
Compiling and Executing PDDL in Picat

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou

Università degli Studi di Udine

CILC 2016

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 1 / 21

Outline

Introduction to classical planning

The PDDL Language

The Picat Language

The compiler

Experimental results

Conclusions and further work

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 2 / 21

Classical Planning

Classical Planning is the simplest version of automated Planning and
Scheduling, a core branch of Artificial Intelligence involved in the realization
of a strategy, intended as an accurate sequence of actions, to resolve a
specific problem in a world described by state variables.

Automated Planning is composed of two main components:
I the domain
I the planner

The operation of finding this sequence of actions by the planner can be seen
as the search for a path in a direct graph, where every node represents a
state of the world, and every edge corresponds to an action.

init sstart

s1

s2

s4

s5

act1(x)

act2(y)

act1(a)

act1(b)

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 3 / 21

The PDDL Language

The Planning Domain Definition Language was created in 1998 by Drew
McDremott to standardize all the languages used for classical automated
planning and to be the official language of the 1998/2000 IPC, the first
International Planning Competition

Only “physics only” principles are used for describing a domain, making the
PDDL planner totally domain-independent.

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 4 / 21

The PDDL Language
An example

Example 1: A more-level Type Hierarchy

(: t y p e s movable l o c − o b j e c t
t r u c k c a r g o − movable)

(: p r e d i c a t e s
(at ?n − movable ? l − l o c)
(i n P r e d ? c − c a r g o ? t − t r u c k)
(g o a l ? c − c a r g o ? l − l o c)

)
(: a c t i o n move

: p a r a m e t e r s (? t − t r u c k ? l ? l 1 − l o c)
: p r e c o n d i t i o n (and

(at ? t ? l)
)

: e f f e c t (and (not (at ? t ? l))
(a t ? t ? l 1)
)

)

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 5 / 21

The Picat Language
Introduction to Picat

Developed in 2012 by Neng-Fa Zhou

It aims to collect the main characteristics of various kind of programming
language. Based on B-Prolog engine, but far more expressive and scalable.

Tabling can be used to store the results of certain function calls in memory,
allowing the program to do a quick table lookup instead of repeatedly
calculating a value. It guarantees recursive program termination, preventing
infinite loops and redundancy

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 6 / 21

The Picat Language
Planning in Picat

Picat provides to the user an interesting planner module:

it allows the user to write domains that are at the same time more
sophisticated and more compact than those we could obtain in PDDL, thanks
to the expressiveness of the language

we can mix deterministic and non-deterministic rules to model the domain as
we want

a state can be represented by any possible kind of term provided by Picat

tabling to improve the plan creation, without user intervention

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 7 / 21

Planning in Picat
Action and goal check definition

Example 2: Final state check

f i n a l (+ S t a t e) =>
g o a l c o n d i t i o n .

Example 3: State transition

a c t i o n (+ State ,−NextState ,−Act ion ,−Cost) ,
p r e c o n d i t i o n ,
[c o n t r o l k n o w l e d g e]
?=>
d e s c r i p t i o n o f n e x t s t a t e ,
a c t i o n c o s t c a l c u l a t i o n ,
[h e u r i s t i c a n d d e a d e n d v e r i f i c a t i o n] .

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 8 / 21

Planning in Picat
Plan finding techniques

deep-first searches:
I best plan unbounded(S,Limit,Plan,PlanCost)
I plan unbounded(S,Limit,Plan,PlanCost)

resource-bounded searches:
I plan(S,Limit,Plan,PlanCost)
I iterative deepening with best plan(S,Limit,Plan,PlanCost)
I branch and bound with best plan bb(S,Limit,Plan,PlanCost)

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 9 / 21

Planning in Picat
Factored and Structured State Rapresentation

Factored State Rapresentation is the only possibile in PDDL, so it is one of
the most known in planning.

Structured representation goal is to make the State as small as possible by a
massive usage of Picat expressiveness, because the smaller the States are the
better is due to tabling.

Example 4: PDDL Factored State Representation from Nomystery
{ a t (c1 , l o c 1) , a t (c2 , l o c 2) , a t (t , l o c 3) ,

c o n n e c t e d (lo c 1 , l o c 2) , c o n n e c t e d (lo c 2 , l o c 3) , t r u c k (t)}

Example 5: Factored State Representation in Picat
$ [a t (c1 , l o c 1) , a t (c2 , l o c 2) , a t (t , l o c 3) ,

c o n n e c t e d (lo c 1 , l o c 2) , c o n n e c t e d (lo c 2 , l o c 3) , t r u c k (t)]

Example 6: Structured State Representation in Picat
s (TruckLoc , TruckLoad , Cargo)

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 10 / 21

The Compiler

In this section we present the main contribution of the thesis, namely the
definition and implementation of a tool for automatic conversion of PDDL files
into Picat, developed in Picat.

It provides support to many PDDL features, like object typing (not naturally
supported by Picat planner), functions (numeric and not), calculated action
costs, quantifiers and others, that are not even supported by some PDDL
planners.

