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Abstract. The aim of this work is to give an alternative presentation
for the multiplicative fragment of Yetter’s cyclic linear logic. The new
presentation is inspired by the calculus of structures, and has the inter-
esting feature of avoiding the cyclic rule. The main point in this work is
to show how cyclicity can be substituted by deepness, i.e. the possibility
of applying an inference rule at any point of a formula. We finally de-
rive, through a new proof technique, the cut elimination property of the
calculus.
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1 Introduction

A non-commutative version of linear logic appeared as soon as linear logic was
published [1]; in 1987 Jean Yves Girard, in a series of lectures, suggested a
version of linear logic containing non-commutative connectives. This logic was
later fully developed by Yetter [2] and named Cyclic Linear Logic (CyLL). This
immediate interest for a non-commutative logic can be explained by the fact
that linear logic puts great emphasis on structural rules, and so it was natural
to consider the commutativity rule and check whether it is possible to define a
proof system without it. Looking at the subject from a semantic point of view,
non-commutative connectives are present in the “logic of quantum mechanics” [3]
a logic aiming to model empirical verification and containing a non commutative
connective “and then” (&). In this logic, the formula A&B is interpreted as “we
have verified A and then we have verified B”. Non-commutative connectives are
present also in Lambek’s syntactic calculus [4], a calculus modeling linguistic
constructors. Both these calculi are strictly related with cyclic linear logic, in
particular, Lambek’s calculus can be seen as a fragment of the multiplicative
cyclic linear logic. Later on the cyclic linear logic has been extended by the
introduction of a commutative version of the multiplicative connectives [5, 6],
leading to the definition of non-commutative logic (NL), a logic that encompasses
both cyclic linear logic and standard linear logic.

⋆ Supported by Italian MIUR Cofin “Protocollo”, and EEC Working Group “Types”



The multiplicative fragment of cyclic linear logic can be simply obtained by
taking the multiplicative LL, and substituting the structural rule of Exchange:

∆

Γ
the list Γ is a permutation of the list ∆

with the Cycling rule:
∆, Γ

Γ, ∆
Cycling

Cycling rule is considered so crucial that the whole logic is named after it.
However this rule still misses a natural explanation, and it is often explained in
terms of necessity:

The reader should note that in terms of the semantics we will develop,
the seemingly unnatural Cycling rule is forced by having a system with
a single negation . . . [2]

More recently Guglielmi proposed the calculus of structures (CoS) [7] as
a calculus for defining logics, alternative to sequent calculus and whose main
feature is deep inference, that is the possibility of applying inference rules ar-
bitrarily deep inside formulae. This greater liberty in applying inference rules
can be used to treat logics whose formalization in the sequent calculus is not
completely satisfactory (as modal logic [8]), or to ensure structural properties
for the derivation, properties that are not present in sequent calculus derivations
(as locality [9, 10]). Moreover there are examples of logics that cannot be treated
at all in sequent calculus [7].

In this work, we present cyclic linear logic using the CoS. We show that
the cycling rule can be avoided in the CoS formulations, namely, we show that
if one takes the formulation of multiplicative linear logic in the CoS and then
simply drops the commutative rules for par and tensor, one immediately obtains
a formulation of cyclic linear logic (with no cycling rule present). This fact gives
an explanation for the cycling rule, i.e. the cycling rule is a rule that recover the
lack of deep inference in the sequent calculus. More in detail, deep inference can
be, informally, described as follows:

for any formulae A, B and positive context S, from A ⇒ B and S[A]
derive S[B].

Deep inference as a rule is normally not present in proof systems but one can
argue, after having defined positive contexts, that deep inference has to be an
admissible rule. In our work, we show that, with respect to admissibility, the
cycling rule and deep inference are equivalent, i.e., for any proof system contain-
ing all the remaining rules of cyclic linear logic, the cycling rule is admissible
if and only if deep inference is admissible. Therefore, the CoS gives a method
for substituting, in Yetter’s words, a seemingly unnatural rule: cycling, with a
natural one: deep inference. The proof transformation between the two systems
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does not add complexity cost: given a CyLLproof in sequents calculus, it is pos-
sible to define a corresponding proof in the CoS containing the same order of
applied rules.

