Set Graphs VI Logic Programming and Bisimulation

Agostino Dovier

Università di Udine
Dip. di Matematica e Informatica
TORINO, June 18, 2014

Introduction

- Several forms of graph Equivalence are used in computer science
- Graph/Subgraph isomorphism are central notions in complexity theory
- Graph (DFA) minimization is a key notion in Hardware definition
- Graph/Sugraph bisimulation is used in concurrency theory, temporal logic, model checking, web databases, and, of course, in hyper-set theory
- We focus on the graph bisimulation problem and consider its encoding(s) in logic programming paradigms.

Sets Basics

Set equality: The extensionality principle (E)

$$
\begin{equation*}
\forall z((z \in x \leftrightarrow z \in y) \rightarrow x=y) \tag{E}
\end{equation*}
$$

Sets Basics

Set equality: The extensionality principle (E)

$$
\begin{equation*}
\forall z((z \in x \leftrightarrow z \in y) \rightarrow x=y) \tag{E}
\end{equation*}
$$

Well-foundedness of \in : The foundation axiom (FA):

$$
\begin{equation*}
\forall x(x \neq \emptyset \rightarrow(\exists y \in x)(x \cap y=\emptyset)) \tag{FA}
\end{equation*}
$$

that ensures that a set cannot contain an infinite descending chain $x_{0} \ni x_{1} \ni x_{2} \ni \cdots$ of elements.

Sets Basics

Set equality: The extensionality principle (E)

$$
\begin{equation*}
\forall z((z \in x \leftrightarrow z \in y) \rightarrow x=y) \tag{E}
\end{equation*}
$$

Well-foundedness of \in : The foundation axiom (FA):

$$
\begin{equation*}
\forall x(x \neq \emptyset \rightarrow(\exists y \in x)(x \cap y=\emptyset)) \tag{FA}
\end{equation*}
$$

that ensures that a set cannot contain an infinite descending chain $x_{0} \ni x_{1} \ni x_{2} \ni \cdots$ of elements.

In particular, if x is s.t. $x=\{x\}$ then x is not empty, its unique element y is x itself, and $x \cap y=\{y\} \neq \emptyset$ contradicting the axiom.

Sets as graphs

An accessible pointed graph (apg) $\langle G, \nu\rangle$ is a directed graph $G=\langle N, E\rangle$ together with a distinguished node $\nu \in N$ (the point) such that all the nodes in N are reachable from ν.

Intuitively, an edge $a \longrightarrow b$ means that the set "represented by b " is an element of the set "represented by a ".

$$
a \longrightarrow b \quad a \rightarrow b \quad a \rightarrow b \quad a \ni b
$$

The above idea can be used to decorate an apg, namely, assigning a (possibly non-well founded) set to each of the nodes.

Sinks, i.e., nodes without outgoing edges have no elements and are therefore decorated as the empty set \emptyset.

Sets as graphs

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as hypersets.

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique decoration.

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique decoration.
Two apgs denote the same hyperset if and only if their decoration is the same.

Applying extensionality axiom (E) for verifying equality would lead to a circular argument.

Bisimulation

Let $G_{1}=\left\langle N_{1}, E_{1}\right\rangle$ and $G_{2}=\left\langle N_{2}, E_{2}\right\rangle$ be two graphs, a bisimulation between G_{1} and G_{2} is a relation $b \subseteq N_{1} \times N_{2}$ such that:
(1) $u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1} \Rightarrow \exists v_{2} \in N_{2}\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2}\right)$
(2) $u_{1} b u_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2} \Rightarrow \exists v_{1} \in N_{1}\left(v_{1} b v_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1}\right)$.

In case G_{1} and G_{2} are apgs pointed in ν_{1} and ν_{2}, respectively, it is also required that $\nu_{1} b \nu_{2}$.

