
Proofs of the submitted paper
and

Concrete Syntax ofBFD

MV

Agostino Dovier1, Andrea Formisano2, and Enrico Pontelli3

1 Univ. di Udine, Dip. di Matematica e Informatica.dovier@dimi.uniud.it
2 Univ. di Perugia, Dip. di Matematica e Informatica.formis@dipmat.unipg.it
3 New Mexico State University, Dept. Computer Science.epontell@cs.nmsu.edu

1 Proofs for theB language

1.1 Detailed Encoding

Let us start with a description of how action theories are mapped to finite domain con-
straints. In particular, we will provide a description of how constraints can be used to
model the possible transitions from each individual state of the transition system. Let
us indicate withsv andsu the starting and ending states of a transition. The approach
is based on asserting constraints that relate the truth value of fluents insv andsu.

Let us introduce variables to describe the truth value of each fluent. All variables
are boolean variables. The value of a fluentf in sv (resp.,su) is represented by the
variableIVv

f (resp.,EVu
f). These variables can be used to build expressionsIVv

l (EVu
l)

that represent the truth value of each fluent literall. In paritcular, ifl is a fluentf, then
IVv

l = IVv
f ; if l is the literalneg(f), thenIVv

l = 1 − IVv
f . Similar equations can be

set forEVl. In a similar spirit, given a conjunction of literalsα ≡ [l1, . . . , ln] we will
denote withIV v

α the expressionIV v
l1
∧ · · · ∧ IV v

ln
; similar definition is given forEV u

α .
We will also introduce, for each actionai, a boolean variableAv

i aimed at representing
whether the action is executed or not in the transition fromsv to su under consideration.

Fixed a specific fluentf , we inted to develop constraints that determine whenEV u
f

is true. Let us consider the dynamic causal laws that havef as a consequent:

causes(at1 , f, α1)
· · ·
causes(atm

, f, αm)

Analogously, we consider the static causal laws that assertneg(f):

causes(af1
, neg(f), β1)

· · ·
causes(afn

, neg(f), βn)

Let us also consider the static causal laws related tof

caused(γ1, f)
· · ·
caused(γh, f)
caused(ψ1, neg(f))
· · ·
caused(ψℓ, neg(f))

Finally, for each actionai we will have an executability condition

executable(ai, δi)

Figure 1 describes the boolean constraints that can be used in encoding the relations
that determine the truth value of the fluentf. We will denote withCv,u

f the conjunction
of such constraints.

Given an action specification over the set of fluentsF , the system of constraints
Cv,v+1

F
include

– the constraintCv,v+1

f for eachf ∈ F and for each0 ≤ v < N whereN is the
chosen length of the plan;

– for eachf ∈ F and0 ≤ v ≤ N , the constraintsIV v
f = EV v

f

– for each0 ≤ v < N , the constraint
∨

aj∈A

Av
j

– for each0 ≤ v < N and for each actionai ∈ A, the constraints

Av
i ↔ IV v

δi
∧

∧

aj ∈ A
aj 6= ai

¬Av
j

1.2 CLP(FD) Encoding

Let us proceed now with mapping the previous abstract encoding to concrete CLP(FD)
constraints. A plan with exactlyN states,p fluents, andm actions is represented by:
◦ A list, calledStates, containingN lists, each composed ofp terms of the type
fluent(fluent name, Bool var). The variable of theith term in thejth list is
assigned1 if and only if theith fluent is true in thejth state of the trajectory. For
example, if we haveN = 3 and the fluentsf, g, andh, we have:
States = [[fluent(f,X_f_1),fluent(g,X_g_1),fluent(h,X_h_1)],

[fluent(f,X_f_2),fluent(g,X_g_2),fluent(h,X_h_2)],
[fluent(f,X_f_3),fluent(g,X_g_3),fluent(h,X_h_3)]]

◦ A list ActionsOcc, containingN − 1 lists, each composed ofm terms of the form
action(action name,Bool var). The variable of theith term of thejth list is
assigned1 if and only if theith action occurs during the transition from statej to
statej + 1. For example, if we haveN = 3 and the actionsa andb, then:

2

EVuf ↔ Posfiredv,uf ∨ (¬Negfiredv,uf ∧ IVvf) (1)

