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Introduction

Introduction

Several forms of graph Equivalence are used in computer science
Graph/Subgraph isomorphism are central notions in complexity
theory
Graph (DFA) minimization is a key notion in Hardware definition
Graph/Sugraph bisimulation is used in concurrency theory,
temporal logic, model checking, web databases, and, of course, in
hyper-set theory
We focus on the graph bisimulation problem and consider its
encoding(s) in logic programming paradigms.
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Sets and Graphs

Sets Basics

Set equality: The extensionality principle (E)

∀z
(
(z ∈ x ↔ z ∈ y)→ x = y

)
(E)

Well-foundedness of ∈: The foundation axiom (FA):

∀x
(

x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)
)

(FA)

that ensures that a set cannot contain an infinite descending chain
x0 3 x1 3 x2 3 · · · of elements.

In particular, if x is s.t. x = {x} then x is not empty, its unique element
y is x itself, and x ∩ y = {y} 6= ∅ contradicting the axiom.
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Sets and Graphs

Sets as graphs

An accessible pointed graph (apg) 〈G, ν〉 is a directed graph
G = 〈N,E〉 together with a distinguished node ν ∈ N (the point) such
that all the nodes in N are reachable from ν.

Intuitively, an edge a −→ b means that the set “represented by b” is an
element of the set “represented by a”.

a −→ b a−−−> b a −3 b a 3 b

The above idea can be used to decorate an apg, namely, assigning a
(possibly non-well founded) set to each of the nodes.

Sinks, i.e., nodes without outgoing edges have no elements and are
therefore decorated as the empty set ∅.
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Sets and Graphs

Sets as graphs
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Sets and Graphs

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies
that the set that decorates the graph is no longer well-founded.
Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique
decoration.
Two apgs denote the same hyperset if and only if their decoration is
the same.

Applying extensionality axiom (E) for verifying equality would lead to a
circular argument.
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Bisimulation Direct definition

Bisimulation

Let G1 = 〈N1,E1〉 and G2 = 〈N2,E2〉 be two graphs, a bisimulation
between G1 and G2 is a relation b ⊆ N1 × N2 such that:

1 u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)

2 u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

In case G1 and G2 are apgs pointed in ν1 and ν2, respectively, it is also
required that ν1 b ν2.

If there is a bisimulation between G1 and G2 then the two graphs are
bisimilar.
If they are bisimilar, they represent the same set (their point is
decorated by the same set).
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Bisimulation Direct definition

Bisimulation
A complexity summary

If b is required to be a bijective function then it is a graph
isomorphism.
Establishing whether two graphs are isomorphic is an NP-problem
neither proved to be NP-complete nor in P.
Establishing whether G1 is isomorphic to a subgraph of G2
(subgraph isomorphism) is NP-complete.
Establishing whether G1 is bisimilar to a subgraph of G2
(subgraph bisimulation) is NP-complete.

Instead, establishing whether G1 is bisimilar to G2 is in P:
O(|E1 + E2| log |N1 + N2|).
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Bisimulation Direct definition

Bisimulation

In case G1 and G2 are the same graph G = 〈N,E〉, a bisimulation on
G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s
〈G1, ν1〉 and 〈G2, ν2〉 if and only if there is a bisimulation b on the graph
G = 〈{ν} ∪ N1 ∪ N2, {(ν, ν1), (ν, ν2)} ∪ E1 ∪ E2〉 such that ν1 b ν2

We can focus on the bisimulations on a single graph; we are interested
in computing the maximum bisimulation: it is unique, it is an
equivalence relation, and it contains all other bisimulations on G.
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Bisimulation Direct definition

Bisimulation

Therefore, we might restrict our search to bisimulations on G that are
reflexive and symmetric relations on N such that:

∀u1,u2, v1 ∈ N
(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (1)

(∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)
)

The symmetric requirement makes the second case of the definition of
bisimulation superfluous. We will use the following logical rewriting in
some encodings:

¬∃u1,u2, v1 ∈ N
(

u1 b u2 ∧ 〈u1, v1〉 ∈ E∧

¬
(
(∃v2 ∈ N) (v1 b v2 ∧ 〈u2, v2〉 ∈ E)

))
(1′)
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Bisimulation Coarsest Stable Partition

Bisimulation

Another characterization of the maximum bisimulation is based on the
notion of stability. Given a set N, a partition P of N is a collection of
non-empty disjoint sets (blocks) B1,B2, . . . such that