Bisimulation

Let $G_{1}=\left\langle N_{1}, E_{1}\right\rangle$ and $G_{2}=\left\langle N_{2}, E_{2}\right\rangle$ be two graphs, a bisimulation between G_{1} and G_{2} is a relation $b \subseteq N_{1} \times N_{2}$ such that:
(1) $u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1} \Rightarrow \exists v_{2} \in N_{2}\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2}\right)$
(2) $u_{1} b u_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2} \Rightarrow \exists v_{1} \in N_{1}\left(v_{1} b v_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1}\right)$.

In case G_{1} and G_{2} are apgs pointed in ν_{1} and ν_{2}, respectively, it is also required that $\nu_{1} b \nu_{2}$.
If there is a bisimulation between G_{1} and G_{2} then the two graphs are bisimilar.

Bisimulation

Let $G_{1}=\left\langle N_{1}, E_{1}\right\rangle$ and $G_{2}=\left\langle N_{2}, E_{2}\right\rangle$ be two graphs, a bisimulation between G_{1} and G_{2} is a relation $b \subseteq N_{1} \times N_{2}$ such that:
(1) $u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1} \Rightarrow \exists v_{2} \in N_{2}\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2}\right)$
(2) $u_{1} b u_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E_{2} \Rightarrow \exists v_{1} \in N_{1}\left(v_{1} b v_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E_{1}\right)$.

In case G_{1} and G_{2} are apgs pointed in ν_{1} and ν_{2}, respectively, it is also required that $\nu_{1} b \nu_{2}$.
If there is a bisimulation between G_{1} and G_{2} then the two graphs are bisimilar.
If they are bisimilar, they represent the same set (their point is decorated by the same set).

Bisimulation

A complexity summary

- If b is required to be a bijective function then it is a graph isomorphism.
- Establishing whether two graphs are isomorphic is an NP-problem neither proved to be NP-complete nor in P.
- Establishing whether G_{1} is isomorphic to a subgraph of G_{2} (subgraph isomorphism) is NP-complete.
- Establishing whether G_{1} is bisimilar to a subgraph of G_{2} (subgraph bisimulation) is NP-complete.

Bisimulation

A complexity summary

- If b is required to be a bijective function then it is a graph isomorphism.
- Establishing whether two graphs are isomorphic is an NP-problem neither proved to be NP-complete nor in P.
- Establishing whether G_{1} is isomorphic to a subgraph of G_{2} (subgraph isomorphism) is NP-complete.
- Establishing whether G_{1} is bisimilar to a subgraph of G_{2} (subgraph bisimulation) is NP-complete.
- Instead, establishing whether G_{1} is bisimilar to G_{2} is in P: $O\left(\left|E_{1}+E_{2}\right| \log \left|N_{1}+N_{2}\right|\right)$.

Bisimulation

In case G_{1} and G_{2} are the same graph $G=\langle N, E\rangle$, a bisimulation on G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg's $\left\langle G_{1}, \nu_{1}\right\rangle$ and $\left\langle G_{2}, \nu_{2}\right\rangle$ if and only if there is a bisimulation b on the graph $G=\left\langle\{\nu\} \cup N_{1} \cup N_{2},\left\{\left(\nu, \nu_{1}\right),\left(\nu, \nu_{2}\right)\right\} \cup E_{1} \cup E_{2}\right\rangle$ such that $\nu_{1} b \nu_{2}$

We can focus on the bisimulations on a single graph; we are interested in computing the maximum bisimulation: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.

Bisimulation

In case G_{1} and G_{2} are the same graph $G=\langle N, E\rangle$, a bisimulation on G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg's $\left\langle G_{1}, \nu_{1}\right\rangle$ and $\left\langle G_{2}, \nu_{2}\right\rangle$ if and only if there is a bisimulation b on the graph $G=\left\langle\{\nu\} \cup N_{1} \cup N_{2},\left\{\left(\nu, \nu_{1}\right),\left(\nu, \nu_{2}\right)\right\} \cup E_{1} \cup E_{2}\right\rangle$ such that $\nu_{1} b \nu_{2}$

We can focus on the bisimulations on a single graph; we are interested in computing the maximum bisimulation: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.

