CLP-BASED PROTEIN FRAGMENT ASSEMBLY

A. Dal Palù¹ A. Dovier² F. Fogolari³ E. Pontelli⁴

1. Dept. Math, Univ. Parma

2. Dept. Math and Computer Science, Univ. Udine

3. Dept. Biomedical Sciences and Technologies, Univ. Udine

4. Dept. Computer Science, New Mexico State Univ.

ICLP 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ADVERTISING

SUMMARY

PROTEIN STRUCTURE

- THE PSP PROBLEM
- CLP(FD) MODELING
- RESULTS
- CONCLUSIONS
- ADVERTISING

PROTEINS

- · Proteins are molecules made of amino acids
- · Amino acids are small molecules that form a flexible chain

- There are several degrees of freedom (black arrows)
- The purple dots represent the *side chains*, that is a sub molecule that depends on the amino acid type
- Each amino acid is given a letter code (typ., 20 types)

PROTEINS

- · Proteins are molecules made of amino acids
- · Amino acids are small molecules that form a flexible chain

- There are several degrees of freedom (black arrows)
- The purple dots represent the *side chains*, that is a sub molecule that depends on the amino acid type
- Each amino acid is given a letter code (typ., 20 types)

ONCLUSIONS

ADVERTISING

PROTEINS

PRIMARY SEQUENCE

Aminoacid sequence: GPEILCGAELVDALQFVCGDRGFYFNKPTGYGSSS RRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

Primary sequence...

...embedded in the 3D space

・ロン ・ 四 と ・ 回 と ・ 回 と

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROTEINS

SIMPLIFIED ATOMIC STRUCTURE

- The backbone (green) links consecutive amino acids
- Each amino acid is represented by its carbon alpha (C_{α})

= 900

PROTEINS BACKBONE

- We consider a backbone made of 4 amino acids.
- The distance between $C\alpha$ points is constant (3.81Å).

There are two bend angles

And one torsional angle

THE STRUCTURE PREDICTION PROBLEM

- Given the amino acid sequence
- For each amino acid, output its position in the space

THE STRUCTURE PREDICTION PROBLEM

... and this is the hard part:

- In nature a protein has a unique/stable 3D conformation
- A cost function (that mimics physics laws) can be used to score each conformation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Searching for the optimal score produces the best candidate (NP-complete)

CLP(FD) MODELING

RESULTS

CONCLUSIO

Advertising

PROTEINS Example

A full atom view

The backbone

▲ロト▲母ト▲目ト▲目ト 目 のへの

IDEA: FRAGMENT ASSEMBLY

- Too many random 3D conformations: focus on biologically meaningful ones
- Generation of conformations constrained by *local* homology
- Similar sub-sequences ⇔ similar shapes
- The shorter the sequence, the more typical behavior (set of most frequent conformations)
- Local shape (e.g., helices) depends more on local sequence
- Idea: enumeration of local shapes (fragment assembly)
- Combine local (statistical) preferences and build a coherent global conformation
- Assumption: nature prefers some local shapes ⇒ we should do it as well

IDEA: FRAGMENT ASSEMBLY

- Too many random 3D conformations: focus on biologically meaningful ones
- Generation of conformations constrained by *local homology*
- Similar sub-sequences ⇔ similar shapes
- The shorter the sequence, the more typical behavior (set of most frequent conformations)
- Local shape (e.g., helices) depends more on local sequence
- Idea: enumeration of local shapes (fragment assembly)
- Combine local (statistical) preferences and build a coherent global conformation
- Assumption: nature prefers some local shapes ⇒ we should do it as well

IDEA: FRAGMENT ASSEMBLY

- Idea: enumeration of local shapes (fragment assembly)
- Combine local (statistical) preferences and build a coherent global conformation
- Assumption: nature prefers some local shapes

 we should do it as well

PREPROCESSING

The Protein Data Bank contains $\geq 60K$ protein sequences with their observed 3D structures (X-ray/NMR) Reaching 600K protein sequences (Swissprot)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PREPROCESSING

PDB: EXTRACT INFORMATION

We get fragments composed of 4 consecutive amino acids and collect the corresponding shapes (indexed by sequence)

< ロ > < 同 > < 回 > < 回 >

ъ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PREPROCESSING

CLUSTERING (SAME 4-PLE, DIFFERENT SHAPES)

Clustering according to their similarity (RMSD \leq threshold) White and green form a single cluster

PREPROCESSING

CLUSTERED CONFORMATIONS FOR AAAA

Each color has a representative and frequency count

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Α

PREPROCESSING

2.5,-2	.8,0.3,
1.9,-3	.1,4.0,
-1.9,-	3.4,3.6]
Freq,	ID).

