University of Udine
Department of Mathematics, Computer Science and Physics

MODELLING MULTI-AGENT EPISTEMIC PLANNING IN ASP

36 ${ }^{\text {th }}$ Italian Conference on Logic Programming

Alessandro Burigana, Francesco Fabiano, Agostino Dovier and Enrico Pontelli

Overview

1. Multi-Agent Epistemic Planning
2. Possibilities
3. The action language $m \mathcal{A}^{\rho}$
4. PLATO
5. Conclusions

Chapter 1

Multi-Agent Epistemic Planning

Multi-Agent Epistemic Planning

Introduction

Epistemic Reasoning

Reasoning not only about agents' perception of the world but also about agents' knowledge and/or beliefs of her and others' beliefs.

Multi-Agent Epistemic Planning

Introduction

Epistemic Reasoning

Reasoning not only about agents' perception of the world but also about agents' knowledge and/or beliefs of her and others' beliefs.

Multi-agent Epistemic Planning Problem [BA11]

Finding plans where the goals can refer to:

- the state of the world
- the knowledge and/or the beliefs of the agents

Multi-Agent Epistemic Planning
An Example

Multi-Agent Epistemic Planning

An Example

Initial State

- Snoopy and Charlie are looking while Lucy is ᄀlooking
- No one knows the coin position.

Multi-Agent Epistemic Planning

An Example

Goal State

- Charlie knows the coin position
- Lucy knows that Charlie knows the coin position
- Snoopy does not know anything about the plan execution

Multi-Agent Epistemic Planning

Notations

Given a set of agents $\mathcal{A G}$
Belief formulae where ag $\in \mathcal{A G}, \alpha \subseteq \mathcal{A G}$
We use the operators \mathbf{B}_{ag} and \mathbf{C}_{α} to model the beliefs and the common knowledge of the agents.

Multi-Agent Epistemic Planning

Notations

Given a set of agents $\mathcal{A G}$

Belief formulae

 where ag $\in \mathcal{A G}, \alpha \subseteq \mathcal{A G}$We use the operators \mathbf{B}_{ag} and \mathbf{C}_{α} to model the beliefs and the common knowledge of the agents.

Properties of \mathbf{B}_{ag}

Given the fluent formulae ϕ, ψ and the worlds i, j

$$
\begin{array}{lr}
\mathrm{D} \neg \mathcal{R}_{\mathrm{i}} \perp & \mathcal{B} \mathcal{K} \\
\mathrm{~K}\left(\mathcal{R}_{\mathrm{i}} \varphi \wedge \mathcal{R}_{\mathrm{i}}(\varphi \Longrightarrow \psi)\right) \Longrightarrow \mathcal{R}_{\mathrm{i}} \psi & \mathcal{B} \mathcal{K} \\
\mathrm{~T} \mathcal{R}_{\mathrm{i}} \varphi \Longrightarrow \varphi & \mathcal{K} \\
4 \mathcal{R}_{\mathrm{i}} \varphi \Longrightarrow \mathcal{R}_{\mathrm{i}} \mathcal{R}_{\mathrm{i}} \varphi & \mathcal{B} \mathcal{K} \\
5 \neg \mathcal{R}_{\mathrm{i}} \varphi \Longrightarrow \mathcal{R}_{\mathrm{i}} \neg \mathcal{R}_{\mathrm{i}} \varphi & \mathcal{B} \mathcal{K}
\end{array}
$$

Chapter 2

Possibilities

Possibilities
 Overview

- Introduced by Gerbrandy and Groeneveld [GG97]
- Used to represent multi-agent information change
- Based on non-well-founded sets

Possibilities

Formal Definition

Possibility [GG97]

Let $\mathcal{A G}$ be a set of agents and \mathcal{F} a set of propositional variables:

- A possibility u is a function that assigns to each propositional variable $l \in \mathcal{F}$ a truth value $u(1) \in\{0,1\}$ and to each agent $\mathrm{ag} \in \mathcal{A G}$ a set of possibilities $\mathrm{u}(\mathrm{ag})=\sigma$ (information state).

Intuitively ...