Bisimulation

In case G_{1} and G_{2} are the same graph $G=\langle N, E\rangle$, a bisimulation on G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg's $\left\langle G_{1}, \nu_{1}\right\rangle$ and $\left\langle G_{2}, \nu_{2}\right\rangle$ if and only if there is a bisimulation b on the graph $G=\left\langle\{\nu\} \cup N_{1} \cup N_{2},\left\{\left(\nu, \nu_{1}\right),\left(\nu, \nu_{2}\right)\right\} \cup E_{1} \cup E_{2}\right\rangle$ such that $\nu_{1} b \nu_{2}$

We can focus on the bisimulations on a single graph; we are interested in computing the maximum bisimulation: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.

Bisimulation

Therefore, we might restrict our search to bisimulations on G that are reflexive and symmetric relations on N such that:

$$
\begin{array}{r}
\forall u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \Rightarrow\right. \tag{1}\\
\left.\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)
\end{array}
$$

The symmetric requirement makes the second case of the definition of bisimulation superfluous. We will use the following logical rewriting in some encodings:

$$
\begin{align*}
& \neg \exists u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \wedge\right. \\
& \left.\quad \neg\left(\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)\right) \tag{1'}
\end{align*}
$$

Bisimulation

Another characterization of the maximum bisimulation is based on the notion of stability. Given a set N, a partition P of N is a collection of non-empty disjoint sets (blocks) B_{1}, B_{2}, \ldots such that $\bigcup_{i} B_{i}=N$. Let E be a relation on the set N, with E^{-1} we denote its inverse relation. A partition P of N is said to be stable with respect to E if and only if

$$
\begin{equation*}
\left(\forall B_{1} \in P\right)\left(\forall B_{2} \in P\right)\left(B_{1} \subseteq E^{-1}\left(B_{2}\right) \vee B_{1} \cap E^{-1}\left(B_{2}\right)=\emptyset\right) \tag{2}
\end{equation*}
$$

which is in turn equivalent to state that there do not exist two blocks $B_{1} \in P$ and $B_{2} \in P$ such that:

$$
\left(\exists x \in B_{1}\right)\left(\exists y \in B_{1}\right)\left(x \in E^{-1}\left(B_{2}\right) \wedge y \notin E^{-1}\left(B_{2}\right)\right)
$$

Bisimulation

Maximum fixpoint

A class B_{2} of P splits a class B_{1} of P if B_{1} is replaced in P by $B_{1} \cap E^{-1}\left(B_{2}\right)$ and $B_{1} \backslash E^{-1}\left(B_{2}\right)$ (both not empty)

Starting from the partition $P=\{N\}$, after at most $|N|-1$ split operations a procedure halts determining the coarsest stable partition (CSP) w.r.t. E. The CSP "corresponds" to the maximum bisimulation.

Paige and Tarjan showed us the way for fast implementations (1987).

Encoding

apg's are represented by

- facts node (1) . node (2) . node (3) for nodes
- facts edge (u, v). where u and v are nodes, for edges
- node 1 is the point of the apg
http://clp.dimi.uniud.it

Prolog

$\forall u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \Rightarrow\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)$

$\forall \Rightarrow$ recursion on list. (Generate \& Test; B is reflexive and symmetric)

```
bis(B) :- bis(B,B). % Recursively analyze B
bis([],_).
bis([ (U1,U2) |RB],B) :-
    successors(U1,SU1),
    successors(U2,SU2),
    allbis(SU1,SU2,B),
    bis(RB,B).
allbis([],_,_).
allbis([V1 | SU1],SU2,B) :-
    member(V2,SU2),
    member( (V1,V2),B),
    allbis(SU1,SU2,B).
%%% if U1 bis U2
%%% Collect the successors SU1 of U1
%%% Collect the successors SU2 of U2
%%% Then recursively consider SU1
%%% If V1 is a successor of U1
%%% there is a V2 successor of U2
%%% such that V1 bis V2
successors(X,SX) :- findall(Y,edge(X,Y),SX).
```


CLP(FD)

$\forall u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \Rightarrow\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)$