¬Posfiredv,uf ∨ ¬Negfiredv,uf (2)

Posfiredv,uf ↔ DynPvf ∨ StatPuf (3)

Negfiredv,uf ↔ DynNvf ∨ StatNuf (4)

DynPvf ↔

m_
i=1

(IV
v
αi

∧ A
v
ti

) (5)

StatPuf ↔

h_
i=1

EV
u
γi

(6)

DynNvf ↔

n_
i=1

(IV
v
βi

∧ A
v
fi

) (7)

StatNuf ↔

ℓ_
i=1

EV
u
ψi

(8)

Fig. 1. The constraintCv,u
f for the generic fluentf

ActionsOcc = [[action(a,X_a_1),action(b,X_b_1)],
[action(a,X_a_2),action(b,X_b_2)]]

The planner will make use of this structure in the construction of the plan; appro-
priate constraints are set between the various Boolean variables to capture their rela-
tionships (e.g., for each list inActionsOcc, exactly oneaction(ai, VAi) contains a
variable that is assigned the value1).

FromSt'

&

$

%
uIV1

uIVp

ToSt'

&

$

%
uEV1

uEVp

-
V A1

-
V AmPm

i=1
V Ai = 1

Fig. 2.Action constraints from state to state

We explain below the main parts of the CLP interpreter for theB language we
developed. The interpreter assumes that the action description is loaded in the Pro-
log database—observe that the syntax adopted is compliant with Prolog’s syntax, thus
allowing us to directly store the action description as rules and facts in the Prolog data-
base.

The entry point of the planner is shown in Fig. 3. The main predicate ismain(N)
(line (1)) that computes a plan of lengthN for the action description present in the Prolog
database. Lines (2) and (3) collect the lists of fluents (Lf) and actions (La). Lines (4)

3

(1) main(N,Actionsocc,States) setof(F,fluent(F),Lf),
(2) setof(A,action(A),La),
(3) make states(N,Lf,States),
(4) make action occurrences(N,La,Actionsocc),
(5) setof(F,initially(F),Init),
(6) setof(F,goal(F),Goal),
(7) set initial(Init,States),
(8) set goal(Goal,States),
(9) set transitions(Actionsocc,States),
(10) set executability(Actionsocc,States),
(11) get all actions(Actionsocc,AllActions),
(12) fd labelingff(AllActions).

Fig. 3. Main predicate of the CLP(FD) planner

and (5) the predicates for defining the listsStates andActionsOcc are called. In
particular, all the variables for fluents and actions are declared as Boolean variables;
furthermore, a constraint is added to enforce that in every state transition, exactly one
action can be fired (fd only one global constraint of GNU Prolog).

Lines (6) and (7) collect the description of the initial state (Init) and the required
content of the final state (Goal). These information are then added to the Boolean vari-
ables related to the first and last state, respectively, by the predicates in lines (8) and (9).

Lines (10) and (11) impose the constraints on state transitions and action executabil-
ity. We will give more details on this part below.

Line (12) gathers all variables denoting action occurrences, in preparation for the
labeling phase (line (13)). Note that the labeling is focused on the selection of the action
to be executed at each time step. Please observe that in the code of Fig. 3 we omit the
parts concerning delivering the results to the user.

The main constraints are added by the predicateset transitions. A recursion
between fluents and consecutive states is made, then the predicateset one fluent is
called (see Fig. 4). Its parameters are the fluentF, the starting stateFromSt, the next
stateToST, the listOcc of action variables, and finally the variablesIV andEV related
to the value of the fluentF (cf. also Fig. 2) inFromSt, andToST, respectively.

For a given fluentF, the predicateset one fluent collects the listDynPos (resp.
DynNeg) of pairs[Act(ion),Prec(onditions)] such that the dynamic actionAct
makesF true (resp. false) in the state transition (lines (15) and (16)). The variables
involved are then constrained by the proceduredynamic (lines (17) and (18)).

Similarly, the static causal laws (caused assertions) are handled by collecting the
lists of conditions that affect the truth value of a fluentF (cf., the variablesStatPos
andStatNeg, in lines (19)–(20)) and constraining them through the procedurestatic
(lines (21) and (22)). The disjunctions of all the positive and negative conditions are
collected in lines (23) and (24) and stored inPosFired andNegFired, respectively.