- The possibility u is a possible interpretation of the world and of the agents' beliefs
- $u(1)$ specifies the truth value of the literal 1
$-\mathrm{u}(\mathrm{ag})$ is the set of all the interpretations the agent ag considers possible in u
- Representable with graphs: we will use graph terminology

Chapter 3

The action language $\boldsymbol{m} \mathcal{A}^{\rho}$

The action language $m \mathcal{A}^{\rho}$

Action types

We introduced the action language $m \mathcal{A}^{\rho}$ in [Fab+20]

- Used to describe MEP problems
- Uses possibilities as states
- Actions preconditions: belief formulae

The action language $m \mathcal{A}^{\rho}$

Action types

We introduced the action language $m \mathcal{A}^{\rho}$ in [Fab+20]

- Used to describe MEP problems
- Uses possibilities as states
- Actions preconditions: belief formulae

Three types of actions:

- Ontic: modifies some fluents of the world Charlie opens the box

The action language $m \mathcal{A}^{\rho}$

Action types

We introduced the action language $m \mathcal{A}^{\rho}$ in [Fab+20]

- Used to describe MEP problems
- Uses possibilities as states
- Actions preconditions: belief formulae

Three types of actions:

- Ontic: modifies some fluents of the world Charlie opens the box
- Sensing: senses the true value of a fluent
 Charlie peeks inside the box

The action language $m \mathcal{A}^{\rho}$

Action types

We introduced the action language $m \mathcal{A}^{\rho}$ in [Fab+20]

- Used to describe MEP problems
- Uses possibilities as states
- Actions preconditions: belief formulae

Three types of actions:

- Ontic: modifies some fluents of the world Charlie opens the box
- Sensing: senses the true value of a fluent
 Charlie peeks inside the box
- Announcement: announces the fluent to other agents Charlie announces the coin position

The action language $m \mathcal{A}^{\rho}$

Observability Relations

An execution of an action might change or not an agents' belief accordingly to her degree of awareness

Action type	Full observers	Partial Observers	Oblivious
Ontic	\checkmark		\checkmark
Sensing	\checkmark	\checkmark	\checkmark
Announcement	\checkmark	\checkmark	\checkmark

Chapter 4

PLATO

PLATO
 Overview

PLATO, ePistemic muLti-agent Answer seT programming sOlver:

- Declarative encoding in ASP of MEP
- Based on the language $m \mathcal{A}^{\rho}$
- Main components: initial state generation, entailment, transition function
- Exploits clingo's multi-shot capabilities [Geb+19]
- Formal proof of correctness

PLATO ASP Encoding

Encoding possibilities

Let u be a possibility.

ASP encoding: possibilities

We encode u with the atom possible_world $\left(T_{u}, R_{u}, P_{u}\right)$, where:

- T_{u} tells us when u was created
- R_{u} is the repetition of u
- P_{u} is the numerical index of u

PLATO ASP Encoding

Encoding possibilities

Let u be a possibility.

ASP encoding: possibilities

We encode u with the atom possible_world $\left(T_{u}, R_{u}, P_{u}\right)$, where:

- T_{u} tells us when u was created
- R_{u} is the repetition of u
- P_{u} is the numerical index of u

ASP encoding: pointed possibility

If u is the possibility that represents the real configuration of the world, we encode it with the atom pointed $\left(T_{u}, R_{u}, P_{u}\right)$.

When the context is clear we will use only P_{u} instead of (T_{u}, R_{u}, P_{u}).

PLATO ASP Encoding

Encoding possibilities

Let u, v be two possibilities, let $A G$ be an agent and let F be a fluent.

ASP encoding: information states

We encode $v \in u(A G)$ with the atom believes $\left(P_{u}, P_{v}, A G\right)$.

PLATO ASP Encoding

Encoding possibilities

Let u, v be two possibilities, let $A G$ be an agent and let F be a fluent.

ASP encoding: information states
We encode $v \in u(A G)$ with the atom believes $\left(P_{u}, P_{v}, A G\right)$.

ASP encoding: interpretations

We encode $u(F)=1$ with the atom holds $\left(P_{u}, F\right)$.

PLATO Entailment
 Entailment

Given a possibility P and a belief formula F .

PLATO Entailment

Entailment

Given a possibility P and a belief formula F .

entails	(P)	F)	: - holds(P, F), fluent(F).
entails	(P)	$\operatorname{neg}(\mathrm{F})$)	: - not entails(P, F).
entails	(P,	and(F1, F2))	: - entails(P, F1), entails(P, F2).
entails	(P,	or(F1, F2))	: - entails(P, F1).
entails	(P,	or(F1, F2))	:- entails(P, F2).