F

How to assemble fragments?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two fragments are *compatible* only if the 3 common amino acids have a low RMSD (similar bend angle)

イロト イポト イヨト イヨト

590

Each compatible pair of fragments is stored as

 $next(F_i, F_j, M)$

with optimal rotation matrix M (that rotates F_i in the reference of F_i)

・ロト・西・・川田・・田・ 日・ ろんの

Given a target sequence, pick the first 4-aa fragment. The protein is grown by attaching compatible fragments (*next*).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ENRICHING THE MODEL

THE CENTROIDS

- Given a $C\alpha$ 4-tuple in 3D, a small degree of freedom for the position of the side chain is allowed
- Different amino acids have different occupation
- A pure Cα-Cα model does not keep into account these differencies
- We consider the positions of the centroids of the side chains.
- Roughly, a centroid is the expected center of mass of the side chain

PROTEIN STRUCTURE

RESULTS

CONCLUSIONS

ADVERTISING

ENRICHING THE MODEL THE CENTROIDS

(日) (日) (日) (日) (日) (日) (日)

CLP(FD) MODELING

- Given amino acid sequence: $[a_1, a_2, \ldots, a_n]$,
- Amino acid positions: $X_1^{\alpha}, Y_1^{\alpha}, Z_1^{\alpha}, \dots, X_n^{\alpha}, Y_n^{\alpha}, Z_n^{\alpha}, X_2^{c}, Y_2^{c}, Z_2^{c}, \dots, X_{n-1}^{c}, Y_{n-1}^{c}, Z_{n-1}^{c}$
- Domains: discretized (0.01Å) 3D positions.
- Fragments: $F_1, F_2, ..., F_{n-3}$.
- Domains: fragments ID from the library for $[a_i, a_{i+1}, a_{i+2}, a_{i+3}]$.
- Variables for rotation matrices: $R_1, R_2, \ldots, R_{n-3}$.

CLP(FD) MODELING FD constraints

- *F_i* and *F_{i+1}* can take only compatible assignments (described by *next*(*F_i*, *F_{i+1}*, *M_i*(*i*+1)))
- the constraint is posted using table builtin
- All fragments are stored in the same reference, thus need to rotate reference, while building the fragments:

(日) (日) (日) (日) (日) (日) (日)

• $R_{i+1} = M_{i,(i+1)} \cdot R_i$ implemented as a constraint

PROTEIN STRUCTURE

CONCLUSIONS

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ADVERTISING

CLP(FD) MODELING FD constraints: link positions to fragments

- $Q_4 = R_{i+1} \cdot F_{i+1} + shift$ (*Ps* already placed = F_i)
- correct shift overlaps P_4 and Q_3 , so that distance between $(X_{i+3}^{\alpha}, Y_{i+3}^{\alpha}, Z_{i+3}^{\alpha})$ and $(X_{i+4}^{\alpha}, Y_{i+4}^{\alpha}, Z^{\alpha})$ is ~3.81Å.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CLP(FD) MODELING

DISTANCE CONSTRAINTS

For each i, j, introduce a distance var D_{i,i}

•
$$D_{i,j} = (X_i - X_j)^2 + (Y_i - Y_j)^2 + (Z_i - Z_j)^2$$

- $D_{i,i} \ge min_dist$ (all_distant) (*)
- *D_{i,i}* ≤ diameter² (compact_factor)
- If ssbond(i,j), $D_{i,j} \leq 6$ Å.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

CLP(FD) MODELING

DISTANCE CONSTRAINTS

• For each *i*, *j*, introduce a distance var *D*_{*i*,*i*}

•
$$D_{i,j} = (X_i - X_j)^2 + (Y_i - Y_j)^2 + (Z_i - Z_j)^2$$

- $D_{i,i} \ge min_dist$ (all_distant) (*)
- *D_{i,j}* ≤ diameter² (compact_factor)
- If ssbond(i,j), $D_{i,i} \leq 6$ Å.
- $D_{i,i} \leq 3.81 * |i j|$ (max stretch)
- Triangular inequality (over $D_{i,i}, D_{i,k}, D_{i,k}$)

(ロ) (同) (三) (三) (三) (三) (○) (○)

CLP(FD) MODELING COST FUNCTION

- Each conformation has four energy contributions:
- Contact centr–centr: each pair of centroid gives a contribution depending on distance and type.
- Contact $C\alpha$ - $C\alpha$: each pair of centroid gives a contribution depending on distance.
- Torsional: each torsion is scored according to a statistical profile for the local sequence.
- Torsional correlation: each pair of consecutive torsion angles is scored with a correlation contribution.