$\forall \Rightarrow$ recursion on list.

```
bis :- size(N), M is N*N, %%% Define the N * N Boolean
    length(B,M), domain(B,0,1), %%% Matrix B
    constraint(B,N), Max #= sum(B), %%% Max is the number of pairs
    labeling([maximize(Max),ffc,down],B). %%% in the bisimulation
constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).
morphism(N,B) :-
    findall( (X,Y),edge(X,Y),EDGES),
    foreach( E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).
morphismcheck( (U1,V1),U2,N,B) :-
    access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)
    successors(U2, SuccU2), % Collect all edges (U2,V2)
    collectlist(SuccU2,V1,N,B,BLIST),% BLIST contains all flags BV1V2
    BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)
```


ASP

$\neg \exists u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \wedge \neg\left(\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)\right)$

$\forall=\neg \exists \Rightarrow$: ASP constraints

```
%% Reflexivity and Symmetry
bis(I,I) :- node(I).
bis(I,J) :- node(I;J), bis(J,I).
%%% Nondeterministic choice
{bis(I,J)} :- node(I;J).
%%% Morphism requirement (1')
:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).
one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).
%% Minimization (max bisimulation)
non_rep_node(A) :- node(A), bis(A,B), B < A.
rep_node(A) :- node(A), not non_rep_node(A).
rep_nodes(N) :- N=#sum[rep_node(A)].
#minimize [rep_nodes(N)=N].
```

```
CO-LP
\(\forall u_{1}, u_{2}, v_{1} \in N\left(u_{1} b u_{2} \wedge\left\langle u_{1}, v_{1}\right\rangle \in E \Rightarrow\left(\exists v_{2} \in N\right)\left(v_{1} b v_{2} \wedge\left\langle u_{2}, v_{2}\right\rangle \in E\right)\right)\)
```

co-LP semantics is based on the greatest fixpoint (for coinductive predicates)

```
bis(U,V) :-
    successors(U,SU),
    successors(V,SV),
    allbis(SU,SV),
    allbis(SV,SU).
allbis([],_ ).
allbis([U|R],SV ) :-
    member(V,SV),
    bis(U,V),
    allbis(R,SV).
```

member and successors are inductive. No need of extra code for "maximization"

$\{\log \}$ and (main predicate of) Prolog

$\left(\forall B_{1} \in P\right)\left(\forall B_{2} \in P\right)\left(B_{1} \subseteq E^{-1}\left(B_{2}\right) \vee B_{1} \cap E^{-1}\left(B_{2}\right)=\emptyset\right)$

```
stable(P) :-
    forall(B1 in P, forall(B2 in P, stablecond(B1,B2) ) ).
stablecond(B1,B2) :-
    edgeinv(B2,InvB2) &
    (subset(B1,InvB2) or disj(B1,InvB2)).
edgeinv(A,B) :-
    B = {X : exists(Y,(Y in A & edge(X,Y)))}.
stablecond(B1,B2) :- edgeinv(B2,InvB2),
    (subseteq(B1,InvB2) ; emptyintersection(B1,InvB2)).
```


CLP(FD)

$$
\left(\forall B_{1} \in P\right)\left(\forall B_{2} \in P\right)\left(B_{1} \subseteq E^{-1}\left(B_{2}\right) \vee B_{1} \cap E^{-1}\left(B_{2}\right)=\emptyset\right)
$$

```
stability(B,N) :-
```

 foreach(I in 1..N, J in 1..N, stability_cond(I, J, B,N)).
    ```
stability_cond(I,J,B,N) :-
                            % Blocks BI and BJ are considered
    inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed
    emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified
    Cincl + Cempty #> 0. % OR condition
```

inclusion (X,N,_,_,_, 1) :- X $>\mathrm{N}$, !.
inclusion(X,N, I, J, B, Cout) :- \% Node X is considered
alledges (X,B,J,Flags), \quad Flags stores existence of edge (X,Y) with
LocFlag \#= ((B[X] \#= I) \#=> (Flags \#> 0)), \% Inclusion check:
$X 1$ is $X+1$, \quad If X in $B I$ then X in $E-1(B J)$
inclusion(X1,N,I, J, B, Ctemp), \% Recursive call
Cout \#= Ctemp*LocFlag. \% AND condition (forall nodes it should hol
alledges (X,B,J,Flags) :- \% Collect the successors of X
successors (X,OutgoingX), \% And use them for assigning the Flags var
alledgesaux (OutgoingX, B, J, Flags).
alledgesaux ([],_r_, 0).
alledgesaux ([Y|R],B,J,Flags) :- \% The Flags variable is created

ASP