PLATO Entailment

Entailment

Given a possibility P and a belief formula F .

```
entails
(P,
entails
entails
entails
entails
not_entails
entails
```

(P,
(P,
(P, and(F1, F2)) :- entails(P, F1), entails(P, F2).
($\mathrm{P}, \quad \operatorname{or}(\mathrm{F} 1, \mathrm{~F} 2)) \quad:-$ entails(P, F1).
($\mathrm{P}, \quad \operatorname{or}(\mathrm{F} 1, \mathrm{~F} 2)) \quad:-$ entails($\mathrm{P}, \mathrm{F} 2)$.
(P1,
(P,
F) :- holds(P, F), fluent(F).
neg(F)) :- not entails(P, F).
$\mathrm{b}(\mathrm{AG}, \mathrm{F}))$:- not entails(P2, F), believes(P1, P2, AG).
$\mathrm{b}(\mathrm{AG}, \mathrm{F}))$:- not not_entails(P, b(AG, F)).

PLATO Entailment

Entailment

Given a possibility P and a belief formula F .

```
entails
(P,
entails
entails
entails
entails
not_entails
entails
```

F) :- holds(P,F), fluent(F).

```
F) :- holds(P,F), fluent(F).
    neg(F)) :- not entails(P,F).
    neg(F)) :- not entails(P,F).
and(F1, F2)) :- entails(P, F1), entails(P, F2).
and(F1, F2)) :- entails(P, F1), entails(P, F2).
    or(F1,F2)) :- entails(P, F1).
    or(F1,F2)) :- entails(P, F1).
    or(F1,F2)) :- entails(P, F2).
    or(F1,F2)) :- entails(P, F2).
    b(AG,F)) :- not entails(P2,F), believes(P1, P2, AG).
    b(AG,F)) :- not entails(P2,F), believes(P1, P2, AG).
    b(AG,F)) :- not not_entails(P, b(AG, F)).
    b(AG,F)) :- not not_entails(P, b(AG, F)).
    c(AGS,F)) :- not entails(P2,F), reaches(P1, P2, AGS).
    c(AGS,F)) :- not entails(P2,F), reaches(P1, P2, AGS).
    c(AGS, F)) :- not not_entails(P, c(AGS,F)).
```

 c(AGS, F)) :- not not_entails(P, c(AGS,F)).
    ```

\section*{PLATO Transition function}

\section*{Ontic actions}

Let open be an ontic action such that
- It sets the fluent opened to true
- Only Charlie and Snoopy are attentive


\section*{PLATO Transition function}

\section*{Ontic actions}

Let open be an ontic action such that
- It sets the fluent opened to true
- Only Charlie and Snoopy are attentive



\section*{PLATO Transition function}

\section*{Ontic actions}

Let open be an ontic action such that
- It sets the fluent opened to true
- Only Charlie and Snoopy are attentive

\(\operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right):-\operatorname{pointed}\left(\mathrm{u}_{1}\right)\), reaches \(\left(\mathrm{u}_{1}, \mathrm{u}_{\mathrm{i}}\right.\), AGS \()\), fully_obs(AGS). \(\quad(i \in\{1,2\})\)

C, L, S

\[
\begin{aligned}
& u_{1}(\mathcal{F})=\left\{\text { head, }^{\text {looking }} \text { Charlie }, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { looking }_{\text {Charlie }}, \text { looking }_{\text {snoopy }}\right\} \\
& u_{1}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {head, }} \text { looking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {looking }} \text { Charlie }, \text { looking }_{\text {Snoopy }}\right\}
\end{aligned}
\]


\section*{PLATO Transition function}

\section*{Ontic actions}

Let open be an ontic action such that
- It sets the fluent opened to true
- Only Charlie and Snoopy are attentive

\[
\text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{j}}^{\prime}, \mathrm{AG}\right):-
\]
\[
\operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right), \operatorname{pw}\left(\mathrm{u}_{\mathrm{j}}^{\prime}\right), \text { fully_obs }(\mathrm{AG}),
\] believes \(\left(u_{i}, u_{j}, A G\right), \operatorname{pw}\left(u_{i}\right), \operatorname{pw}\left(u_{j}\right)\).

