
Università degli Studi di Udine

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Dividing and Conquering the
Layered Land

Candidate: Supervisor:

Massimo Franceschet Prof. Angelo Montanari

February 13, 2002

Contents

1 Introduction 1
1.1 Representing and reasoning with time granularity 1
1.2 Related issues . 5

1.2.1 Granular reactive systems . 5
1.2.2 Definability of meaningful timing properties 6
1.2.3 On the relationship with real-time logics 6
1.2.4 On the relationship with interval logics 7
1.2.5 The combining logic perspective . 8

1.3 Our contributions . 8

2 Structures, logics and automata 11
2.1 Structures . 11
2.2 Monadic theories . 15
2.3 Finite-state automata . 17
2.4 Temporal logics . 23

3 The combining approach 31
3.1 Combining methods . 31
3.2 Automata for combined temporal logics . 37
3.3 Model checking combined temporal logics . 44

3.3.1 Combined model checkers . 44
3.3.2 Computational Complexity . 48
3.3.3 Experimental Results . 51

3.4 Discussion . 53

4 Temporal logics and automata for time granularity 55
4.1 Downward unbounded layered structures . 55

4.1.1 Temporal logics for DULSs . 55
4.1.2 Automata for DULSs . 63

4.2 n-layered structures . 67
4.2.1 Temporal logics for n-LSs . 67
4.2.2 Automata for n-LSs . 68

4.3 Upward unbounded layered structures . 71
4.3.1 Temporal logics for UULSs . 71
4.3.2 Automata for UULSs . 75

4.4 Model checking granular reactive systems . 81
4.5 Discussion . 84

ii CONTENTS

5 Extending the picture 87
5.1 Local and global predicates . 88
5.2 Definability and decidability over n-LSs . 90
5.3 Definability and decidability over UULSs . 92
5.4 Definability and decidability over DULSs . 97
5.5 Reconciling the algebraic and the logical frameworks 102
5.6 Discussion . 106

6 Conclusions and open problems 107

Bibliography 111

“Le par tute casete...” (Edda)

Abstract

Il mondo piatto è un mondo in cui il tempo scorre scandito da un unico orologio, in un’unica
direzione, orizzontale. Un po’ noioso, direte voi. Gli abitanti di questo mondo possono
muoversi nel futuro, e, quelli più furbi, anche nel passato. Il futuro non ha fine, il passato
ha invece un inizio, uno zero (ma qualcuno non ci crede). Tutto qui.

Il mondo a strati è un po’ più eccitante. Ci sono molti strati, disposti uno sopra l’altro.
Il tempo di ogni strato è scandito da un orologio. La particolarità è questa: ogni tick di un
orologio di qualche strato corrisponde ad un certo numero di tick dell’orologio dello strato
che sta sotto, ed è una frazione del tick dell’orologio della strato che sta sopra. Il bello del
mondo a strati è che i loro abitanti, oltre a spostarsi avanti e indietro nello strato in cui si
trovano, possono, sorpresa sorpresa, muoversi verticalmente, cambiare strato, e vivere più
lentamente, prendendo le cose con più calma, se vanno verso su, oppure vivere in modo più
frenetico, precipitando un po’ le cose, se vanno verso giù (si dice che gli abitanti-giovani
prediligano gli strati bassi, e, man mano che maturano, salgano verso l’alto). La dimensione
dell’universo a strati non la conosce nessuno. Gli abitanti-scienziati fanno tre ipotesi: esiste
un numero finito di strati, quindi, non si può salire per sempre, e neppure scendere per
sempre. Oppure, esistono infiniti strati. In questo caso, due soluzioni vengono studiate: vi
è uno strato in cima, e poi giù, all’infinito, senza mai fermarsi. Oppure, vi è uno strato in
basso, e poi su, all’infinito, senza limite.

In the flat land time elapses according to a unique clock, in one direction, horizontally. A
bit boring, you may say. The inhabitants of this land may move in the future, and, the
smartest ones, in the past too. Future has no end, while past has a starting point, a zero
(but someone does not believe it). That’s all.

The layered land is a bit more exiting. The are several layers, one above the other. Each
layer has its own clock. The peculiarity is the following: every tick of a clock of some layer
corresponds to a certain number of ticks of the clock of the layer below, and is a fraction
of the tick of the clock of the layer above. The beauty of the layered land is that people
living here may move back and forth on some layer, and, surprise surprise, they may also
move vertically, changing the layer, going upward, where life is slower and calmer, or going
downward, where things get faster and frantic (they say that young people prefer living on
low layers and, when they get older and wiser, they move upward). The dimension of the
layered universe is unknown. Science people make three hypothesis: either there exists a
finite number of layers, and hence one can move neither arbitrarily upward nor arbitrarily
downward, or there are infinitely many layers. In this case, two solutions are studied: either
there exists a coarsest layer on the top, and then downward unbounded, or there is a finest
layer at the bottom, and then upward unbounded.

iv CONTENTS

1
Introduction

The goal of the thesis is to find expressive, flexible and executable methods to tackle the
problem of automatic verification of temporal specifications involving different time gran-
ularities. We follow a divide and conquer approach, according to which problems are split
into sub-problems and these are delegated to the components. When dealing with real-world
systems, organizing their descriptive and inferential requirements in a structured way is often
the only way to master the complexity of the design, verification, and maintenance tasks.
Formulated in the setting of combined logics, the basic issue underlying such an approach is:
how can we guarantee that the logical properties of the component logics, such as axiomatic
completeness and decidability, are inherited by the combined one? It has a natural analogue
in terms of the associated methods and tools: can we reuse methods and tools developed for
the component logics, such as deductive engines and model checkers, to obtain methods and
tools for the combined one? We will try to answer this and other related questions, focusing
on granular temporal logics, which are the direct motivation for this work.

The introduction is organized as follows. In Section 1.1 we describe the main representa-
tion and reasoning frameworks for time granularity. In Section 1.2 we relate time granularity
to a number of different topics, including real-time logics, interval logics, and combined logics.
In Section 1.3 we outline the contributions of the thesis.

1.1 Representing and reasoning with time granularity

The ability of providing and relating temporal representations at different ‘grain levels’ of the
same reality is an important research theme in computer science and artificial intelligence.
In particular, it is a major requirement for formal specifications, temporal databases, data
mining, problem solving, and natural language understanding. As for logical specifications,
there exists a large class of reactive systems whose components have dynamic behavior reg-
ulated by very different time constants (granular reactive systems). A good specification
language must enable one to specify and verify the components of a granular reactive system
and their interactions in a simple and intuitively clear way [17, 22, 23, 40, 84, 94, 95, 96, 97].
With regard to temporal databases, a standard way to incorporate time is to extend a schema
to include some time attributes. Each time attribute takes value over some fixed granular-
ity. Users and applications, however, may require the flexibility of viewing the temporal
information contained in the corresponding relation in terms of different granularities. In

2 CHAPTER 1. INTRODUCTION

particular, when information is collected from different sources which are not under the
same control, differently-grained time-stamps are associated with different data. To guar-
antee consistency either the data must be converted into a uniform representation that is
independent of time granularity or temporal operations must be generalized to cope with
data associated with different temporal domains. In both cases, a precise semantics for time
granularity is needed [4, 15, 21, 27, 30, 70, 71, 72, 93, 102, 109, 121, 122, 123]. With re-
gard to data mining, a huge amount of data is collected every day in the form of event-time
sequences. These sequences represent valuable sources of information, not only for what
is explicitly registered, but also for deriving implicit information and predicting the future
behaviour of the process that we are monitoring. The latter activity requires an analysis
of the frequency of certain events, the discovery of their regularity, the identification ofsets
of events that are linked by particular temporal relationships. Such frequencies, regular-
ity, and relationships are very often expressed in terms of multiple granularities, and thus
analysis and discovery tools must be able to deal with these granularities [1, 5, 7, 29, 88].
With regard to problem solving , several problems in scheduling, planning, and diagnosis can
be formulated as temporal constraint satisfaction problems, often involving multiple time
granularities. In a temporal constraint satisfaction problem, variables are used to represent
event occurrences and constraints are used to represent their granular temporal relation-
ships [6, 25, 38, 59, 82, 101, 105, 110]. Finally, shifts in the temporal perspective occur very
often in natural language communication, and thus the ability of supporting and relating
a variety of temporal models, at different grain sizes, is a relevant feature for the task of
natural language understanding [10, 47, 53].

Any time granularity can be viewed as the partitioning of a temporal domain in groups of
elements, where each group is perceived as an indivisible unit (a granule). The description of
a fact can use these granules to provide it with a temporal qualification, at the appropriate
abstraction level. However, adding the concept of time granularity to a formalism does not
merely mean that one can use different temporal units to represent temporal quantities in
a unique flat model, but it involves semantic issues related to the problem of assigning a
proper meaning to the association of statements with the different temporal domains of a
layered model and of switching from one domain to a coarser/finer one.

The frameworks to represent and reason about time granularity present in the literature
can be classified into algebraic frameworks and logical frameworks. In an algebraic (or opera-
tional) framework, a bottom granularity is assumed, and a finite set of calendar operators are
defined to generate new granularities from existing ones. A granularity is hence identified
by an algebraic expression. In the algebraic framework, algorithms are provided to perform
granule conversions, that is, to convert the granules in one granularity to those in another
granularity, and to perform semantic conversion of statements associated to different granu-
larities. The algebraic approach to time granularity has been mostly applied in the fields of
databases, data mining, and temporal reasoning.

Algebraic frameworks for time granularities have been proposed by Foster, Leban, and
McDonald [47], by Niezette and Stevenne [102] and by Ning, Jajodia, and Wang [103]. Foster,
Leban, and McDonald propose the temporal interval collection formalism. A collection is a
structured set of intervals, where the order of the collection gives a measure of the structure
depth: a collection of order 1 is an ordered list of intervals, and a collection of order n, with
n > 1, is an ordered list of collections of order n−1. Each interval denotes a set of contiguous
moments of time. To manipulate collections, dicing and slicing operators are used. The
former allows one to divide each interval of a collection into another collection, while the latter
provide means to select intervals from collections. For instance, the application of the dicing

1.1. REPRESENTING AND REASONING WITH TIME GRANULARITY 3

operator Week : during : January1998 divides the interval corresponding to January1998
into the intervals corresponding to the weeks that are fully contained in the month. Moreover,
the application of the slicing operator [1,−1]/Week : during : January1998 selects the first
and the last week from those identified by the dicing operator above. Niezette and Stevenne
introduce a similar formalism, called the slice formalism.

Finally, Ning, Jajodia, and Wang introduce a calendar algebra consisting of a finite set of
parametric calendar operations that can be classified into grouping-oriented operations and
granule-oriented operations. The former operations group certain granules of a granularity
together to form the granules of a new granularity. For instance, a typical group-oriented
operation is Groupn(G) that generates a new granularity G′ by partitioning the granules
of G into groups containing n granules and making each group a granule of the resulting
granularity. The granule-oriented operations do not change the granules of a granularity, but
rather select which granules should remain in the new granularity. A typical granule-oriented
operation is Subsetn

m(G) that generates a new granularity G′ by taking all the granules of
G between m and n. A comparison between the expressive power of the above described
algebraic frameworks can be found in [9].

In the logical (or descriptive) framework for time granularity, the different granulari-
ties and their interconnections are represented by means of mathematical structures, called
layered structures. A layered structure consists of a possibly infinite set of related differently-
grained temporal domains. Such a structure identifies the relevant temporal domains and
defines the relations between time points belonging to different domains. Suitable opera-
tors make it possible to move horizontally within a given temporal domain of the structure
(displacement operators), and to move vertically across temporal domains of the structure
(projection operators). These operators recall the slicing and dicing operators of the col-
lection formalism. Both classical and temporal logics can be interpreted over the layered
structure. Logical formulas allow one to specify properties involving different time granu-
larities in a single formula by mixing displacement and projection operators. Algorithms
are provided to verify whether a given formula is consistent (satisfiability problem) as well
as to check whether a given formula is satisfied in a particular structure (model checking
problem). The logical approach to represent time granularity has been mostly applied in the
field of formal specification and verification of concurrent systems.

A logical approach to represent and reason about time granularity, based on a many-
level view of temporal structures, has been proposed by Montanari in [92], and further
investigated by Montanari, Peron, and Policriti in [94, 95, 97]. In the proposed framework,
the flat temporal structure of standard temporal logics is replaced by a layered temporal
universe consisting of a possibly infinite set of related differently-grained temporal domains.
In [92], a metric and layered temporal logic for time granularity has been proposed. It is
provided with temporal operators of displacement and projection, which can be arbitrarily
combined, and it is interpreted over layered structures. However, only a sound axiomatic
system for the temporal logic is given, and no decidability result is proved.

Layered structures with exactly n ≥ 1 temporal domains such that each time point can be
refined into k ≥ 2 time points of the immediately finer temporal domain, if any, are called k-
refinable n-layered structures (n-LSs for short). They have been investigated in [97], where
a classical second-order language, with second-order quantification restricted to monadic
predicates, has been interpreted over them. The language includes a total ordering < and
k projection functions ↓0, . . . , ↓k−1 over the layered temporal universe such that, for every
point x, ↓0 (x), . . . , ↓k−1 (x) are the k elements of the immediately finer temporal domain, if
any, into which x is refined. The satisfiability problem for the monadic second-order language

4 CHAPTER 1. INTRODUCTION

over n-LSs has been proved to be decidable by using a reduction to the emptiness problem
for Büchi sequence automata. Unfortunately, the decision procedure has a nonelementary
complexity.

Layered structures with an infinite number of temporal domains, ω-layered structures,
have been studied in [95]. In particular, the authors investigated k-refinable upward un-
bounded layered structures (UULSs), that is, ω-layered structures consisting of a finest tem-
poral domain together with an infinite number of coarser and coarser domains, and k-refinable
downward unbounded layered structures (DULSs), that is, ω-layered structures consisting of
a coarsest domain together with an infinite number of finer and finer domains. A classi-
cal monadic second-order language, including a total ordering < and k projection functions
↓0, . . . , ↓k−1, has been interpreted over both UULSs and DULSs. The decidability of the
monadic second-order theories of UULSs and DULSs has been proved by reducing the sat-
isfiability problem to the emptiness problem for systolic and Rabin tree automata, respec-
tively. In both cases the decision procedure has a nonelementary complexity. Moreover, an
expressively complete temporal logic counterpart of the first-order theory of UULSs has been
proposed in [94].

