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Introduction

Motivation

Several proposal by Gupta et al. on conductive logic
programming, conductive logic programming with negation,
conductive logic programming with constraints, applications of
conductive logic programming, (from now on, simply co-LP)
· · ·

Some serious issues about the semantics
Some issues about the proposed co-SLD procedure
Some issues (easy to check) on the completeness of the
interpreter
Some (inherited) issues about its correctness if negation is used
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Introduction

Outline

Formal results on decidability for co-LP
A simple operational semantics for co-LP
Correctness based on the semantics of infinite tree LP (Jaffar,
Stuckey)
Completeness?
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Introduction

Fixpoints
Quick refresh

Let P be a definite clause ground program and I a set of atoms. Then

TP(I) = {a : (a← b1, . . . ,bn) ∈ P ∧ {b1, . . . ,bn} ⊆ I}

p.
q :- q.
r :- p, q, s.

TP(∅) = {p},TP({p}) = {p} = lfp(TP)

TP({p,q, r , s}) = {p,q, r},TP({p,q, r}) = {p,q},
TP({p,q}) = {p,q} = gfp(TP)
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co-LP: syntax and semantics

co-LP in a nutshell
Syntax

Let us focus on the pure co-LP (Gupta et al. 1996)
A co-LP program is a definite clause program.
Namely a set of definite clauses

A← B1, . . . ,Bn

where n ≥ 0 and A and Bi are f.o. atomic formulas (atoms)
The “standard” semantics of Logic Programming is based on
lfp(TP): a r.e. complete set, in general.
The semantics of co-LP, instead is based on the greatest fix point

By the way, since the idea is to capture perpetual processes, this
fix point is computed on the extension of the Herbrand Universe
that consider infinite terms, as well.
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co-LP: syntax and semantics

co-LP in a nutshell
Notions from Lloyd, 1987

complete Herbrand Universe co-UP : the set of finite and infinite
terms built over functional symbols and variables

rational terms: can be represented by a finite system of term
equations
Example: Ω = s(s(s(· · · ))) is represented by X = s(X )
non rational terms: cannot be represented by a finite system of
term equations. Example: [0,1,2,3, . . . ] (0 = ∅,n + 1 = s(n))

complete Herbrand base co-BP : the set of all (possibly infinite,
ground) atoms built on predicate symbols and terms in co-UP

complete ground program co-ground(P): the set of all instances
of clauses of P where all variables are replaced by (possibly
infinite) terms in co-UP
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co-LP: syntax and semantics

co-LP in a nutshell
gfp-based semantics

model-theoretical semantics of a definite clause program P
T co

P : ℘(co-BP) −→ ℘(co-BP)
T co

P (I) = {a : (a← b1, . . . ,bn) ∈ co-ground(P) ∧ {b1, . . . ,bn} ⊆ I}

P|=coa (a ∈ co-BP) if and only if a ∈ gfp(T co
P )

P|=coA (A atom possibly with variables) if and only if for all tree
substitutions γ : FV(A) −→ co-UP , P|=coAγ holds
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co-LP: syntax and semantics

Iterated T co
P

T co
P ↑ 0 = ∅

T co
P ↑ α = T co

P (T co
P ↑ (α− 1)) if α is a successor ordinal

T co
P ↑ α =

⋃
β<α T co

P ↑ β if α is a limit ordinal
T co

P ↓ 0 = co-BP
T co

P ↓ α = T co
P (T co

P ↓ (α− 1)) if α is a successor ordinal
T co

P ↓ α =
⋂
β<α T co

P ↓ β if α is a limit ordinal

Important property: gfp(T co
P ) = T co

P ↓ ω

Remark1: this property does not hold for TP and finite terms

Remark2: this property does not hold for T co
P if 6= is allowed in the

clauses
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co-LP: syntax and semantics

SLD with rational terms
Jaffar and Stuckey generalized SLD derivation — 1986 for Prolog II

Main ideas: unification without occurs check and use of a constraint
store. For instance P = p(X )← p(s(X )).

TP ↑ ω = T co
P ↑ ω = lfp(T co

P ) = ∅
T co

P ↓ ω = gfp(T co
P ) = co-BP = {p(Ω),p(0),p(1),p(2),p(3), . . . }

1 Infinite derivation for p(Ω)

〈{X = s(X )}2 p(X )〉∞̀
〈{X = s(X ),X1 = X}2 p(s(X1))〉∞̀
〈{X = s(X ),X1 = X ,X2 = s(X1)}2 p(s(X2))〉∞̀ . . .

2 Infinite derivation for p(0)

〈∅2 p(0)〉∞̀
〈{X1 = 0}2 p(s(X1))〉∞̀
〈{X1 = 0,X2 = s(X1)}2 p(s(X2))〉∞̀ . . .
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co-LP: syntax and semantics

Operational semantics of co-LP
Gupta et. al. 2006

Based on a state transition system which builds rational proof
trees
Example:

num(s(X ))← num(X ).
p(s(X ))← num(X ),p(s(X )).

Proof tree for p(Ω):

p(Ω)

num(Ω) p(Ω)

num(Ω)
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co-LP: syntax and semantics

Operational semantics of co-LP
Gupta et. al. 2006, formally

a state is a pair (T ,E), where T is a finite tree with nodes labeled
with atoms, and E is a system of term equations
a state (T ,E) transitions to another state (T ′,E ′) by transition rule
R of program P whenever:

1 R is a definite clause of the form p(t ′0, . . . , t
′
n)← B1, . . . ,Bm and

E ′ = {t1 = t ′1, . . . , tn = t ′n} ∪ E is solvable, and T ′ is obtained from T
according to the following case analysis of m:

1 m = 0 implies T ′ is obtained from T by removing a leaf labeled
p(t1, . . . , tn) and the maximum number of its ancestors, such that the
result is still a tree.