```
(\existsx\in\mp@subsup{B}{1}{})(\existsy\in\mp@subsup{B}{1}{})(x\in\mp@subsup{E}{}{-1}(\mp@subsup{B}{2}{})\wedgey\not\in\mp@subsup{E}{}{-1}(\mp@subsup{B}{2}{}))
```

```
blk(I) :- node(I).
%%% Function assigning nodes to blocks
1{inblock(A,B):blk(B)}1 :- node(A).
%%% STABILITY (2')
:- blk(B1;B2), node(X;Y), X != Y, inblock(X,B1), inblock(Y,B1),
        connected(X,B2), not connected(Y,B2).
connected(Y,B) :- edge(Y,Z),blk(B),inblock(Z,B).
%% Basic symmetry-breaking rules (optional)
:- node(A), internal(A), inblock(A,1).
internal(X) :- edge(X,Y).
leaf(X) :-node(X), not internal(X).
non_empty_block(B) :- node(A), blk(B), inblock(A,B).
empty_block(B) :- blk(B), not non_empty_block(B).
:- blk(B1;B2), 1 < B1, B1 < B2, empty_block(B1), non_empty_block(B2).
%% Minimization
number_blocks(N) :- N=#sum[non_empty_block(B)].
#minimize [number_blocks(N)=N].
```

```
stable_comp(Final, Nclasses) :-
    findall(X,node (X),Nodes),
    initialize(Nodes, Initial),
    maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"
%%% maxfixpoint procedure. If possible, split, else stop.
maxfixpoint(AssIn, I, AssOut, C) :-
    split(I,AssIn,AssMid),!,
    I1 is I+1,
    maxfixpoint(AssMid, I1, AssOut, C).
%%% When stop, simply compute the number of classes used
maxfixpoint(Stable,C,Stable,C1) :-
    count_classes(C,Stable,C1).
%%% Split operation.
%%% First locate a block that can be split. Then find the splitter
split(MaxBlock,AssIn,AssMid) :-
    between(1,MaxBlock,I),
    findall(X,member(X-I,AssIn),BI),
    BI = [_, _ | _], %% BI might be split (not empty, not singleton)
    %%% Find potential splitters BJ (and remove duplicates)
    findall(Q,(member(V-Q,AssIn), edge( W,V),member(W,BI)),SP),
    sort(SP,SPS), member(J,SPS),
    findall(Z,(member(Y-J,AssIn), edge(Z,Y)),BJinv),
    my_delete(BI,BJinv,[D|ELTA]), %%% The difference is computed when
    MaxBlock1 is MaxBlock + 1,
    update(AssIn,AssMid,MaxBlock1, [D|ELTA]).
```


Benchmarks

Figure : From left to right, the graphs G_{1}, G_{2} (n odd), G_{2} (n even), G_{3}, and G_{5} used in the experiments. G_{4} is the complete graph (not reported).

Summary of results

Direct encoding

Summary of results

Coarsest stable paritition

Conclusions

- Prolog generate \& test is useless
- CLP constraint \& generate introduces too many constraints for nested quantifiers
- ASP generate \& test allows clear code and good running time
- These results can be inherited by the encoding of other (similar) graph properties

Conclusions

- Prolog generate \& test is useless
- CLP constraint \& generate introduces too many constraints for nested quantifiers
- ASP generate \& test allows clear code and good running time
- These results can be inherited by the encoding of other (similar) graph properties
- Theoretical algorithmic results can be implemented in Prolog (with a great speed-up w.r.t. declarative approach)!