A comparison of the algebraic and the logical frameworks is not immediate. The main
reason is that, as pointed out above, these frameworks have been applied to different appli-
cation fields calling for different requirements. For instance, in the database context, granule
conversion plays a major role because it allows the user to view the temporal information
contained in the database in terms of different granularities, while in the context of verifi-
cation, decision procedures for consistency and model checking are unavoidable to validate
the system. However, abstracting away from the application fields of the two frameworks, a
comparison is possible. The main advantage of the algebraic framework is its naturalness: by
applying user-friendly operations to existing standard granularities like ‘days’, ‘weeks’, and
‘months’, a quite large class of new granularities, like ‘business weeks’, ‘business months’, and
‘years since 2000’, can be easily generated. The major weakness of the algebraic approach
is that reasoning methods basically reduce to granule conversions and semantic translations
of statements. Scarce care has received the investigation on algorithms to check whether
some relation holds between granularities, e.g., G1 is finer than G2 or G1 is equivalent to G2.
Moreover, only a finite number of time granularities can be represented. On the contrary,
reasoning methods have been extensively investigated in the logical framework, where both
a finite and an infinite number of time granularities can be dealt with. Theorem provers
make it possible to verify whether a granular requirement is consistent, while model checkers
allow one to check whether a granular property is satisfied in a particular structure. To
allow such computational properties, however, some assumptions have to be taken about the
interconnections between granularities, e.g., in a layered structure granularities are totally
ordered with respect to the finer-than relation.

A recent original approach to represent and reason about a finite number of time gran-
ularities has been proposed by Wijsen [124] and refined by Dal Lago and Montanari [26].
Wijsen models infinite periodic granularities as infinite strings over a suitable finite alphabet.
The resulting string-based model is then used to formally state and solve problems of gran-
ularity equivalence and minimality. Dal Lago and Montanari gives an automata-theoretic
counterpart of the string-based model. They use single string automata, that is, finite-state
automata accepting a single infinite string, to represent in a compact way time granularities
and to give an algorithmic solution to the problems of equivalence and classification of time
granularities (the latter problem is strictly related to the granule conversion problem). Our
approach in this thesis is close to the logical one proposed by Montanari, Peron and Policriti.

1.2. RELATED ISSUES 5

1.2 Related issues

The original motivation of our research was indeed the design of a temporal logic embedding
the notion of time granularity, suitable for the specification of complex concurrent systems
whose components evolve according to different time units. However, we established an inter-
esting complementary point of view on time granularity: it can be regarded as an expressive
setting to investigate the definability of meaningful timing properties over a single time do-
main. Moreover, layered structures and logics represent an embedding framework for flat
real-time structures and logics. Furthermore, there exists a natural link between structures
and theories of time granularity and those developed for representing and reasoning about
time intervals. Finally, there are significant similarities between the problems we encoun-
tered in studying time granularity, and those addressed by current research on combining
logics, theories, and structures. In the following, we briefly explain all these connections.

1.2.1 Granular reactive systems

As pointed out above, we were originally motivated by the design of a temporal logic em-
bedding the notion of time granularity suitable for the specification of granular reactive
systems. A reactive system is a concurrent program that maintains and interaction with
the external environment and that ideally runs forever. Temporal logic has been success-
fully used for modeling and analyzing the behavior of reactive systems (a survey is [36]). It
supports semantic model checking, which can be used to check specifications against sys-
tem behaviors; it also supports pure syntactic deduction, which may be used to verify the
consistency of specifications. Finite-state automata, such as Büchi sequence automata and
Rabin tree automata (a survey is [114]), have been proved very useful in order to provide
clean and asymptotically optimal satisfiability and model checking algorithms for temporal
logics [79, 118] as well as to cope with the state explosion problem that frighten concurrent
system verification [24, 73, 117]. Moreover, automata themselves can be directly used as a
specification formalism, provided with a natural graphical interpretation [87].

A granular reactive systems is a reactive system whose components have dynamic be-
haviours regulated by very different time constants. As an example, consider a pondage
power station consisting of a reservoir, with filling and emptying times of days or weeks,
generator units, possibly changing state in a few seconds, and electronic control devices,
evolving in microseconds or even less. A complete specification of the power station must
include the description of these components and of their interactions. A natural description
of the temporal evolution of the reservoir state will probably use days: “During rainy weeks,
the level of the reservoir increases 1 meter a day”, while the description of the control devices
behaviour may use microseconds: “When an alarm comes from the level sensors, send an
acknowledge signal in 50 microseconds”. We say that systems of such a type have differ-
ent time granularities. It is somewhat unnatural, and sometimes impossible, to compel the
specifier to use a unique time granularity, microseconds in the previous example, to describe
the behaviour of all the components. A good language must indeed allow the specifier to
easily describe all simple and intuitively clear facts (naturalness of the notation). Hence, a
specification language for granular reactive systems must support different time granularities
to allow one (i) to maintain the specifications of the dynamics of differently-grained com-
ponents as separate as possible (modular specifications), (ii) to differentiate the refinement
degree of the specifications of different system components (flexible specifications), and (iii)
to write complex specifications in an incremental way by refining higher-level predicates as-
sociated with a given time granularity in terms of more detailed ones at a finer granularity

6 CHAPTER 1. INTRODUCTION

(incremental specifications).

1.2.2 Definability of meaningful timing properties

Time granularity can be viewed not only as an important feature of a representation language,
but also as a formal tool to investigate the definability of meaningful timing properties, such
as density and exponential grow/decay, over a single time domain [95]. In this respect, the
number of layers (single vs. multiple, finite vs. infinite) of the underlying temporal structure,
as well as the nature of their interconnections, play a major role: certain timing properties
can be expressed using a single layer; others using a finite number of layers; others only
exploiting an infinite number of layers. For instance, temporal logics over binary 2-layered
structures suffice to deal with conditions like “P holds at all even times of a given temporal
domain” that cannot be expressed using flat propositional temporal logics [125]. Moreover,
temporal logics over ω-layered structures allow one to express relevant properties of infinite
sequences of states over a single temporal domain that cannot be captured by using flat
or n-layered temporal logics. For instance, temporal logics over k-refinable UULSs allow
one to express conditions like “P holds at all time points ki, for all natural numbers i,
of a given temporal domain”, which cannot be expressed by using either propositional or
quantified temporal logics over a finite number of layers, while temporal logics over DULSs
allow one to constrain a given property to hold true ‘densely’ over a given time interval (see
Section 1.2.4).

1.2.3 On the relationship with real-time logics

Layered structures and logics can be regarded as an embedding framework for flat real-time
structures and logics. A real-time system is a reactive system with well-defined fixed-time
constraints. Processing must be done within the defined constraints or the system fails.
Systems that control scientific experiments, industrial control systems, automobile-engine
fuel-injection systems, and weapon systems are examples of real-time systems. Examples of
quantitative specifications for real-time systems are periodicity, bounded responsiveness, and
timing delays. In order to deal with real-time systems, the notion of state has been extended
to that of timed state, that is, a state with an attribute specifying the corresponding time
instant, and real-time logics have been interpreted over timed state sequences (see [2] for a
survey).

Montanari et al. showed that the second-order theory of timed state sequences can be
properly embedded into the second-order theory of binary UULSs as well as into the second-
order theory of binary DULSs [96]. The increase in expressive power of the embedding
frameworks makes it possible to express and check further timing properties of real-time
systems, which cannot be dealt with by the classical theory. For instance, in the theory of
timed state sequences, saying that a state s holds true at time i can be meant to be an
abstraction of the fact that state s can be arbitrarily placed in the time interval [i, i + 1).
The stratification of domains in layered structures naturally supports such an interval in-
terpretation (see Section 1.2.4) and gives means for reducing the uncertainty involved in
the abstraction process, allowing to express the more refined property saying that state s
belongs to the first (respectively, second) half of the time interval [i, i + 1). More generally,
the embedding of real-time logics into the granularity framework allows one to deal with
temporal indistinguishability of states (two or more states having associated the same time)
and temporal gaps between states (a nonempty time interval between the time associated

1.2. RELATED ISSUES 7

to two contiguous states) in the uniform framework of time granularity. Temporal indistin-
guishability and temporal gaps can indeed be interpreted as phenomena due to the fact that
real-time logics lack the ability to express properties at the right (finer) level of granularity:
distinct states, having the same associated time, can always be ordered at the right level of
granularity; similarly, time gaps represent intervals in which a state cannot be specified at
a finer level of granularity. A finite number of layers is not sufficient to capture timed state
sequences: it is not possible to fix a priori any bound on the granularity that a domain must
have to allow one to temporally order a given set of states, and thus we need to have an
infinite number of temporal domains at our disposal.

1.2.4 On the relationship with interval logics

There exists a natural link between structures and theories of time granularity and those de-
veloped for representing and reasoning about time intervals [92]. Differently-grained tempo-
ral domains can indeed be interpreted as different ways of partitioning a given discrete/dense
time axis into consecutive disjoint intervals. According to this interpretation, every time
point can be viewed as a suitable interval over the time axis and projection implements an
intervals-subintervals mapping. More precisely, let us define direct constituents of a time
point x, belonging to a given domain, the time points of the immediately finer domain into
which x can be refined (if any) and indirect constituents the time points into which the direct
constituents of x can be directly or indirectly refined (if any). The mapping of a given time
point into its direct or indirect constituents can be viewed as a mapping of a given time
interval into (a specific subset of) its subintervals. The existence of such a natural corre-
spondence between interval and granularity structures hints at the possibility of defining a
similar connection at the level of the corresponding theories. For instance, according to such
a connection, temporal logics over DULSs allow one to constrain a given property to hold
true densely over a given time interval, where P densely holds over a time interval w if P
holds over w and there exists a direct constituent of w over which P densely holds.

Most interval temporal logics, such as, for instance, Moszkowski’s Interval Temporal Logic
(ITL) [100], Halpern and Shoham’s Modal Logic of Time Intervals (HS) [63], Venema’s CDT
Logic [119], and Chaochen and Hansen’s Neighborhood Logic (NL) [16], have been shown
to be undecidable. Decidable fragments of these logics have been obtained by imposing
severe restrictions on their expressive power. As an example, Moszkowski [100] proves the
decidability of the fragment of Propositional ITL resulting from the introduction of a locality
constraint. An ITL interval is a finite or infinite sequence of states. The locality property
states that each propositional variable is true over an interval if and only if it is true at its
first state. This property allows one to collapse all the intervals starting at the same state
into a single interval of length zero, that is, the interval consisting of the first state only. By
exploiting such a constraint, decidability of Local ITL can be easily proved by embedding it
into Quantified Linear Temporal Logic.

We are currently working on the problem of establishing a connection between structures
and logics for time granularity and those for time intervals in order to transfer decidability
results from the granularity setting to the interval one. We expect that more expressive
decidable fragments of interval logics can be obtained as counterparts of decidable theories
of time granularity over n-layered and ω-layered structures. Preliminary results can be found
in [120]. The authors propose a new interval temporal logic, called Split Logic (SL for short),
which is equipped with operators borrowed from HS and CDT, but is interpreted over specific
interval structures, called split-frames. The distinctive feature of a split-frame is that there is

8 CHAPTER 1. INTRODUCTION

at most one way to chop an interval into two adjacent subintervals, and consequently it does
not possess all the intervals. They prove the decidability of SL with respect to particular
classes of split-frames which can be put in correspondence with the first-order fragments of
the monadic theories of time granularity. In particular, discrete split-frames with maximal
intervals correspond to finitely layered structures, discrete split-frames (with unbounded
intervals) can be mapped into upward unbounded layered structures, and dense split-frames
with maximal intervals can be encoded into downward unbounded layered structures.

1.2.5 The combining logic perspective

There are significant similarities between the problems we addressed in the time granularity
setting and those dealt with by current research on logics that model changing contexts and
perspectives. The design of these types of logics is emerging as a relevant research topic in
the broader area of combination of logics, theories, and structures, at the intersection of logic
with artificial intelligence, computer science, and computational linguistics [56]. The reason
is that application domains often require rather complex hybrid description and specification
languages, while theoretical results and implementable algorithms are at hand only for simple
basic components [54].

As for granular reactive systems, their operational behavior can be naturally described
as a suitable combination of temporal evolutions (sequences of component states) and tem-
poral refinements (mapping of a component state into a finite sequence of states belonging
to a finer component). According to such a point of view, the model describing the opera-
tional behavior of the system and the specification language can be obtained by combining
simpler models and languages, respectively, and model checking/satisfiability procedures for
combined logics can be used.

It turns out from the above discussion that the setting of time granularity is expressive
and flexible enough in order to embed and uniformly study many interesting frameworks
not directly related to time granularity. We think that this is a good reason to deepen our
understanding the framework of time granularity. In the next section, we summarize the
main contributions of the thesis.

1.3 Our contributions

The goal of the thesis is to find expressive, flexible and executable methods to tackle the
problem of automatic verification of temporal specifications involving different time granu-
larities. We mainly focus on three kind of layered structures, namely, n-layered structures,
downward and upward layered structures. The relevance of these structures has been ex-
plained in Section 1.2.

In previous work [94, 95, 96, 97], layered structures have been studied according to the
following approach. Classical monadic logics are defined over layered structures, and the re-
sulting theories are reduced to theories over collapsed structures. In particular, the monadic
theory of n-layered structures is reduced to the monadic theory of one successor over infinite
sequences (known as S1S), that of downward unbounded layered structures is embedded into
the monadic theory of k successors over infinite trees (known as SkS), and that of upward
unbounded layered structures in translated into a proper extension of the monadic theory
of one successor over infinite sequences (known as S1Sk). Since S1S can be embedded into
Büchi automata over infinite sequences, the satisfiability problem for the monadic theory of

1.3. OUR CONTRIBUTIONS 9

n-layered structures can be effectively reduced to the emptiness problem for Büchi sequence
automata, which is known to be decidable. Similarly, the satisfiability problem for the
monadic theory of downward unbounded layered structures can be encoded into the empti-
ness problem for Rabin tree automata (the automata-theoretic counterpart of SkS), and that
for the monadic theory of upward unbounded layered structures can be translated into the
emptiness problem for systolic tree automata (the automata-theoretic counterpart of S1Sk).
Monadic logics for time granularity are quite expressive, but, unfortunately, they have few
computational appealing: their decision problem is indeed nonelementary. Moreover, the
corresponding automata (Büchi sequence automata, Rabin tree automata, and systolic tree
automata) are defined over collapsed structures, and do not directly work over layered struc-
tures. Hence, they do not represent natural and intuitive tools to express properties of time
granularity.

In this thesis, we follow a different approach. We start by studying how to combine
temporal logics in such a way that properties of the components are inherited by the combi-
nation. We do the same for automata. Then, we reinterpret layered structures as combined
structures. This intuition reveals to be the keystone of our endeavor. Indeed, it allows us
to define combined temporal logics and combined automata over layered structures, and
to study their expressive power and computational properties by taking advantage of the
transfer theorems for combined logics and combined automata. The outcome is appealing:
the resulting combined temporal logics and automata directly work over layered structures.
Moreover, they are expressively equivalent to monadic languages, and are elementarily decid-
able. The reader may be skeptical about the latter claim: how can an elementarily decidable
logic be expressively equivalent to a nonelementarily decidable one? The elucidation of this
mystery lies somewhere in the rest of this thesis.

In the following, we briefly sketch the contents of the thesis.

Chapter 2: we introduce structures, logics, and automata that we will use in the rest of
the thesis. In particular, we formally define layered structures. We summarize well-known
results about expressiveness and decidability of classical monadic logics, temporal logics, and
automata.

