A GPU Implementation of the ASP Computation J

A. Dovier' A.Formisano® E. Pontelli® F Vella*

1. Universita di Udine
2. Universita di Perugia
3. New Mexico State University

4. Sapienza Universita Roma, CNR, NVIDIA

PADL-2016 — St. Petersburg, FL, USA, January 2016

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 1/23

GPU-computing at a glance

General Purpose GPU

@ Graphic Processing Units (GPUs) are parallel processor originally
conceived for graphic processing

@ In the last years GPUs evolved towards a more flexible
architecture

@ This enables the use of GPUs for general purpose programming:

GPU-computing

@ GPUs offer great efficiency and high performance (if carefully
programmed...)

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 2/23

GPU-computing at a glance

How it looks like...

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 3/23

GPU-computing at a glance

Under the hood — The architectural scheme

.
111

NN EEE N
mEEEE]

NEENEEEEE RN EEEE
i

NEEEEEEEEEEEEEEE

i

s
£
]
z

GigaThead
T

NN

EEEEEEE
LTI
EEEEEEEE R

nEEEEEE NN R E

e Fermi’s 16 SM are positioned around a common L2 cache.
e Each SMis a vertical rectangular strip that contains

- an orange portion (scheduler and dispatch),

- agreen portion (execution units),

- light blue portions (register file and L1 cache).

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 4/23

GPU-computing at a glance

Zoom in: A streaming multiprocessor

Each SM includes:

e 32 CUDA cores

e Fully pipelined Int and FP
ALU

e 16 Load/Store Units (16
threads per clock)

e 4 Special Function Units

o Registers, cache...

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 5/23

GPU-computing at a glance

Execution model and memory hierarchy (cuba-style)

Each core executes a thread

- registers GRID
- local memory Block Block

e Block: a group of threads | Shared | | Shared |
- shared memory memory memory
- synchronization support

- 3dgrid (e.g., 1K x 1K x64)
e Grid: a group of blocks

- globgl memory Thread | | Thread Thread | | Thread
- 3d grid .] S
(e.g., 64K x 64K x 64K) 1 L [
- constant, texture mem.
-t GLOBAL MEMORY []
e Warp: 32 threads HOST .
- works in lock-step | CONSTANT MEMORY |

SIMT parallelism

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 6/23

GPU-computing at a glance

Execution model (cupa-style)

The computation can proceed on the host and on the device
@ The programmer writes a kernel that will be run on the device
@ Each thread executes an instance of the kernel

The host instructs the device: Main oPU
Memory L
. | Copy processing datal
@ copy data, host=-device | “opy procesehe &1
Q kernel call () (2)
. Memory
© kernel execution on GPU for GPU
© retrieve results, host<device — “" core

Processing flow
on CUDA

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 7123

GPU for ASP

GPUs for ASP?

The idea: to design an ASP-solver that

o exploits GPUs and the CUDA framework
= massive parallelism mostly for deterministic components of the
computation

e adopts a “nogood-driven” approach
= SAT/ASP technology, heuristics, learning,...

e relies on ASP-computations
= focus on completion nogoods

Inspired by successes in CUD@SAT J

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 8/23

ASP in a Nutshell

ASP programs
An ASP program [1 is composed of rules of the form

r- p < ai...,am, Notbmi1, ..., notbp
— at,...,am, Notbmyq, ..., not by

@ pand{ay, ..., am, notby 1, ..., notb,} are denoted by head(r)
and body(r), resp.

o {ay, ..., an} is denoted by body " (r)

@ {bmn.1, ..., by} is denoted by body(r)

@ Semantics ASP program [1 is given in terms of answer sets

o A set M of atoms is an answer set for I1 if it is the least Herbrand
model of the reduct MY

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 9/23

ASP in a Nutshell

ASP-computation for a program 1

It is a sequence of sets of atoms Iy = (), /1, o, ... such that

@ [;Clyq foralli>0 (Persistence of Beliefs)
o /=i issuchthat Tn(l«) = I« (Convergence)
@ i1 € Tn(l) foralli>0 (Revision)

o if pe i 4\ [thenthereis arule p + body in 1 such that
l; = body for each j > i (Persistence of Reason)

M is an answer set of 1 iff there exists an ASP-computation s.t.
converges to M, namely, M = J;=, /i

L. Liu, E. Pontelli, T. Son, M. Truszczynski: Logic programs with abstract constraint atoms: The role of
computations. Art. Int. 174(3-4):295-315 (2010)