2 m > 0 implies T ′ is obtained from T by adding children B1, . . . ,Bm to
a leaf labeled with p(t1, . . . , tn).

2 R is of the form ν(m), a leaf N in T is labeled with p(t1, . . . , tn), the
proper ancestor of N at depth m is labeled with p(t ′1, . . . , t

′
n),

E ′ = {t1 = t ′1, . . . , tn = t ′n} ∪ E is solvable, then T ′ is obtained from
T by removing N and the maximum number of its ancestors, such
that the result is still a tree.
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Our proposal

Operational semantics of co-LP
Our proposal

hypothetical goal (Bonatti, Pontelli, Son):
〈E 2 (A1,S1), . . . , (An,Sn)〉, where Ai are atoms and Si are the
associated hypotheses (set of atoms)
derivation step from G = 〈E 2 (A1,S1), . . . , (An,Sn)〉 to G′ for P:
select atom Ai = p(s1, . . . , sn), with hypotheses Si and apply one
of the following rules:

1 let p(t1, . . . , tn)← B1, . . . ,Bm be a renaming of a clause in P with
fresh variables, and let E ′ = E ∪ {s1 = t1, . . . , sn = tn} be solvable.
Then G′ = 〈E ′2 (A1,S1), . . . , (Ai−1,Si−1), (B1,S′), . . . , (Bm,S′),

(Ai+1,Si+1), . . . , (An,Sn)〉
where S′ = Si ∪ {p(s1, . . . , sn)}.

2 let p(t1, . . . , tn) ∈ Si be such that E ′ = E ∪ {s1 = t1, . . . , sn = tn} is
solvable. Then
G′ = 〈E ′2 (A1,S1), . . . , (Ai−1,Si−1), (Ai+1,Si+1), . . . , (An,Sn)〉.

a SWI-Prolog meta-interpreter has been implemented directly
from the 2 rules given above
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Our proposal

Operational semantics of co-LP
Our proposal

num(s(X ))← num(X ).
p(s(X ))← num(X ),p(s(X )).

Example of successful derivation:

〈{X = s(X )}2 (p(X ), ∅)〉c̀o

〈{X = s(X ),X = s(X1)}2 (num(X1), {p(X )}), (p(s(X1)), {p(X )})〉c̀o

〈{X = s(X ),X = s(X1),X1 = s(X2)}2
(num(X2), {p(X ),num(X1)}), (p(s(X1)), {p(X )})〉c̀o

〈{X = s(X ),X = s(X1),X1 = s(X2),X2 = X1}2 (p(s(X1)), {p(X )})〉c̀o

〈{X = s(X ),X = s(X1),X1 = s(X2),X2 = X1, s(X1) = X}2 ε〉c̀o
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Our proposal

Correctness
JS86 + “Pumping Lemma”

Let P be a definite clause program. If there is a successful (hence
finite) c̀o derivation for 〈E 2 (A, ∅)〉 with c.a.s. θ, then P|=coAγ for
every term substitution γ solution of Eθ.
proof sketch:

if only rule 1 is applied, then the derivation is equivalent to a ∞̀
derivation, and correctness directly follows from Jaffar and Stuckey
results
if rule 2 is employed at least once, the proof is similar to that of the
pumping lemma: a finite successful derivation can be transformed
into an infinite derivation using only rule 1, which is, therefore,
equivalent to a ∞̀ derivation
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Our proposal

Decidability issues

P = p(X )← p(s(X )).

T co
P ↓ ω = gfp(T co

P ) = co-BP

the derivation for p(Ω) is finite and successful
the derivation for p(0) is infinite!
is it possible to define a correct operational semantics for which
there exists a finite successful derivation for p(0)?

Maybe, but unfortunately this is not possible in general!
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Our proposal

Formal results on (un)decidability

Υ(S) denotes the subset of S containing only rational terms
Theorem:

1 Υ(T co
P ↑ ω) is recursively enumerable complete

2 Υ(co-BP \ T co
P ↓ ω) is recursively enumerable complete (hence,

Υ(T co
P ↓ ω) is productive).

Proof of (1): follows from known results.

Proof of (2): standard reduction from K̄ (building a suitable Prolog
program s.t. x ∈ K̄ iff p(x) ∈ gfp(T co

P ))

Corollary: even when the semantics is restricted to rational terms,
no complete procedure exists for establishing whether P|=coa;
however, in absence of 6= symbols, there exists a complete
procedure for establishing whether P 6 |=coa.
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Our proposal

A famous picture
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Examples

Example
Büchi ω-automata

���� ����

���� ����
s0 s1

s3 s2

- -a

?

b

� c

6
d

@
@

@
@
@I

e

delta(s0,a, s1).
delta(s1,b, s2).
delta(s2, c, s3).
delta(s2,e, s0).
delta(s3,d , s0).
automata([X |T ],S) : −

delta(S,X ,S1),
automata(T ,S1).

?- meta((automata(A,s0))).
A = [a, b, c, d|A] ;
A = [a, b, e|A] ;
A = [a, b, c, d, a, b, e|A] ;
A = [a, b, e, a, b, c, d|A] ;
...
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Conclusions

Outline

Formal results on decidability for co-LP
A simple operational semantics for co-LP
Correctness based on the semantics of infinite tree LP (Jaffar,
Stuckey) + Pumping Lemma
Completeness is impossible!
Can be used for correctly detecting (some) properties

What about negation? And constraints?
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Conclusions

Thank you

(We’re not selling co-LP, just explaining it)
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