⋃
i Bi = N. Let E

be a relation on the set N, with E−1 we denote its inverse relation.
A partition P of N is said to be stable with respect to E if and only if

(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅) (2)

which is in turn equivalent to state that there do not exist two blocks
B1 ∈ P and B2 ∈ P such that:

(∃x ∈ B1)(∃y ∈ B1) (x ∈ E−1(B2) ∧ y /∈ E−1(B2)) (2′)
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Bisimulation Coarsest Stable Partition

Bisimulation
Maximum fixpoint

A class B2 of P splits a class B1 of P if B1 is replaced in P by
B1 ∩ E−1(B2) and B1 \ E−1(B2) (both not empty)

Starting from the partition P = {N}, after at most |N| − 1 split
operations a procedure halts determining the coarsest stable partition
(CSP) w.r.t. E . The CSP “corresponds” to the maximum bisimulation.

Paige and Tarjan showed us the way for fast implementations (1987).
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Encoding

Encoding

apg’s are represented by
facts node(1). node(2). node(3). ... for nodes
facts edge(u,v). where u and v are nodes, for edges
node 1 is the point of the apg

http://clp.dimi.uniud.it
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Encoding Direct definition

Prolog
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
∀ ⇒ recursion on list. (Generate & Test; B is reflexive and symmetric)

bis(B) :- bis(B,B). % Recursively analyze B

bis([],_).
bis([ (U1,U2) |RB],B) :- %%% if U1 bis U2

successors(U1,SU1), %%% Collect the successors SU1 of U1
successors(U2,SU2), %%% Collect the successors SU2 of U2
allbis(SU1,SU2,B), %%% Then recursively consider SU1
bis(RB,B).

allbis([],_,_).
allbis([V1 | SU1],SU2,B) :- %%% If V1 is a successor of U1

member(V2,SU2), %%% there is a V2 successor of U2
member( (V1,V2),B), %%% such that V1 bis V2
allbis(SU1,SU2,B).

successors(X,SX) :- findall(Y,edge(X,Y),SX).
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Encoding Direct definition

CLP(FD)
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
∀ ⇒ recursion on list.

bis :- size(N), M is N*N, %%% Define the N * N Boolean
length(B,M), domain(B,0,1), %%% Matrix B
constraint(B,N), Max #= sum(B), %%% Max is the number of pairs
labeling([maximize(Max),ffc,down],B). %%% in the bisimulation

constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).

morphism(N,B) :-
findall( (X,Y),edge(X,Y),EDGES),
foreach( E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).

morphismcheck( (U1,V1),U2,N,B) :-
access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)
successors(U2, SuccU2), % Collect all edges (U2,V2)
collectlist(SuccU2,V1,N,B,BLIST),% BLIST contains all flags BV1V2
BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)

A. Dovier (Uniud-DIMI) LP and Bisimulation 15 / 25



Encoding Direct definition

ASP
¬∃u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ∧¬

(
(∃v2 ∈ N) (v1 b v2 ∧ 〈u2, v2〉 ∈ E)

))
∀ = ¬∃ ⇒: ASP constraints

%% Reflexivity and Symmetry
bis(I,I) :- node(I).
bis(I,J) :- node(I;J), bis(J,I).
%%% Nondeterministic choice
{bis(I,J)} :- node(I;J).
%%% Morphism requirement (1’)
:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).
one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).

%% Minimization (max bisimulation)
non_rep_node(A) :- node(A), bis(A,B), B < A.
rep_node(A) :- node(A), not non_rep_node(A).
rep_nodes(N) :- N=#sum[rep_node(A)].
#minimize [rep_nodes(N)=N].
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Encoding Direct definition

co-LP
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
co-LP semantics is based on the greatest fixpoint
(for coinductive predicates)

bis(U,V) :-
successors(U,SU),
successors(V,SV),
allbis(SU,SV),
allbis(SV,SU).

allbis([],_ ).
allbis([U|R],SV ) :-

member(V,SV),
bis(U,V),
allbis(R,SV).

member and successors are inductive.
No need of extra code for “maximization”
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Encoding Stable property

{log} and (main predicate of) Prolog
(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅)

stable(P) :-
forall(B1 in P, forall(B2 in P, stablecond(B1,B2) ) ).

stablecond(B1,B2) :-
edgeinv(B2,InvB2) &
(subset(B1,InvB2) or disj(B1,InvB2)).

edgeinv(A,B) :-
B = {X : exists(Y,(Y in A & edge(X,Y)))}.

stablecond(B1,B2) :- edgeinv(B2,InvB2),
(subseteq(B1,InvB2) ; emptyintersection(B1,InvB2)).
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Encoding Stable property