As a further result, in this work we present a new technique for proving
cut elimination that can be usefully employed in the treatment of other logics
inside the CoS. The CoS is a very recent formalism and so there is the need
of developing a bunch of techniques for obtaining meta-theoretical results. Our
original proof of cut elimination is a step in this direction.

The article is organized as follows: Section 2 gives a short explanation of
the calculus of structures, Section 3 formalizes the multiplicative linear logic
in the CoS, Section 4 presents cyclic linear logic together with a proof of cut
elimination, Section 5 gives a short account for possible future works.

2 Calculus of Structures

The CoS is characterized by two main features, the possibility of applying infer-
ence rules at any point in a formula (deep inference) and the idea to consider
formulae up to an equivalence relation equating formulae provable equivalent by
some elementary arguments. The equivalence classes of this relation are called
structures. In this article we retain the first feature of the CoS but drop the
second one, i.e. we do not use structures and work directly on formulae. The
main reason for this choice is the fact that the cut elimination proof, given in
following, needs to consider a proof system where also formulae belonging to the
same equivalence class are kept distinct. As a consequence, we do not present
here the true CoS but a slightly different formalism using a different syntax and
having a different treatment of the equality. The reader not familiar with the
CoS will gain a more direct presentation: we use only formulae and we avoid
the syntactic overhead caused by structures. The reader familiar with the CoS
should have no problem in relating the two presentations.

Before introducing our formalism, we want to present an alternative view
of the sequent calculus. In constructing a derivation for a formula A, in se-
quent calculus, one reduces the derivability of a formula A to the derivability
of a set of sequents. That is, in the intermediate steps of the construction of a
bottom up derivation of A, one reduces the problem of deriving A to the prob-
lem of deriving a set of sequents. The intuitive meaning of this set of sequents
(let it be ⊢ B1,1, . . . , B1,n1

⊢ B2,1, . . . , B2,n2
. . . ⊢ Bm,1, . . . , Bm,nm

) is the
formula (B1,1O . . .OB1,n1

) ⊗ (B2,1O . . .OB2,n2
) ⊗ . . . ⊗ (Bm,1O . . .OBm,nm

). In
fact one can easily map a set of derivations for the sequents ⊢ B1,1, . . . , B1,n1

⊢ B2,1, . . . , B2,n2
. . . ⊢ Bm,1, . . . , Bm,nm

, into a derivation for the formula and
vice-versa. One can see the above set of sequents as a different writing of the
previous formula. This alternative writing of a formula is a way of marking the
main connectives to which inference rules can be applied. We argue that sequent
calculus is a formalism for writing derivations where the main connectives have,
at most, syntactic deepness two. In this respect, the most remarkable difference
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between sequent calculus and the CoS lies on the fact that in the CoS rules can
be applied at an arbitrary deepness inside a formula.

In the CoS there is more freedom in applying rules, and as a consequence,
derivations loose some of their internal structures but on the other hand there
are many examples of logics where the use of deep rules gives some advantages
from the point of view of the proof theory [9, 7, 8, 10].

3 Multiplicative Linear Logic

As a first step in presenting cyclic linear logic, we present multiplicative linear
logic (MLL) [1] in the CoS. We use the standard syntax of multiplicative linear
logic, i.e. our formulae are given by the syntax:

A := ⊥ | 1 | a | a | (AOA) | (A ⊗ A)

Formulae in the form a, a are called atomic. We denote by a the negation of a.
The negation of an arbitrary formula A is syntactically defined by the following
(De Morgan) rules:

(AOB)
∆
= B ⊗ A

A ⊗ B
∆
= BOA

a
∆
= a

1
∆
= ⊥

⊥
∆
= 1

3.1 Equivalence between formulae

As we already remarked, the CoS introduces the notion of structures which are
equivalence classes of formulae. Formulae contained in the same equivalence class
are considered to be elementary logical equivalence. In a derivation there is al-
ways the freedom to choose the most suitable representative of a structure. In
this way, it is possible to omit what is considered bureaucracy, and so better
highlight the important steps in a derivation. Here we follow a different ap-
proach, we do not use structures and work directly on formulae. An abstract
motivation for our choice is the idea that working with structures, hence with
equivalence classes, it is possible to hide some interesting aspects of the proof
theory. A more concrete argument against the use of structures is the fact our
cut elimination proof relies on the distinction between formulae belonging to the
same equivalence class and cannot be presented in term of structures.