C, L, S


C, S

\[
\begin{aligned}
& \left.u_{1}(\mathcal{F})=\text { \{head, lookingcharlie, } \text {, lookingsnoopy }\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { 1ooking }_{\text {charlie }}, \text { 10oking }_{\text {snoopy }}\right\} \\
& u_{1}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {head, }} \text { looking Charlie }, \text { looking } \text { snoopy }\right\} \\
& u_{2}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {lookingchariie },} \text { lookingsnoopy }\right\}
\end{aligned}
\]

\section*{PLATO Transition function}

\section*{Ontic actions}

Let open be an ontic action such that
- It sets the fluent opened to true
- Only Charlie and Snoopy are attentive

believes \(\left(u_{i}^{\prime}, u_{j}, A G\right):-\quad \operatorname{pw}\left(u_{i}^{\prime}\right)\),oblivious(AG), believes \(\left(u_{i}, u_{j}, A G\right), \operatorname{pw}\left(u_{i}\right), \operatorname{pw}\left(u_{j}\right)\).

\[
\begin{aligned}
& u_{1}(\mathcal{F})=\left\{\text { head, }^{\left.10 \text { oking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\}}\right. \\
& u_{2}(\mathcal{F})=\left\{\text { looking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{1}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {head, }} \text { looking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {looking }} \text { Charlie }, \text { looking }_{\text {Snoopy }}\right\}
\end{aligned}
\]

\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
& \left.u_{1}(\mathcal{F})=\text { head, }^{\text {looking }} \text { Charlie }, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { looking }_{\text {Charlie }}, \text { looking }_{\text {snoopy }}\right\}
\end{aligned}
\]
\[
\begin{aligned}
& u_{2}^{\prime}(\mathcal{F})=\left\{\text { opened, }^{\text {looking }} \text { Charlie }, \text { looking }_{\text {Snoopy }}\right\}
\end{aligned}
\]

\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
\operatorname{pw}\left(u_{1}^{\prime \prime}\right):- & \text { pointed }\left(u_{1}^{\prime}\right), \text { reaches }\left(u_{1}^{\prime}, u_{1}^{\prime}, \text { AGS }\right), \text { fully_obs(AGS) }, \\
& \text { holds_sensed( } \left.u_{1} \text {, peek }\right) .
\end{aligned}
\]


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\(\operatorname{pw}\left(\mathrm{u}_{2}^{\prime \prime}\right):-\operatorname{pointed}\left(\mathrm{u}_{1}^{\prime}\right)\), reaches \(\left(\mathrm{u}_{1}^{\prime}, \mathrm{u}_{2}^{\prime}\right.\), AGS \()\), not_oblivious(AGS).


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
\text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}, \mathrm{u}_{j}^{\prime \prime}, \mathrm{AG}\right):- & \mathrm{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}\right), \mathrm{pw}\left(\mathrm{u}_{j}^{\prime \prime}\right), \mathrm{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right), \mathrm{pw}\left(\mathrm{u}_{\mathrm{j}}^{\prime}\right), \\
& \text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{j}^{\prime}, \mathrm{AG}\right), \text { fully_obs }(\mathrm{AG}), \\
& \text { holds_sensed }\left(\mathrm{u}_{\mathrm{i}}, \mathrm{peek}\right)=\text { holds_sensed }\left(\mathrm{u}_{\mathrm{j}}, \text { peek }\right) .
\end{aligned}
\]


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
\text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}, \mathrm{u}_{\mathrm{j}}^{\prime \prime}, \mathrm{AG}\right):- & \operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}\right), \operatorname{pw}\left(\mathrm{u}_{j}^{\prime \prime}\right), \operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right), \operatorname{pw}\left(\mathrm{u}_{\mathrm{j}}^{\prime}\right), \quad(i, j \in\{1,2\}) \\
& \text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{j}}^{\prime}, A G\right), \operatorname{partially\_ obs(AG).}
\end{aligned}
\]


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
\text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}, \mathrm{u}_{\mathrm{j}}, \mathrm{AG}\right):- & \operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}\right), \operatorname{pw}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right), \operatorname{pw}\left(\mathrm{u}_{\mathrm{j}}\right), \\
& \text { believes }\left(\mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{j}}, A G\right), \text { oblivious(AG). }
\end{aligned}(i, j \in\{1,2\})
\]


\section*{PLATO Transition function}

\section*{Sensing/Announcement actions}

Let peek be an ontic action such that
- Charlie senses the fluent heads
- Only Charlie and Snoopy are attentive

\[
\begin{aligned}
& u_{1}(\mathcal{F})=\left\{\text { head, } \text { looking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { lookingCharlie }, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{1}^{\prime \prime}(\mathcal{F})=\left\{\text { opened } \text {, head, 1ooking }{ }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}^{\prime \prime}(\mathcal{F})=\left\{\text { opened, } \text { lookingCharlie }, \text { looking }_{\text {Snoopy }}\right\}
\end{aligned}
\]

\section*{PLATO Correctness}

\section*{Correctness w.r.t. \(m \mathcal{A}^{\rho}\)}

Let \(u, v\) be two possibilities and \(\psi\) be a belief formula.

