Proofs of the submitted paper
and
Concrete Syntax of B R,

Agostino Doviet, Andrea Formisartg and Enrico Pontefti

1 Univ. di Udine, Dip. di Matematica e Informaticdovi er @i mi . uni ud. it
2 Univ. di Perugia, Dip. di Matematica e Informatideor mi s@li pmat . uni pg. it
3 New Mexico State University, Dept. Computer Scierggont el | @s. nnsu. edu

1 Proofs for the B language

1.1 Detailed Encoding

Let us start with a description of how action theories are peafo finite domain con-
straints. In particular, we will provide a description ofWheonstraints can be used to
model the possible transitions from each individual stdtthe transition system. Let
us indicate withs,, ands,, the starting and ending states of a transition. The approach
is based on asserting constraints that relate the trutledlfluents ins,, ands,,.

Let us introduce variables to describe the truth value ohdlaent. All variables
are boolean variables. The value of a flug¢nin s, (resp.,s,) is represented by the
variablel V; (resp.,EV}). These variables can be used to build expressiMigEV;’)
that represent the truth value of each fluent literdh paritcular, ifl is a fluentf , then
LV =1V if 1 is the literalneg(f), thenl vy =1 — 1| V5. Similar equations can be
set forEv;. In a similar spirit, given a conjunction of literats = [l 1,...,! ,,] we will
denote with/ V) the expressiodV;¥ A --- A I'V}"; similar definition is given fo=V,)".
We will also introduce, for each actian), a boolean variabld} aimed at representing
whether the action is executed or not in the transition fsgno s,, under consideration.

Fixed a specific fluenf, we inted to develop constraints that determine whéfy'
is true. Let us consider the dynamic causal laws that [faaga consequent:

causes(ay, f,a1)
causes(at,, , f, am)
Analogously, we consider the static causal laws that assetf) :
causes(ay,,neg(f), f1)

causes(ay, ,neg(f), Bn)

Let us also consider the static causal laws relatéd to

caused(y, f)

.caused(%, f)
caused (1, neg(f))

caused (g, neg(f))
Finally, for each actiom; we will have an executability condition

execut abl e(a;, 0;)

Figure 1 describes the boolean constraints that can be nsedoding the relations
that determine the truth value of the fluéntWe will denote withC}”“ the conjunction
of such constraints.

Given an action specification over the set of flueftsthe system of constraints
C%"*include

— the constrainC%"""! for eachf € F and for eacl) < v < N whereN is the
chosen length of the plan;

— foreachf € Fand0 < v < N, the constraintiVJZf = EVJZJ

— foreach0 < v < N, the constraint

Vo4

a; cA
— for each0 < v < N and for each action; € A, the constraints

AL = TVEA [\ Ay
ajE.A
aj 7# a;

1.2 CLP(FD) Encoding

Let us proceed now with mapping the previous abstract engddiconcrete CLP(FD)
constraints. A plan with exactliy statesp fluents, andn actions is represented by:

o A list, called St at es, containingNV lists, each composed gfterms of the type
fluent (fluent_name, Bool _var). The variable of thé!” term in the;'” list is
assigned if and only if thei?” fluent is true in thej*” state of the trajectory. For
example, if we havéV = 3 and the fluent$, g, andh, we have:

States = [[fluent(f, X f_1),fluent(g,X g_1),fluent(h, X h_1)],
[fluent(f,X f_2),fluent(g, X g 2),fluent(h, X h_2)],
[fluent(f, X f_3),fluent(g, X g 3),fluent(h, X h_3)]]

o Alist Acti onsCcc, containingV — 1 lists, each composed ot terms of the form
acti on(acti on_nane, Bool _var) . The variable of th&*" term of the;j*" list is
assigned if and only if thei'* action occurs during the transition from stateo
statej + 1. For example, if we hav&/ = 3 and the actiona andb, then:

EV} < Posfiredy" v (-Negfiredy™ AlVy) 1)

