
A GPU Implementation of
Large Neighborhood Search

for Solving
Constraint Optimization Problems

F. Campeotto1,2 A. Dovier1 F. Fioretto1,2 E. Pontelli2

1. Univ. of Udine

2. New Mexico State University

Prague, August 22nd, 2014

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Introduction

Every new desktop/laptop comes equipped with a
powerful, programmable, graphic processor unit (GPU).
For most of their life, however, there GPUs are absolutely
idle (unless some kid is continuously playing with your PC)
Auxiliary graphics cards can be bought with a very low
price per computing core
Their HW design is made for certain applications

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Introduction

In the last years we have experienced the use of GPUs for
SAT solvers, exploiting parallelism either for deterministic
computation or for non-deterministic search [CILC
2012–JETAI 2014]

We have also used GPU for an ad-hoc implementation of
LS solver for the protein structure prediction problem
[ICPP13]
We present here how we have converted our previous
experience in the developing of a constraint solver with
LNS.

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

GPUs, in few minutes

A GPU is a parallel machine with a lot of computing cores, with
shared and local memories, able to schedule the execution of a
large number of threads.

However, things are not that easy. Cores are organized
hierarchically, and slower than CPUs, memories have different
behaviors, . . . it’s not easy to obtain a good speed-up
Do not reason as: 394 cores⇒ ∼ 400×
10× would be great!!!

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Compute Unified Device Architecture

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Grids, Blocks, threads

When a global (kernel) function is invoked, the number of
parallel executions is established
The set of all these executions is called a grid.
A grid is organized in blocks
A block is organized in a number of threads.
The thread is therefore the basic parallel unit and it has a
unique identifier (an integer number, a pair, or a triple):

- its block blockIdx and
- its position in the block threadIdx.

This identifier is typically used to address different portions
of a matrix
The scheduler works with sets of 32 threads (warp) per
time. A warp used SIMD (Single Instruction Multiple Data)
in a warp: this must be exploited!

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Host, Global, Device

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Host, Global, Device

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Host, Global, Device

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Host, Global, Device

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Host, Global, Device

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

CUDA: Memories

The device memory architecture is rather involved, with 6
different types of memory (plus a new feature in CUDA 6)

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

The Solver iNVIDIOSO
NVIDIa-based cOnstraint SOlver

Modeling Language: MiniZinc, to define a COP 〈~X , ~D,C, f 〉
Translation from MiniZinc to FlatZinc is made by standard
front-end (available in the MiniZinc distribution)
We implemented propagators for “simple” FlatZinc
constraints (most of them!)
plus specific propagators for some global constraints
There is a device function for each propagator (plus some
alternatives)
MiniZinc is becoming the standard constraint modeling
language (e.g., for competitions)

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

The Solver iNVIDIOSO
Recent and current work

We are exploiting GPUs for constraint propagation (more
effective for “complex” constraints)
We have comparable running time w.r.t. state of the art
propagators (JaCoP, Gecode) but sensible speed-ups for
some global constraints such as table [PADL2014]

We have not (yet) implemented a real-complete parallel
search (GPU SIMT is not made for that even if SAT
experiments show that for suitable sizes it can work)
Rather, we have implemented a Large Neighborhood
Search (LNS) on GPU [this contribution]
LNS hybridizes Constraint Programming and Local Search
for solving optimization problems (COPs).
Exploring a neighborhood for improving assignments fits
with GPU parallelism

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

The Solver iNVIDIOSO
Recent and current work

We are exploiting GPUs for constraint propagation (more
effective for “complex” constraints)
We have comparable running time w.r.t. state of the art
propagators (JaCoP, Gecode) but sensible speed-ups for
some global constraints such as table [PADL2014]
We have not (yet) implemented a real-complete parallel
search (GPU SIMT is not made for that even if SAT
experiments show that for suitable sizes it can work)

Rather, we have implemented a Large Neighborhood
Search (LNS) on GPU [this contribution]
LNS hybridizes Constraint Programming and Local Search
for solving optimization problems (COPs).
Exploring a neighborhood for improving assignments fits
with GPU parallelism

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

The Solver iNVIDIOSO
Recent and current work

We are exploiting GPUs for constraint propagation (more
effective for “complex” constraints)
We have comparable running time w.r.t. state of the art
propagators (JaCoP, Gecode) but sensible speed-ups for
some global constraints such as table [PADL2014]
We have not (yet) implemented a real-complete parallel
search (GPU SIMT is not made for that even if SAT
experiments show that for suitable sizes it can work)
Rather, we have implemented a Large Neighborhood
Search (LNS) on GPU [this contribution]
LNS hybridizes Constraint Programming and Local Search
for solving optimization problems (COPs).
Exploring a neighborhood for improving assignments fits
with GPU parallelism

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Small and Large Neighboorhood with CP

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Small and Large Neighboorhood with CP

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Small and Large Neighboorhood with CP

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Small and Large Neighboorhood with CP

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Large Neighborhood Search

Given a solution ~s for the COP 〈~X , ~D,C, f 〉 we can
“unassign” some of the variables, say N ⊆ ~X
The set of values for N that are a solution of the COP
constitutes a neighborhood of ~s (including ~s)
Given the COP, N identifies uniquely a neighborhood (that
should be explored)

With GPUs we can consider many (large) neighborhoods
in parallel each of them randomly chosen
For each of them we consider different “starting points”
(randomly chosen) from which starting the exploration of
the neighborhood.
We use parallelism to implement local search (and
constraint propagation) within each neighborhood
considering each starting point to cover (sample) large
parts of the search space.