\section*{Entailment correctness}

For each u , we have that \(\forall \psi \mathrm{u} \models_{\phi} \psi\) iff \(\mathrm{u} \models_{\Gamma} \psi\)

\section*{Initial state generation correctness}

For each \(u, v\) such that \(u\) is the initial state in \(m \mathcal{A}^{\rho}\) and \(v\) is the initial state in PLATO then \(\forall \psi \mathrm{u} \models_{\phi} \psi\) iff \(\mathrm{v} \models_{\Gamma} \psi\).

\section*{Transition function correctness}

Let a be an action instance. For each \(u, v\) such that \(\forall \psi u \Vdash_{\phi} \psi\) iff \(v \models\left\ulcorner\psi\right.\), then \(\forall \psi \quad \Phi(\mathrm{a}, \mathrm{u}) \models_{\Phi} \psi\) iff \(\Gamma(\mathrm{a}, \mathrm{v}) \models_{\Gamma} \psi\).

\section*{PLATO Results}

\section*{Experimental evaluation}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ SC: \(|\mathcal{A G}|=9,|\mathcal{F}|=12,|\mathcal{A}|=14\)} \\
\hline \hline\(L\) & many & frumpy & K-BIS & P-MAR \\
\hline \hline 4 & .24 & .24 & .03 & \(\mathbf{. 0 0 7}\) \\
6 & 2.56 & 2.49 & .16 & \(\mathbf{. 0 4}\) \\
8 & 36.79 & 38.34 & 4.23 & \(\mathbf{. 3 0}\) \\
9 & 204.52 & 146.343 & 5.79 & \(\mathbf{. 8 3}\) \\
10 & T0 & 839.27 & 7.36 & \(\mathbf{1 . 7 8}\) \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Gr: \(|\mathcal{A \mathcal { G }}|=3,|\mathcal{F}|=9,|\mathcal{A}|=24\)} \\
\hline \hline\(L\) & Total & Ground & Solve & Atoms \\
\hline \hline 3 & .97 & .60 & .36 & \(28^{\prime} 615\) \\
4 & 4.25 & 2.24 & 2.01 & \(42^{\prime}{ }^{\prime} 22\) \\
5 & 32.83 & 2.52 & 30.31 & \(71^{\prime} 482\) \\
6 & 211.69 & 5.27 & 206.41 & \(1400^{\prime} 305\) \\
7 & 1066.80 & 16.94 & 1049.86 & \(302^{\prime} 623\) \\
\hline \hline
\end{tabular}

\section*{PLATO Results}

\section*{Experimental evaluation}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ SC: \(|\mathcal{A G}|=9,|\mathcal{F}|=12,|\mathcal{A}|=14\)} \\
\hline \hline\(L\) & many & frumpy & K-BIS & P-MAR \\
\hline \hline 4 & .24 & .24 & .03 & \(\mathbf{. 0 0 7}\) \\
6 & 2.56 & 2.49 & .16 & \(\mathbf{. 0 4}\) \\
8 & 36.79 & 38.34 & 4.23 & \(\mathbf{. 3 0}\) \\
9 & 204.52 & 146.343 & 5.79 & \(\mathbf{. 8 3}\) \\
10 & T0 & 839.27 & 7.36 & \(\mathbf{1 . 7 8}\) \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Gr: \(|\mathcal{A \mathcal { G }}|=3,|\mathcal{F}|=9,|\mathcal{A}|=24\)} \\
\hline \hline\(L\) & Total & Ground & Solve & Atoms \\
\hline \hline 3 & .97 & .60 & .36 & \(28^{\prime} 615\) \\
4 & 4.25 & 2.24 & 2.01 & \(42^{\prime}, 222\) \\
5 & 32.83 & 2.52 & 30.31 & \(71^{\prime} 482\) \\
6 & 211.69 & 5.27 & 206.41 & \(1400^{\prime} 305\) \\
7 & 1066.80 & 16.94 & 1049.86 & \(302^{\prime} 623\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{CC_1: \(|\mathcal{A G}|=2,|\mathcal{F}|=10,|\mathcal{A}|=16\)} & \multicolumn{4}{|l|}{CC_2: \(|\mathcal{A G}|=3,|\mathcal{F}|=13,|\mathcal{A}|=24\)} \\
\hline \(L\) & single & multi & K-BIS & P-MAR & single & multi & K-BIS & P-MAR \\
\hline 3 & 48.74 & 6.52 & . 08 & . 02 & 153.76 & 14.07 & . 13 & . 03 \\
\hline 4 & 188.32 & 8.74 & . 16 & . 03 & то & 28.02 & . 54 & . 10 \\
\hline 5 & то & 7.68 & 1.14 & . 16 & то & 16.13 & 4.89 & . 60 \\
\hline 6 & 1222.67 & 10.83 & 4.42 & 0.64 & то & 14.84 & 12.66 & 1.71 \\
\hline 7 & то & 30.08 & 16.06 & 2.61 & то & 56.48 & 142.06 & 12.37 \\
\hline
\end{tabular}