It includes the pi2pddl parser written by Neng-Fa Zhou, only for the problem
instances conversion

Since the Factored Representation is the only available in PDDL, a state in a
Picat translated domain takes the following form:

s (PREDICATE 1 , PREDICATE 2 , . . . , PREDICATE N)

PDDL objects types are respesented by Picat rigid facts.

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 11 / 21

The Compiler

Discrimination between fluents and “rigids” predicates by a static analysis;
(pd ?x1 ... ?xn) is translated as:

member(PD,(X1,...,XN)) if the predicate is a fluent.

PD1=select(PD0,(X1,...,XN)) if the predicate is a fluent and we have
(not(pd?x1 ...?xn)) in the effect.

pd(X1,...,XN) if the predicate is “rigid”

Lists to represent fluents and Picat rigid predicates to represent static predicates
and PDDL types.

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 12 / 21

The Compiler
Typing

If our domain presents an hierarchy tree with more levels, some actions may not
work properly, due to the extra information from PDDL paramaters section
missing in Picat:

(p r e d i c a t e (a t ? t − movable ? l − l o c) . . .)
(a c t i o n move
(p a r a m e t e r s (? t − t r u c k . . .

These ambiguities are resolved by binding ?t to a truck with the rigid predicate
truck(T) (only when strictly necessary)

object

movable

truck cargo

location

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 13 / 21

The Compiler
Avoid Floundering

Negative preconditions in Picat can cause floundering; the compiler tries to resolve
this issue:

by moving them after the positive ones

and if it is not enough

by adding “type” predicates for unbounded variables (like we did..)

The second operation is also carried out if after preconditions parsing some
variables are still unbounded (this can occour while using forall quantifiers in
effect section) as in the following action:

(:action workat

:parameters (?day - day ?airport - airport)

:precondition (today ?day)

:effect (and (not (today ?day))

(forall (?plane - plane)

(when (at ?plane ?day ?airport)

(done ?plane)))))

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 14 / 21

The Compiler
A translated action

(: a c t i o n move
: p a r a m e t e r s (? t − t r u c k ? l 1 ? l 2 − l o c)
: p r e c o n d i t i o n (and

(a t ? t ? l 1)
(c o n n e c t e d ? l 1 ? l 2)
)

: e f f e c t (and (not (a t ? t ? l 1))
(a t ? t ? l 1)

)
)

a c t i o n (s (AT0 , CARRIED0 , INPRED0) , NextState , Act ion , Cost) ,
t r u c k (T) ,
s e l e c t ((T, L) , AT0 , AT1) ,
c o n n e c t e d (L1 , L2)
?=>
AT2 = i n s e r t o r d e r e d w o d (AT1 , (T, L2)) ,
N e x t S t a t e = $s (ATP2 , CARRIED0 , INPRED0) ,
A c t i o n = $act move (T, L1 , L2) ,
Cost =1.

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 15 / 21

The Compiler
Final state checking

To know if the final state is reached, all we need is to check if the goal
preconditions lists are subsets of the current ones:

f i n a l (s (AT, IN)) , g o a l (AT GOAL , IN GOAL) ,
s u b s e t (AT GOAL ,AT) ,
s u b s e t (IN GOAL , IN) =>

t r u e .

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 16 / 21

Experimental results

PDDL files, both domain and instances, refer to specifications from official
IPC web site, while the Picat equivalents are translated by the compiler.
Where available, also the structured ad-hoc versions of Picat will be tested.

We will try all kinds of searches available in Picat, reporting bounds and
execution times in seconds.

The tests are executed on a notebook with a CPU Intel Core I5 4210h at
3.42 Ghz and 8 gigabytes of RAM.

The PDDL planner employed in these tests is Metric - FF 2.1, a
state-of-the-art PDDL planner declared Top Performer in the Strips Track of
the 3rd International Planning Competition. It is implemented in C, and it is
based on FF (Fast Forward), a forward chaining heuristic state space planner,
awarded for Outstanding Performance at the 2nd International Planning
Competition and Top Performer in the Strips Track of the 3rd International
Planning Competition.

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 17 / 21

Experimental results

In the charts reported below we summed up the outcomes of all the problems,
collecting different results from tested domains.

nomys1 nomys2 hik1 hik2 maint1 maint2 tet1 tet2

0

2

4

instances

ti
m

e
(s

)

FF and translated Picat results

Picat
FF

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 18 / 21

Experimental results

They confirms the well-known fact that generally in planning does not exist a
perfect planner able to obtain the best results from all the domains and instances,
but the performance of each one is very sensitive to the single case.

nomys1 nomys2 hik1 hik2 tet1 tet2

0

0,2

0,4

0,6

instances

ti
m

e
(s

)

FF and Structured Picat results

Picat
FF

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 19 / 21

Conclusions and further work

Results as a base for Picat programmers to create more compact and more
performing encodings

A good starting point for the automation of optimization stages

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 20 / 21

Thanks for your attention

Marco De Bortoli, Roman Bartak, Agostino Dovier, Neng-Fa Zhou (Università degli Studi di Udine)Compiling and Executing PDDL in Picat CILC 2016 21 / 21

	Classical Planning
	The PDDL Language
	The Picat Language
	The Compiler
	Experimental results
	Conclusions and further work