—Posfiredy" v -Negfiredy™ 2
Posfiredy" « DynP} v St at P} (©)]
Negfiredy" « DynN; v Stat Ny 4)
DynPy « \/(IVy, A A7) (©)
=1
h
Stat P} < \/ EV; (6)
=1
\/ IV3 A AY,) O
o
St at NY \/ EV} (8)

Fig. 1. The constrainC’;** for the generic fluenf

ActionsCcc = [[action(a, X a_1),action(b, X b 1)],
[action(a, X _a_2),action(b, X_b_2)]]

The planner will make use of this structure in the constauctf the plan; appro-
priate constraints are set between the various Booleanblas to capture their rela-
tionships (e.g., for each listilxct i onsQcc, exactly oneacti on(a;, VA;) contains a
variable that is assigned the value

Fr ontst ToSt

VA

VA,

Z'm VAL -1

Fig. 2. Action constraints from state to state

We explain below the main parts of the CLP interpreter for théanguage we
developed. The interpreter assumes that the action déearilg loaded in the Pro-
log database—observe that the syntax adopted is complimProlog’s syntax, thus
allowing us to directly store the action description assw@ad facts in the Prolog data-
base.

The entry point of the planner is shown in Fig. 3. The main e ismai n(N)
(line (1)) that computes a plan of lengtffor the action description present in the Prolog
database. Lines (2) and (3) collect the lists of fluenty @nd actionsli(a). Lines (4)

(1) mai n(N, Actionsocc, St at es) setof (F, fluent(F), Lf),

(2) set of (A, action(A), La),

(3) make_st at es(N, Lf, States),

(4) make_acti on_occurrences(N, La, Acti onsocc),
(5) setof (F,initially(F),Init),

(6) set of (F, goal (F), Goal),

(7) set_initial(Init,States),

(8) set _goal (Coal , States),

(9) set _transitions(Actionsocc, States),
(10) set _.execut abi | i ty(Actionsocc, States),
(11) get _al | _,actions(Actionsocc, Al l Actions),
(12) fd.l abelingff(AllActions).

Fig. 3. Main predicate of the CLP(FD) planner

and (5) the predicates for defining the lisisat es and Acti onsQcc are called. In
particular, all the variables for fluents and actions ardated as Boolean variables;
furthermore, a constraint is added to enforce that in eviatg sransition, exactly one
action can be firedf@d_onl y_one global constraint of GNU Prolog).

Lines (6) and (7) collect the description of the initial stétni t) and the required
content of the final statesfal). These information are then added to the Boolean vari-
ables related to the first and last state, respectively,éptbdicates in lines (8) and (9).

Lines (10) and (11) impose the constraints on state transitind action executabil-
ity. We will give more details on this part below.

Line (12) gathers all variables denoting action occurrengepreparation for the
labeling phase (line (13)). Note that the labeling is foclmse the selection of the action
to be executed at each time step. Please observe that indeeo€&ig. 3 we omit the
parts concerning delivering the results to the user.

The main constraints are added by the predisetet r ansi ti ons. A recursion
between fluents and consecutive states is made, then thegieset _one_f | uent is
called (see Fig. 4). Its parameters are the flienthe starting statér ontt , the next
stateToST, the listQcc of action variables, and finally the variableg andEV related
to the value of the fluerft (cf. also Fig. 2) inFr ont , andToST, respectively.

For a given fluenF, the predicataet _one_f | uent collects the lisDynPos (resp.
DynNeg) of pairs[Act (i on), Prec(ondi ti ons)] such that the dynamic actigwt
makesF true (resp. false) in the state transition (lines (15) ar@))(IThe variables
involved are then constrained by the procediyreani ¢ (lines (17) and (18)).

Similarly, the static causal laws{used assertions) are handled by collecting the
lists of conditions that affect the truth value of a fluéngcf., the variablest at Pos
andst at Neg, in lines (19)—(20)) and constraining them through the pdagest at i ¢
(lines (21) and (22)). The disjunctions of all the positivelanegative conditions are
collected in lines (23) and (24) and storedPwsFi r ed andNegFi r ed, respectively.