CLP(FD) MODELING COST FUNCTION

- Each conformation has four energy contributions:
- Contact centr–centr: each pair of centroid gives a contribution depending on distance and type.
- Contact $C\alpha$ - $C\alpha$: each pair of centroid gives a contribution depending on distance.
- Torsional: each torsion is scored according to a statistical profile for the local sequence.
- Torsional correlation: each pair of consecutive torsion angles is scored with a correlation contribution.
- This cost function is new and developed with a researcher in molecular biology

PROTEIN STRUCTURE

CLP(FD) MODELIN

RESULTS

CONCLUSION

ADVERTISING

RESULTS 1ENH

Original

Computed

æ

ヘロト 人間 とく ヨン 人 ヨン

PROTEIN STRUCTURE

RESULTS

Conclusi

Advertising

RESULTS 1ENH

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LARGE NEIGHBORING SEARCH

- Logic programming implementation of Large Neighboring Search
- LNS is a form of local search
- The search for next solutions is performed by exploring a *large* neighborhood

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- A large number of variables (subject to constraints) is allowed to change.
- Use Prolog's backtracking capability to modify CLP variables (while constraints are not changed)

LARGE NEIGHBORING SEARCH

- Logic programming implementation of Large Neighboring Search
- LNS is a form of local search
- The search for next solutions is performed by exploring a *large* neighborhood

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- A large number of variables (subject to constraints) is allowed to change.
- Use Prolog's backtracking capability to modify CLP variables (while constraints are not changed)

LARGE NEIGHBORING SEARCH THE ALGORITHM

- 1. Generate an initial solution (standard CLP labeling).
- 2. Randomly select a subset of the variables and assign the previous values to the other variables (same fragments).
- 3. Standard labeling: look for an assignment that improves the cost function.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4. Go back to step 2.

Search stops with a timeout. Allow occasional worse solutions (escape local optima)

LARGE NEIGHBORING SEARCH THE ALGORITHM

- 1. Generate an initial solution (standard CLP labeling).
- 2. Randomly select a subset of the variables and assign the previous values to the other variables (same fragments).
- 3. Standard labeling: look for an assignment that improves the cost function.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

4. Go back to step 2.

Search stops with a timeout.

Allow occasional worse solutions (escape local optima)

ヘロト 人間 とく ヨン 人 ヨン

∃ 990

LARGE NEIGHBORING SEARCH

LARGE NEIGHBORING SEARCH

CONCLUSIONS

Advertising

RESULTS

LARGE NEIGHBORING SEARCH (LNS) IN PROLOG

PID	Ν	Enumerate 2 days		LNS 2 hours	
		RMSD	Energy	RMSD	Energy
1ZDD	34	4.12	-231469	3.81	-226387
1AIL	69	9.78	-711302	5.53	-665161
1VII	36	7.06	-263496	6.64	-252231
2IGD	60	16.35	-375906	10.91	-447513

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CONCLUSIONS

- Working tool Prolog + CLP(FD) for PSP using the idea of tuple assembling
- + LNS (in Prolog) sensibly helps the search
- + We have developed a statistical potential function
- The code is ready to deal with longer local predictions (it already deals with secondary structures)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Correlation Energy/RMSD must be improved
- Constraint propagation must be improved (inverse kinematics?)

CONCLUSIONS

- Working tool Prolog + CLP(FD) for PSP using the idea of tuple assembling
- + LNS (in Prolog) sensibly helps the search
- + We have developed a statistical potential function
- The code is ready to deal with longer local predictions (it already deals with secondary structures)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Correlation Energy/RMSD must be improved
- Constraint propagation must be improved (inverse kinematics?)

PROTEIN STRUCTURE

ADVERTISING

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

WCB 2010

Workshop on **Constraint Based Methods for Bioinformatics** July 21st, 2010 Edinburgh colocated to ICLP 2010 Organizers: Alessandro Dal Palù Agostino Dovier Sebastian Will