Having decide to work directly on formulae, we need to introduce some rules,
not explicitly present in the CoS, allowing to substitute, in a derivation, a formu-
lae with by an elementary equivalent one. This can be obtained by introducing
a set of rules, each rule stating a particular property of a particular connect-
ive. However, in order to have a more compact presentation, we group together
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these “equivalence” rules in a single rule. To this end we introduce a relation
∼ between formulae; ∼ related formulae that can be shown equivalent by a
single application of the commutativity, associativity and identity laws for the
connectives par and tensor. Note that in defining the relation ∼ we do not use
any symmetric or transitive closure, hence ∼ is not a equivalence relation. The
relation ∼ is defined by the following set of schemata:

AOB ∼ BOA Par commutative
A ⊗ B ∼ B ⊗ A Times commutative

AO(BOC) ∼ (AOB)OC Par associative
A ⊗ (B ⊗ C) ∼ (A ⊗ B) ⊗ C Times associative

⊥OA ∼ A Par unit L
A ∼ AO⊥ Par unit R

1 ⊗ A ∼ A Times unit L
A ∼ A ⊗ 1 Times unit R

3.2 Proof system

We take full advantage, in presenting our calculus, from the fact that logical rules
are closed by positive contexts. Positive contexts are generated by the grammar:

S ::= ◦ | (AOS) | (SOA) | (A ⊗ S) | (S ⊗ A)

we denote by S[A] the formula obtained by replacing, in the structural context
S, the place holder ◦ by the formula A.

The proof system, for multiplicative linear logic, is given by the following set
of inference rules:

1
Empty (Emp)

S[B]

S[A]
if A ∼ B Equivalence (Eq)

S[1]

S[AOA]
Interaction (Int)

S[A ⊗ A]

S[⊥]
Cut

S[(AOB) ⊗ C]

S[AO(B ⊗ C)]
Switch (Sw)

As we already remark, the Equivalence rule can be seen as a compact way to
represent a set of inference rules, namely the 8 rules obtain by considering, one
by one, the 8 schemata defining the relation ∼.
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Definition 1. We denote with ⊢ A the derivability of the formula A by the
above defined set of rules.

The article [11] contains a presentation of multiplicative exponential linear logic
(MELL) in the calculus of structures. Apart from the differences in the syn-
tax and in the equivalence rule, we use the same rules presented in [11] for
the multiplicative connectives. Similarly to what has been done in [11] we can
prove that our calculus satisfies the cut-elimination property and is equivalent
to multiplicative linear logic.

Proposition 1. For any formula A,

(i) ⊢ A if and only if A is provable in MLL;
(ii) if ⊢ A then A is provable without using the Cut rule.

We omit proofs since they are already present in [11] and can be easily derived
by the corresponding proofs for cyclic linear logic given in the next sections.

4 Multiplicative Cyclic Linear Logic

Cyclic Linear Logic can be obtained by simply removing the commutative rules
from MLL, that is we consider a new relation ∼N that is equal to the relation ∼,
given in Section 3.1, except for the omission of the commutative rules for the par
and tensors. However, to have a coherent proof system, we need to substitute
the equivalence rule with the a new one having the following form:

S[B]

S[A]
if A ∼N or B ∼N A EquivalenceN (EqN)

In the commutative calculus, this reflexive formulation of the equivalence rule is
not necessary. In fact, through commutativity, it is possible to derive each extra
case given by the EquivalenceN rule by (at most three) consecutive applications
of the Equivalence rule. Similarly to the Equivalence rule, the EquivalenceN rules
can be seen as a compact way to represent a set of inference rules, namely the
12 rules obtain by considering, in the both directions, the 6 schemata defining
the relation ∼N.