Chapter 3: we describe the combining approach to temporal logics and we propose a sim-
ilar approach for automata. We introduce three well-known modes for combining temporal
logics: temporalization, independent combination, and join. We study the model checking
problem for combined temporal logics and we propose an automata-theoretic counterpart of
temporalized logics. This chapter is based on [50, 51].

Chapter 4: we define and study temporal logics and automata over n-layered structures and
ω-layered structures. Taking advantage of the combining method introduced in Chapter 3,
we define expressively complete and elementarily decidable temporal logic and automata
counterparts of the monadic theories of layered structures. Finally, we apply the combining
approach to model, specify, and verify granular reactive systems. This chapter is based
on [48, 49].

Chapter 5: we try to extend the picture with new meaningful predicates while preserving
decidability. We systematically explore several possibilities, and give a number of positive
and negative results by reduction to/from a wide spectrum of decidable/undecidable prob-
lems. Interestingly, we find out that the monadic second-order language for time granularity
in the signature with a total ordering < and k projection functions ↓0, . . . , ↓k−1 has a valid
antagonist, which is still decidable and can express different properties. Finally, we propose

10 CHAPTER 1. INTRODUCTION

a framework to represent and reason about time granularity that reconciles the algebraic
and logical approaches. This chapter is based on [52].

2
Structures, logics and automata

In this chapter we introduce structures, logics, and automata that we will use in the rest of
this thesis. In Section 2.1 we define sequences, trees, and layered structures. In Section 2.2
we introduce classical monadic logics and interpret them over previously defined structures.
In Section 2.3 we introduce finite-state automata over sequences and trees, and compare their
expressive power with that of the monadic theories of Section 2.2. Finally, in Section 2.4 we
introduce temporal logics over sequences and trees, and link them with the monadic theories
of Section 2.2. In particular, we define CTL∗k, an extension of the popular Computational
Tree Logic CTL∗ with k directed successors X0, . . . ,Xk−1, and we study the complexity of
its satisfiability and model checking problems.

2.1 Structures

In this section we introduce the relational structures that we will use in the rest of the thesis.
We begin with some preliminary definitions. We denote by N the set {0, 1, . . .} of natural
numbers and by N+ the set {1, 2, . . .} of positive natural numbers. An initial segment I of
N is a set {0, 1, . . . , n}, for some n ∈ N. We will make use of O-notation and Θ-notation.
Recall that n = O(m) means that n ≤ c · m, for some constant c > 0, and n = Θ(m)
means that c1 · m ≤ n ≤ c2 · m, for some constants c2 ≥ c1 > 0. Let A,B be two sets.
The concatenation of A and B, denoted by AB, is the set {xy | x ∈ A, y ∈ B}. For every
n ∈ N, we recursively define the set An of strings of length n over A as follows: A0 = {ε},
An+1 = AAn. The Kleene closure of A is the set A∗ =

⋃
n∈NAn of strings of arbitrary finite

length over A. We denote by |x| the length of the string x ∈ A∗ defined as follows: |ε| = 0,
and |xa| = |x| + 1, for x ∈ A∗ and a ∈ A. Moreover, let A+ = A∗ \ {ε} and Aω be the set
of infinite strings (or ω-strings) over A. Given a string α, we denote by α(i) its i-th element
and by α(i, j) the segment α(i) . . . α(j), for i ≤ j. Let x, y ∈ A∗. We say that x is a prefix
of y, denoted by x <pre y, if xw = y for some w ∈ A+. Note that the prefix relation <pre

is a partial ordering over A∗. Let < be a total ordering over A. For every x, y ∈ A∗, we say
that x lexicographically precedes y with respect to < , denoted by x <lex y, if either x <pre y
or there exist z ∈ A∗ and a, b ∈ A such that za ≤pre x, zb ≤pre y and a < b. Note that the
lexicographical relation <lex is a total ordering over A∗.

We now introduce three binary predicates over the natural numbers that we are going
to use in this thesis. Let k ≥ 2. The binary predicate flipk is as follows. Given two

12 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

natural numbers x, y, flipk(x, y), also denoted by flipk(x) = y, if y = x − x′, where x′

is the least power of k with non-null coefficient in the k-ary representation of x. Formally,
flipk(x) = y if x = an · kn + an−1 · kn−1 + . . . + am · km, 0 ≤ ai ≤ k − 1, am 6= 0, and
y = an ·kn +an−1 ·kn−1 + . . .+(am−1) ·km. For instance, flip2(18, 16), since 18 = 24 +21,
am = 1, m = 1, and 16 = 24 + 021. Moreover, flip2(16, 0), since 16 = 24, am = 1, m = 4,
and 0 = 0 · 24. Finally, there is no y such that flip2(0, y). The predicate adj is defined
as follows: adj(x, y), also denoted by adj(x) = y, if x = 2kn + 2kn−1 + . . . + 2k0 , with
kn > kn−1 > . . . > k0 > 0, and y = x + 2k0 + 2k0−1. For instance, adj(12, 18), since if
12 = 23 + 22, k0 = 2 and 18 = 12 + 22 + 21. Moreover, there is no y such that adj(13, y),
since 13 = 23 +22 +20 and k0 = 0. Finally, the predicate 2× is such that 2× (x, y) if y = 2x.

Let P = {P, Q, . . .} be a finite set of monadic predicate symbols. A finite sequence
is a relational structure s = 〈I, <〉, where I is an initial segment of N and < is the usual
ordering over natural numbers. A P-labeled finite sequence is a relational structure s = 〈I, <
, (P)P∈P〉, where I and < are as above and, for every P ∈ P, P ⊆ I is the set of elements
labeled with the symbol P . Note that a single point may be labeled with more than one
letter. For the sake of simplicity, in the following we will identify the symbol P with its
interpretation P , and, consequently, we will write 〈I, <, (P)P∈P〉 instead of 〈I,<, (P)P∈P〉.
An infinite sequence (or ω-sequence) is a relational structure s = 〈N, <〉 and a P-labeled
infinite sequence is an infinite sequence expanded with monadic predicates P , for P ∈ P.

We now define finite and infinite trees. Let k ≥ 2 and Tk be the set {0, . . . , k − 1}∗. A
set D ⊆ Tk is a k-ary tree domain if:

1. D is prefix closed, that is, x ∈ D and y <pre x implies y ∈ D, for every x, y ∈ Tk;

2. for every x ∈ Tk, either xi ∈ D for every 0 ≤ i ≤ k−1 or xi 6∈ D for every 0 ≤ i ≤ k−1.

Note that the whole Tk is a tree domain. A k-ary finite tree is a relational structure t =
〈D, (↓i)k−1

i=0 , <pre〉, where D is a k-ary finite tree domain, ↓i is the i-th successor relation over
D such that ↓i(x, y), also denoted by ↓i(x) = y, if y = xi, for every 0 ≤ i ≤ k−1, and <pre is
the prefix ordering over D defined as above. We call nodes the elements of D. If ↓i(x) = y,
then y is said the i-th son of x. The lexicographical ordering <lex over D is defined with
respect to the natural ordering < over {0, . . . , k − 1} such that 0 < 1 < . . . < k − 1. The
root of t is the node ε. A leaf of t is an element x ∈ D devoid of sons. A node which is not
a leaf is called an internal node. The depth of a node x ∈ D is the length of the (unique)
path from the root ε to x. The height of t is the highest depth of a node in D. A set X ⊆ D
is said downward closed if, for every x ∈ X, either x is a leaf, or x has a son y ∈ X. A full
path π in t is a subset of D whose nodes can be written as a finite sequence x0, . . . , xn such
that, for every 0 ≤ i ≤ n, |xi| = i and, for every 0 ≤ i < n, there exists 0 ≤ j ≤ k − 1
with xi+1 = ↓j(xi). We will denote by π(i) the i-th element xi of the path π. A path is a
downward closed subset of a full path. A chain is a subset of a path. The tree t is complete
if every full path in t has the same length. A P-labeled finite tree is a relational structure
t = 〈D, (↓i)k−1

i=0 , <pre, (P)P∈P〉, where D, ↓i, and <pre are as above and, for every P ∈ P,
P ⊆ D is the set of nodes labeled with the symbol P .

As for infinite trees, we are interested only in complete k-ary infinite trees over the tree
domain Tk. A (complete) infinite k-ary tree is a relational structure t = 〈Tk, (↓i)k−1

i=0 , <pre〉. A
full path π in t is a subset of Tk whose nodes can be written as an infinite sequence x0, x1, . . .
such that, for every i ≥ 0, |xi| = i and there exists 0 ≤ j ≤ k − 1 with xi+1 = ↓j(xi). A
path is a downward closed subset of a full path. A chain is a subset of a path. A P-labeled
infinite k-ary tree is an infinite k-ary tree expanded with monadic predicates P , for P ∈ P.

2.1. STRUCTURES 13

15314313312311310393837363534333231303

7262524232221202

31211101

1000

Figure 2.1: The 2-refinable 2-layered structure.

Finally, we define the most relevant structures in the context of this thesis, that is, layered
structures. We begin by defining layered structures with a finite and fixed number of layers.
Let n ≥ 1 and k ≥ 2. For every i ≥ 0, let T i = {ji | j ≥ 0}. Let Un =

⋃
0≤i<n T i be the

n-layered temporal universe. A k-refinable n-layered structure (n-LS) is a relational structure
〈Un, (↓i)k−1

i=0 , <〉, that intuitively represents an infinite sequence of complete k-ary trees, each
one rooted at a point of T 0 and of height n − 1 (see Figure 2.1). The sets {T i}0≤i<n are
the layers of the trees, ↓i, with i = 0, . . . , k − 1, is a projection relation such that ↓i (x, y),
also denoted by ↓i (x) = y, if y is the i-th son of x, and < is a total ordering of Un given
by the preorder (root-left-right) visit of the nodes (for elements belonging to the same tree)
and by the total linear ordering of trees (for elements belonging to different trees). Formally,
for ab, cd ∈ Un, ↓i (ab) = cd if b < n − 1, d = b + 1 and c = a · k + i. Moreover, the
ordering < is axiomatically defined as follows. Let ↓0 (x) = {x} and, for every i ≥ 1,
↓i (x) = {↓j(y) | y ∈↓i−1 (x), 0 ≤ j ≤ k − 1}.

1. if x = a0, y = b0, and a < b over natural numbers, then x < y;

2. x < ↓j(y), for every 0 ≤ j ≤ k − 1;

3. ↓j(x) < ↓j+1(x), for every 0 ≤ j ≤ k − 2;

4. if x < y and y 6∈ ⋃
i≥0 ↓i (x), then ↓k−1(x) < y;

5. if x < z and z < y, then x < y.

A full path over an n-LS is a subset of Un whose elements can be written as a sequence
x0, x1, . . . , xn−1, such that, for every i = 0, . . . , n−1, xi belongs to the i-th domain T i and, for
every i = 0, . . . , n−2, there exists 0 ≤ j < k with xi+1 = ↓j(xi). A path is a downward closed
subset of a full path. A chain is any subset of a path. A P-labeled k-refinable n-layered
structure is a relational structure 〈Un, (↓i)k−1

i=0 , <, (P)P∈P〉, where ↓i and < are defined as
above and, for every P ∈ P, P ⊆ Un is the set of points in Un labeled with symbol P .

We now introduce ω-layered structures, that is, layered structures with an infinite number
of layers. Let U =

⋃
i≥0 T i be the ω-layered temporal universe. A k-refinable downward

unbounded layered structure (DULS) is a relational structure 〈U , (↓i)k−1
i=0 , <〉, that intuitively

represents an infinite sequence of complete infinite k-ary trees, each one rooted at a point
of T 0 (Figure 2.2). The sets {T i}i≥0 are the layers of the trees, ↓i, with i = 0, . . . , k − 1, is
a projection relation such that ↓i (x, y), also denoted by ↓i (x) = y, if y is the i-th son of x,
and < is the total ordering of U given by the preorder (root-left-right) visit of the nodes (for
elements belonging to the same tree) and by the total linear ordering of trees (for elements
belonging to different trees). Formally, for ab, cd ∈ U , ↓i (ab) = cd if and only if d = b + 1
and c = a · k + i, and the ordering < is defined as follows:

14 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

00 10

01 11 21 31

02 12 22 32 42 52 62 72

143133 15312311310393837363534333231303

Figure 2.2: A 2-refinable downward unbounded layered structure.

15014013012011010090807060504030201000

01 11 21 31 41 51 61 71

02 12 22 32

1303

04

Figure 2.3: A 2-refinable upward unbounded layered structure.

1. if x = a0, y = b0, and a < b over natural numbers, then x < y;

2. x < ↓j(y), for every 0 ≤ j ≤ k − 1;

3. ↓j(x) < ↓j+1(x), for every 0 ≤ j ≤ k − 2;

4. if x < y and y 6∈ ⋃
i≥0 ↓i (x), then ↓k−1(x) < y;

5. if x < z and z < y, then x < y.

Note that the orderings < over DULSs and < over n-LSs coincide. A full path over
a DULS is a subset of the domain whose elements can be written as an infinite sequence
x0, x1, . . . such that, for every i ≥ 0, xi belongs to the i-th domain T i and there exists
0 ≤ j < k such that xi+1 = ↓j(xi). A path is a downward closed subset of a full path. A
chain is any subset of a path. A P-labeled k-refinable DULS is defined by augmenting a
DULS with a set P ⊆ U for any P ∈ P (the elements of the structure labeled by P).

A k-refinable upward unbounded layered structure (UULS) is a relational structure 〈U , 〈↓i

)k−1
i=0 , <〉, that intuitively represents a complete infinite k-ary tree generated from the leaves

(Figure 2.3). The sets {T i}i≥0 are the layers of the tree, ↓i, with i = 0, . . . , k − 1, is a
projection relation such that ↓i (x, y), also denoted by ↓i (x) = y, if y is the i-th son of x,
and < is the total ordering of U given by the inorder (left-root-right) visit of the treelike
structure. Formally, for every ab, cd ∈ U , ↓i (ab) = cd if and only if b > 0, d = b − 1 and
c = a · k + i, and the ordering < is defined as follows:

1. if x = a0, y = b0 and a < b over natural numbers, then x < y;

2.2. MONADIC THEORIES 15

2. ↓j(x) < ↓j+1(x), for every 0 ≤ j ≤ k − 2;

3. if x < y and y 6∈ ⋃
i≥0 ↓i (x), then ↓k−1(x) < y;

4. if x < y and x 6∈ ⋃
i≥0 ↓i (y), then x < ↓0(y);

5. if x < z and z < y, then x < y.

A full path over an UULS is a subset of the domain whose elements can be written as an
infinite sequence x0, x1, . . . such that, for every i ≥ 0, xi belongs to the i-th domain T i and
there exists 0 ≤ j < k such that xi = ↓j(xi+1). A path is a downward closed subset of a full
path. A chain is any subset of a path. Notice that every pair of full paths over an UULS
may differ on a finite prefix only. A P-labeled k-refinable UULS is defined by augmenting
an UULS with a set P ⊆ U for any P ∈ P (the elements of the structure labeled by P).