Finally, lines (25) and (26) take care of the relatioships between all these variables.
Line (25) states that it is inconsistent that a fluent is made both true (PosFired) and
false (NegFired) in the stateToSt. If PosFired andNegFired are both false, then
EV = IV (inertia). Precisely, a fluent is true in the next state (EV) if and only if there is
an action or a static causal law making it true (PosFired) or it was true in the previous
state (IV) and no causal law makes it false.

4

(14) set one fluent(F,IV,EV, Occ,FromSt,ToSt)
findall([X,L],causes(X,F,L),DynPos),

(15) findall([Y,M],causes(Y,neg(F),M),DynNeg),
(16) dynamic(DynPos, Occ, FromSt,DynP,EV),
(17) dynamic(DynNeg, Occ, FromSt,DynN,EV),
(18) findall(P,caused(P,F),StatPos),
(19) findall(N,caused(N,neg(F)),StatNeg),
(20) static(StatPos, ToSt, StatP,EV),
(21) static(StatNeg, ToSt, StatN,EV),
(22) bool disj(DynP,StatP,PosFired),
(23) bool disj(DynN,StatN,NegFired),
(24) PosFired * NegFired #= 0,
(25) EV #<=> PosFired #\/ (#\ NegFired #/\ IV).

(26) dynamic([], , ,[],).
(27) dynamic([[Act,Prec]|R],Occ,FromSt,[Flag|Flags],EV)

member(action(Act,VA),Occ),
(28) get precondition vars(Prec,FromSt,ListPV),
(29) length(Prec,NPrec),
(30) sum(ListPV, SumPrec),
(31) (VA #/\ (SumPrec #= NPrec)) #<=> Flag,
(32) dynamic(R,Occ,FromSt,Flags,EV).

(33) static([], ,[],).
(34) static([Cond|Others],ToSt,[Flag|Flags],EV)

get precondition vars(Cond,ToSt,ListPV),
(35) length(ListPV, NPrec),
(36) sum(ListPV, SumPV),
(37) (SumPV #= NPrec) #<=> Flag,
(38) static(Others,ToSt,Flags,EV).

Fig. 4. Transition from state to state

Let us consider the predicatedynamic (see line (27)). It recursively processes a list
of pairs[Act(ion),Prec(onditions)]. The variableVA associated to the execution
of actionAct is retrieved in line (29). The variables associated to its preconditions are
retrieved from stateFromSt and collected inListPV in line (30). A precondition holds
if and only if all the variables in the listListPV are assigned value 1. Namely, when
their sum is equal to the length,NPrec, of the listListPV. If (and only if) the action
variableVA is true and the preconditions holds, then there is an action effect (line (33)).

Similarly, the predicatestatic recursively processes a list of preconditionsCond.
The variables to such preconditions are retrieved from the state ToSt and collected
in ListPV (line (37)). A precondition holds if and only if all the variables in the list
ListPV have value 1. Namely, when their sum is equal to the length,NPrec, ofListPV.
This happens if and only if there is a static action effect (cf., line (40)).

Executability conditions are handled as follows. For each state transition and for
each actionAct, the predicateset executability sub is called (see Fig. 5). The
variableVA, encoding the application of an actionAct is collected in line (43). A pre-
condition hold if and only if the sum of the (Boolean) values of its fluent literals equals
their number (lines (52)-(54)). The variableFlags stores the list of these conditions
and the variableF their disjunction. If the action is executed (VA = 1, see line (47)),
then at least one of the executability conditions must hold.

5

(42) set executability sub([], ,).
(43) set executability sub([[Act,C]|CA],ActionsOcc,State)

member(action(Act,VA),ActionsOcc),
(44) preconditions flags(C, State,Flags),
(45) bool disj(Flags,F),
(46) VA #==> F,
(47) set executability sub(CA,ActionsOcc,State).
(48) preconditions flags([], ,[]).