We need to add also a mirror image version of the Switch rule:

S[A ⊗ (BOC)]

S[(A ⊗ B)OC]
Switch Mirror (SwM)

which is not present in the MLL since is there derivable through commutativity.

Definition 2. We call system NLS the inference calculus formed by the rules:
Empty, EquivalenceN, Switch, Switch Mirror, Interaction, and Cut. We denote
with ⊢N A the fact that the formula A is derivable in system NLS.
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Our proof system is equivalent to multiplicative CyLL.

Theorem 1. For any formula A, ⊢N A if and only if A is provable in multiplic-
ative CyLL.

Proof. In order to prove this theorem we consider the presentation of multiplic-
ative CyLL given in [2]. We start by proving the left to right implication, that
is, everything provable in our system is provable in multiplicative CyLL. The im-
plication follows immediately from two properties of CyLL. The first one is that
derivation is closed by positive context. That is, if S is a positive context not
containing negation, and the formulae S[A] and AOB are derivable, then also
the formula S[B] is derivable. This fact can be proved in the following way. Let
Π be a derivation, in multiplicative CyLL, for S[A], since Π cannot examine the
formula of A until the formula A appears as an element of a sequent, looking at
derivations bottom-up-wise, the derivation Π is “independent” from A until it
builds a sequent Φ(A) containing the formula A. From the sequent Φ(A), using
the Cyclic rule it is then possible to derive a sequent Φ′, A (having A as last
formula) from which, by the Cut rule, one derives Φ′, B and, by the Cyclic rule,
Φ(B). From Φ(B), by following the pattern in Π , one can finally derive S[B].

The second property is that for any rule

S[A]

S[B]

contained in system NLS, the formula AOB is derivable in multiplicative CyLL.
This fact can be checked straightforwardly.

The other implication is also simple. First, we define a translation, S , from
sequents and sets of sequents, into formulae:

A1, . . . , Am
S

∆
= A1S

O . . .OAmS

{Γ1, . . . , Γn}
S

∆
= Γ1

S
⊗ . . . ⊗ Γn

S

It is then easy to check that, any CyLL rule different from the Cycling rule
is derivable, that is for any rule in the form:

⊢ Γ1 . . . ⊢ Γn

⊢ ∆ ,

from the formula {Γ1, . . . , Γn}
S
, using the rules in NLS, it is possible to derive

the formula ∆S.
Finally, we prove that the Cycling rule is admissible. The Cycling rule has

form
∆, Γ

Γ, ∆
Cycling
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Its admissibility in system NLS can be express in the following way: if ⊢ AOB

then ⊢ BOA. The proof works as follows:

1
Empty

BOB
Interaction

BO(1⊗ B)
EquivalenceN

.... Hypothesis

BO((AOB) ⊗ B)

BO(AO(B ⊗ B))
Switch

BO(AO⊥)
Cut

BOA
EquivalenceN

⊓⊔

4.1 Cut elimination

A fundamental feature of every logical system is the cut-elimination property,
which can also be proved for NLS. If we consider the different logics so far
presented in the CoS, [9, 7, 8, 10] and we compare, for these logics, the proofs
of cut-elimination in the sequent calculus, and in the CoS, normally we have
that the latter proofs are lengthier. This fact can be explained by remarking
that, in its complete formulation, the CoS gives more freedom in constructing
derivations. It follows that derivations can be quite an anarchic object, and the
standard proof technique of structural induction on the complexity of derivations
is more difficult to use. A standard technique, for proving cut elimination in the
CoS, is to use of the so-called splitting lemma [7]. The splitting lemma states that
one can consider just derivations of a particular shape, i.e. a particular subset
of derivations is sufficient to derive any provable judgment. We think that the
splitting lemma is applicable also to this case, however here we prefer to use a
different proof technique. There are two reasons for this choice. The first one is
that when we conceive our proof, the splitting lemma was not discovered yet.
The second reason is that our proof enlighten some interesting aspect of the
CoS, namely the admissibility of some instances of the Equivalence rules. The
main idea in our proof is to use formulae instead of structures. Once this choice
has been made, the cut elimination proof is obtained by standard techniques.
In more detail, we define a restricted calculus with a minimal set of derivations
rules. We then prove that all the omitted rules are admissible in the minimal
calculus. As immediate consequence, since the cut rule is an omitted one, we
have a proof cut elimination. Since we need to show the admissibility of the
omitted rules by taking each rule at a time our proof of is quite lengthy also if
the single steps, and the general structure, are quite simple.
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As a first step, we need to present a restricted calculus having a minimal set
of rules. To motivate this restricted calculus we need to introduce the concept
of duality between rules. Given of a rule S