\section*{Chapter 5}

\section*{Conclusions}

\section*{Conclusions Future works}

\section*{Conclusions}
- Exploited a declarative approach to implement Multi-Agent Epistemic Planning
- Improved readability and code maintenance
- Straightforward semantical adaptations
- Results comparable to the imperative approach
- Formal proof of correctness

Conclusions Future works

\section*{Future works}
- Enhancement of the entailment rules
- Implementation of heuristics
- Formal proof of equivalence between \(m \mathcal{A}^{*}\) and \(m \mathcal{A}^{\rho}\)
- We are using PLATO to implement novel concepts in MEP, such as trust, lies and misconceptions

Conclusions Q\&A
The end

\section*{Thank You for the attention}

\section*{References}

\section*{References ]}
[BA11] Thomas Bolander and Mikkel Birkegaard Andersen. "Epistemic planning for single-and multi-agent systems". In: Journal of Applied Non-Classical Logics 21.1 (2011), pp. 9-34.
[Fab+20] Francesco Fabiano et al. "EFP 2.0: A Multi-Agent Epistemic Solver with Multiple E-State Representations". In: Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020. AAAI Press, 2020, pp. 101-109. URL: https://aaai. org/ojs/index.php/ICAPS/article/view/6650.

\section*{References}

\section*{References II}
[Geb+19] Martin Gebser et al. "Multi-shot ASP solving with clingo". In: Theory and Practice of Logic Programming 19 (2019), pp. 27-82. DOI: 10.1017/S1471068418000054.
[GG97] J. Gerbrandy and W. Groeneveld. "Reasoning about information change". In: Journal of Logic, Language and Information 6.2 (1997), pp. 147-169. DOI: 10.1023/A:1008222603071.
[Hua+17] X. Huang et al. "A general multi-agent epistemic planner based on higher-order belief change". In: 2017, pp. 1093-1101.
[Mui+15] Christian J. Muise et al. "Planning Over Multi-Agent Epistemic States: A Classical Planning Approach". In: Proc. of AAAI. 2015, pp. 3327-3334.

\section*{References}

\section*{References III}
[Son+14] Tran Cao Son et al. "Finitary S5-theories". In: European Workshop on Logics in Artificial Intelligence. Springer. 2014, pp. 239-252.

\section*{Backup Slides}

\section*{Ohter Planners}

To the best of our knowledge EFP 2.0 is the only comprehensive epistemic multi-agent planner.

Other planners with the best results in the literature are:
- RP-MEP [Mui+15]: translates into classical planning. Only deals with a finite level of nested beliefs.
- MEPK [Hua+17]: does not support dynamic common knowledge.

\section*{Backup Slides}

\section*{Domains |}
- Assembly Line (AL): two agents are responsible for processing a different part of a product. They can fail in processing their part and inform the other of the status of her task. The agents decide to assemble the product or restart. Goal: the agents must assemble the product. We change the depth of the belief formulae.
- Coin in the Box (CB). \(n \geq 3\) agents are in a room. There is a closed box containing a coin. None of the agents know the coin position. One agent has the key. An agent may look inside the box to sense the state of the coin and also share the result.