Finally, lines (25) and (26) take care of the relatioshipsveen all these variables.
Line (25) states that it is inconsistent that a fluent is maaté brue PosFi r ed) and
false (NegFi r ed) in the stateToSt . If PosFi red andNegFi r ed are both false, then
EV = IV (inertia). Precisely, a fluent is true in the next st&) (f and only if there is
an action or a static causal law making it treegFi r ed) or it was true in the previous
state (V) and no causal law makes it false.

(14) set onefluent(F, 1V, EV, Ccc, Fronft, ToSt)
findall ([X L], causes(X F, L), DynPos),

(15) findall ([Y, M, causes(Y, neg(F), M, DynNeg),
(16) dynam c¢(DynPos, Ccc, FronSt, DynP, EV),
(17) dynam c(DynNeg, Ccc, FronSt, DynN, EV),
(18) findall (P, caused(P, F), St at Pos),

(19) findall (N, caused(N, neg(F)), StatNeg),

(20) static(StatPos, ToSt, StatP, EV),

(21) static(StatNeg, ToSt, StatN EV),

(22) bool _di sj (DynP, St at P, PosFi red),

(23) bool di sj (DynN, St at N, NegFi red),

(24) PosFired * NegFired #= 0,

(25) EV #<=> PosFired #\/ (#\ NegFired #/\ 1V).

(26) dynami c([],. - [],.).
(27) dynam c([[Act, Prec] | Rl, Ccc, FronSt, [Fl ag| Fl ags], EV)
menber (action(Act, VA), Ccc),

(28) get _precondi ti on_vars(Prec, Fronfit, Li st PV),
(29) | engt h(Prec, NPrec),

(30) sun(Li st PV, SunPrec),

(31) (VA #/\ (SunPrec #= NPrec)) #<=> Fl ag,
(32) dynam c(R, Ccc, Fronst, Fl ags, EV) .

(33) static([],-1[],-)-
(34) static([Cond| O hers], ToSt, [Fl ag| Fl ags], EV)
get _precondi ti on.vars(Cond, ToSt, Li st PV),

(35) I engt h(Li stPV, NPrec),

(36) sum(Li st PV, SunPvV),

(37) (SunPV #= NPrec) #<=> Fl ag,
(38) static(Q hers, ToSt, Fl ags, EV) .

Fig. 4. Transition from state to state

Let us consider the predicadgnani c (see line (27)). It recursively processes a list
of pairs[Act (i on), Prec(ondi tions)]. The variable/Aassociated to the execution
of actionAct is retrieved in line (29). The variables associated to iepnditions are
retrieved from statér onst and collected inLi st PVin line (30). A precondition holds
if and only if all the variables in the listi st PV are assigned value 1. Namely, when
their sum is equal to the lengtRPr ec, of the listLi st PV. If (and only if) the action
variableVA is true and the preconditions holds, then there is an actfentéline (33)).

Similarly, the predicatet at i ¢ recursively processes a list of preconditia®sd.
The variables to such preconditions are retrieved from th&23oSt and collected
in Li st PV (line (37)). A precondition holds if and only if all the vakikes in the list
Li st PVhave value 1. Namely, when their sum is equal to the lemgfthec, of Li st PV.
This happens if and only if there is a static action effect, (afe (40)).

Executability conditions are handled as follows. For eaetestransition and for
each actiomct , the predicateet _execut abi |l i ty_sub is called (see Fig. 5). The
variableVA, encoding the application of an actidnt is collected in line (43). A pre-
condition hold if and only if the sum of the (Boolean) valué&sfluent literals equals
their number (lines (52)-(54)). The varialfeags stores the list of these conditions
and the variablé& their disjunction. If the action is executedX = 1, see line (47)),
then at least one of the executability conditions must hold.

