
Set Graphs VI
Logic Programming and Bisimulation

Agostino Dovier

Università di Udine
Dip. di Matematica e Informatica

TORINO, June 18, 2014

A. Dovier (Uniud-DIMI) LP and Bisimulation 1 / 25

Introduction

Introduction

Several forms of graph Equivalence are used in computer science
Graph/Subgraph isomorphism are central notions in complexity
theory
Graph (DFA) minimization is a key notion in Hardware definition
Graph/Sugraph bisimulation is used in concurrency theory,
temporal logic, model checking, web databases, and, of course, in
hyper-set theory
We focus on the graph bisimulation problem and consider its
encoding(s) in logic programming paradigms.

A. Dovier (Uniud-DIMI) LP and Bisimulation 2 / 25

Sets and Graphs

Sets Basics

Set equality: The extensionality principle (E)

∀z
(
(z ∈ x ↔ z ∈ y)→ x = y

)
(E)

Well-foundedness of ∈: The foundation axiom (FA):

∀x
(

x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)
)

(FA)

that ensures that a set cannot contain an infinite descending chain
x0 3 x1 3 x2 3 · · · of elements.

In particular, if x is s.t. x = {x} then x is not empty, its unique element
y is x itself, and x ∩ y = {y} 6= ∅ contradicting the axiom.

A. Dovier (Uniud-DIMI) LP and Bisimulation 3 / 25

Sets and Graphs

Sets Basics

Set equality: The extensionality principle (E)

∀z
(
(z ∈ x ↔ z ∈ y)→ x = y

)
(E)

Well-foundedness of ∈: The foundation axiom (FA):

∀x
(

x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)
)

(FA)

that ensures that a set cannot contain an infinite descending chain
x0 3 x1 3 x2 3 · · · of elements.

In particular, if x is s.t. x = {x} then x is not empty, its unique element
y is x itself, and x ∩ y = {y} 6= ∅ contradicting the axiom.

A. Dovier (Uniud-DIMI) LP and Bisimulation 3 / 25

Sets and Graphs

Sets Basics

Set equality: The extensionality principle (E)

∀z
(
(z ∈ x ↔ z ∈ y)→ x = y

)
(E)

Well-foundedness of ∈: The foundation axiom (FA):

∀x
(

x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)
)

(FA)

that ensures that a set cannot contain an infinite descending chain
x0 3 x1 3 x2 3 · · · of elements.

In particular, if x is s.t. x = {x} then x is not empty, its unique element
y is x itself, and x ∩ y = {y} 6= ∅ contradicting the axiom.

A. Dovier (Uniud-DIMI) LP and Bisimulation 3 / 25

Sets and Graphs

Sets as graphs

An accessible pointed graph (apg) 〈G, ν〉 is a directed graph
G = 〈N,E〉 together with a distinguished node ν ∈ N (the point) such
that all the nodes in N are reachable from ν.

Intuitively, an edge a −→ b means that the set “represented by b” is an
element of the set “represented by a”.

a −→ b a−−−> b a −3 b a 3 b

The above idea can be used to decorate an apg, namely, assigning a
(possibly non-well founded) set to each of the nodes.

Sinks, i.e., nodes without outgoing edges have no elements and are
therefore decorated as the empty set ∅.

A. Dovier (Uniud-DIMI) LP and Bisimulation 4 / 25

Sets and Graphs

Sets as graphs

A. Dovier (Uniud-DIMI) LP and Bisimulation 5 / 25

Sets and Graphs

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies
that the set that decorates the graph is no longer well-founded.
Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique
decoration.
Two apgs denote the same hyperset if and only if their decoration is
the same.

Applying extensionality axiom (E) for verifying equality would lead to a
circular argument.

A. Dovier (Uniud-DIMI) LP and Bisimulation 6 / 25

Sets and Graphs

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies
that the set that decorates the graph is no longer well-founded.
Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique
decoration.

Two apgs denote the same hyperset if and only if their decoration is
the same.

Applying extensionality axiom (E) for verifying equality would lead to a
circular argument.

A. Dovier (Uniud-DIMI) LP and Bisimulation 6 / 25

Sets and Graphs

Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies
that the set that decorates the graph is no longer well-founded.
Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique
decoration.
Two apgs denote the same hyperset if and only if their decoration is
the same.

Applying extensionality axiom (E) for verifying equality would lead to a
circular argument.