Remark 2.1.1 We have introduced P-labeled relational structures 〈W, τ, (P)P∈P〉, where
W is a set, τ is a vocabulary, and, for every P ∈ P, P ⊆ W is a monadic predicate.
In Section 2.2, we will define classical monadic logics and we will interpret them over P-
labeled relational structures. Moreover, in Section 2.4, we will introduce temporal logics and
we will interpret them over P-labeled Kripke structures (W, τ, V), where V : W → 2P .
To link classical monadic logics and temporal logics, we need to link P-labeled relational
and Kripke structures. A P-labeled relational structure 〈W, τ, (P)P∈P〉 corresponds to a
P-labeled Kripke structure (W, τ, V), where V : W → 2P is such that P ∈ V (i) iff i ∈
P . Similarly, a P-labeled Kripke structure (W, τ, V) corresponds to a P-labeled relational
structure 〈W, τ, (P)P∈P〉.

Furthermore, in Section 2.3, we will introduce finite-state automata accepting Σ-labeled
Kripke structures (W, τ, V), where Σ = {a, b, . . .} is a finite set of symbols, and V : W → Σ.
To link logics and automata, we need to link P-labeled Kripke structures and Σ-labeled
Kripke structures. A P-labeled Kripke structure (W, τ, V) can be represented as a Σ-labeled
Kripke structure (W, τ, V ′), where Σ = 2P and V ′ : W → Σ is such that V ′(w) = X
iff V (w) = X, for every w ∈ W . Moreover, a Σ-labeled Kripke structure (W, τ, V) can
be represented as a PΣ-labeled Kripke structure (W, τ, V ′), where PΣ = {Pa | a ∈ Σ} and
V ′ : W → 2PΣ is such that V ′(w) = {Pa} iff V (w) = a, for every w ∈ W .

2.2 Monadic theories

In this section we introduce classical monadic logics and interpret them over the relational
structures introduced in Section 2.1.

Definition 2.2.1 (Monadic second-order logic)
Let τ = c1, . . . , cr, u1, . . . , us, b1, . . . , bt be a finite alphabet of symbols, where c1, . . . , cr

(resp. u1, . . . , us, b1, . . . , bt) are constant symbols (resp. unary relational symbols, binary
relational symbols). The second-order language with equality MSO[τ ∪P], simply denoted by
MSOP [τ], is built up as follows:

1. atomic formulas are of the forms x = y, x = ci, with 1 ≤ i ≤ r, ui(x), with 1 ≤ i ≤ s,
bi(x, y), with 1 ≤ i ≤ t, x ∈ X, x ∈ P , where x, y are individual variables, X is a set
variable, and P ∈ P;

2. formulas are built up from atomic formulas by means of the Boolean connectives ¬ and
∧, and the quantifier ∃ ranging over both individual and set variables.

16 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

The additional Boolean connectives ∨, → , and ↔ and the universal quantifier ∀ are defined
as usual. We will assume that ¬ has priority over ∧, and ∧ has priority over → and ↔ .
Moreover, → and ↔ have priority over ∨. For instance ¬A∧B reads (¬A)∧B, A∧B → C
reads (A ∧ B) → C, and A → B ∨ C reads (A → B) ∨ C.

We will take into consideration the first-order fragment MFOP [τ] of MSOP [τ] as well as
its path (resp. chain) fragment MPLP [τ] (resp. MCLP [τ]), which is obtained by interpreting
second-order variables over paths (resp. chains). In particular, we will consider the following
monadic languages interpreted over the following structures in the standard way:

1. MFOP [<] and MSOP [<] over finite and infinite sequences;

2. MFOP [<, flipk] and MSOP [<, flipk] over infinite sequences;

3. MSOP [<pre, (↓i)k−1
i=0] and its first-order, path, and chain fragments over finite and infi-

nite trees;

4. MSOP [<, (↓i)k−1
i=0] and its first-order, path, and chain fragments over n-LSs, DULSs,

and UULSs.

A model of the formula ϕ is a structure in which ϕ is true. We denote by M(ϕ) the
set of models of the formula ϕ. We say that MSOP [τ1] is embeddable into MSOP [τ2],
denoted by MSOP [τ1] → MSOP [τ2], if there is an effective translation τ of MSOP [τ1]-
formulas into MSOP [τ2]-formulas such that, for every formula ϕ ∈ MSOP [τ1], M(ϕ) =
M(τ(ϕ)). MSOP [τ1] is expressively equivalent to MSOP [τ2], written MSOP [τ1] À MSOP [τ2],
if MSOP [τ1] → MSOP [τ2] and MSOP [τ2] → MSOP [τ1]. Clearly, if MSOP [τ1] → MSOP [τ2]
and MSOP [τ2] is decidable, then MSOP [τ1] is decidable too. Let β be a relational symbol.
We say that β is definable in MSOP [τ] if MSOP [τ ∪ {β}] → MSOP [τ]. If the addition of β
to a decidable theory MSOP [τ] makes the resulting theory MSOP [τ ∪ {β}] undecidable, we
can conclude that β is not definable in MSOP [τ]. The opposite does not hold in general: the
predicate β may be not definable in MSOP [τ], but extending MSOP [τ] with β may preserve
decidability. In such a case, we obviously cannot reduce the decidability of MSOP [τ ∪ {β}]-
formulas to that of MSOP [τ]-formulas. All these definitions and results transfer to chain,
path, and first-order fragments of MSOP [τ].

It is easy to see that

MFOP [<pre, (↓i)k−1
i=0] → MPLP [<pre, (↓i)k−1

i=0] → MCLP [<pre, (↓i)k−1
i=0] → MSOP [<pre, (↓i)k−1

i=0]

over trees. Indeed, the predicate ‘X is a path’ can be encoded in monadic chain logic, and
the predicate ‘X is a chain’ can be expressed in monadic second-order logic. Moreover,
monadic path logic over paths has the same expressive power than monadic path logic over
full paths [114]. Similarly for layered structures.

MSOP [<] over infinite sequences is better known as S1S. The decidability of MSOP [<]
over finite sequences has been proved in [12, 32], and that of S1S has been shown in [13].

Theorem 2.2.2 MSOP [<] over finite (resp. infinite) sequences is decidable.

MSOP [<, flipk] over infinite sequences is known as S1Sk, and it properly extends
S1S [98]. Moreover, the unary predicate powk such that powk(x) if x is a power of k can be
easily expressed as flipk(x) = 0. Hence, MSOP [<, flipk] is at least as expressive as the
well-known extension of MSOP [<] with the predicate powk [33]. The decidability of S1Sk

has been proved in [98].

2.3. FINITE-STATE AUTOMATA 17

Theorem 2.2.3 MSOP [<, flipk] over infinite sequences is decidable.

MSOP [<, adj] properly extends MSOP [<, flip2], but, unfortunately, it is undecidable [99].

Theorem 2.2.4 MSOP [<, adj] over infinite sequences is undecidable.

MSOP [<, 2×] is at least as expressive as MSOP [<, adj] and hence its decision problem
is undecidable [99].

Theorem 2.2.5 MSOP [<, 2×] over infinite sequences is undecidable.

Moving to trees, MSOP [<pre, (↓i)k−1
i=0] over infinite k-ary trees is well-known as SkS.

The decidability of MSOP [<pre, (↓i)k−1
i=0] over finite trees has been shown in [28, 113]. The

decidability of S2S has been proved in [107]. This result can be easily generalized to SkS
over k-ary trees (and even to SωS over countably branching trees) [114].

Theorem 2.2.6 MSOP [<, (↓i)k−1
i=0] over finite (resp. infinite) trees is decidable.

As for layered structures, the decidability of the second-order theory of n-LSs has been
proved in [97] by reducing it to S1S.

Theorem 2.2.7 MSOP [<, (↓i)k−1
i=0] over n-LSs is decidable.

The decidability of the second-order theory of DULSs has been proved in [95] by embed-
ding it into SkS.

Theorem 2.2.8 MSOP [<, (↓i)k−1
i=0] over DULSs is decidable.

Finally, the decidability of the second-order theory of UULSs has been proved in [95] by
exploiting a reduction to S1Sk.

Theorem 2.2.9 MSOP [<, (↓i)k−1
i=0] over UULSs is decidable.

It is worth pointing out that the decision problem for every decidable monadic theory
considered above has nonelementary complexity. Recall that a function f : N → N is
elementary if there is k ∈ N such that, for every n ∈ N, f(n) ≤ κ(k, n), where κ(k, n) is an
exponential tower of height k, i.e., κ(0, n) = n and κ(k + 1, n) = 2κ(k,n).

2.3 Finite-state automata

In this section we introduce finite-state automata for sequences and trees and link them to
monadic theories defined in Section 2.2.

We begin with some preliminary definitions. We say that a class A of automata is closed
under an n-ary operation O over A if O(A1, . . . , An) ∈ A whenever A1, . . . , An ∈ A. We say
that A is effectively closed under O if A is closed under O and there is an algorithm that
computes O(A1, . . . , An). Given an automaton A recognizing objects in the set Ω, we denote
by L(A) ⊆ Ω the language accepted by A. We will often consider the Boolean operations of
union, intersection, and complementation over automata. The union operation ∪ is a binary
operation such that A = A1 ∪ A2 iff L(A) = L(A1) ∪ L(A2). The intersection operation
∩ is a binary operation such that A = A1 ∩ A2 iff L(A) = L(A1) ∩ L(A2). Finally, the

18 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

complementation operation is a unary operation such that A = A1 iff L(A) = L(A1) =
Ω \ L(A1). We say that a class A of automata is decidable if, given A ∈ A, the problem
L(A) = ∅ (the language accepted by A is the empty set) is decidable.

Let Σ = {a, b, . . .} be is a finite set of symbols. A Σ-labeled finite sequence is a Kripke
structure (I, <, V), where (I, <) is a finite sequence and V : I → Σ is a valuation function.
Similarly for infinite sequences, finite and infinite trees, and layered structures defined in
Section 2.1. In the following, we define automata accepting Σ-labeled sequences and au-
tomata accepting Σ-labeled trees. We start by defining finite-state automata over sequences.
The simplest automata class is that of finite sequence automata.

Definition 2.3.1 (Finite sequence automata)
A (nondeterministic) finite sequence automaton A over the alphabet Σ is a quadruple

(Q, q0, ∆, F), where Q is a finite set of states, q0 ∈ Q is an initial state, ∆ ⊆ Q× Σ×Q is
a transition relation, and F ⊆ Q is a set of final states. Given a Σ-labeled finite sequence
w = ({0, . . . , n}, <, V), a run of A on w is a function σ : {0, . . . , n + 1} → Q such that
σ(0) = q0 and (σ(i), V (i), σ(i + 1)) ∈ ∆, for every 0 ≤ i ≤ n. The automaton A accepts w if
there is a run σ of A on w such that σ(n + 1) ∈ F . The language accepted by A, denoted by
L(A), is the set of Σ-labeled finite sequences accepted by A.

It is folklore knowledge that finite sequence automata are effectively closed under Boolean
operations and are decidable in polynomial time [68]. Moreover, deterministic and nonde-
terministic finite sequence automata are expressively equivalent. By exploiting a ‘subset
construction’, a nondeterministic finite sequence automaton can be converted into an equiv-
alent deterministic one of size exponential in the size of the input automaton. We now
introduce infinite sequence automata.

Definition 2.3.2 (Büchi sequence automata)
A (nondeterministic) Büchi sequence automaton A over the alphabet Σ is a quadruple

(Q, q0, ∆, F), where the components are as for finite sequence automata. Given a Σ-labeled
infinite sequence w = (N, <, V), a run of A on w is function σ : N → Q such that σ(0) = q0

and (σ(i), V (i), σ(i + 1)) ∈ ∆, for every i ≥ 0. The automaton A accepts w if there is a
run σ of A on w such that some final state q ∈ F occurs infinitely often in σ. The language
accepted by A, denoted by L(A), is the set of Σ-labeled infinite sequences accepted by A. Let
B be the class of Büchi sequence automata.

Büchi sequence automata are effectively closed under Boolean operations and are decid-
able in polynomial time (the emptiness problem is NLOGSPACE-complete) [114]. However,
deterministic Büchi sequence automata are not closed under complementation, and hence are
strictly less expressive than their nondeterministic counterpart. In the following, we define
a class of deterministic sequence automata which is expressively equivalent to the class of
nondeterministic Büchi sequence automata.

Definition 2.3.3 (Rabin sequence automata)
A (deterministic) Rabin sequence automaton A over the alphabet Σ is a quadruple

(Q, q0, δ,Γ), where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is
a transition function, and Γ = {(L1, U1), . . . , (Lm, Um)} is a set of accepting pairs (Li, Ui)
with Li, Ui ⊆ Q. Given a Σ-labeled infinite sequence w = (N, <, V), the (unique) run of A
on w is the function σ : N → Q such that σ(0) = q0 and δ(σ(i), V (i)) = σ(i + 1), for every
i ≥ 0. The automaton A accepts w if there is i ∈ {1, . . . ,m} such that the Li-states occur

2.3. FINITE-STATE AUTOMATA 19

qσ(1)
qσ(0) ¡
¡

w(0)
@

@

w(1)
¡
¡

@
@

w(2, 3)

´
´́

Q
QQ

qσ(2)

£
£
£
£
£

B
B

B
B
B

w(4, 7)

´
´

´
´́ Q

QQ
qσ(3)

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

C
C
C
C
C
C
C
C
C
C

w(2i−1, 2i − 1)

´
´́

q
´

´́
Q

QQ
´

´́qσ(i− 1)
qσ(i) ´

´́
qσ(i + 1)

. . .

. . .

. . .

. . .

Figure 2.4: A systolic run σ on w.

only finitely often in σ and some Ui-state occurs infinitely often in σ. The language accepted
by A, denoted by L(A), is the set of Σ-labeled infinite sequences accepted by A.

A remarkable result due to McNaughton is that Rabin and Büchi sequence automata
have the same expressive power [90]. Moreover, there is an effective translation from Büchi
to Rabin sequence automata and viceversa. By using Safra’s construction [108], a Büchi
sequence automaton with n states can be converted into a Rabin sequence automaton with
2O(n·log n) states and O(n) accepting pairs.

In the following we introduce systolic automata (see [60] for a survey on systolic com-
putations). Systolic automata recognize labeled sequences working in a bottom-up fashion
over a treelike structure. We will only consider systolic automata recognizing labeled in-
finite sequences [98, 99]. We will introduce three differently expressive classes of systolic
automata: systolic tree automata, systolic Y-tree automata and systolic trellis automata.
We first introduce systolic binary tree automata. The definition for the k-ary case, with
k > 2, is similar. It is convenient to view a P-labeled finite sequence as a finite string over
the alphabet 2P : given a finite sequence s = ({0, . . . , n}, <, (P)P∈P), it corresponds to the
finite string x0 . . . xn over 2P , where, for every i ∈ {0, . . . , n}, xi = {P ∈ P | i ∈ P}. For in-
stance, the {P, Q}-labeled finite sequence 〈{0, 1}, <, P, Q〉 such that P = {0, 1} and Q = {0}
corresponds to the finite string {P, Q}{P} over 2{P,Q}. Accordingly, we will also write s(i)
to denote xi, s(i, j) to denote the segment s(i) . . . s(j), for i ≤ j, and |s| to denote the length
of s. Similarly for infinite sequences.