(49) preconditions flags([C|R],State,[Flag|Flags])
get precondition vars(C,State,Cs),

(50) length(Cs,NCs),
(51) sum(Cs, SumCs),
(52) (NCs #= SumCs) #<=> Flag,
(53) preconditions flags(R,State,Flags).

Fig. 5. Executability conditions

1.3 Soundness and completeness

Let us proceed with the soundness and completeness proof. For each fluentf , the predi-
cateset one fluent imposes the constraintCv,v+1

f described earlier. Moreover, such
predicate constraints a number of auxiliary (Boolean) variables to the values of specific
expressions, as shown in Table 1, and all the additional constraints described.

F ∪ ¬F

S S′

E

Fig. 6. Sets of fluents involved in a state transition

Let S (resp.,S′) be the set of fluent literals that holds insv (resp.,sv+1). Note
that, from any specific, known,S (resp.,S′), we can obtain a consistent assignmentσS

(resp.,σS′) of truth values for all the variablesIVv
f (resp.,EVv+1

f) of sv (resp.,sv+1).

Conversely, each truth assignmentσS (resp.,σS′) for all variablesIVv
f (resp.,EVv+1

f)
corresponds to a consistent set of fluentsS (resp.,S′). As regards the occurrence of
actions, in each state transition a single actionai occurs and its occurrence is encoded
through a specific Boolean variable, sayAv

i .
Let σa be the assignment of truth values for such variables such that σa(Av

i) = 1 if
and only ifai occurs in the state transition fromsv to sv+1. Note that the domains of
σS , σS′ , andσa are disjoint, so we can safely denote byσS ◦σS′ ◦σa the composition of
the three assignments. With a slight abuse of notation, in what follows we will denote
E(a, sv) with E. Clearly,E ⊆ S′.

Theorem 1 states the completeness of the planner of Fig. 3. Itasserts that for any
givenD = 〈DL, EL,SL〉, if a triple 〈s, a, s′〉 belongs to the transition system described
byD, then the assignmentσ = σS ◦ σS′ ◦ σa satisfies the conditionCv,v+1

F
.

6

Theorem 1 (Completeness).LetD = 〈DL, EL,SL〉. If S′ = Clo(E(ai, sv) ∪ (S ∩
S′)) thenσS ◦ σS′ ◦ σa is a solution of the constraintCv,v+1

F
.

Proof. As mentioned, the planner introduces a number of auxiliary constrained vari-
ables whose values are univocally determined once the values of the fluents are as-
sessed. In other words, whenS, S′, anda are fixed, the r.h.s. of the constraints(5)–
(8) are completely specified. To prove the theorem, we need to verify that if S′ =
Clo(E ∪ (S ∩ S′)), then the constraints(1), (2) along with the constraints about the
action variablesAv

i are satisfied for every fluentf .
Let us start by looking at the action occurrence. Letai be the action executed in state

sv, thusσa = {Av
i /1}∪{A

b
j/0|j 6= i}. Thus, it is easy to see that(

∨
aj∈A

Av
j)σa is true.

Similarly, since the semantics requires that actions are executed only if the executability
conditions are satisfied, then this means thatS |= δi, which quickly leads to(IV v

δi
)σs

is true, and this allows us to conclude that

(Av
r ↔ IV v

δr
∧

∧

aj ∈ A
aj 6= ar

¬Av
j)σs ◦ σa

is true for eachar ∈ A.
Let us now consider the constraints dealing with fluents. First of we recall thatS′

is a consistent, complete, and closed w.r.t.SL, set of fluent literals. Let us consider
a fluentf . We prove that constraint(2) is satisfied. Assume, by contradiction, that
Posfired

v,v+1

f σ andNegfiredv,v+1

f σ are both true. Four cases must be considered:

1. DynPv
fσ andDynNv

fσ are true. Since these values are determined bysv, ai, sv+1,
this means that bothf andneg(f) belong toE(ai, sv). Since the closure is monotonic
this means thatLit(sv+1 = S′ is inconsistent, representing a contradiction.

2. DynPv
fσ andStatNv+1

f σ are true. This means thatf is in E(ai, sv) andneg(f)
is added toS′ by the closure operation. This implies thatS′ is inconsistent, which
represents a contradiction.