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Large Neighborhood Search

Given a solution ~s for the COP 〈~X , ~D,C, f 〉 we can
“unassign” some of the variables, say N ⊆ ~X
The set of values for N that are a solution of the COP
constitutes a neighborhood of ~s (including ~s)
Given the COP, N identifies uniquely a neighborhood (that
should be explored)
With GPUs we can consider many (large) neighborhoods
in parallel each of them randomly chosen
For each of them we consider different “starting points”
(randomly chosen) from which starting the exploration of
the neighborhood.
We use parallelism to implement local search (and
constraint propagation) within each neighborhood
considering each starting point to cover (sample) large
parts of the search space.

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LNS: implementation
Parallelizing local search

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LNS: implementation
Some details

All constraints and initial domains are communicated to the
GPU once, at the beginning of the computation
The CPU calls a sequence of kernels K r

i with t ·m blocks (t
subsets, m fixed number of initial assignments). r ranges
with the number of improving steps.
A block contains 128k threads (1 ≤ k ≤ 8 fixed)—4k warps
CPU and GPU work in parallel

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LNS: implementation
Within each block

A block contains 128k threads, i.e., 4k warps (for simplicity
assume now k = 1)
VARIABLES:

FD (from the model)
OBJ (one)
AUX (for the obj function)

CONSTRAINTS:
involving FD only
involving FD and 1 AUX
involving 2 or more AUX
involving OBJ

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LS techniques implemented

Random Labeling: randomly assigns values to the variables of the
neighborhoods (i.e., MonteCarlo), possibly propagating
constraints after each single assignment

Random Permutation: random permutation of the starting points

Two-exchange Permutations: swaps the values of all the pairs of
variables in a neighborhood

Gibbs Sampling: Markov Chain Monte Carlo algorithm, used to
solve a maximum a-posteriori estimation problem. Let
s be the current solution and ν its cost. for each
variable x in N , choose a random candidate
d ∈ Dx \ {s(x)}; then determine the new value ν′ of the
cost function, and accept or reject the candidate d with
probability ν′

ν . Repeat p times.

Iterated Conditional Mode: similar to Gibbs but it performs gradient
descent (hill climbing)

Complete exploration: try all possible combinations of assignments
(unpractical!)

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LNS: results

LNS is developed for GPU.
However, we have made some tests comparing the
implementation with a CPU implementation of the same
technique.
Detailed results on the paper. Speed-up from 2.5x to 40x
(best results on random labeling and on complete
assignment)
Let us see a comparison with JaCoP and Oscar

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

LNS: results
Graphs are one over the other, not behind!

Transp.(Min) TSP(Min) Knap.(Max) CoinsGrid(Min)

MiniZinc Benchmarks

O
bj

ec
tiv

e
va

lu
e

0

10000

20000

30000

40000

50000

60000 JaCoP
GPU

GPU

MiniZinc Benchmarks

Ti
m

e
(s

ec
.)

0
20
0

40
0

60
0

Transportation
TSP
Knapsack
CoinsGrid

Size 32 Size 64

Quadratic Assignment Problem (Min)

O
bj

ec
tiv

e
va

lu
e

0

100

200

300

400

500

600 OscaR
GPU

OscaR GPU

Quadratic Assignment Problem (Min)

Ti
m

e
(s

ec
.)

0
40
0

80
0

Size 32
Size 64

We tested CoinsGrid on OscaR (LNS). Both tools reach the timeout
(600 s); we compute 25036 while Oscar 123262 (5x).
F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

NEW: Some results on work in progress

LEFT: standard implementation of min-conflict (| Ni | = 1)
RIGHT: Min Conflict Heuristic on Large Neighborhoods.

8 16 32 64 128 256 512

0

1000

2000

3000

4000

5000
CPU
GPU

Min Conflict Large Neighborhoods (|N|=1)

N

Ti
m
e(
se
c.
)

8/2 16/4 32/8 64/8 128/16 256/32 512/32

0

10

20

30

40

50

60 GPU_1
GPU_N

Min Conflict Large Neighborhoods (|N|>=1)

N/|N|

Ti
m
e(
se
c.
)

Tests on N queens (naive modeling)

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Conclusions

We have developed a constraint solver running (mostly) on
GPU.
Speed-up wrt sequential implementation
Comparable with state-of-the-art solvers in the worst case,
faster when (some) global constraints or LNS is used
We are working for moving all computation to the GPU
and/or we will try to exploit the (new, in CUDA 6) Unified
Memory
Standard (complete) search options and other basic
constraints are now implemented
GPUs will be used for parallel “search look-ahead” for
choosing dynamically the most promising search strategy
for a complete search
The parallel propagation of other global constraints (e.g.,
alldifferent, circuit, cumulative, sets) will be soon
investigated

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Extra slides
Just in case . . .

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Some Remarks

Heuristics chosen for the test with JaCoP are those that
perform better for JaCoP (combination of
first-fail/indomain_min, etc).
TSP instances are on 240 cities (and some flux
constraints)
Knapsack instances are of 100 elements and made hard
using an on-line generator (link in the paper) — few
constraints.
CoinsGrid problem instead has many constraints

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

Domain Representation

Domain as a Bitset
4 extra variables are used: (1) sign, (2) min, (3) max, (4)
event
The use of bit-wise operators on domains reduces the
differences between the GPU cores and the CPU cores

Offsets are used (e.g. if x ∈ {−1000,−999})
The status is stored in a vector of nM integer (M a multiple
of 32, n number of variables)

F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli CUD@CP: iNVIDIOSO