Informally, a systolic binary tree computation works as follows. Consider a labeled infinite
sequence w. At each computation step, the automaton processes a segment of w whose length
increases by a factor of 2 step by step. In particular, an infinite sequence labeled with states
in Q stores at the i-th position the state q resulting from processing the prefix w(0, 2i − 1)
of w. The state resulting from processing the next prefix w(0, 2i+1 − 1) is obtained from q
and from the state q′ output by the systolic automaton fed with w(2i, 2i+1 − 1), according
to a transition relation. In Figure 2.4, we graphically describe the way in which a systolic
binary tree automaton processes an infinite sequence w. The left-hand side edge of the tree
structure consists of nodes associated with states obtained by processing prefixes of w whose
length is a power of 2. Such a sequence of states is called a systolic run. Formally, a systolic
binary tree automaton is defined as follows.

20 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

r
. . .

½

r r½
½

½
½

Z
Z

Z
Z

r r r r¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
AQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

PPPPPP

PPPPPP

PPPPPP

XXXXXXXXXXXX

r
. . .

ZH

r rH½
½

½
½

Z
Z

Z
Z

r r r rH¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

. . .

. . .

. . .

. . .

. . .

Figure 2.5: An upward unbounded Y-tree structure.

Definition 2.3.4 (Systolic binary tree automata)
A (nondeterministic) systolic binary tree automaton A over the alphabet Σ is a quadruple

(Q, in,∆, F), where Q is a finite set of states, in ⊆ Σ×Q is an input relation, ∆ ⊆ Q×Q×Q
is a transition relation, and F ⊆ Q is a set of final states. The computation of A over a
Σ-labeled finite sequence w = x1 . . . x2m of length 2m is a binary relation OA ⊆ Σ∗ × Q
recursively defined as follows:

• if |w| = 1, then (w, q) ∈ OA if and only if (w, q) ∈ in;

• if |w| = 2m, with m > 0, then let w1 = x1 . . . x2m−1 and w2 = x2m−1+1 . . . x2m. We
have (w, q) ∈ OA if and only if (q1, q2, q) ∈ ∆, where (w1, q1) ∈ OA and (w2, q2) ∈ OA.

Given a Σ-labeled infinite sequence w = (N, <, V), a systolic run of A on w is a function
σ : N → Q such that:

• (V (0), σ(0)) ∈ in;

• (σ(i− 1), q, σ(i)) ∈ ∆, with (w(2i−1, 2i − 1), q) ∈ OA, for every i > 0.

The automaton A accepts w if there exists a systolic run σ of A on w such that some final
state q ∈ F occurs infinitely often in σ. The language recognized by A, denoted by L(A), is
the set of Σ-labeled infinite sequences accepted by A.

The class of systolic k-ary tree automata is closed under Boolean operations and is de-
cidable (the emptiness problem is PSPACE-complete) [98]. Moreover, systolic k-ary tree
automata are strictly more expressive than Büchi sequence automata. Indeed, the lan-
guage L = {a2i{b}ω | i ≥ 0} is recognized by the following systolic binary tree automaton
(Q, in,∆, F) over the alphabet {a, b}, where

• Q = {q1, q2, q3} and F = {q3};
• in = {(a, q1), (b, q2)};
• ∆ = {(q1, q1, q1), (q2, q2, q2), (q1, q2, q3), (q3, q2, q3)}.

However, L is not regular, and hence cannot be recognized by any Büchi sequence au-
tomaton [98].

There exist interesting connections between systolic tree automata and upward un-
bounded layered structures. A systolic computation corresponds to a labelling (over the

2.3. FINITE-STATE AUTOMATA 21

r r r r r r r r¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

r r r r r r r r¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

r r r r r r r¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

r r r r r r r¡ ¡ ¡ ¡ ¡ ¡ ¡@ @ @ @ @ @
@

@
¡

.

. . .

. . .

. . .

. . .

. . .

Figure 2.6: An upward unbounded trellis structure.

alphabet of states of the automaton) of an upward unbounded layered structure according
to the transition relation of the automaton. The labeled infinite sequence to be processed is
associated with the first layer (the finest one) of the upward unbounded layered structure,
adjacent symbols being associated with adjacent nodes. The first layer is processed accord-
ing to the initial relation. Then, the computation flows up, in parallel and synchronously,
level by level, according to the transition relation. In order to accept a sequence, the states
of the leftmost path of the layered structure are checked for a Büchi acceptance condition.

Similarly, systolic Y-tree automata and systolic trellis automata compute by labeling the
first layer of a suitable layered structure with the infinite sequence to be processed and
proceed bottom-up level by level. Nodes of a layer are connected to nodes of the previous
layer drawing a regular topology that, in the case of systolic Y-tree automata, is an up-
ward unbounded Y-tree (cf. Figure 2.5) and, in the case of systolic trellis automata, is an
upward unbounded trellis (cf. Figure 2.6). Formal definitions for systolic Y-tree automata
and systolic trellis automata over infinite sequences can be found in [99]. The connection
between systolic automata and corresponding layered structures will be studied in Chap-
ter 5. Systolic Y-tree automata are strictly more expressive than systolic tree automata.
They are not closed under complementation and they are not decidable. Moreover, systolic
trellis automata are strictly more expressive than Y-tree automata, and hence they are not
decidable. The closure under complementation problem for systolic trellis automata is open
and it is related to the same problem for the famous complexity class NP [99].

Finally, we introduce automata over trees.

Definition 2.3.5 (Finite tree automata)

A (nondeterministic bottom-up) finite binary tree automaton A over the alphabet Σ is a
quadruple (Q, in,∆, F) where Q is a finite set of states, in ⊆ Σ × Q is an input relation,
∆ ⊆ Q × Q × Σ × Q is a transition relation, and F ⊆ Q is a set of final states. Given a
Σ-labeled finite binary tree t = (D, ↓0, ↓1, <pre, V), a run of A on t is a function σ : D →
Q such that, for every leaf u of t, (V (u), σ(u)) ∈ in and for every internal node v of t,
(σ(↓0(v)), σ(↓1(v)), V (v), σ(v)) ∈ ∆. The automaton A accepts t if there is a run σ of A on
t such that σ(ε) ∈ F . The language accepted by A, denoted by L(A), is the set of Σ-labeled
finite trees accepted by A. Finite k-ary tree automata, for k > 2, are defined similarly. Let
Dk be the class of finite k-ary tree automata.

Finite tree automata are effectively closed under Boolean operations and are decidable in
polynomial time [28, 113]. Moreover, by exploiting a ‘subset construction’, a nondeterministic
bottom-up finite tree automaton can be converted into a deterministic one accepting the

22 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

same language. The size of the resulting automaton is exponential in the size of the input
automaton.

Infinite tree automata are defined as follows.

Definition 2.3.6 (Büchi and Rabin tree automata)
A (nondeterministic) Büchi binary tree automaton A over the alphabet Σ is a quadruple

(Q, q0, ∆, F), where Q is a finite set of states, q0 ∈ Q is an initial state, ∆ ⊆ Q×Σ×Q×Q
is a transition function, and F is a set of final states. Given a Σ-labeled infinite binary tree
t = (T2, ↓0, ↓1, <pre, V), a run of A on t is a function σ : T2 → Q such that σ(ε) = q0 and,
for every node v of t, (σ(v), V (v), σ(↓0(v)), σ(↓1(v))) ∈ ∆. Given a path π in t, we denote by
σ|π the infinite sequence σ(π(0)), σ(π(1)) The automaton A accepts t if there is a run σ
of A on t such that, for every full path π of t, there exists some final state q ∈ F that occurs
infinitely often in σ|π. The language accepted by A, denoted by L(A), is the set of Σ-labeled
infinite binary trees accepted by A.

A (nondeterministic) Rabin binary tree automaton A over the alphabet Σ is a quadruple
(Q, q0, ∆, Γ), where Q is a finite set of states, q0 ∈ Q is an initial state, ∆ ⊆ Q×Σ×Q×Q
is a transition function, and Γ = {(L1, U1), . . . , (Lm, Um)} is a set of accepting pairs (Li, Ui)
with Li, Ui ⊆ Q. A run of A is defined as in the case of Büchi tree automata. The automaton
A accepts t if there is a run σ of A on t such that, for every full path π of t, there exists
i ∈ {1, . . . ,m} such that the Li-states occur only finitely often in σ|π and some Ui-state
occurs infinitely often in σ|π. The language accepted by A, denoted by L(A), is the set of
Σ-labeled binary trees accepted by A. Rabin k-ary tree automata, for k > 2, are defined
similarly. Let Rk be the class of Rabin k-ary tree automata.

Büchi tree automata can be embedded into Rabin tree automaton: given a Büchi tree
automaton (Q, q0, ∆, F), an equivalent Rabin tree automaton is (Q, q0, ∆, {(∅, F)}). The
opposite embedding does not hold in general; indeed, Büchi tree automata are not closed
under complementation while Rabin tree automata are effectively closed under Boolean
operations. Both Büchi and Rabin tree automata are decidable (the emptiness problem is
P-complete for Büchi tree automata, and NP-complete for Rabin tree automata) [114]. In
particular, the emptiness problem for a Rabin tree automaton with n states and m accepting
pairs is solvable in time (n ·m)O(m), and hence it is linear in the number of states [34].

In the following, we compare the expressive power of the above defined finite-state automata
classes with that of the monadic theories introduced in Section 2.2. Recall that, as explained
in Remark 2.1.1, labeled Kripke structures accepted by automata correspond to labeled
relational structures over which monadic classical logics are interpreted, and vice versa. We
say that an automata class A is embeddable into a classical logic L, denoted by A → L,
if there is an effective translation τ of A-automata into L-formulas such that, for every
A-automaton A, L(A) = M(τ(A)). We say that a classical logic L is embeddable into an
automata class A, denoted by L → A, if there is an effective translation τ of L-formulas into
A-automata such that, for every L-formula ϕ, L(τ(ϕ)) = M(ϕ). Finally, A is expressively
equivalent to L, written A À L, if both L → A and A → L. The following results are
well-known.

Theorem 2.3.7 (Expressiveness of sequence and tree automata)

1. MSOP [<] is expressively equivalent to finite sequence automata over finite sequences [12,
32];

2.4. TEMPORAL LOGICS 23

2. MSOP [<] is expressively equivalent to Büchi automata over infinite sequences [13, 90];

3. MSOP [<pre, (↓i)k−1
i=0] is expressively equivalent to finite k-ary tree automata over finite

k-ary trees [113, 28];

4. MSOP [<pre, (↓i)k−1
i=0] is expressively equivalent to Rabin k-ary tree automata over infi-

nite k-ary trees [107].

Some more recent results are the following ones.

Theorem 2.3.8 (Expressiveness of systolic automata)

1. MSOP [<, flipk] is expressively equivalent to systolic k-ary tree automata over infinite
sequences [98];

2. Systolic Y-tree automata are embeddable into MSOP [<, adj] over infinite sequences [99];

3. Systolic trellis automata are embeddable into MSOP [<, 2×] over infinite sequences [99].

The converse of (2) in Theorem 2.3.8 does not hold, since Y-tree are not closed under
complementation. The converse of (3) in the same theorem holds if and only if trellis au-
tomata are closed under complementation. As already pointed out, the latter holds if and
only if the complexity class NP is closed under complementation.

2.4 Temporal logics

In this section we introduce temporal logics for sequences and trees and link them to monadic
theories defined in Section 2.2.

Let P = {P, Q, . . .} be the finite set of proposition letters. We will interpret temporal
logics over P-labeled Kripke structures (W, τ, V), where (W, τ) is a sequence or a tree, and
V : W → 2P is a valuation function.

Definition 2.4.1 (Linear and branching time logics)
We inductively define a set of state formulas and a set of path formulas:

• state formulas

(S1) any proposition letter P ∈ P is a state formula;

(S2) if p, q are state formulas, then p ∧ q and ¬p are state formulas;

(S3) if p is a path formula, then Ap and Ep are state formulas;

• path formulas

(P0) any proposition letter P ∈ P is a path formula;

(P1) any state formula is a path formula;

(P2) if p, q are path formulas, then p ∧ q and ¬p are path formulas;

(P3) if p, q are path formulas, then Xp, and pUq are path formulas;

(P4) if p is a path formula, then X0p, . . . ,Xk−1p are path formulas;

(P5) if p, q are path formulas, then X−1p and pSq are path formulas.

24 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

(P6) if p, q are state formulas, then Xp, and pUq are path formulas;

The languages of branching time logics are the smallest sets of state formulas generated
by the above rules as follows:

• Past Directed CTL∗ (PCTL∗k for short): rules (S1-S3) and (P1-P5);

• Directed CTL∗ (CTL∗k): rules (S1-S3) and (P1-P4);

• Past CTL∗ (PCTL∗): rules (S1-S3) and (P1-P3,P5);

• CTL∗: rules (S1-S3) and (P1-P3);

• CTL: rules (S1-S3) and (P6).

The languages of linear time logics are the smallest sets of path formulas generated by
the above rules as follows:

• Past PLTL (PPLTL): rules (P0,P2,P3,P5);

• PLTL: rules (P0,P2,P3).

Finally, let QLTL be Quantified Linear Temporal Logic. The language of QLTL is ob-
tained by adding the following rule to the formation rules of PLTL: if ϕ is a QLTL-formula
and Q ∈ P is a proposition letter occurring free in ϕ, then ∃Qϕ is a formula. Moreover, let
EQLTL be the fragment of QLTL consisting of formulas of the form ∃Q1 . . .∃Qnϕ, where ϕ
is a PLTL-formula. Similarly QCTL∗k and EQCTL∗k can be defined.

Formulas Fp, Gp, Pp and Hp are respectively defined as trueUp, ¬F¬p, trueSp and
¬P¬p as usual, where true = P ∨ ¬P , for some P ∈ P.

We interpret (P)PLTL over P-labeled finite and infinite sequences. The semantics of
(P)PLTL over infinite sequences is as follows.

Definition 2.4.2 (Semantics for linear time logics)

Let M = (N, <, V) be a P-labeled infinite sequence and i ∈ N. We now define the notion
of truth of a PPLTL-formula ψ in a model M with respect to a point i, denoted by M, i |= ψ,
as follows:

M, i |= P iff P ∈ V (i) for P ∈ P
M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ
M, i |= ¬φ iff it is not the case that M, i |= φ
M, i |= φUψ iff M, j |= ψ for some j ≥ i and

M, k |= φ for every i ≤ k < j;
M, i |= Xψ iff M, i + 1 |= ψ;
M, i |= φSψ iff M, j |= ψ for some j ≤ i and

M, k |= φ for every j < k ≤ i;
M, i |= X−1ψ iff i > 0 and M, i− 1 |= ψ.

