BAAC: A Prolog System for Action Description and Agents Coordination

Agostino Dovier Andrea Formisano Enrico Pontelli

Univ. of Udine & Univ. of Perugia & New Mexico State Univ.

ICLP 2011 — Lexington - July 8, 2011

ICI P 2011

1/13

DFP (UniUD-UniPG-NMSU)

Introduction

Action Description Languages

Provide a declarative framework for knowledge representation and reasoning on actions and change

A seminal work: Action Languages, Gelfond & Lifschitz, 1998

Many proposals, several languages:

 \mathcal{A} . \mathcal{B} . $\mathcal{C}+$, \mathcal{K} , \mathcal{CARD} , \mathcal{AL} , \mathcal{ALAN} , ...

Action Description Languages: Encoding in CLP

- Action description languages can be encoded using CLP(FD) implemented in Prolog [ICLP07,MG65]
- Fluent values are not forced to be Boolean
- We presented the language \mathcal{B}^{MV} and its encoding [ICLP07,TPLP10]
- An extension for multiagent planning B^{MAP} (with centralized) reasoner) was also developed [LPNMR09.Fuln2010]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Concurrent autonomous agents

The basic idea:

- Agents "live" in a common world
- Each agent has a (partial) view of the world and its own goals
- Each agent autonomously develops a plan.

< 同 → < 三 →

Concurrent autonomous agents

The basic idea:

- Agents "live" in a common world
- Each agent has a (partial) view of the world and its own goals
- Each agent autonomously develops a plan.

Properties of the world (fluents) may be shared by different agents, but

- Agents might not be aware of this, and
- The "local" view of an agent might be affected by other agents' actions
- The effects of actions of different agents may interfere
- The concurrent execution of agents' plans might lead to inconsistencies and conflicts among actions' effects.

Domain specification and plan execution

Two main aims:

• Design an Action Description Language for autonomous agents coordination, to support the specification of strategies and policies for conflict resolution, communication, ...

ZAAC

• Develop a prototype to execute Action Description Language specifications and enable planning, concurrent plan-execution, and plan revision.

CLP(FD) + Linda

ICI P 2011

5/13

...ensuring extensibility of the Action Description Language and modularity of the prototype!

DFP (UniUD-UniPG-NMSU)

Syntax

The language $\mathcal{B}^{\text{\tiny AAC}}$

Action declaration

action Act

Fluents...

fluent f_1, \ldots, f_h valued dom

expressions...

$$FE ::= n \mid f^t \mid f@r \mid FE_1 \oplus FE_2 \mid rei(C) \mid ...$$

...and constraints

A constraint *C* is a propositional combination of *primitive* constraints of the form FE_1 relop FE_2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The language $\mathcal{B}^{\text{\tiny AAC}}$

Dynamic causal laws

Act causes C_{Eff} if C_{Prec}

Executability laws

executable Act if C

Specification of initial...

initially ${\cal C}$

...and final states

goal C

The language \mathcal{B}^{AAC}

Each agent Ag is specified by a different action theory

Agent identification

agent Ag [priority Val].

Knowledge about other agents

known agents A_1, A_2, \ldots, A_k

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ICLP 2011

8/13

DFP (UniUD-UniPG-NMSU)

Syntax

The language \mathcal{B}^{AAC}

To specify simple reactions to conflicts and failures in plan-execution, we refine the action declarations:

action Act OPT OPT ::= on conflict OC OPT | on failure OF OPT OC ::= retry_after T [provided C] [forego [provided C] OF ::= retry_after T [if C] | replan [if **C**] [add_goal **C**] | fail [if **C**]

< □ > < □ > < 豆 > < 豆 > < 豆 > < □ > < □ > <

Supervisor

- A supervisor controls the execution of agents' plans
 - Ensure consistency of the state of the world
- Each agent sends a message to the supervisor declaring the intention to execute an action

Supervisor

- A supervisor controls the execution of agents' plans
 - Ensure consistency of the state of the world
- Each agent sends a message to the supervisor declaring the intention to execute an action
- The supervisor verifies the consistency of the consequences of all requested actions
- Supervisor determines subsets of conflicting actions

Conflict Resolution

- Conflicts can be resolved by executing various protocols
 - Supervisor arbitration (e.g., using priorities, round-robin, etc.)
 - Agent cooperation (e.g., action directives, taking turns, etc.)
- Conflict resolution may require agents to modify their plans
 - planned actions may be no longer executable
 - new goals may have been added
 - new state of the world may be incompatible with original plan
 - ...

Modeling explicit communication

Communication might occur in a conflict-resolution phase, during the execution of a step of the concurrent plans.

Moreover, explicit actions laws can be used to specify

• Broadcasting communication:

request C_1 if C_2

Point-to-point communication

```
request C_1 to_agent Ag if C_2
```

A more general scheme:

request C_1 [to_agent Ag] if C_2 [offering C_3]

BAAC in action

A volleyball match in \mathcal{B}^{AAC}

Several independent Prolog agents (reasoning possibly on different machines) coordinated by Linda. Both the teams wish to score a point.

ICLP 2011 13/13

BAAC in action

A volleyball match in \mathcal{B}^{AAC}

Several independent Prolog agents (reasoning possibly on different machines) coordinated by Linda. Both the teams wish to score a point.

Questions?