(42) set _executabilitysub([], - -)

(43) set _execut abi lity_sub([[Act, C]| CA], ActionsCcc, St at e)
menber (acti on(Act, VA), Acti onsCcc),

(44) preconditionsflags(C, State, Fl ags),

(45) bool _di sj (Fl ags, F),

(46) VA #==> F,

(47) set _execut abi | i ty_sub(CA, ActionsCcc, State).

(48) preconditionsflags([],-[]).

(49) preconditionsflags([C/ R], State, [Fl ag| Fl ags])
get _precondi tionvars(C, State, Cs),

(50) | engt h(Cs, NCs),

(51) sun(Cs, SunCs),

(52) (NCs #= SunCs) #<=> Fl ag,

(53) preconditionsflags(R State, Fl ags).

Fig. 5. Executability conditions

1.3 Soundness and completeness

Let us proceed with the soundness and completeness pro@a€b fluenif, the predi-
cateset _one_f | uent imposes the constraiﬂf;’wrl described earlier. Moreover, such
predicate constraints a number of auxiliary (Boolean)alzgs to the values of specific
expressions, as shown in Table 1, and all the additionalt@ints described.

Fig. 6. Sets of fluents involved in a state transition

Let S (resp.,S’) be the set of fluent literals that holds ép (resp.,s,+1). Note
that, from any specific, knowi; (resp.,S’), we can obtain a consistent assignmeant
(resp.,os:) of truth values for all the variablesv} (resp.,E\/;“) of s, (resp.,sy+1).

Conversely, each truth assignment (resp.,os/) for all variablesl v (resp.,E\/}“)
corresponds to a consistent set of fluefitresp.,S’). As regards the occurrence of
actions, in each state transition a single actipoccurs and its occurrence is encoded
through a specific Boolean variable, say.

Let o, be the assignment of truth values for such variables sutlrta?) = 1 if
and only ifa; occurs in the state transition frog to s, 1. Note that the domains of
os,0s, ando, are disjoint, so we can safely denotedyyoogs: oo, the composition of
the three assignments. With a slight abuse of notation, iat fdilows we will denote
E(a, s,) with E. Clearly,E C 5.

Theorem 1 states the completeness of the planner of Figa3sérts that for any
givenD = (DL, EL,SL), ifatriple (s, a, s") belongs to the transition system described
by D, then the assignment= o5 o o5 o o, satisfies the conditioﬁ'}’”*l.

Theorem 1 (Completeness).etD = (DL, EL,SL). If S' = Clo(E(as, s,) U (SN
S')) thenas o og: © 0, is a solution of the constrair®z ™.

Proof. As mentioned, the planner introduces a number of auxili@rnstrained vari-
ables whose values are univocally determined once the vafithe fluents are as-
sessed. In other words, whéh S’, anda are fixed, the r.h.s. of the constrair{ty—
(8) are completely specified. To prove the theorem, we need ftfyvbat if S’ =
Clo(F U (SN S")), then the constraintdl), (2) along with the constraints about the
action variablesA? are satisfied for every fluerft

Let us start by looking at the action occurrence.ddie the action executed in state
sv, thuso, = {AY/1}U{A"/0]j # i}. Thus, itis easy to see th(a\t/ajeA AY)o, istrue.
Similarly, since the semantics requires that actions agewed only if the executability
conditions are satisfied, then this means tiat 4;, which quickly leads tqIVy)os
is true, and this allows us to conclude that

A1V N\ Ao oo,
a; € A
a; 7é Qr

is true for each:, € A.

Let us now consider the constraints dealing with fluentstFif we recall thatS’
is a consistent, complete, and closed wWS.L, set of fluent literals. Let us consider
a fluent f. We prove that constrain®) is satisfied. Assume, by contradiction, that

Posfired}""'o andNegf i red} "o are both true. Four cases must be considered:

1. DynPjo andDynN%o are true. Since these values are determined,by;, s,+1,
this means that botfiandneg(f) belong toE(a;, s,). Since the closure is monotonic
this means thakit(s, 11 = S’ is inconsistent, representing a contradiction.