A. Dovier (Uniud-DIMI) LP and Bisimulation 6 / 25

Bisimulation Direct definition

Bisimulation

Let G1 = 〈N1,E1〉 and G2 = 〈N2,E2〉 be two graphs, a bisimulation
between G1 and G2 is a relation b ⊆ N1 × N2 such that:

1 u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)

2 u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

In case G1 and G2 are apgs pointed in ν1 and ν2, respectively, it is also
required that ν1 b ν2.

If there is a bisimulation between G1 and G2 then the two graphs are
bisimilar.
If they are bisimilar, they represent the same set (their point is
decorated by the same set).

A. Dovier (Uniud-DIMI) LP and Bisimulation 7 / 25

Bisimulation Direct definition

Bisimulation

Let G1 = 〈N1,E1〉 and G2 = 〈N2,E2〉 be two graphs, a bisimulation
between G1 and G2 is a relation b ⊆ N1 × N2 such that:

1 u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)

2 u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

In case G1 and G2 are apgs pointed in ν1 and ν2, respectively, it is also
required that ν1 b ν2.
If there is a bisimulation between G1 and G2 then the two graphs are
bisimilar.

If they are bisimilar, they represent the same set (their point is
decorated by the same set).

A. Dovier (Uniud-DIMI) LP and Bisimulation 7 / 25

Bisimulation Direct definition

Bisimulation

Let G1 = 〈N1,E1〉 and G2 = 〈N2,E2〉 be two graphs, a bisimulation
between G1 and G2 is a relation b ⊆ N1 × N2 such that:

1 u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)

2 u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

In case G1 and G2 are apgs pointed in ν1 and ν2, respectively, it is also
required that ν1 b ν2.
If there is a bisimulation between G1 and G2 then the two graphs are
bisimilar.
If they are bisimilar, they represent the same set (their point is
decorated by the same set).

A. Dovier (Uniud-DIMI) LP and Bisimulation 7 / 25

Bisimulation Direct definition

Bisimulation
A complexity summary

If b is required to be a bijective function then it is a graph
isomorphism.
Establishing whether two graphs are isomorphic is an NP-problem
neither proved to be NP-complete nor in P.
Establishing whether G1 is isomorphic to a subgraph of G2
(subgraph isomorphism) is NP-complete.
Establishing whether G1 is bisimilar to a subgraph of G2
(subgraph bisimulation) is NP-complete.

Instead, establishing whether G1 is bisimilar to G2 is in P:
O(|E1 + E2| log |N1 + N2|).

A. Dovier (Uniud-DIMI) LP and Bisimulation 8 / 25

Bisimulation Direct definition

Bisimulation
A complexity summary

If b is required to be a bijective function then it is a graph
isomorphism.
Establishing whether two graphs are isomorphic is an NP-problem
neither proved to be NP-complete nor in P.
Establishing whether G1 is isomorphic to a subgraph of G2
(subgraph isomorphism) is NP-complete.
Establishing whether G1 is bisimilar to a subgraph of G2
(subgraph bisimulation) is NP-complete.
Instead, establishing whether G1 is bisimilar to G2 is in P:
O(|E1 + E2| log |N1 + N2|).

A. Dovier (Uniud-DIMI) LP and Bisimulation 8 / 25

Bisimulation Direct definition

Bisimulation

In case G1 and G2 are the same graph G = 〈N,E〉, a bisimulation on
G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s
〈G1, ν1〉 and 〈G2, ν2〉 if and only if there is a bisimulation b on the graph
G = 〈{ν} ∪ N1 ∪ N2, {(ν, ν1), (ν, ν2)} ∪ E1 ∪ E2〉 such that ν1 b ν2

We can focus on the bisimulations on a single graph; we are interested
in computing the maximum bisimulation: it is unique, it is an
equivalence relation, and it contains all other bisimulations on G.

A. Dovier (Uniud-DIMI) LP and Bisimulation 9 / 25

Bisimulation Direct definition

Bisimulation

In case G1 and G2 are the same graph G = 〈N,E〉, a bisimulation on
G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s
〈G1, ν1〉 and 〈G2, ν2〉 if and only if there is a bisimulation b on the graph
G = 〈{ν} ∪ N1 ∪ N2, {(ν, ν1), (ν, ν2)} ∪ E1 ∪ E2〉 such that ν1 b ν2

We can focus on the bisimulations on a single graph; we are interested
in computing the maximum bisimulation: it is unique, it is an
equivalence relation, and it contains all other bisimulations on G.