We say that M is a model of ψ if M, 0 |= ψ. We denote by M(ψ) the set of models of
ψ.

2.4. TEMPORAL LOGICS 25

The semantics of (P)PLTL over finite sequences differs only in the definition of the
operators X and U. Let M = (I, <, V) be a P-labeled finite sequence, with I = {0, . . . , n},
and i ∈ I. We have that:

M, i |= φUψ iff M, j |= ψ for some i ≤ j ≤ n and
M, k |= φ for every i ≤ k < j;

M, i |= Xψ iff i < n and M, i + 1 |= ψ.

The semantics of quantified formulas of QLTL is the following. Given a P-labeled infinite
sequence M = (N, <, V) and i ∈ N, we have M, i |= ∃Qφ iff there exists M′ = (N, <, V ′)
such that M′, i |= φ, where V ′ differs from V in at most the truth value of Q, that is, for
every i ∈ N, either V (i) = V ′(i) or V ′(i) \ V (i) = {Q}. Similarly in the finite case.

We interpret (P)CTL∗ over P-labeled finite and infinite trees. The semantics of (P)CTL∗

over infinite trees is as follows.

Definition 2.4.3 (Semantics for branching time logics)
Let M = (Tk, (↓i)k−1

i=0 , <, V) be a P-labeled infinite tree and w ∈ Tk. We define the notion
of truth of a state PCTL∗-formula ψ in a model M with respect to a point w, denoted by
M, w |= ψ, as follows: for any proposition letter P ∈ P:

M, w |= P iff P ∈ V (w).

For any state formulas φ and ψ:

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ;
M, w |= ¬φ iff it is not the case that M, w |= φ.

For any path formula φ:

M, w |= Eφ iff there is a path π in M starting at w such that M, π, 0 |= φ;
M, w |= Aφ iff for every path π in M starting at w we have M, π, 0 |= φ.

Moreover, let π be a path in M and i ∈ N. We define the notion of truth of a path PCTL∗-
formula φ in a model M with respect to a path π and a position i, denoted by M, π, i |= φ,
as follows.

For any state formula ψ:

M, π, i |= ψ iff M, π(i) |= ψ.

For any path formulas φ and ψ:

M, π, i |= φUψ iff M, π, j |= ψ for some j ≥ i and
M, π, k |= φ for every i ≤ k < j;

M, π, i |= Xψ iff M, π, i + 1 |= ψ;
M, π, i |= φSψ iff M, π, j |= ψ for some 0 ≤ j ≤ i and

M, π, k |= φ for every j ≤ k < i;
M, π, i |= X−1ψ iff i > 0 and M, π, i− 1 |= ψ.

We say that M is a model of ψ if M, ε |= ψ. We denote by M(ψ) the set of models of
ψ.

The semantics of (P)CTL∗ over finite trees slightly differs in the semantics for X and U
only, as for linear time logics. The semantic interpretation for (P)CTL∗k coincides with that
for (P)CTL∗, except for path formulas of the form Xjp, whose interpretation is defined as
follows:

M, π, i |= Xjp iff π(i + 1) = ↓j(π(i)) and M, π, i + 1 |= p.

26 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

Finally, the semantics of quantified formulas in QCTL∗k is obtained as in the linear time case.

In the following, we compare the expressive power of the above defined temporal logics with
that of the monadic theories introduced in Section 2.2, and hence also with that of automata
defined in Section 2.3. Recall that, according to Remark 2.1.1, labeled Kripke structures over
which temporal logics are interpreted correspond to labeled relational structures over which
monadic classical logics are interpreted, and vice versa. We say that a temporal logic T is
embeddable into a classical logic L, denoted by T → L, if there is an effective translation τ of
T-formulas into L-formulas such that for every T-formula ϕ, M(ϕ) = M(τ(ϕ)). A similar
definition holds for L → T. Finally, T is expressively equivalent to L, written T À L, if
both L → T and T → L.

As for linear time logic, it is well-known that, when interpreted over the class of fi-
nite sequences as well as over the class of infinite ones, PLTL and PPLTL are expressively
equivalent to MFO[<] [55, 75].

Theorem 2.4.4 (Expressiveness of PLTL and PPLTL)
PLTL and PPLTL are expressively equivalent to MFOP [<], when interpreted over finite

(resp. infinite) sequences.

Both QLTL and EQLTL capture the full second-order expressiveness of MSO[<] [86].

Theorem 2.4.5 (Expressiveness of QLTL and EQLTL)
QLTL and EQLTL are expressively equivalent to MSOP [<], when interpreted over finite

(resp. infinite) sequences.

The satisfiability problem for PLTL is PSPACE-complete [111]. While QLTL is nonele-
mentarily decidable [118], EQLTL has the same complexity as PLTL: given an EQLTL-
formula φ = ∃Q1, . . .∃Qnϕ, we have that φ is satisfiable if and only if ϕ is satisfiable. A
model for φ can be obtained from a model for ϕ by deleting proposition letters Qi. It is worth
recalling that there exists an elementary translation of PLTL-formulas into Büchi sequence
automata: given a PLTL-formula ϕ over P of length n, one can construct an equivalent
Büchi sequence automaton Aϕ over 2P with 2O(n) states [86, 118].

As for branching time logic, the expressive power of CTL∗ and PCTL∗ is equivalent to
the one of monadic path logic over infinite binary trees [61].

Theorem 2.4.6 (Expressiveness of CTL∗ and PCTL∗)
CTL∗ and PCTL∗ are expressively equivalent to MPLP [<pre], when interpreted over in-

finite binary trees.

As pointed out by Hafer and Thomas [61], Theorem 2.4.6 can be generalized to CTL∗k and
PCTL∗k with respect to MPLP [<pre, (↓i)k−1

i=0] by incorporating successors into both temporal
and monadic path logics.

Theorem 2.4.7 (Expressiveness of CTL∗k and PCTL∗k)
CTL∗k and PCTL∗k are expressively equivalent to MPLP [<pre, (↓i)k−1

i=0], when interpreted
over finite (resp. infinite) k-ary trees.

Moreover, both QCTL∗k and EQCTL∗k gain the full second-order power of MSOP [<pre

, (↓i)k−1
i=0] [35]:

2.4. TEMPORAL LOGICS 27

Theorem 2.4.8 (Expressiveness of QCTL∗k and EQCTL∗k)
QCTL∗k and EQCTL∗k are expressively equivalent to MSOP [<pre, (↓i)k−1

i=0], when inter-
preted over finite (resp. infinite) k-ary trees.

Emerson and Jutla proved that the satisfiability problem for CTL∗ is 2EXPTIME-
complete [34]. Furthermore, a decision procedure for CTL∗k can be obtained by means of the
following non trivial adaptation of the decision procedure for CTL∗ originally developed by
Emerson and Sistla [35] and later refined by Emerson and Jutla [34].

We start by defining an auxiliary linear time logic, called Directed k-ary PLTL (PLTLk),
whose language is the smallest set of path formulas generated by the rules (P0), (P2-P5) in
Definition 2.4.1. PLTLk is interpreted over P-labeled full paths belonging to k-ary infinite
trees, that is, Kripke structures (π, <pre, V), where π ⊂ Tk is a full path, <pre is the prefix
ordering and V : π → 2P is a valuation function. Note that <pre is a total ordering over
π. Let us denote by π(i) the i-th element of π according to the total ordering <pre. The
semantic interpretation for PLTLk coincides with that for PLTL, except for formulas of the
form Xjp, whose interpretation is defined as follows. Given M = (π, <pre, V) and i ∈ N,

M, i |= Xjp iff π(i + 1) = ↓j(π(i)) and M, i + 1 |= p.

Let us assume k = 2 (the generalization to an arbitrary k is straightforward). As a pre-
liminary step, we provide an embedding of PLTLk into PLTL. To this end, we define a
translation τ of PLTLk-formulas into PLTL-formulas as follows:

τ(P) = P for P ∈ P
τ(α ∧ β) = τ(α) ∧ τ(β)
τ(¬α) = ¬τ(α)
τ(X0α) = Z ∧ Xτ(α)
τ(X1α) = U ∧ Xτ(α)
τ(αUβ) = τ(α)Uτ(β)

We define an isomorphism ι from PLTLk-models 〈π,<pre, V 〉 over P to PLTL-models
〈N, <, V 〉 over P ∪ {Z, U} that maps a node π(i), labeled with X ⊆ P and such that
π(i + 1) = ↓0(π(i)) (resp. π(i + 1) = ↓1(π(i)), to a node i ∈ N, labeled with X ∪ {Z} (resp.
X ∪ {U}). The following lemma can be easily proved.

Lemma 2.4.9 Let ψ = G((Z ∨ U) ∧ ¬(Z ∧ U)). For every formula ϕ of PLTLk, we have
that ι(M(ϕ)) = M(ψ ∧ τ(ϕ)).

As a second preliminary step, we transform CTL∗k-formulas in a normal form suitable
for subsequent manipulation. Such a normal form is a straightforward generalization of the
normal form for CTL∗-formulas proposed by Emerson and Sistla [35]. This result is formally
stated by the following lemma, whose proof is similar to the one for CTL∗ and thus omitted.

Lemma 2.4.10 For any given CTL∗k-formula ϕ0, there exists a corresponding formula ϕ1

in a normal form composed of conjunctions and disjunctions of subformulas of the form
Ap, Ep, and AGEp, where p is a pure linear time formula of PLTLk, such that (i) ϕ1 is
satisfiable if and only if ϕ0 is satisfiable, and (ii) |ϕ1| = O(|ϕ0|). Moreover, any model of
ϕ1 can be used to define a model of ϕ0 and vice versa.

Theorem 2.4.11 (CTL∗k is elementarily decidable)
The satisfiability problem for CTL∗k over infinite k-ary trees is 2EXPTIME-complete.

28 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

Proof.
Let us assume k = 2. The general case is similar. Hardness follows from 2EXPTIME-

hardness of CTL∗ [116]. To show that it belongs to 2EXPTIME, we outline an algorithm
for checking the satisfiability of CTL∗k-formulas with deterministic doubly exponential time
complexity. Given a CTL∗k-formula ϕ0, such an algorithm is as follows:

1. by exploiting Lemma 2.4.10, construct an equivalent formula ϕ1 composed of conjunc-
tions and disjunctions of subformulas of the form Ap, Ep, and AGEp, where p is a
PLTLk-formula;

2. by exploiting Lemma 2.4.9, replace every maximal PLTLk-formula p (over P) in ϕ1

by the PLTL-formula η(p) = ψ ∧ τ(p) (over P ∪ {Z,U}); then, construct a Büchi
sequence automaton Aη(p) (over 2P∪{Z,U}) recognizing the models of η(p), by using the
technique described in [35];

3. for every subformula of the form Ap of ϕ1, determinize the Büchi sequence automaton
Aη(p) for η(p), using Safra’s construction [108], to obtain an equivalent deterministic
Rabin sequence automaton A′η(p) (over 2P∪{Z,U}) for η(p);

4. program a Rabin tree automaton Aϕ1 (over 2P), accepting the models of ϕ1, which
incorporates the sequence automata built in steps 2 and 3 in a suitable way (see below);

5. test whether Aϕ1 recognizes the empty language using the algorithm proposed by
Emerson and Jutla [34].

Step 4 is as follows. For every subformula Ep of ϕ1, let Aη(p) = (Q, q0, ∆, F) be the
Büchi sequence automaton for η(p). We construct the Büchi tree automaton AEp = (Q ∪
{q∗}, q0, ∆′, F ∪ {q∗}) for Ep, where ∆′ is defined as follows:

∆′(q,X, q′, q∗) if and only if ∆(q, X ∪ {Z}, q′);
∆′(q,X, q∗, q′) if and only if ∆(q, X ∪ {U}, q′);
∆′(q∗, X, q∗, q∗) if and only if X ∈ 2P .

For every subformula Ap of ϕ1, let Aη(p) = (Q, q0, ∆,Γ) be the deterministic Rabin se-
quence automaton for η(p). We construct the deterministic Rabin tree automaton AAp =
(Q, q0, ∆′, Γ) for Ap, where ∆′ is defined as follows:

∆′(q,X, q′, q′′) if and only if ∆(q,X ∪ {Z}, q′) and ∆(q, X ∪ {U}, q′′).
For every subformula AGEp of ϕ1, let Aη(p) = (Q, q0, ∆, F) be the Büchi sequence automaton
for η(p). We construct the Büchi tree automaton AAGEp = (Q ∪ {q∗ | q ∈ Q}, q0,∆′, F ∪
{q∗ | q ∈ Q}) for AGEp, where ∆′ is defined as follows:

∆′(q,X, q′, q∗1) if and only if ∆(q, X ∪ {Z}, q′) and ∆(q0, X ∪ {U}, q1);
∆′(q,X, q∗1, q

′) if and only if ∆(q, X ∪ {U}, q′) and ∆(q0, X ∪ {Z}, q1);
∆′(q,X, q′, q∗0) if and only if ∆(q, X ∪ {Z}, q′) and ∆(q0, X ∪ {Z}, q′);
∆′(q,X, q∗0, q

′) if and only if ∆(q, X ∪ {U}, q′) and ∆(q0, X ∪ {U}, q′);
∆′(q∗, X, q′, q′′) if and only if ∆′(q, X, q′, q′′).

A tree automaton Aϕ1 for ϕ1 is obtained by taking the intersection and/or the union
of the Rabin tree automata constructed for the subformulas of ϕ1 (recall that a Büchi tree
automaton is a particular kind of Rabin tree automaton). Notice that if ϕ1 does not contain
subformulas of the form Xip, then Aϕ1 is symmetric.

2.4. TEMPORAL LOGICS 29

We show that the proposed algorithm has deterministic doubly exponential time com-
plexity. Let ϕ0 be a CTL∗k-formula of length n. The normalized formula ϕ1 after step 1 above
has length O(n). The Büchi sequence automaton Aη(p) for η(p) after step 2 has 2O(n) states
and the Rabin sequence automaton A′η(p) for η(p) after step 3 has 2n·2O(n)

states and 2O(n)

accepting pairs. Step 4 does not change the asymptotic complexity. Finally, the emptiness
checking of step 5 leads to a time complexity of 2n·2O(n)

. Hence the upper bound is proved.

With minor modifications, the above doubly exponential upper bound holds in the case
of finite trees also. In particular, nondeterministic Büchi sequence automata are replaced
by nondeterministic finite sequence automata, deterministic Rabin sequence automata are
replaced by deterministic finite sequence automata, and Rabin tree automata are replaced
by finite tree automata.

Theorem 2.4.12 (CTL∗k is elementarily decidable)

The satisfiability problem for CTL∗k over finite k-ary trees is in 2EXPTIME.