2. DynP}o andSt at N}i*lo— are true. This means thdtis in E(a;, s,) andneg(f)
is added toS’ by the closure operation. This implies thtis inconsistent, which
represents a contradiction.

3. Stat P”;“o— andDynNjo are true. This leads a contraddiction as in the previous
case.

4. stat Py o andst at N™ o are true. This means thgtandneg(f) are added to
S’ by the closure operation. This means thais inconsistent, which is a contra-
diction.

It remains to prove that constraifit) is satisfied byr. Let us assume thgte S’. Thus,
EV]ZJJFIO'S/ is true. Three cases must be considered.

1. f € E(a4,s,). This means that there is a dynamic causal tawses (a;, f, ;)
whereS = a;. From the definition, this leads #d/; o being true and, (A7) = 1.

Thus, constraint5) setsDynP;o andPosf i red}i’”“o— are both true. As a conse-
guence, constrairfl) is satisfied.

2. f ¢ E(a;, s,)andf € S. Thismeansthat € SNS’. Inthis caséNegf i red}i’”“a
must be false, otherwis# would be inconsistent (by closure). Thewn;os should
be true EV} o is true andNegf i r ed;’““a is false, which satisfy constraifit)

(regardless of the value @bsf i red}"*'0).

3. f ¢ E(ai, sy)andf ¢ S. This means thaf is inserted inS’ by closure. Thus, there
is a static causal law of the foroaused(~;, f) such thatS’ |= ;. In this case, by
(6), St at P”;“cr is true and, by(3), so isPosf i r ed}i’““o—. Thus, constrain{l) is

satisfied.

If f ¢ S, thenneg(f) € S’ and the proof is similar with positive and negative
roles interchanged. a

Let us observe that the converse of the above theorem doewoessarily hold. The
problem arises from the fact that the implicit minimalitytire closure operation is not
reflected in the computation of solutions to the constr&onsider the action descrip-
tion whereF = {f ,g,h} andA = {a}, with predicates:

(1) executabl e(a, []).
(2) causes(a, f,[]).
(3) caused([g], h).
(4) caused([h], g).

Let us considelS = {neg(f),neg(g),neg(h)} andS’ = {f,g,h} determines a
solution of the constrain:" "' with the execution of action, butClo(EU(SNS")) =
{f } ¢ S’. However, the following holds:

Theorem 2 (Weak Soundness)l.etD = (DL,EL,SL). Letog o 0g/ o o, identify a
solution of the constrain®:**". ThenClo(E(a;, s,) U (SN S')) C S

Proof. It is immediate to see thats andos: uniquely determines two consistent and
complete sets of fluent literals. Moreover, they are closedeuS£ (thanks to con-
straints(6) and(8) in Figure 1). Letf be a positive fluent i81o(FE(a;, s,) U(SNS)).
We show now thaf € S’.

1. If fisin SN S’ we are done.

2. If f € E(as, sy), there is a lancauses(a;, f, «;) such thatS | «;. SinceS is
determined by s, by (5), we have that s o o, is a solution off V) A A}, which
implies thatDynP} is true, andos/ (EVy)**! is true inog.. Therefore,f € S'.
Observe also that, making trueA; will imply that 7V, which will imply the
executability ofa;.

3. We are left with the case ¢f¢ E(a;,s,) andf ¢ SN S’. SinceS’ is determined
byog/, andf € Clo(E(a;, s,) U(SNS’)), thereis a lawcaused(y;, f) such that
S’ = v;, and by construction s makesEV;Jj+1 true. Thusst at P}i“ is true and

thereforeEVf”Jrl is true. Hencef € 5.