A. Dovier (Uniud-DIMI) LP and Bisimulation 9 / 25

Bisimulation Direct definition

Bisimulation

In case G1 and G2 are the same graph G = 〈N,E〉, a bisimulation on
G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s
〈G1, ν1〉 and 〈G2, ν2〉 if and only if there is a bisimulation b on the graph
G = 〈{ν} ∪ N1 ∪ N2, {(ν, ν1), (ν, ν2)} ∪ E1 ∪ E2〉 such that ν1 b ν2

We can focus on the bisimulations on a single graph; we are interested
in computing the maximum bisimulation: it is unique, it is an
equivalence relation, and it contains all other bisimulations on G.

A. Dovier (Uniud-DIMI) LP and Bisimulation 9 / 25

Bisimulation Direct definition

Bisimulation

Therefore, we might restrict our search to bisimulations on G that are
reflexive and symmetric relations on N such that:

∀u1,u2, v1 ∈ N
(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (1)

(∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)
)

The symmetric requirement makes the second case of the definition of
bisimulation superfluous. We will use the following logical rewriting in
some encodings:

¬∃u1,u2, v1 ∈ N
(

u1 b u2 ∧ 〈u1, v1〉 ∈ E∧

¬
(
(∃v2 ∈ N) (v1 b v2 ∧ 〈u2, v2〉 ∈ E)

))
(1′)

A. Dovier (Uniud-DIMI) LP and Bisimulation 10 / 25

Bisimulation Coarsest Stable Partition

Bisimulation

Another characterization of the maximum bisimulation is based on the
notion of stability. Given a set N, a partition P of N is a collection of
non-empty disjoint sets (blocks) B1,B2, . . . such that

⋃
i Bi = N. Let E

be a relation on the set N, with E−1 we denote its inverse relation.
A partition P of N is said to be stable with respect to E if and only if

(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅) (2)

which is in turn equivalent to state that there do not exist two blocks
B1 ∈ P and B2 ∈ P such that:

(∃x ∈ B1)(∃y ∈ B1) (x ∈ E−1(B2) ∧ y /∈ E−1(B2)) (2′)

A. Dovier (Uniud-DIMI) LP and Bisimulation 11 / 25

Bisimulation Coarsest Stable Partition

Bisimulation
Maximum fixpoint

A class B2 of P splits a class B1 of P if B1 is replaced in P by
B1 ∩ E−1(B2) and B1 \ E−1(B2) (both not empty)

Starting from the partition P = {N}, after at most |N| − 1 split
operations a procedure halts determining the coarsest stable partition
(CSP) w.r.t. E . The CSP “corresponds” to the maximum bisimulation.

Paige and Tarjan showed us the way for fast implementations (1987).
A. Dovier (Uniud-DIMI) LP and Bisimulation 12 / 25

Encoding

Encoding

apg’s are represented by
facts node(1). node(2). node(3). ... for nodes
facts edge(u,v). where u and v are nodes, for edges
node 1 is the point of the apg

http://clp.dimi.uniud.it

A. Dovier (Uniud-DIMI) LP and Bisimulation 13 / 25

http://clp.dimi.uniud.it

Encoding Direct definition

Prolog
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
∀ ⇒ recursion on list. (Generate & Test; B is reflexive and symmetric)

bis(B) :- bis(B,B). % Recursively analyze B

bis([],_).
bis([(U1,U2) |RB],B) :- %%% if U1 bis U2

successors(U1,SU1), %%% Collect the successors SU1 of U1
successors(U2,SU2), %%% Collect the successors SU2 of U2
allbis(SU1,SU2,B), %%% Then recursively consider SU1
bis(RB,B).

allbis([],_,_).
allbis([V1 | SU1],SU2,B) :- %%% If V1 is a successor of U1

member(V2,SU2), %%% there is a V2 successor of U2
member((V1,V2),B), %%% such that V1 bis V2
allbis(SU1,SU2,B).

successors(X,SX) :- findall(Y,edge(X,Y),SX).