A

B
S

the dual of S is the rule
B

A
dS

For example the rule Interaction is dual to the rule Cut and Switch, Switch
Mirror are dual to themselves. It is also easy to observe that from any rule S

it is possible to derive its dual, using the Interaction, the Switch, and the Cut
rules. In the following, we are going to prove that for any pair of dual rules one
of them can be eliminated. Duality between rules is a standard concept in the
CoS, and it also standard result the fact that for each each pair of dual rules
one of them can be eliminated. What makes our approach different from the
previous ones is the fact that we have an explicit rule for equivalence and that
we apply the notion of duality also to it. In particular, as we already remark,
EquivalenceN rule is a compact way of expressing a set of rules: a rule saying
that par is associative, another saying that par is commutative etc. Considering
this underlying set of rules, one can observe that it contains pairs of dual rules.
For example the rule stating associativity of par is dual to the rule stating
associativity of times, the rule for the introduction of the times unit is dual to
the rule for the elimination of the par unit, and so on. In the restricted calculus,
we insert just one single instance for each pair of dual rules. In doing so we
depart from the main stream of the CoS; not only we make the application of
the equivalence rule explicit but in the restricted system we do not allow the
application of some equivalences. In particular we show that the rules stating the
associativity of times are admissible. With this aim, we define a restricted version
of the Equivalence rule. This restricted version of the Equivalence considers a
new relation,  , on formulae.

Definition 3. The relation on formulae  is defined as follows:

(AOB)OC  AO(BOC) Par associative L
AO(BOC) (AOB)OC Par associative R

⊥OA  A Par unit L
AO⊥  A Par unit R
1⊗ A  A Times unit L
A ⊗ 1  A Times unit R

The Restricted Equivalence rules is:

S[A]

S[B]
if B  A Restricted Equivalence (REq)
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Moreover, it is useful to consider a restricted version of the Interaction rule.
In fact, it is possible to reduce the Interaction rule to its atomic version. We call
Atomic Interaction the Interaction rule restricted to atomic formulae.

S[1]

S[AOA]
with A atomic formula Atomic Interaction

Definition 4. We call system NLSr the inference calculus formed by the rules:
Empty, Restricted Equivalence, Atomic Interaction, Switch, and Switch Mirror.
We write ⊢r A to indicate that the formula A is provable in system NLSr.

We aim to prove that system NLSr is equivalent to the NLS. In particular, we
will prove that all the rules in NLS are admissible in NLSr. The proof proceeds
by several steps, each step proving the admissibility of one missing rule.

Lemma 1. The Interaction rule is derivable in NLSr, that is, for any formula
A, and context S, from S[1], using the NLSr rules it is possible to derive S[AOA].

Proof. By induction on the complexity of the formula A. If A is a unit, then the
thesis follows from the Restricted Equivalence rule. In the case where A is an
atom, the thesis follows from the Atomic Interaction rule. In the case where A

is in the form A′ ⊗ A′′ we have the following chain of implications:
⊢r S[1] ⇒ (by inductive hypothesis)
⊢r S[A′

OA′] ⇒ (by Restricted Equivalence rule)
⊢r S[(A′ ⊗ 1)OA′] ⇒ (by inductive hypothesis)
⊢r S[(A′ ⊗ (A′′

OA′′))OA′] ⇒ (by Switch Mirror rule)
⊢r S[((A′ ⊗ A′′)OA′′)OA′] ⇒ (by Restricted Equivalence rule)
⊢r S[(A′ ⊗ A′′)O(A′′OA′)].
The case where A is in the form A′

OA′′, is perfectly equivalent (mirror image)
to the previous one. ⊓⊔

Next, we prove admissibility of the Equivalence rule. The proof will be done by
induction on the structures of the derivation. To make the induction working, we
need to take a stronger, and more involved, inductive hypothesis. A preliminary
definition and a lemma are here necessary. We start by defining new classes of
contexts.