If neg(f) is a negative fluent iglo(E(a;, s,)U(SNS")), the proof proceeds similarly.
m

Let us consider the set of static causal laWs. S£ identifies adefinite propositional
program P as follows. For each positive fluent literpl let ¢(p) be the (fresh)
predicate symbap, and for each negative fluent litena¢g(p) let ¢(neg(p)) be the
(fresh) predicate symbgl. The programP is the set of clauses of the forg(p) «—
o(1'1),...,o(1 m, for each static causal lawmaused([1 1, ..., 1ni, p). Notice thap
andp are independent predicate symboldinFrom P one can extract the dependency
graphG(P) in the usual way, and the following result can be stated.

Theorem 3 (Correctness)LetD = (DL,EL,SL). Letog, o/, 0, be a solution of
the constraian’f’““. If the dependency graph &f is acyclic, therClo(E(a;, s,) U
(SNns)) =49

Proof. Theorem 2 proves thaflo(E(a;, s,) U(SNS’)) C S'. It remains to prove that
for any (positive or negative) flueitif £ € S’, then? € Clo(E(a;, s») U (S NS")).

If £ € E(ai,sy) 0rf € S, then trivially ¢ € Clo(E(ai, sy) U (SN S")). On the
other hand, let us prove that whenevee S’ and? ¢ E(a;,s,) N (S NS’) then
£ € Clo(E(a;, s,)N(SNS’)). To this aim, consider the prografand its dependency
graphG(P). With a slight abuse of notation, let us identify a flughtith both the
corresponding atom(f) and the associated nodegiiP). Because of the acyclicity of
G(P), there are graph nodes without incoming edges—we will reféhem adeaves
Let us now prove our claim, by induction on the length of thergkst path from a leaf
to the positive fluent literaf.
Base casdf f ¢ F(a;,s,) U (S N.S’)is apositive fluent which is a leaf (the proof is
similar for the case of negative literals), then two casesaissible.

e There is no law of the formaused(v;, f) in S£. Thus, it cannot be that € S’.

The claim holds.

e Thereis alawcaused([], f). In this casef € S’ by closure.
Inductive stepLet f ¢ E(ai, s,) U (S N S’) be a positive fluent such that there are
lawscaused(v1, f),...,caused(ys, f) In SL. Sincef ¢ E(a;,s,) andf ¢ SN.S’,
we have that[Vf” is false,EVJZ?+1 is true, and)ynP} is false undewg o o9/ 0 0.
From the fact that constraifit) is satisfied, it follows thast at P2 is true. Moreover,
DynPj is true becaus¢ ¢ E(a;, s,). On the other hand, because(ef, we have that
DynNy, St at N;*', andNegFi red 1 are all false. Consequently, constrajihj can
be simplified toEVy « \/! i1 EVerl If fes (e, EVerl is true), than one of

Verl is verified byog.. This |mpI|es that, for each fluegtrequwed to be true (resp.,

false) iny;, g is set true (resp., false) by . By inductive hypothesis, such fluent literals
(eitherg orneg(g)) belongtoClo(E(a;, s,)U(SNS’)). SinceClo(E(a;, s,)U(SNS"))
is closed under the static laws, it follows that S’.

The proof in case of a negative fluerdg(f) is similar. O

Let the programP meet the conditions of the previous theorem; we can prove the
following.

Theorem 4. There is a trajectoryso, ai, 51, ag, . . ., an, $,) in the transition system if
and only if there is a solution for the constraints

0,1 1,2 n—1,n
CUACKEA- A CE

Proof. The result is a simple inductive (at) application of the previous theorem.