A. Dovier (Uniud-DIMI) LP and Bisimulation 14 / 25

Encoding Direct definition

CLP(FD)
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
∀ ⇒ recursion on list.

bis :- size(N), M is N*N, %%% Define the N * N Boolean
length(B,M), domain(B,0,1), %%% Matrix B
constraint(B,N), Max #= sum(B), %%% Max is the number of pairs
labeling([maximize(Max),ffc,down],B). %%% in the bisimulation

constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).

morphism(N,B) :-
findall((X,Y),edge(X,Y),EDGES),
foreach(E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).

morphismcheck((U1,V1),U2,N,B) :-
access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)
successors(U2, SuccU2), % Collect all edges (U2,V2)
collectlist(SuccU2,V1,N,B,BLIST),% BLIST contains all flags BV1V2
BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)

A. Dovier (Uniud-DIMI) LP and Bisimulation 15 / 25

Encoding Direct definition

ASP
¬∃u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ∧¬

(
(∃v2 ∈ N) (v1 b v2 ∧ 〈u2, v2〉 ∈ E)

))
∀ = ¬∃ ⇒: ASP constraints

%% Reflexivity and Symmetry
bis(I,I) :- node(I).
bis(I,J) :- node(I;J), bis(J,I).
%%% Nondeterministic choice
{bis(I,J)} :- node(I;J).
%%% Morphism requirement (1’)
:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).
one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).

%% Minimization (max bisimulation)
non_rep_node(A) :- node(A), bis(A,B), B < A.
rep_node(A) :- node(A), not non_rep_node(A).
rep_nodes(N) :- N=#sum[rep_node(A)].
#minimize [rep_nodes(N)=N].

A. Dovier (Uniud-DIMI) LP and Bisimulation 16 / 25

Encoding Direct definition

co-LP
∀u1,u2, v1 ∈ N

(
u1 b u2 ∧ 〈u1, v1〉 ∈ E ⇒ (∃v2 ∈ N)(v1 b v2 ∧ 〈u2, v2〉 ∈ E)

)
co-LP semantics is based on the greatest fixpoint
(for coinductive predicates)

bis(U,V) :-
successors(U,SU),
successors(V,SV),
allbis(SU,SV),
allbis(SV,SU).

allbis([],_).
allbis([U|R],SV) :-

member(V,SV),
bis(U,V),
allbis(R,SV).

member and successors are inductive.
No need of extra code for “maximization”

A. Dovier (Uniud-DIMI) LP and Bisimulation 17 / 25

Encoding Stable property

{log} and (main predicate of) Prolog
(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅)

stable(P) :-
forall(B1 in P, forall(B2 in P, stablecond(B1,B2))).

stablecond(B1,B2) :-
edgeinv(B2,InvB2) &
(subset(B1,InvB2) or disj(B1,InvB2)).

edgeinv(A,B) :-
B = {X : exists(Y,(Y in A & edge(X,Y)))}.

stablecond(B1,B2) :- edgeinv(B2,InvB2),
(subseteq(B1,InvB2) ; emptyintersection(B1,InvB2)).

A. Dovier (Uniud-DIMI) LP and Bisimulation 18 / 25

Encoding Stable property

CLP(FD)
(∀B1 ∈ P)(∀B2 ∈ P)(B1 ⊆ E−1(B2) ∨ B1 ∩ E−1(B2) = ∅)

stability(B,N) :-
foreach(I in 1..N, J in 1..N, stability_cond(I,J,B,N)).

stability_cond(I,J,B,N) :- % Blocks BI and BJ are considered
inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed
emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified
Cincl + Cempty #> 0. % OR condition

inclusion(X,N,_,_,_, 1) :- X>N,!.
inclusion(X,N,I,J,B, Cout) :- % Node X is considered

alledges(X,B,J,Flags), % Flags stores existence of edge (X,Y) with Y in BJ
LocFlag #= ((B[X] #= I) #=> (Flags #> 0)), %% Inclusion check:
X1 is X+1, % If X in BI then X in E-1(BJ)
inclusion(X1,N,I,J,B,Ctemp), % Recursive call
Cout #= Ctemp*LocFlag. % AND condition (forall nodes it should hold)

alledges(X,B,J,Flags) :- % Collect the successors of X
successors(X,OutgoingX), % And use them for assigning the Flags var
alledgesaux(OutgoingX,B,J,Flags).

alledgesaux([],_,_,0).
alledgesaux([Y|R],B,J,Flags) :- % The Flags variable is created

alledgesaux(R,B,J,F1), % Recursive call.
Flags #= (B[Y] #= J) + F1. % Add "1" iff there is edge (X,Y) and BY = J