CLP(FD)
(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅)

stability(B,N) :-
foreach( I in 1..N, J in 1..N, stability_cond(I,J,B,N)).

stability_cond(I,J,B,N) :- % Blocks BI and BJ are considered
inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed
emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified
Cincl + Cempty #> 0. % OR condition

inclusion(X,N,_,_,_, 1) :- X>N,!.
inclusion(X,N,I,J,B, Cout) :- % Node X is considered

alledges(X,B,J,Flags), % Flags stores existence of edge (X,Y) with Y in BJ
LocFlag #= ((B[X] #= I) #=> (Flags #> 0)), %% Inclusion check:
X1 is X+1, % If X in BI then X in E-1(BJ)
inclusion(X1,N,I,J,B,Ctemp), % Recursive call
Cout #= Ctemp*LocFlag. % AND condition (forall nodes it should hold)

alledges(X,B,J,Flags) :- % Collect the successors of X
successors(X,OutgoingX), % And use them for assigning the Flags var
alledgesaux(OutgoingX,B,J,Flags).

alledgesaux([],_,_,0).
alledgesaux([Y|R],B,J,Flags) :- % The Flags variable is created

alledgesaux(R,B,J,F1), % Recursive call.
Flags #= (B[Y] #= J) + F1. % Add "1" iff there is edge (X,Y) and BY = J
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Encoding Stable property

ASP
(∃x ∈ B1)(∃y ∈ B1) (x ∈ E−1(B2) ∧ y /∈ E−1(B2))

blk(I) :- node(I).
%%% Function assigning nodes to blocks
1{inblock(A,B):blk(B)}1 :- node(A).
%%% STABILITY (2’)
:- blk(B1;B2), node(X;Y), X != Y, inblock(X,B1), inblock(Y,B1),

connected(X,B2), not connected(Y,B2).
connected(Y,B) :- edge(Y,Z),blk(B),inblock(Z,B).
%% Basic symmetry-breaking rules (optional)
:- node(A), internal(A), inblock(A,1).
internal(X) :- edge(X,Y).
leaf(X) :-node(X), not internal(X).
non_empty_block(B) :- node(A), blk(B), inblock(A,B).
empty_block(B) :- blk(B), not non_empty_block(B).
:- blk(B1;B2), 1 < B1, B1 < B2, empty_block(B1), non_empty_block(B2).
%% Minimization
number_blocks(N) :- N=#sum[non_empty_block(B)].
#minimize [number_blocks(N)=N].
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Encoding Max fixpoint algorithm

stable_comp(Final, Nclasses) :-
findall(X,node(X),Nodes),
initialize(Nodes, Initial),
maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"

%%% maxfixpoint procedure. If possible, split, else stop.
maxfixpoint(AssIn, I, AssOut, C) :-

split(I,AssIn,AssMid),!,
I1 is I+1,
maxfixpoint(AssMid, I1, AssOut, C).

%%% When stop, simply compute the number of classes used
maxfixpoint(Stable,C,Stable,C1) :-

count_classes(C,Stable,C1).
%%% Split operation.
%%% First locate a block that can be split. Then find the splitter
split(MaxBlock,AssIn,AssMid) :-

between(1,MaxBlock,I),
findall(X,member(X-I,AssIn),BI),
BI = [_, _ | _], %% BI might be split (not empty, not singleton)
%%% Find potential splitters BJ (and remove duplicates)
findall(Q,(member(V-Q,AssIn),edge(W,V),member(W,BI)),SP),
sort(SP,SPS), member(J,SPS),
findall(Z,(member(Y-J,AssIn),edge(Z,Y)),BJinv),
my_delete(BI,BJinv,[D|ELTA]), %%% The difference is computed when not empty
MaxBlock1 is MaxBlock + 1,
update(AssIn,AssMid,MaxBlock1,[D|ELTA]).
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Experimental results

Benchmarks

Figure : From left to right, the graphs G1,G2 (n odd), G2 (n even), G3, and G5
used in the experiments. G4 is the complete graph (not reported).
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Experimental results

Summary of results
Direct encoding
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Conclusion

Conclusions

Prolog generate & test is useless
CLP constraint & generate introduces too many constraints for
nested quantifiers
ASP generate & test allows clear code and good running time
These results can be inherited by the encoding of other (similar)
graph properties

Theoretical algorithmic results can be implemented in Prolog (with
a great speed-up w.r.t. declarative approach)!
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