2 Concrete Syntax ofBL R,

An action signature consists of a SEtof fluent names, a set of action names, and a
setV of values for fluents i

As a concrete syntax, fluents and actions are ground atommadeep(ty, . .., t,)
from an underlying logic languagé. We assume that the set of admissible terms is
finite (e.g., either there are no function symbolgiror the use of functions symbols is
restricted to avoid the creation of arbitrary complex térms

In the definition of an action description, an assertion efkimd

fluent (f,v1,v2) or fluent(f,{vi,...,vx})

declares thaf is a fluent and that its set of valudsis the intervalv;, vo] or the set
{v1,..., v}

An annotated fluent (AR of the formf~—¢ wheref is a fluent and € N. O is
said acurrent flueniand should be represented simply fy

Annotated fluents can be used insitigent expressionsFE) that can be defined
inductively as follows:

FE ::= n|(AF)|abs (FE)|FE; & FEx|rei (FC)

wheren € Z, ® € {+, —, x, /,mod}. rei (FC) is the reified constraint, wherc is a
fluent constraint defined below.

Fluent expressions can be used to bdilgent constraintsgC)). A primitive flu-
ent constraint is a formul&E; op FE; whereFE; andFE; are fluent expressions —
without reification— andp € {eq,neq,geq, | eq,| t,gt }. A fluent constrainis a
conjunction of primitive fluent constraints. Concretély, A - - - A C,, is represented by
[Cy,...,Cy]. The empty list stands fdrr ue.

The languagé3} ;. allows one to specify aaction descriptionwhich relates ac-
tions, states, and fluents using predicates of the follofongs:

o Declarations of the formacti on(a) are used to describe the possible actions (in
this casea).

o execut abl e(a, C)
whereC is a fluent constraint. asserting that the constr@ihias to be satisfied for
the actiona to be executable.

o causes(a, FC, C)
whereC is a fluent constraint, anBC is a primitive fluent constraint containing at
least one current fluent, encodes a dynamic causal law.itfreethappens and the
fluent constraintC is satisfied then the value of the primitive constrdifi® must
be satisfied.

o caused(C, FC)
whereC' is a fluent constraint, anf'C' is a primitive fluent constraint containing
at least one current fluent, describes a static causal lahe lfluent constraint
holds then the primitive fluent constraifC’ must hold ?

An action descriptions a set of executability conditions, static and dynamicslaw
A specific instance of a planning problem contains also argesm of the initial
state and of the desired goal:

! We suggest to use this short notation.
2 We suggest to use static causal laws only with current fluents

10

oinitially(FEl opFE2),
asserts that the fluent constrainE’lop F'E2 holds in the initial state.
o goal (FE1 op FE2)
asserts that the fluent constrainE’lop F'E2 holds in the final state.
It is possible to add information about thestof each action and about the global
cost of a plan. This can be done by writing rules of the form:
o action_cost (action, VAL) (if no information is given, the default cost is 1).
o pl an_cost (plan OP NUM where NUM is a number, adds the information about
the global cost admitted
A similar requirement can be done on fluents and states.
o state_cost (FE) (if noinformation is given, the default cost is 1) is the cosa
state, wherd'E is a fluent expression built on current fluents.
o goal cost(goal op NUM adds a contraint about the global cost admitted
Further constraints can be added among fluents. We defineea fiment a pair
FLUENT @ TI ME. Timed fluent can be used to build timed fluent expression$ é§hd
timed primitive constraints (TC). Forinstancent ai ns(5) @2 | eq contains(5) @4
states that at time 2 the barrel number 5 contains at mosathe amount of water as at
time 4.contai ns(12) @2 eq 3 states that at time 3 the barrel 12 contains exactly
3 liters of water.

o cross_constraint (TC) allows to impose a timed primitive constraint. It allows
to impose constraints between fluent expressions of diffestates, as well as to
force values of fluents in some predetermined times. theutioec

o hol ds(FC, St at eNunber) Itis a simplification of the above constraint. states that
the primitive fluent constrain®’'C holds at the desired State Number (0 is the num-
ber of the initial statey.It is therefore a generalization of thei t i al | y primitive.

It allows to drive the plan search with some point informatio

o al ways(FC) states that the fluent constraiit€’ holds in all the states. It applies
hol ds(FC, i) for all states. Current fluents must be used in order to avoid nega-
tive references.

3 Annotated fluents can be used here, if needed.

11