Finally, QCTL∗k is nonelementarily decidable (because already QLTL is nonelementary),
and EQCTL∗k has the asymptotic complexity of CTL∗k. Indeed, given an EQCTL∗k-formula
ψ = ∃Q1 . . . ∃Qnϕ, we have that ψ and ϕ are equi-satisfiable.

We switch to the model checking problem for linear and branching time logics. We will
define the model checking problem for undirected logics with respect to Kripke structures
M = (W,R, V), where W is a set of worlds, R ⊆ W ×W is a binary relation over W , and
V : W → 2P is a valuation function [36]. Moreover, we will define the model checking
problem for directed k-ary logics with respect to directed k-ary Kripke structures Mk =
(W,R, L, V), where W is a set of worlds and R ⊆ W × W is a binary relation over W .
Furthermore, L : R → {0, . . . , k − 1} is a labelling of edges with integers from 0 to k − 1;
if L((w1, w2)) = i we say that w2 is the i-th son of w1. Finally, V : W → 2P is a valuation
function. In the undirected case, we assume R to be total, that is, for every w ∈ W , there
exists v ∈ W such that R(w, v). In the directed case, we assume that, for every w ∈ W , there
are exactly k elements w0, . . . , wk−1 such that, for i = 0, . . . , k − 1, wi is the i-th son of w.
The size of a Kripke structure is |W |+ |R|. A structure is finite if its size is finite. A path in
M is an infinite sequence w0, w1, . . . such that R(wi, wi+1) for every i ≥ 0. A directed path
in Mk is an infinite sequence w0, j0, w1, j1 . . . such that wi+1 is the ji-th son of wi, for every
i ≥ 0. Note that the unfolding of M is an infinite complete tree, while the unfolding of Mk is
an infinite complete k-ary tree. We (re)interpret (directed) linear time logics over (directed)
paths belonging to (directed) Kripke structures and (directed) branching time logics over
(directed) Kripke structures in the obvious way. The linear time model checking problem is
as follows: given a finite (directed) Kripke structure M = (W,R, V), a world w ∈ W , and a
(directed) linear time formula ϕ, is there a (directed) path π in M, starting at w, such that
π, 0 |= ϕ? The branching time model checking problem is as follows: given a finite (directed)
Kripke structure M = (W,R, V), a world w ∈ W , and a (directed) branching time formula
ϕ, does M, w |= ϕ? Note that, technically speaking, the linear time model checking problem
is a satisfiability problem with respect to a given class of structures (the paths of a Kripke
structure). It is well-known that:

Theorem 2.4.13 (Complexity of model checking)

30 CHAPTER 2. STRUCTURES, LOGICS AND AUTOMATA

1. The model checking problem for PLTL is PSPACE-complete [111];

2. the model checking problem for CTL∗ is PSPACE-complete [20];

3. the model checking problem for CTL is in P [19].

In particular, given a model of size n and a formula of length k, model checking in PLTL
and in CTL∗ can be performed in time n · 2O(k) and space O(k · (k + log n)2) [79], and model
checking in CTL can be done in time O(k · n) [18, 106] and space O(k · log2(k · n)) [79].

Moving to quantified temporal logics (with Kripke structure semantics), we have the
following results:

Theorem 2.4.14 (Complexity of model checking for quantified temporal logics)

1. The model checking problem for EQLTL is PSPACE-complete [77];

2. the model checking problem for EQCTL∗ is PSPACE-complete [77];

3. the model checking problem for EQCTL is NP-complete [77].

Taking advantage of the embedding of PLTLk into PLTL described above, we can easily
prove the following results for directed temporal logics.

Theorem 2.4.15 (Complexity of model checking for directed temporal logic)

1. The model checking problem for PLTLk is PSPACE-complete;

2. the model checking problem for CTL∗k is PSPACE-complete;

3. the model checking problem for EQCTL∗k is PSPACE-complete.

3
The combining approach

Logic combination is emerging as a relevant research topic at the intersection of mathematical
logic with computer science [56]. It essentially provides a logical account of traditional
computer science notions such as modularity and abstraction. When dealing with real-world
systems, organizing their descriptive and inferential requirements in a structured way is often
the only way to master the complexity of the design, verification, and maintenance tasks.
Formulated in the setting of combined logics, the basic issue underlying such an approach is:
how can we guarantee that the logical properties of the component logics, such as axiomatic
completeness and decidability, are inherited by the combined one? This issue is known as
the transfer problem. It has a natural analogue in terms of the associated methods and
tools: can we reuse methods and tools developed for the component logics, such as deductive
engines and model checkers, to obtain methods and tools for the combined one? In general,
the answer depends on the amount of interaction among components: the transfer generally
succeeds in the absence of interaction among the component logics. Such positive result
is usually based on a divide and conquer strategy: split problems into sub-problems and
delegate these to the components [41, 76]. However, the transfer can easily fail when the
components are allowed to interact [45, 57].

In this chapter we describe the combining approach for temporal logics and we propose
a similar approach for finite-state automata. In Section 3.1 we introduce three well-known
modes for combining temporal logics: temporalization, independent combination and join.
In Section 3.2 we propose an automata-theoretic counterpart of temporalized logics. Finally,
in Section 3.3 we study the model checking problem for combined logics. In Chapter 4 we
will use the results presented in the present chapter to provide monadic theories of time
granularity with temporal logic and an automata-theoretic counterparts.

3.1 Combining methods

Various forms of logic combination have been proposed in the literature. Temporalization,
independent combination (or fusion), and join (or product) are probably the most popular
ones as well as the ones that have been studied most extensively [41, 44, 45, 54, 57, 76, 112].
They have been successfully applied in several areas, including databases [42, 43, 46], artificial
intelligence [37, 39, 64, 91, 3, 131], and system specification and verification [51]. We are
mainly interested in this last application of combined logics. In the following, we introduce

32 CHAPTER 3. THE COMBINING APPROACH

syntax and semantics for temporalization, independent combination and join.
We will use the following general definition of temporal logic. The language of temporal

logic is based on a set P = {P,Q, . . .} of proposition letters and extends that of proposi-
tional logic with a set OP = {Oi1

1 , . . . ,Oin
n } of temporal operators with arities i1, . . . , in,

respectively. The language of temporal logic is the smallest set of formulas generated by the
following rules:

(P1) every proposition letter P ∈ P is a formula;

(P2) if φ, ψ are formulas, then φ ∧ ψ and ¬φ are formulas;

(P3) if Oij
j ∈ OP and φ1, . . . , φij are formulas, then Oij

j (φ1, . . . , φij) is a formula.

Boolean connectives ∨ , → , ↔ are defined as usual. Moreover, given P ∈ P, true
abbreviates P ∨ ¬P and false stands for ¬true. A frame for temporal logic is a pair
(W,R), where W is a set of worlds, or states, and R is a set of accessibility relations on W .
We restrict ourselves to binary accessibility relations on W . A model for temporal logic is
a Kripke structure (W,R, V), where (W,R) is a frame and V : W → 2P is a valuation
function mapping states into sets of proposition letters. The semantics of temporal logic
extends that of propositional logic with clauses for the temporal operators in OP . For
n ≥ 1, n-dimensional temporal logics are interpreted at n-tuples of points (equivalently,
n-dimensional temporal formulas can be embedded in classical logics with n-ary predicates).
Examples of one-dimensional temporal logics has been provided in Section 2.4. Given an
arbitrary logic L, we use LL and KL to denote the language and the set of models of L,
respectively. We write OP(L) to denote the set of operators of L different from Boolean
ones.

Temporalization is the simplest of the three modes of combining logics that we will
consider; here, the two component languages are only allowed to interact in a very restricted
way [44]. Let T be a temporal logic and L an arbitrary logic. For simplicity we constrain
L to be an extension of propositional logic. We partition the set of L-formulas into Boolean
combinations BCL and monolithic formulas MLL: α belongs to BCL if its outermost operator
is a Boolean connective; otherwise it belongs to MLL. We assume that OP(T)∩OP(L) = ∅.

Definition 3.1.1 (Temporalization – Syntax)
The language LT(L) of the temporalization T(L) of L by means of T over the set of

proposition letters P is obtained by replacing the following atomic formation rule of LT:

Every proposition letter P ∈ P is a formula,

by the following rule:

Every monolithic formula α ∈ LL is a formula.

2

A model for T(L) is a triple (W,R, g), where (W,R) is a frame for T and g : W → KL

a total function mapping worlds in W to models for L.

Definition 3.1.2 (Temporalization – Semantics)
Given a model M = (W,R, g) and a state w ∈ W , the semantics of the temporalized logic

T(L) is obtained by replacing the following semantic clause for proposition letters of T:

3.1. COMBINING METHODS 33

g g g g

Figure 3.1: A temporalized model for PLTL(PLTL).

M, w |= P iff P ∈ V (w), whenever P ∈ P,

by the following clause:

M, w |= α iff g(w) |=L α, whenever α ∈ MLL.

2

For instance, we consider the temporalization of PLTL2 by means of PLTL1, where,
for i ∈ {1, 2}, PLTLi is the propositional linear temporal logic PLTL over P where the
temporal operators X and U has been renamed as Xi and Ui, respectively. The language
of PLTL1(PLTL2) is the smallest set of formulas generated by the following rules:

(P1) any monolithic formula in MLPLTL2 is a formula;

(P2) if p, q are formulas, then p ∧ q and ¬p are formulas;

(P3) if p, q are formulas, then X1p and pU1q are formulas.

For instance, X1X2P is a PLTL1(PLTL2)-formula, but X2X1P is not. A temporalized
model for PLTL1(PLTL2) is a triple (N, <, g), where g maps natural numbers into P-labeled
infinite sequences. An unlabeled model for PLTL1(PLTL2) is depicted in Figure 3.1. For
i ∈ {1, 2}, let |=i be the semantic relation of PLTLi. Let M = (N, <, g) be a temporalized
model for PLTL1(PLTL2) and i ∈ N. The semantic relation of PLTL1(PLTL2), denoted by
|=1(2), is defined as follows:

M, i |=1(2) α iff g(i), 0 |=2 α whenever α ∈ MLPLTL2

M, i |=1(2) φ ∧ ψ iff M, i |=1(2) φ and M, i |=1(2) ψ

M, i |=1(2) ¬φ iff it is not the case that M, i |=1(2) φ

M, i |=1(2) φU1ψ iff M, j |=1(2) ψ for some j ≥ i and
M, k |=1(2) φ for every i ≤ k < j;

M, i |=1(2) X1ψ iff M, i + 1 |=1(2) ψ.

The independent combination of two logics puts together all the expressive power of the two
component logics in an unrestricted way [45]. Let T1 and T2 be two temporal logics defined
over the same set of proposition letters P, with OP(T1) ∩OP(T2) = ∅.

34 CHAPTER 3. THE COMBINING APPROACH

Figure 3.2: An independently combined model for PLTL⊕ PLTL.

Definition 3.1.3 (Independent Combination – Syntax)
The language LT1⊕T2 of the independent combination T1⊕T2 of T1 and T2 over P is

obtained by taking the union of the formation rules for T1 and T2. 2

To define the semantics of T1 ⊕ T2, we need the following notion. Given a binary
relation R, we write R∗ for its transitive closure, and R−1 for its converse. Let (W,R) be
a frame. A connected component (W ′,R′) of (W,R) is a frame with (i) ∅ 6= W ′ ⊆ W and
R′ = {R|W ′ | R ∈ R}, (ii) (W ′,R′) is connected, i.e., for every u and v in W ′, with u 6= v,
we have (u, v) ∈ [

⋃{(R ∪ R−1) | R ∈ R}]∗, and (iii) (W ′,R′) is maximal, i.e., there is no
connected component (W ′′,R′′) with W ′ ⊂ W ′′. Notice that an isolated point is a connected
component. A model for the combined logic T1 ⊕T2 is a 4-tuple (W,R1,R2, V), where the
connected components of (W,R1, V) are in KT1 (models for T1) , the connected components
of (W,R2, V) are in KT2 (models for T2), and W is the (not necessarily disjoint) union of
the sets of worlds that constitute each connected component. Finally, V : W → 2P is a
valuation function.

Definition 3.1.4 (Independent Combination – Semantics)
The semantics of the independently combined logic T1 ⊕ T2 is obtained by taking the

union of the semantic clauses for T1 and T2. 2

As an example, we consider the independent combination of PLTL1 and PLTL2 over P.
The language of PLTL1 ⊕ PLTL2 is the smallest set of formulas generated by the following
rules:

(P1) any proposition letter P ∈ P is a formula;

(P2) if p, q are formulas, then p ∧ q and ¬p are formulas;

(P3) if p, q are formulas, then X1p, X2p, pU1q, and pU2q are formulas.

Note that both X1X2P and X2X1P are PLTL1 ⊕ PLTL2-formulas. An independently
combined model for PLTL1 ⊕ PLTL2 is a quadruple (W,<1, <2, V), where the connected
components of (W,<1, V) and those of (W,<2, V) are P-labeled infinite sequences. An unla-
beled model for PLTL1 ⊕ PLTL2 is depicted in Figure 3.2. We define two binary predicates
succ1 and succ2 over W such that succ1(w, v) iff w <1 v and there is no z ∈ W such

3.1. COMBINING METHODS 35

that w <1 z <1 v, and similarly for succ2(w, v). Let M = (W,<1, <2, V) be a model for
PLTL1 ⊕ PLTL2 and w ∈ W . The semantics of PLTL1 ⊕ PLTL2 is the following:

M, w |= P iff P ∈ V (w) whenever P ∈ P
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= ¬φ iff it is not the case that M, w |= φ
M, w |= φU1ψ iff M, v |= ψ for some w ≤1 v and

M, z |= φ for every w ≤1 z <1 v;
M, w |= X1ψ iff M, v |= ψ and succ1(w, v);
M, w |= φU2ψ iff M, v |= ψ for some w ≤2 v and

M, z |= φ for every w ≤2 z <2 v;
M, w |= X2ψ iff M, v |= ψ and succ2(w, v).

It is worth noting that the formula X1X2P ↔ X2X1P , that allows to commute the two
successor operators, is not valid in PLTL1⊕PLTL2, since, given a modelM = (W,<1, <2, V)
and w ∈ W , succ2(succ1(w)) is not necessarily equal to succ1(succ2(w)).