\section*{Backup Slides}

\section*{Domains II}
- Collaboration and Communication (CC). \(n \geq 2\) agents move along a corridor with \(k \geq 2\) rooms in which \(m \geq 1\) boxes can be located. Agents can determine if a certain box is in the room they are in. They can communicate information about the boxes' position. Agents may move only to adjacent rooms.
- Grapevine. \(n \geq 2\) agents are located in \(k \geq 2\) rooms. Each agent ag knows a "secret" (s_ag). Agents can move to an adjacent room and share their secret within the same room.
- Selective Communication (SC). \(n \geq 2\) agents within one of the \(k \geq 2\) rooms in a corridor. Agents can move to an adjacent room. In only one of the rooms, agents may acquire some information q and may communicate it to others.

Backup Slides

\section*{Finitary S5 Theories}

\section*{Finitary S5-theory [Son+14]}

Let \(\phi\) be a fluent formula and let \(\mathrm{i} \in \mathcal{A G}\) be an agent. A finitary S5-theory is a collection of formulae of the form:
\[
\text { (i) } \phi \quad \text { (ii) } C \phi \quad \text { (iii) } C\left(B_{i} \phi \vee B_{i} \neg \phi\right) \quad \text { (iv) } C\left(\neg B_{\mathrm{i}} \phi \wedge \neg B_{\mathrm{i}} \neg \phi\right)
\]

Each fluent \(\mathrm{f} \in \mathcal{F}\) must appear in at least one of the formulae (ii)-(iv) (for at least one agent \(\mathrm{i} \in \mathcal{A G}\) ).

A finitary S5-theory has finitely many S5-models up to equivalence.

\section*{Backup Slides}

\section*{Initial state generation}

Given
- \(\mathcal{A G}=\{\) Snoopy, Charlie, Lucy \(\}\)
- \(\mathcal{F}=\{\) opened, head, lookingag \(\}\) ag \(\in \mathcal{A G}\)


\section*{Backup Slides}

\section*{Initial state generation}

Given
- \(\mathcal{A G}=\{\) Snoopy, Charlie, Lucy \(\}\)
- \(\mathcal{F}=\{\) opened, head, lookingag \(\}\) ag \(\in \mathcal{A G}\)

Consider a formula of a finitary S5 theory.


Formula type:

\section*{Backup Slides}

\section*{Initial state generation}

Given
\[
-\mathcal{A G}=\{\text { Snoopy }, \text { Charlie }, \text { Lucy }\}
\]
- \(\mathcal{F}=\{\) opened, head, lookingag \(\}\) ag \(\in \mathcal{A G}\)

Consider a formula of a finitary S5 theory.


Formula type:
(i) \(\phi\)

\section*{Backup Slides}

\section*{Initial state generation}

Given
\[
\begin{aligned}
-\mathcal{A G} & =\{\text { Snoopy }, \text { Charlie, Lucy }\} \\
-\mathcal{F} & =\{\text { opened, head, lookingag }\} \text { ag } \in \mathcal{A G}
\end{aligned}
\]


Consider a formula of a finitary S5 theory.
\[
\begin{aligned}
& \mathcal{A G} \\
& u_{1}(\mathcal{F})=\left\{\text { head, lookingCharlie }, \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\{\text { lookingCharlie } \text { looking Snoopy }\}
\end{aligned}
\]

Formula type:
(i) \(\phi\)
(ii) \(\subset \phi\)

\section*{Backup Slides}

\section*{Initial state generation}

Given
\[
\begin{aligned}
-\mathcal{A G} & =\{\text { Snoopy }, \text { Charlie, Lucy }\} \\
-\mathcal{F} & =\{\text { opened, head, lookingag }\} \text { ag } \in \mathcal{A G}
\end{aligned}
\]


Consider a formula of a finitary S5 theory.
\[
\begin{aligned}
& \mathcal{A G} \\
& u_{1}(\mathcal{F})=\left\{\text { head, lookingCharlie, } \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { lookingCharlie }^{\text {looking }} \text { Snoopy }\right\}
\end{aligned}
\]

\section*{Formula type:}
(i) \(\phi\)
(ii) \(C \phi\)
(iii) \(C\left(B_{i} \phi \vee B_{i} \neg \phi\right)\)

Formula:
\[
C\left(B_{\text {Lucy }} \text { head } \vee B_{\text {Lucy }} \neg \text { head }\right)
\]

\section*{Backup Slides}

\section*{Initial state generation}

Given
\[
\begin{aligned}
-\mathcal{A G} & =\{\text { Snoopy }, \text { Charlie, Lucy }\} \\
-\mathcal{F} & =\{\text { opened, head, lookingag }\} \text { ag } \in \mathcal{A G}
\end{aligned}
\]