3. StatPv+1

f σ andDynNv
fσ are true. This leads a contraddiction as in the previous

case.
4. StatPv+1

f σ andStatNv+1

f σ are true. This means thatf andneg(f) are added to
S′ by the closure operation. This means thatS′ is inconsistent, which is a contra-
diction.

It remains to prove that constraint(1) is satisfied byσ. Let us assume thatf ∈ S′. Thus,
EV v+1

f σS′ is true. Three cases must be considered.

1. f ∈ E(ai, sv). This means that there is a dynamic causal lawcauses(ai, f, αi)
whereS |= αi. From the definition, this leads toIV v

αi
σ being true andσa(Av

i) = 1.
Thus, constraint(5) setsDynPv

fσ andPosfiredv,v+1

f σ are both true. As a conse-
quence, constraint(1) is satisfied.

2. f /∈ E(ai, sv) andf ∈ S. This means thatf ∈ S∩S′. In this caseNegfiredv,v+1

f σ
must be false, otherwiseS′ would be inconsistent (by closure). Then,IVv

fσS should

be true,EVv+1

f σS′ is true andNegfiredv,v+1

f σ is false, which satisfy constraint(1)

(regardless of the value ofPosfiredv,v+1

f σ).

7

3. f /∈ E(ai, sv) andf /∈ S. This means thatf is inserted inS′ by closure. Thus, there
is a static causal law of the formcaused(γj , f) such thatS′ |= γj . In this case, by
(6), StatPv+1

f σ is true and, by(3), so isPosfiredv,v+1

f σ. Thus, constraint(1) is
satisfied.

If f /∈ S′, thenneg(f) ∈ S′ and the proof is similar with positive and negative
roles interchanged. ⊓⊔

Let us observe that the converse of the above theorem does notnecessarily hold. The
problem arises from the fact that the implicit minimality inthe closure operation is not
reflected in the computation of solutions to the constraint.Consider the action descrip-
tion whereF = {f, g, h} andA = {a}, with predicates:

(1) executable(a,[]).
(2) causes(a,f,[]).
(3) caused([g],h).
(4) caused([h],g).

Let us considerS = {neg(f), neg(g), neg(h)} andS′ = {f, g, h} determines a
solution of the constraintCv,v+1

F
with the execution of actiona, butClo(E∪(S∩S′)) =

{f} ⊂ S′. However, the following holds:

Theorem 2 (Weak Soundness).LetD = 〈DL, EL,SL〉. LetσS ◦ σS′ ◦ σa identify a
solution of the constraintCv,v+1

F
. ThenClo(E(ai, sv) ∪ (S ∩ S′)) ⊆ S′.

Proof. It is immediate to see thatσS andσS′ uniquely determines two consistent and
complete sets of fluent literals. Moreover, they are closed underSL (thanks to con-
straints(6) and(8) in Figure 1). Letf be a positive fluent inClo(E(ai, sv)∪ (S∩S′)).
We show now thatf ∈ S′.

1. If f is in S ∩ S′ we are done.
2. If f ∈ E(ai, sv), there is a lawcauses(ai, f, αi) such thatS |= αi. SinceS is

determined byσS , by (5), we have thatσS ◦ σa is a solution ofIV v
αi
∧ Av

i , which
implies thatDynPv

f is true, andσS′(EVf)v+1 is true inσS′ . Therefore,f ∈ S′.
Observe also thatσa making trueAv

i will imply that IV v
δi

, which will imply the
executability ofai.

3. We are left with the case off /∈ E(ai, sv) andf /∈ S ∩ S′. SinceS′ is determined
by σS′ , andf ∈ Clo(E(ai, sv)∪ (S ∩S′)), there is a lawcaused(γj , f) such that
S′ |= γj , and by constructionσS′ makesEV v+1

γj
true. Thus,StatPv+1

f is true and

thereforeEV v+1

f is true. Hence,f ∈ S′.