Definition 5. (i) A left context, Tl, is defined by the following grammar:

Tl ::= ◦ | AOTl | A ⊗ Tl

symmetrically, a right context, Tr is defined by the grammar:

Tr ::= ◦ | TrOA | Tr ⊗ A

(ii) A left par-context, Vl, is defined by the following grammar:

Vl ::= ◦ | AOVl

symmetrically, a right par-context, Vr, is defined by the grammar:

Vr ::= ◦ | VrOA
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Lemma 2. For any formulae A, B, C, context S, left par-context Vl and right
par-context Vr the following points hold:

(i) if ⊢r S[ Vl[A ⊗ B] ⊗ C ] then ⊢r S[ Vl[A ⊗ (B ⊗ C)] ], and symmetrically if
⊢r S[ A ⊗ Vr [B ⊗ C] ] then ⊢r S[ Vr[(A ⊗ B) ⊗ C] ],

(ii) if ⊢r S[ A ⊗ Vr[1] ] then ⊢r S[ Vr[A] ], and symmetrically, if ⊢r S[ Vl[1] ⊗ A ]
then ⊢r S[ Vl[A] ],

(iii) if ⊢r S[⊥OA ] then ⊢r S[A] and symmetrically, if ⊢r S[ AO⊥ ] then ⊢r S[A]

Proof. All three points are proved by structural induction of the derivation ∆ of
the judgment in the premise. Here we present just the proof of point (i) which is
the most involved one, having the larger number of cases to consider. The other
points can be treated with perfectly similar arguments. For each point, the cases
to consider concern the last rule, R, applied in the derivation ∆. The simple
cases are the ones where R modifies the derived formula only inside one of the
contexts S, Vl, Vr, or inside one of the formulae A, B, C: in these cases the thesis
simply derives by inductive hypothesis and by an application of R.

For the remaining cases, we schematically present each case by a pair of
derivations, the one on left is the application of R considered, while the one
on the right shows how the case can be treated, i.e. by, in case, applying the
inductive hypothesis, and by the given derivation.

(i.a) The rule R generates one of the formulae A, B, C. This can only happen
if one of the formulae is a times unit. The case where A is generated is described
and treated as follows:

S[Vl[B] ⊗ C]

S[Vl[1 ⊗ B] ⊗ C]
REq

S[Vl[B] ⊗ C]
.... (Sw)*

S[Vl[B ⊗ C]]

S[Vl[1⊗ (B ⊗ C)]]
REq

The cases where B or C are generated can be dealt in a similar way.
(i.b) The last rule R is a Switch rule involving the context (Vl) and the

formula (A ⊗ B). This interaction can occur in two forms, the first one is the
case where Vl ≡ V ′

l [DO ◦ ], and:

S[V ′

l [(DOA) ⊗ B] ⊗ C]

S[V ′

l [DO(A ⊗ B)] ⊗ C]
Sw

S[V ′

l [(DOA) ⊗ (B ⊗ C)]]

S[V ′

l [DO(A ⊗ (B ⊗ C))]]
Sw

(i.c) A second form of interaction between the context (Vl) and the formula
(A ⊗ B), is given by case where Vl ≡ V ′

l [(D ⊗ E)O◦], and:

S[V ′

l [D ⊗ (EO(A ⊗ B))] ⊗ C]

S[V ′

l [(D ⊗ E)O(A ⊗ B)] ⊗ C]
SwM

S(V ′

l [D ⊗ ((EO(A ⊗ B)) ⊗ C)]]