Consider a formula of a finitary S5 theory.
\[
\begin{aligned}
& \stackrel{\text { AG }}{\sim} \\
& u_{1}(\mathcal{F})=\left\{\text { head, }^{\text {looking Charlie }} \text {, } \text { looking }_{\text {Snoopy }}\right\} \\
& u_{2}(\mathcal{F})=\left\{\text { looking }_{\text {Charlie }}, \text { looking }_{\text {Snoopy }}\right\}
\end{aligned}
\]

Formula type:
(i) \(\phi\)
(ii) \(C \phi\)
(iii) \(C\left(B_{i} \phi \vee B_{i} \neg \phi\right)\)
(iv) \(C\left(\neg B_{i} \phi \wedge \neg B_{i} \neg \phi\right)\)

\section*{Backup Slides}

\section*{From Possibilities to Kripke Structures}

Considering a possibility

A possibility


\section*{Backup Slides}

\section*{From Possibilities to Kripke Structures}
\(<\) Considering a possibility
Can be expressed as a system of equations

A possibility
Its system of equation

\[
\begin{cases}\mathrm{w}(p)=1 & \mathrm{w}(q)=0 \\ \mathrm{v}(p)=1 & \mathrm{v}(q)=1 \\ \mathrm{u}(p)=0 & \mathrm{u}(q)=0 \\ \mathrm{w}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{w}(\mathrm{~B})=\{\emptyset\} \\ \mathrm{v}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{v}(\mathrm{~B})=\{\mathrm{u}\} \\ \mathrm{u}(\mathrm{~A})=\{\emptyset\} & \mathrm{u}(\mathrm{~B})=\{\emptyset\}\end{cases}
\]

\section*{Backup Slides}

\section*{From Possibilities to Kripke Structures}
\(<\) Considering a possibility
Can be expressed as a system of equations
Systems of equations have unique solutions

A possibility

\[
\begin{cases}\mathrm{w}(p)=1 & \mathrm{w}(q)=0 \\ \mathrm{v}(p)=1 & \mathrm{v}(q)=1 \\ \mathrm{u}(p)=0 & \mathrm{u}(q)=0 \\ \mathrm{w}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{w}(\mathrm{~B})=\{\emptyset\} \\ \mathrm{v}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{v}(\mathrm{~B})=\{\mathrm{u}\} \\ \mathrm{u}(\mathrm{~A})=\{\emptyset\} & \mathrm{u}(\mathrm{~B})=\{\emptyset\}\end{cases}
\]


\section*{Backup Slides}

\section*{From Possibilities to Kripke Structures}
\(<\) Considering a possibility
Can be expressed as a system of equations
Systems of equations have unique solutions
\(\longrightarrow\) The solution decorates a Kripke structure

A possibility


Its system of equation
\[
\begin{cases}\mathrm{w}(p)=1 & \mathrm{w}(q)=0 \\ \mathrm{v}(p)=1 & \mathrm{v}(q)=1 \\ \mathrm{u}(p)=0 & \mathrm{u}(q)=0 \\ \mathrm{w}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{w}(\mathrm{~B})=\{\emptyset\} \\ \mathrm{v}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{v}(\mathrm{~B})=\{\mathrm{u}\} \\ \mathrm{u}(\mathrm{~A})=\{\emptyset\} & \mathrm{u}(\mathrm{~B})=\{\emptyset\}\end{cases}
\]

The solution


Relative Kripke Structure


\section*{Backup Slides}

\section*{From Possibilities to Kripke Structures}
\(<\) Considering a possibility
Can be expressed as a system of equations
Systems of equations have unique solutions
\(\longrightarrow\) The solution decorates a Kripke structure

A possibility


Its system of equation
\[
\begin{cases}\mathrm{w}(p)=1 & \mathrm{w}(q)=0 \\ \mathrm{v}(p)=1 & \mathrm{v}(q)=1 \\ \mathrm{u}(p)=0 & \mathrm{u}(q)=0 \\ \mathrm{w}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{w}(\mathrm{~B})=\{\emptyset\} \\ \mathrm{v}(\mathrm{~A})=\{\mathrm{v}\} & \mathrm{v}(\mathrm{~B})=\{\mathrm{u}\} \\ \mathrm{u}(\mathrm{~A})=\{\emptyset\} & \mathrm{u}(\mathrm{~B})=\{\emptyset\}\end{cases}
\]

The solution


Relative Kripke Structure
```