If neg(f) is a negative fluent inClo(E(ai, sv)∪(S∩S′)), the proof proceeds similarly.
⊓⊔

Let us consider the set of static causal lawsSL. SL identifies adefinite propositional
programP as follows. For each positive fluent literalp, let ϕ(p) be the (fresh)
predicate symbolp, and for each negative fluent literalneg(p) let ϕ(neg(p)) be the
(fresh) predicate symbol̃p. The programP is the set of clauses of the formϕ(p) ←
ϕ(l1), . . . , ϕ(lm), for each static causal lawcaused([l1,...,lm],p). Notice thatp
andp̃ are independent predicate symbols inP . FromP one can extract the dependency
graphG(P) in the usual way, and the following result can be stated.

8

Theorem 3 (Correctness).LetD = 〈DL, EL,SL〉. Let σS , σS′ , σa be a solution of
the constraintCv,v+1

F
. If the dependency graph ofP is acyclic, thenClo(E(ai, sv) ∪

(S ∩ S′)) = S′.

Proof. Theorem 2 proves thatClo(E(ai, sv)∪ (S ∩S′)) ⊆ S′. It remains to prove that
for any (positive or negative) fluentℓ, if ℓ ∈ S′, thenℓ ∈ Clo(E(ai, sv) ∪ (S ∩ S′)).

If ℓ ∈ E(ai, sv) or ℓ ∈ S, then trivially ℓ ∈ Clo(E(ai, sv) ∪ (S ∩ S′)). On the
other hand, let us prove that wheneverℓ ∈ S′ and ℓ /∈ E(ai, sv) ∩ (S ∩ S′) then
ℓ ∈ Clo(E(ai, sv)∩ (S∩S′)). To this aim, consider the programP and its dependency
graphG(P). With a slight abuse of notation, let us identify a fluentf with both the
corresponding atomϕ(f) and the associated node inG(P). Because of the acyclicity of
G(P), there are graph nodes without incoming edges—we will referto them asleaves.
Let us now prove our claim, by induction on the length of the shortest path from a leaf
to the positive fluent literalf .
Base case.If f /∈ E(ai, sv) ∪ (S ∩ S′) is a positive fluent which is a leaf (the proof is
similar for the case of negative literals), then two cases are possible.
• There is no law of the formcaused(γj , f) in SL. Thus, it cannot be thatf ∈ S′.
The claim holds.
• There is a lawcaused([], f). In this casef ∈ S′ by closure.

Inductive step.Let f /∈ E(ai, sv) ∪ (S ∩ S′) be a positive fluent such that there are
lawscaused(γ1, f), . . . , caused(γh, f) in SL. Sincef /∈ E(ai, sv) andf /∈ S ∩ S′,
we have thatIV v

f is false,EV v+1

f is true, andDynPv
f is false underσS ◦ σS′ ◦ σa.

From the fact that constraint(1) is satisfied, it follows thatStatPv+1

f is true. Moreover,
DynPv

f is true becausef /∈ E(ai, sv). On the other hand, because of(2), we have that

DynNv
f , StatNv+1

f , andNegFiredv,v+1

f are all false. Consequently, constraint(1) can

be simplified toEV v
f ↔

∨h
i=1

EV v+1
γi

. If f ∈ S′ (i.e.,EV v+1

f is true), than one of
EV v+1

γj
is verified byσS′ . This implies that, for each fluentg required to be true (resp.,

false) inγj , g is set true (resp., false) byσS′ . By inductive hypothesis, such fluent literals
(eitherg orneg(g)) belong toClo(E(ai, sv)∪(S∩S′)). SinceClo(E(ai, sv)∪(S∩S′))
is closed under the static laws, it follows thatf ∈ S′.

The proof in case of a negative fluentneg(f) is similar. ⊓⊔

Let the programP meet the conditions of the previous theorem; we can prove the
following.

Theorem 4. There is a trajectory〈s0, a1, s1, a2, . . . , an, sn〉 in the transition system if
and only if there is a solution for the constraints

C0,1
F
∧C1,2

F
∧ · · · ∧ Cn−1,n

F

Proof. The result is a simple inductive (onn) application of the previous theorem.

2 Concrete Syntax ofBFD

MV

An action signature consists of a setF of fluent names, a setA of action names, and a
setV of values for fluents inF .

9

As a concrete syntax, fluents and actions are ground atomic formulaep(t1, . . . , tn)
from an underlying logic languageL. We assume that the set of admissible terms is
finite (e.g., either there are no function symbols inL, or the use of functions symbols is
restricted to avoid the creation of arbitrary complex terms).