A. Dovier (Uniud-DIMI) LP and Bisimulation 19 / 25

Encoding Stable property

ASP
(∃x ∈ B1)(∃y ∈ B1) (x ∈ E−1(B2) ∧ y /∈ E−1(B2))

blk(I) :- node(I).
%%% Function assigning nodes to blocks
1{inblock(A,B):blk(B)}1 :- node(A).
%%% STABILITY (2’)
:- blk(B1;B2), node(X;Y), X != Y, inblock(X,B1), inblock(Y,B1),

connected(X,B2), not connected(Y,B2).
connected(Y,B) :- edge(Y,Z),blk(B),inblock(Z,B).
%% Basic symmetry-breaking rules (optional)
:- node(A), internal(A), inblock(A,1).
internal(X) :- edge(X,Y).
leaf(X) :-node(X), not internal(X).
non_empty_block(B) :- node(A), blk(B), inblock(A,B).
empty_block(B) :- blk(B), not non_empty_block(B).
:- blk(B1;B2), 1 < B1, B1 < B2, empty_block(B1), non_empty_block(B2).
%% Minimization
number_blocks(N) :- N=#sum[non_empty_block(B)].
#minimize [number_blocks(N)=N].

A. Dovier (Uniud-DIMI) LP and Bisimulation 20 / 25

Encoding Max fixpoint algorithm

stable_comp(Final, Nclasses) :-
findall(X,node(X),Nodes),
initialize(Nodes, Initial),
maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"

%%% maxfixpoint procedure. If possible, split, else stop.
maxfixpoint(AssIn, I, AssOut, C) :-

split(I,AssIn,AssMid),!,
I1 is I+1,
maxfixpoint(AssMid, I1, AssOut, C).

%%% When stop, simply compute the number of classes used
maxfixpoint(Stable,C,Stable,C1) :-

count_classes(C,Stable,C1).
%%% Split operation.
%%% First locate a block that can be split. Then find the splitter
split(MaxBlock,AssIn,AssMid) :-

between(1,MaxBlock,I),
findall(X,member(X-I,AssIn),BI),
BI = [_, _ | _], %% BI might be split (not empty, not singleton)
%%% Find potential splitters BJ (and remove duplicates)
findall(Q,(member(V-Q,AssIn),edge(W,V),member(W,BI)),SP),
sort(SP,SPS), member(J,SPS),
findall(Z,(member(Y-J,AssIn),edge(Z,Y)),BJinv),
my_delete(BI,BJinv,[D|ELTA]), %%% The difference is computed when not empty
MaxBlock1 is MaxBlock + 1,
update(AssIn,AssMid,MaxBlock1,[D|ELTA]).

A. Dovier (Uniud-DIMI) LP and Bisimulation 21 / 25

Experimental results

Benchmarks

Figure : From left to right, the graphs G1,G2 (n odd), G2 (n even), G3, and G5
used in the experiments. G4 is the complete graph (not reported).

A. Dovier (Uniud-DIMI) LP and Bisimulation 22 / 25

Experimental results

Summary of results
Direct encoding

A. Dovier (Uniud-DIMI) LP and Bisimulation 23 / 25

Experimental results

Summary of results
Coarsest stable paritition

A. Dovier (Uniud-DIMI) LP and Bisimulation 24 / 25

Conclusion

Conclusions

Prolog generate & test is useless
CLP constraint & generate introduces too many constraints for
nested quantifiers
ASP generate & test allows clear code and good running time
These results can be inherited by the encoding of other (similar)
graph properties

Theoretical algorithmic results can be implemented in Prolog (with
a great speed-up w.r.t. declarative approach)!

A. Dovier (Uniud-DIMI) LP and Bisimulation 25 / 25

Conclusion

Conclusions

Prolog generate & test is useless
CLP constraint & generate introduces too many constraints for
nested quantifiers
ASP generate & test allows clear code and good running time
These results can be inherited by the encoding of other (similar)
graph properties
Theoretical algorithmic results can be implemented in Prolog (with
a great speed-up w.r.t. declarative approach)!

A. Dovier (Uniud-DIMI) LP and Bisimulation 25 / 25

	Introduction
	Sets and Graphs
	Bisimulation
	Direct definition
	Coarsest Stable Partition

	Encoding
	Direct definition
	Stable property
	Max fixpoint algorithm

	Experimental results
	Conclusion

