function(X,an) :- domain(X),

not function(X,a1), ..., not function(X,an-1).

FD encoding: function is associated to a list of pairs [[X1, Y1], . . . , [Xm, Ym]]
where m is the size of domain(X), and

I [X1, . . . , Xm] :: domain(X),
I Xi < Xi+1,
I [Y1, . . . , Ym] :: {a1, . . . , an}

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
SOME EXTENSIONS

Consider the ASP constraint

:- number(X), number(Y), number(Z), part(P),
inpart(X,P), inpart(Y,P), inpart(Z,P),

Z = X+Y.

It “suggests” the following FD constraints:
for X: number(X) for Y:number(Y) for Z:number(Z)

for P1: part(P1) for P2:part(P2) for P3:part(P3)
if inpart(X,P1) ∧ inpart(Y,P2) ∧ inpart(Z,P3) ∧X + Y = Z

add the constraint P1 = P2 ⇒ P1 6= P3

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

IMPLEMENTATION
SOME RESULTS

N (n,p) Lparse Smodels GASP GASP/Smodels GASP-fun
Def 32 0.06 0.03 0.14 4.6 0.14

64 0.09 0.12 0.45 3.7 0.45
128 0.26 0.79 1.89 2.4 1.89
228 0.75 1.95 6.78 3.5 6.78
256 0.65 Error 8.81 - 8.81

WF 32 0.06 0.08 0.98 12.2 0.98
64 0.11 0.23 3.58 27.8 3.58

128 0.32 1.07 15.38 14.4 15.38
228 0.90 3.39 58.70 17.3 58.70
256 0.68 Error 78.34 - 78.34

Schur (6,3) 0.04 0.09 1.64 18.2 0.04
(7,3) 0.05 0.18 6.59 36.6 0.06
(8,3) 0.05 0.25 27.43 109.7 0.06
(9,3) 0.06 0.48 113.59 236.65 0.06
(10,3) 0.06 0.19 480.85 2530.8 0.09
(30,4) 0.09 0.03 ∞ - 0.36
(35,4) 0.10 0.09 ∞ - 0.44
(40,4) 0.11 77.31 ∞ - 0.50
(45,4) 0.15 ∞ ∞ - 8315

GASP

DE GRAPPA

INTRODUCTION

PRELIMINARIES

ASP
COMPUTATIONS

IMPLEMENTATION

CONCLUSIONS

CONCLUSIONS

I Is GASP a solution?
I Not yet, we should work:

I SGRUNT = Senza GRoUNding Totalmente

	Introduction
	Preliminaries
	ASP computations
	Implementation
	Conclusions