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 10/23

ASP in a Nutshell

Completion and completion-nogoods

Given a program [1, its completion .. is defined as:

Mec = Br < Aaebody*(r) an /\bebody—(r) ~b|re n} U
P <V reboayn(p) Br | P € atom(ﬂ)}

Mee can be “compiled” into a collection A, of nogoods of the forms:
- {notB,} U{alae body*(r)} U{notb|b e body (r)}
- {B,, not a} for each a € body " (r) and {3,, b} for each b € body(r)

- {not p, 3} for each r € bodyn(p), for each head pin Il
- {p}U{not B, |r € bodyn(p)}, foreach head pin Tl

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 11/23

yasmin in few words

Ingredients for a nogood-driven solver

P ; P| Initial Propagation

LEVEL=1

|
N

Conflict Analysis

Y
Update A; \
Update A;

Update LEVEL

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 12/23

yasmin in few words

Ingredients for a nogood-driven solver

@ Assigned atom: Tpor Fp
@ (Partial) Assignment: consistent set of assigned atoms
@ Nogood: consistent set of assigned atoms

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU

13/23

yasmin in few words

Ingredients for a nogood-driven solver

@ Preprocessing: parses the input; computes the completion nogoods,
dependency graph, statistics for heuristics; data transfer to the device, ...

@ Selection: performs a step in an ASP-computation, to select next
branching atom (decision step)

@ Propagation: propagates the consequences of decision steps (specific
kernels for short nogoods, long nogoods, ...)

@ Nogood-Check: looks for violations of nogoods
Conflict-Analysis: in case of conflict, learns new nogoods

@ Backjumping: in case a conflicting partial assignment is reached, updates
the device data structures consequently

©

Blue tasks run on the device. The host performs I/O, some preprocessing, data
transfers to/from the device

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 13/23

yasmin in few words

Basic schema of the CUDA application

scurrent_dl :=1;A: =0 > Initial decision level and assignment
! (A, violation) := InitialPropagation(A, A)
: if (Violation is true) then return no answer set

1:

2:

3

4: else

5: loop

6: (Ap,Vviolation) := NoGoodCheckAndPropagate(A, A) > Conflict(s) detection
7: A:=AU Ay

8: if (Violationistrue) A (current_dl = 1) then return no answer set

9: else if (violation is true) then

10: (current_dl, &) = ConflictAnalysis(A, A) > Learning (possibly multiple) and
11: A:=AU{s}; A=A\ {peAlcurrent_dl < dI(p)} > backjump
12: end if

13: if (A is not total) then

14: (p, OneSel) := Selection(A, A) > Step in ASP-computation
15: if (OneSel is true) then current_dl+-+; dl(p) := current_dl; A:= AU {p}

16: else A:= AU {Fp: pis unassigned}

17: end if

18: else return AT N atom(I)

19: end if

20: end loop

21: end if

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 14/23

Some Ideas on How to Develop the Kernels

@ CPU computes A and dependency graph
@ Transfers A to GPU

yasmin in few words

Some Ideas on How to Develop the Kernels

InitialPropagation
@ Process all unary nogoods in A

@ One thread per unitary nogood
° (#UnitaryNogoodsw blocks

o Each thread assigns A[p] to the opposite sign as the unitary nogood

InitialPropagation

block 0 block 1
SEE

A

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 15/23

yasmin in few words

NoGoodCheckAndPropagate

Problem

Given a partial model A and nogood ¢
e Check if violated by A
e Checkif o \ A= {X}

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU

16/23

yasmin in few words

NoGoodCheckAndPropagate

Problem

Given a partial model A and nogood ¢
e Check if violated by A
e Checkif o \ A= {X}

General Idea
@ One thread per nogood

o First Phase: original nogoods; only “activated” by recent
assignment
o Second Phase: all learned nogoods
@ Three kernels per phase
o All nogoods of cardinality 2
o All nogoods of cardinality 3
o All nogoods of greater cardinality

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 16/23

yasmin in few words

NoGoodCheckAndPropagate

@ One block per assigned atom
@ One thread per nogood relevant to assigned atom
@ Need to iterate procedure

block 0 block 1

0

A

DIDIDDDDIDD 1)

@ 7 nogoods of cardinality 3; TPB=4
@ c2 and c3 satisfied
@ c7 needs to propagate