In the definition of an action description, an assertion of the kind

fluent(f, v1, v2) or fluent(f, {v1, . . . , vk})

declares thatf is a fluent and that its set of valuesV is the interval[v1, v2] or the set
{v1, . . . , vk}.

An annotated fluent (AF)is of the formf−i wheref is a fluent andi ∈ N. f0 is
said acurrent fluentand should be represented simply byf .1

Annotated fluents can be used insidefluent expressions (FE) that can be defined
inductively as follows:

FE ::= n|〈AF〉|abs(FE)|FE1 ⊕ FE2|rei(FC)

wheren ∈ Z, ⊕ ∈ {+,−, ∗, /, mod}. rei(FC) is the reified constraint, whereFC is a
fluent constraint defined below.

Fluent expressions can be used to buildfluent constraints (FC)). A primitive flu-
ent constraint is a formulaFE1op FE2 whereFE1 andFE2 are fluent expressions —
without reification— andop ∈ {eq, neq, geq, leq, lt, gt}. A fluent constraintis a
conjunction of primitive fluent constraints. Concretely,C1 ∧ · · · ∧Cn is represented by
[C1, . . . , Cn]. The empty list stands fortrue.

The languageBFD
MV allows one to specify anaction description, which relates ac-

tions, states, and fluents using predicates of the followingforms:

◦ Declarations of the formaction(a) are used to describe the possible actions (in
this case,a).

◦ executable(a,C)

whereC is a fluent constraint. asserting that the constraintC has to be satisfied for
the actiona to be executable.

◦ causes(a,FC,C)

whereC is a fluent constraint, andFC is a primitive fluent constraint containing at
least one current fluent, encodes a dynamic causal law. If action a happens and the
fluent constraintC is satisfied then the value of the primitive constraintFC must
be satisfied.

◦ caused(C,FC)
whereC is a fluent constraint, andFC is a primitive fluent constraint containing
at least one current fluent, describes a static causal law. Ifthe fluent constraintC
holds then the primitive fluent constraintFC must hold.2

An action descriptionis a set of executability conditions, static and dynamic laws.
A specific instance of a planning problem contains also a description of the initial

state and of the desired goal:

1 We suggest to use this short notation.
2 We suggest to use static causal laws only with current fluents

10

◦ initially(FE1 op FE2),

asserts that the fluent constraintFE1op FE2 holds in the initial state.

◦ goal(FE1 op FE2)

asserts that the fluent constraintFE1op FE2 holds in the final state.

It is possible to add information about thecostof each action and about the global
cost of a plan. This can be done by writing rules of the form:

◦ action cost(action,VAL) (if no information is given, the default cost is 1).

◦ plan cost(plan OP NUM) where NUM is a number, adds the information about
the global cost admitted

A similar requirement can be done on fluents and states.

◦ state cost(FE) (if no information is given, the default cost is 1) is the costof a
state, whereFE is a fluent expression built on current fluents.

◦ goal cost(goal op NUM) adds a contraint about the global cost admitted

Further constraints can be added among fluents. We define a timed fluent a pair
FLUENT @ TIME. Timed fluent can be used to build timed fluent expressions (TE) and
timed primitive constraints (TC). For instancecontains(5) @ 2 leq contains(5) @ 4

states that at time 2 the barrel number 5 contains at most the same amount of water as at
time 4.contains(12) @ 2 eq 3 states that at time 3 the barrel 12 contains exactly
3 liters of water.

◦ cross constraint(TC) allows to impose a timed primitive constraint. It allows
to impose constraints between fluent expressions of different states, as well as to
force values of fluents in some predetermined times. the execution.

◦ holds(FC,StateNumber) It is a simplification of the above constraint. states that
the primitive fluent constraintFC holds at the desired State Number (0 is the num-
ber of the initial state).3 It is therefore a generalization of theinitially primitive.
It allows to drive the plan search with some point information.

◦ always(FC) states that the fluent constraintsFC holds in all the states. It applies
holds(FC,i) for all statesi. Current fluents must be used in order to avoid nega-
tive references.

3 Annotated fluents can be used here, if needed.

11