S(V ′

l [D ⊗ (EO((A ⊗ B) ⊗ C))]]
SwM

S[V ′

l [(D ⊗ E)O((A ⊗ B) ⊗ C)]]
Sw

11



(i.d) The context S interacts with the formula C, in this case S ≡ S′[◦OD]
and:

S′[Vl[A ⊗ B] ⊗ (COD)]

S′[(Vl[A ⊗ B] ⊗ C)OD]
SwM

S′[Vl[A ⊗ (B ⊗ (COD))]]
.... SwM · SwM

S′[Vl[(A ⊗ (B ⊗ C))OD]]
.... (REq)*

S′[Vl[A ⊗ (B ⊗ C)]OD]

(i.e) The context S interacts with the context Vl, in this case S ≡ S′[DO◦]
and the last inference rule is:

S′[(DOVl[A ⊗ B]) ⊗ C]

S′[DO(Vl[A ⊗ B] ⊗ C)]
SwM

for this case, it is sufficient to simply apply the inductive hypothesis.
(i.f) Finally we need to consider the interaction between the context S and

the formula Vl[A ⊗ B] ⊗ C, in this case S ≡ S′[◦O(D ⊗ E)] and:

S′[((Vl[A ⊗ B] ⊗ C)OD) ⊗ E))]

S′[(Vl[A ⊗ B] ⊗ C)O(D ⊗ E)]
SwM

S′[(Vl[A ⊗ (B ⊗ C)]OD) ⊗ E]

S′[(Vl[A ⊗ (B ⊗ C)]O(D ⊗ E)]
SwM

The case where S ≡ S′[(D ⊗ E)O◦] is equally easy. ⊓⊔

Notice that as a special case of point (i) and (ii) of the above lemma we have
that

(i) if ⊢r S[(A⊗B)⊗C] then ⊢r S[A⊗ (B ⊗C)], and symmetrically if ⊢r S[A⊗
(B ⊗ C)] then ⊢r S[(A ⊗ B) ⊗ C],

(ii) if ⊢r S[A⊗ 1] then ⊢r S[A], and symmetrically, if ⊢r S[1⊗A] then ⊢r S[A],

it follows:

Proposition 2. The EquivalenceN rule is admissible in NLSr.

Next we proof the admissibility of the atomic cuts, also for this case the proof
is done by induction on the structures of the derivation, and also for this case
to make the induction working, we need to take a stronger, and more involved,
inductive hypothesis. The following lemma implies the admissibility of atomic
cuts.

Lemma 3. For any atom a, context S, left context Tl and right context Tr, if
⊢r S[Tl[a] ⊗ Tr[a]] (or ⊢r S[Tl[a] ⊗ Tr[a]]) then ⊢r S[Tl[⊥]OTr[⊥]].
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Proof. The proof is by structural induction on the derivation ∆ of ⊢r S[Tl[a] ⊗
Tr[a]], and it is quite similar to the proof of Lemma 2. The different cases con-
sidered by the structural induction can be split in two groups. The simple cases
are the ones where the last rule R in ∆ works internally to one of the contexts
S, Tl, Tr; in all these cases the thesis follows by inductive hypothesis and by an
application of the rule R. The other cases are the ones where the rule R modifies
more than one context, or generates one of the atoms a, a. In detail:

(a) an Atomic Interaction rule generates one of the atoms. This case can be
described and treated as follows:

S[Tl[a] ⊗ T ′

r[1]]

S[Tl[a] ⊗ T ′

r[aOa]]
AInt

S[Tl[a] ⊗ T ′

r[1]]

S[Tl[⊥Oa] ⊗ T ′

r[1]]
REq

.... (REq + SwM)*

S[(Tl[⊥]Oa) ⊗ T ′

r[1]]

S[Tl[⊥]O(a ⊗ T ′

r[1])]
Sw

.... (EqN + SwM)*

S[Tl[⊥]OT ′

r[(a ⊗ 1])]

S[Tl[⊥]OT ′

r[a]]
EqN

S[Tl[⊥]OT ′

r[⊥Oa]]
REq

One should remark that the one of the right is not a true derivation in NLSr,
in fact the EquivalenceN rule is just admissible in NLSr. The right diagram
should be interpreted as a schematic proof that the formula S[Tl[⊥]OT ′

r[⊥Oa]]
is derivable in NLSr.