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 17/23

yasmin in few words

Other Parallelized Procedures

Selection
@ One Thread per unassigned atom p
@ Foreachrule r: 5, «+ 7r,n, with head(r) = p:
o if T7, € Aand Fn, ¢ Athen rule is applicable

@ Determine rank each p that has applicable rules
@ Select applicable rule with highest rank (logarithmic reduction)
@ Logarithmic parallel reduction to determine rule with best rank

A block 0 A

T
0 [L[2F=>1TPR

k%
3P,

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 18/23

yasmin in few words

Other Parallelized Procedures

ConflictAnalysis

o First Kernel:
@ one thread per nogood
o determines if nogood is violated
o logarithmic reduction to determine nogood ¢ with oldest most
recently assigned atom
@ Second Kernel:

o determine nogood that can resolve with 6 (parallel)
o resolution process to determine learned clause (sequential)

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU

18/23

Some results

Glimpse at the results

The results of experimentation with different GPUs are encouraging

e Performance scales with the computing power of the GPUs

@ number of cores
@ GPU clock
@ memory clock

¢ the prototype cannot compete with the state-of-the-art solvers

e but much has to be done in improving various aspects of the solver

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 19/23

Some results

Glimpse at the results

INSTANCE GT 520 GTX 560 GTX 960 C2075 K80 K40 clasp*
0001-stablemarriage-0-0 11.73 6.84 4.68 9.41 15.52 6.04 t.o.
0001-visitall-14-1 65.99 51.97 18.56 89.87 42.08 54.74 0.02
0002-stablemarriage-0-0 15.34 6.69 4.97 7.12 8.75 6.15 to.
0003-stablemarriage-0-0 12.68 7.15 4.66 8.49 8.72 7.62 to.
0003-visitall-14-1 66.07 35.04 39.61 65.97 67.83 25.11 0.01
0004-stablemarriage-0-0 14.87 8.02 3.80 9.76 9.28 8.78 t.o.
0005-stablemarriage-0-0 15.19 29.55 4.09 72.01 10.11 19.70 t.o.
0007-graph_colouring-125-0 29.00 16.51 6.84 13.86 28.90 16.00 44.71
0007-stablemarriage-0-0 12.79 3.17 6.27 3.15 4.23 3.40 t.o.
0008-stablemarriage-0-0 7.64 4.53 3.40 5.18 7.58 5.01 t.o.
0009-labyrinth-11-0 6.08 3.60 2.26 3.39 4.45 3.69 0.71
0009-stablemarriage-0-0 7.80 4.88 3.16 4.90 5.97 6.58 t.o.
0010-graph_colouring-125-0 3.44 1.83 1.52 213 1.24 1.60 8.22
0039-labyrinth-11-0 24.39 8.33 15.45 9.38 4.03 3.30 0.02
0061-ppm-70-0 219 1.08 0.56 0.90 0.94 0.77 0.05
0072-ppm-70-0 2.25 1.57 0.99 1.38 1.76 1.63 0.03
0121-ppm-120-0 15.79 8.16 5.69 8.19 10.86 8.94 0.31
0128-ppm-120-0 0.70 0.64 0.25 0.37 0.34 0.24 0.03
0129-ppm-120-0 14.96 6.25 4.19 7.26 8.99 7.18 0.08
0130-ppm-90-0 4.00 2.23 1.63 2.32 3.60 2.48 0.01
0153-ppm-90-0 1.18 0.89 0.44 0.66 0.71 0.58 0.02
0167-sokoban-15-1 25.43 19.48 11.83 18.99 28.24 23.59 0.01
0345-sokoban-17-1 187.87 76.86 62.54 91.30 135.95 106.73 0.93
0482-sokoban-15-1 26.67 18.20 13.88 21.58 29.09 23.60 0.24
0589-sokoban-15-1 17.92 14.08 9.65 15.18 21.35 16.83 0.07
SUM [59197] 33755 | 230.92 [[47275 | 460.52 | 360.29 |

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 20/23

Some results

Glimpse at the results

Runtime

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Instance

21/23

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU

Future Work

Future Work

@ Exhaustive exploration of the tail of the search
@ Conflict-driven learning is expensive

@ Relaxing the ASP computation and explore alternative selection
strategies

AD-AF-EP-FV (UD-PG-NM-RM) ASP on GPU 22/23

THANKS

Questions?

F = = £ 9DaA¢

	GPU-computing at a glance
	GPU for ASP
	ASP in a Nutshell
	yasmin in few words
	Some results
	Future Work
	