(b) a Switch rule makes the contexts S and T interact. This case can be
described and treated as follows: S ≡ S′[AO◦] and

S′[(AOTl[a]) ⊗ Tr[a]]

S′[AO(Tl[a] ⊗ Tr[a])]
Sw

S′[(AOTl[⊥])OTr[⊥]]

S′[AO(Tl[⊥]OTr[⊥])]
REq

It remains to consider the cases where the context S interacts with the whole
formula Tl[a] ⊗ Tr[a], where the contexts Tl interact with formula a and where
the contexts Tr interact with formula a. All these cases are immediate. ⊓⊔

Lemma 4. The Cut rule is admissible in NLSr, that is, for any formula A,
context S, if ⊢r S[A ⊗ A] then ⊢r S[⊥].

Proof. This lemma can be seen as a sort of dual of Lemma 1 By structural
induction on the formula A. If A is a unit then the thesis follows from the
admissibility of the EquivalenceN rule.
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In the case where A is an atom, the thesis follows from the previous lemma
and from the admissibility of the EquivalenceN rule.

The case where A is in the form A′
OA′′ can be treated as follows:

S[(A′
OA′′) ⊗ (A′′ ⊗ A′)]

S[((A′
OA′′) ⊗ A′′) ⊗ A′]

EqN

S[(A′
O(A′′ ⊗ A′′)) ⊗ A′]

Sw

.... Inductive hypothesis

S[(A′
O⊥) ⊗ A′]

S[A′ ⊗ A′]
EqN

.... Inductive hypothesis

S[⊥]

Note that the above is not a true derivation but just a schematic proof of the
derivability of S[⊥]. The case where A is in the form A′ ⊗ A′′ is perfectly equi-
valent to this one. ⊓⊔

Having proved that all the rules in NLS are admissible in NLSr we can finally
state:

Proposition 3. For every formula A if ⊢N A the ⊢r A.

That is, the restricted system NLSr is as powerful as the complete one NLS and
from this we have:

Theorem 2. The system NLS satisfies the cut-elimination property.

5 Further Works

A natural question to consider is whether the above treatment for the multi-
plicative cycling logic can be extended to richer logics. In particular, one should
consider the complete system of the cycling linear logic [2] and the multiplicative
non-commutative logic of Abrusci and Ruet [5]. The complete cyclic linear logic
extend the multiplicative part, considered here, by adding the missing linear lo-
gic connectives. While the multiplicative non-commutative logic contains both
commutative and non-commutative multiplicative connectives.

Without giving any proof we claim that the first extension can be carried
out quite smoothly; it is sufficient to consider the presentation of LL in the CoS
given in [10] and modify it by removing the commutativity rules. In this way
we obtain a proof system for cyclic linear logic. In this system cut elimination
can be proved using the technique presented in this article, with the only extra
difficulty of using a more complex induction to deal with the exponential and
additive connectives. In fact these connectives can multiply the occurrences of a
formula in the premises.
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The treatment of the multiplicative non-commutative linear logic [5] is still an
open problem. We remark that it is possible to formulate, in the CoS, all the rules
of the non-commutative logic, given, in the sequent calculus formulation, in [6].
However this presentation will be an obvious and uninteresting result. In this way
deep inference will not play any role. A more interesting application of the CoS
in this setting would be a proof that the Seesaw rule (the non commutative logic
equivalent to the Cycling rule) can be substituted by deep inference. However so
far we were not able to find a nice formulation for the non-commutative logic, in
the CoS. Our difficulties can be explained by the fact that deep inference alone,
in the non-commutative calculus, is not able to reduce the Interaction rule to
the Atomic Interaction rule, and dually Cut to and atomic form of cut. These
reductions are possible instead in the other logics and are a key ingredient in
the cut elimination proofs.
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