One may be tempted to view independent combination as an arbitrarily nesting of tem-
poralizations. Let L0 = T1, L0 = T2 and, for i > 0, let Li = T1(Li−1) and Li = T2(Li−1).
Any formula in the independent combination T1 ⊕T2 is a formula in a temporalized logic
Li, for some i ≥ 0. Hence, one may be tempted to reduce the satisfiability/model checking
problems for independent combination to the same problem for temporalization. However,
this reduction would be erroneous. Informally, the reason is that there is a notable difference
between the semantics of independent combination and that of (nested) temporalization. A
model for independent combination is a flat structure, that is, all the (connected) compo-
nents have the same nesting level. More importantly, a formula may ‘visit’ a component,
leave it for a while, and later come back. This is not possible in temporalization. A model
for temporalization is a nested structure: different components may have different nesting
levels. Once a formula has ‘entered’ a component, it may only proceed forward, visiting the
reached component or a component with a greater nesting level, but may not come back.
More concretely, consider the following example. Consider PLTL over P = {P} interpreted
over finite sequences. Take the PLTL1(PLTL2(PLTL1))-formula ϕ = F1(G2G1¬P ∧ F1P)
(as usual, to avoid confusion, we renamed temporal operators). We show that ϕ is satis-
fiable in PLTL1(PLTL2(PLTL1)) but it is unsatisfiable in PLTL1 ⊕ PLTL2. We construct
a PLTL1(PLTL2(PLTL1))-model in which ϕ is true. Let MP be a PLTL-model consist-
ing of a single point labeled with letter P , and let M¬P be a PLTL-model consisting of
a single point labeled with no letter. Let M1 = ({0}, ∅, g1) be a PLTL(PLTL) model
such that g1(0) = M¬P , and let M2 = ({0}, <, g2) be a PLTL(PLTL) model such that
g2(0) = MP . Finally, let M = ({0, 1}, <, g) be a PLTL(PLTL(PLTL))-model such that
g(0) = M1 and g(1) = M2. It is immediate to see that M is a model of ϕ. However,
there is no model for independent combination PLTL1 ⊕ PLTL2 that satisfies ϕ. Indeed,
suppose M = (W,<1, <2, V) is a model, w ∈ W , and M, w |= ϕ. Hence, there is v such that
w ≤1 v and M, v |= G2G1¬P ∧ F1P , that is, M, v |= G2G1¬P and M, v |= F1P . Since
M, v |= G2G1¬P , for every z such that v ≤2 z, we have M, z |= G1¬P . In particular, we
have that M, v |= G1¬P , which is in contradiction with M, v |= F1P .

The temporalization and the independent combination of two n-dimensional temporal logics
is an n-dimensional temporal logic. For instance, formulas in the language of PLTL1(PLTL2)
and PLTL1⊕PLTL2 are still evaluated at a single node in a model. The combining method of
join, instead, produces higher-dimensional temporal logics by combining lower-dimensional

36 CHAPTER 3. THE COMBINING APPROACH

Figure 3.3: A joined model for PLTL⊗ PLTL.

ones. For notational simplicity we assume that our component logics are one-dimensional.
Let T1 and T2 be two (one-dimensional) temporal logics.

Definition 3.1.5 (Join – Syntax)
The language LT1⊗T2 of the join T1 ⊗ T2 of T1 and T2 over P is obtained by taking

and the union of the formation rules for T1 and T2. 2

Note that the language of join coincides that of independent combination. However, the
semantics is different. A model for T1⊗T2 is a 5-tuple (W1,R1,W2,R2, V), where (W1,R1)
is a T1-frame and (W2,R2) is a T2-frame, and V : W1 ×W2 → 2P is a valuation mapping
pairs of worlds to sets of proposition letters. Given a formula ϕ on the language of T1 ⊗T2,
we denote by ϕ↑ the T1-formula obtained from ϕ by replacing every maximal subformula α
starting with a T2-operator with proposition letter Pα.

Definition 3.1.6 (Join – Semantics)
Truth of a formula ϕ in a model M = (W1, R1, W2, R2, V), at states s1 ∈ W1 and

s2 ∈ W2, is defined as follows. If ϕ = P , with P ∈ P, ϕ = (ϕ1 ∧ ϕ2), or ϕ = ¬ϕ1, then
M, s1, s2 |=T1⊗T2 ϕ is defined as usual. If ϕ = O(ϕ1, . . . , ϕn), with O ∈ OP(T1), we define
M, s1, s2 |=T1⊗T2 ϕ by replacing every occurrence of M, x in the definition of M, s1 |=T1 ϕ↑

by M, x, s2. Similarly if O ∈ OP(T2). 2

In our presentation of the join of logics, we have followed [45]; in [57] a slightly different,
but equivalent, construction is studied: the product of modal logics. As an example, we
consider the join of PLTL1 and PLTL2 over P. The language of PLTL1 ⊗ PLTL2 is as for
PLTL1 ⊕ PLTL2. A joined model for PLTL1 ⊗ PLTL2 is a quintuple (N, <,N, <, V). An
unlabeled model for PLTL1 ⊗ PLTL2 is depicted in Figure 3.3. Let M = (N, <,N, <, V) be
a model for PLTL1 ⊗ PLTL2, and i, j ∈ N. The semantics of PLTL1 ⊗ PLTL2 is as follows.

M, i, j |= P iff P ∈ V (i, j) whenever P ∈ P
M, i, j |= φ ∧ ψ iff M, i, j |= φ and M, i, j |= ψ
M, i, j |= ¬φ iff it is not the case that M, i, j |= φ
M, i, j |= φU1ψ iff M, r, j |= ψ for some i ≤ r and

M, k, j |= φ for every i ≤ k < r;
M, i, j |= X1ψ iff M, i + 1, j |= ψ;
M, i, j |= φU2ψ iff M, i, r |= ψ for some j ≤ r and

M, i, k |= φ for every j ≤ k < r;
M, i, j |= X2ψ iff M, i, j + 1 |= ψ;

3.2. AUTOMATA FOR COMBINED TEMPORAL LOGICS 37

It is easy to see that the formula X1X2P ↔ X2X1P , that allows to commute the two
successor operators, is valid in PLTL1 ⊗ PLTL2.

We summarize the main transfer results present in the literature for the combining meth-
ods introduced above. The independent combination of two decidable normal polyadic poly-
modal modal logics is decidable as well [129]. The same result holds for modal logics with
the converse operator interpreted over transitive frames [126, 127, 128]. Moreover, proper-
ties of finite axiomatizability, soundness and completeness transfer through the independent
combination of monomodal logics [41, 76]. As for ‘Since and Until logics’, it is known that
PPLTL(PPLTL) and PPLTL⊕PPLTL are decidable, and admit a sound and complete finite
axiomatization [44, 45]. In the case of join, things get much harder. For instance, the modal
logic S5 is NP-complete, S52 (that is S5 ⊗ S5) is NEXPTIME-complete [89] and S53 is
undecidable (and does not even have the finite model property) [81]. Moreover, PLTL⊗Km

is decidable, but PLTL⊗ PLTL is not even recursively enumerable [130].

3.2 Automata for combined temporal logics

The goal of this section is to provide combined temporal logics with an automata-theoretic
counterpart. Such an equivalent characterization of combined logics as combined automata
presents several advantages for automated system specification and verification.

First, turning a formula of (combined) temporal logic into an automaton allows us to
give a uniform representation of systems and specifications as automata. The problem of
establishing whether a system P behaves according to a given specification φ (model checking
problem) can then be reduced to the language containment problem L(AP) ⊆ L(Aφ), where
L(AP) is the language recognized by the automaton AP , consisting of all and only the
behaviors of P , and L(Aφ) is the language recognized by the automaton Aφ, consisting
of all and only the models of φ [118]. Furthermore, if the considered class of automata is
closed under Boolean operations, the language containment problem can be mapped into the
emptiness one, that is, L(AP ∩ Aφ) = ∅.

Second, (combined) automata can be directly used as a specification formalism, provided
with a natural graphical interpretation [87]. Moreover, to avoid the costly complementation
of the specification automatonAφ, some model checkers constrain the user to directly provide
the automaton A¬φ for ¬φ, that is, they constrain the user to specify the unacceptable
behaviors of the system instead of the good ones [66, 67]. As an alternative, one can replace
specification automata with a costly complementation by other, equally expressive, automata
for which the complementation is much easier [80]. For instance, if the specification language
is (quantified) linear temporal logic, we can replace Büchi automata by Muller automata.

Third, the specification automaton Aφ can be used to cope with the state explosion prob-
lem by preventing the complete construction of the system automaton AP from happening,
whenever possible (on-the-fly model-checking) [24, 73, 117]. More precisely, some system
states, which are incompatible with or irrelevant to the specification, may not be generated
at all; furthermore, a counterexample for AP ∩Aφ can be detected before the completion of
AP construction, making such a completion no more necessary.

Finally, the automata-theoretic characterization of (combined) temporal logics can help
in finding the temporal logic counterpart of monadic theories (cf. Figure 3.4). In many
cases, this is a difficult task, involving a non-elementary blow up in the length of formulas.
Ehrenfeucht games have been successfully exploited to deal with such a correspondence
problem for first-order monadic theories [69] and well-behaved fragments of second-order
ones, e.g. the path fragment of the monadic second-order theory of infinite binary trees [61].

38 CHAPTER 3. THE COMBINING APPROACH

L T

A

-¾

@
@

@
@@R

I ¡
¡

¡
¡¡ª

µ

?

Figure 3.4: Monadic theories (L), temporal logics (T), and automata (A).

Unfortunately, these techniques do not naturally lift to the full second-order case. The
existence of a correspondence between (combined) temporal logics and (combined) automata,
satisfying the usual closure properties, allows one to reduce the task of finding a temporal
logic counterpart of a (second-order) monadic theory to the often easier one of finding an
automata counterpart of it. The mapping of monadic formulas into automata (the difficult
direction) can indeed greatly benefit from automata closure properties.

In this thesis, we only focus on the case of temporalized logics (cf. Section 3.1). However,
we believe that this is the first step towards a general automata-theoretic counterpart of
combined temporal logics. We define a new class of combined automata, called temporalized
automata, which can be viewed as the automata-theoretic counterpart of temporalized logics,
and show that relevant properties, such as closure under Boolean operations, decidability, and
expressive equivalence with respect to temporal logics, transfer from component automata
to temporalized ones.

For the sake of simplicity, we first define automata and prove results over sequence
structures; then, we generalize definitions and results to tree structures (we believe that our
machinery can actually be extended to cope with more general structures, such as graphs).
We will use the following general definition of sequence automata. Let S(Σ) be the set of
Σ-labeled infinite sequences (N, <, V), with V : N → Σ.

Definition 3.2.1 (Sequence automata)
A sequence automaton A over Σ consists of (i) a Labeled Transition System (LTS)

(Q, q0, ∆,M,Ω), where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q×Σ×Q
is a transition relation, Ω is a finite alphabet, and M ⊆ Q × Ω is a labeling of states, and
(ii) an acceptance condition AC. Given a Σ-labeled infinite sequence w = (N, <, V), a run
of A on w is function σ : N → Q such that σ(0) = q0 and (σ(i), V (i), σ(i + 1)) ∈ ∆, for
every i ≥ 0. The automaton A accepts w if there is a run σ of A on w such that AC(σ),
i.e., the acceptance condition holds on σ. The language accepted by A, denoted by L(A), is
the set of Σ-labeled infinite sequences accepted by A. 2

A class of sequence automata A is a set of automata that share the acceptance condition
AC. It is worth clarifying that we do not explicitly specify the acceptance condition for
sequence automata since all the results do not rest on any particular acceptance condition.

3.2. AUTOMATA FOR COMBINED TEMPORAL LOGICS 39

Instances of sequence automata are Büchi and Rabin sequence automata (Definitions 2.3.2
and 2.3.3). In particular, a Büchi sequence automaton (Q, q0, ∆, F) corresponds to a sequence
automaton (Q, q0, ∆,M,Ω) such that Ω = {final} and M = {(q, final) | q ∈ F} and a Ra-
bin sequence automaton (Q, q0, ∆, {(L1, U1), . . . , (Lm, Um)}) corresponds to a sequence au-
tomaton (Q, q0,∆,M,Ω) such that Ω = {fini, infi | 1 ≤ i ≤ m}, M =

⋃m
i=1{(q, fini) | q ∈

Li} ∪ {(q, infi) | q ∈ Ui}.
In the following, we will always assume that A2 is a sequence automata class whose

automata accept Σ-labeled infinite sequences in S(Σ). Moreover, let Γ(Σ) be a finite alphabet
whose symbols A, B, . . . represent automata in A2, and let A1 be a sequence automata class
whose automata accept Γ(Σ)-labeled infinite sequences in S(Γ(Σ)). Given A1 and A2 as
above, we define a class of temporalized automata A1(A2) that combines the two component
automata classes in a suitable way. Let S(S(Σ)) be the set of infinite sequences of Σ-labeled
infinite sequences, that is, temporalized models (N, <, g) where g : N → S(Σ) is a total
function mapping worlds in N into Σ-labeled infinite sequences in S(Σ). Automata in the
combined class A1(A2) accept in S(S(Σ)).

Definition 3.2.2 (Temporalized automata)
A temporalized automaton A over Γ(Σ) is a quintuple (Q, q0,∆,M,Ω) as for sequence

automata (Definition 3.2.1). The combined acceptance condition for A is the following.
Given w = (N, <, g) ∈ S(S(Σ)), a run of A on w is function σ : N → Q such that σ(0) = q0

and, for every i ≥ 0, (σ(i), B, σ(i + 1)) ∈ ∆ for some B ∈ Γ(Σ) such that g(i) ∈ L(B). The
automaton A accepts w if there is a run σ of A on w such that AC(σ), where AC is the
acceptance condition of A1. The language accepted by A, denoted by L(A), is the subset of
S(S(Σ)) accepted by A. We denote by A1(A2) the class of temporalized automata. 2

Given a temporalized automaton A ∈ A1(A2), we denote by A↑ the automaton in A1

with the same labelling transition system as A and with the acceptance condition of A1.
Hence, while A accepts in S(S(Σ)), its abstraction A↑ recognizes in S(Γ(Σ)). Moreover,
given an automaton A ∈ A1, we denote by A↓ the automaton in A1(A2) with the same
labelling transition system as A and with the combined acceptance condition of A1(A2).
Thus, while A accepts in S(Γ(Σ)), its concretization A↓ recognizes in S(S(Σ)). With the
aid of these notations, the combined acceptance condition for temporalized automata can be
rewritten as follows: let w = (N, <, g) ∈ S(S(Σ)). We say that a temporalized automaton
A accepts w if and only if there is v = (N, <, V) ∈ S(Γ(Σ)) such that v ∈ L(A↑) and, for
every i ∈ N, g(i) ∈ L(V (i)). We will often use this alternative but equivalent definition of
acceptance condition for temporalized automata.

We define the transfer problem for temporalized automata as follows: assuming that
automata classes A1 and A2 enjoy some property, does A1(A2) enjoy the same property?
Recall that A ¿ T denotes the fact that the automata class A is expressively equivalent
to the temporal logic T. We investigate the transfer problem with respect to the following
properties of automata:

1. (Effective) closure under Boolean operations (union, intersection, and complementa-
tion): if A1 and A2 are (effectively) closed under Boolean operations, is A1(A2) (effec-
tively) closed under Boolean operations?

2. Decidability: if A1 and A2 are decidable, is A1(A2) decidable?

3. Expressive equivalence with respect to temporal logic: if A1 ¿ T1 and A2 ¿ T2, does
A1(A2) ¿ T1(T2)?

40 CHAPTER 3. THE COMBINING APPROACH

The following lemma is crucial in the rest of this section. It shows that every tempo-
ralized automaton is equivalent to another temporalized automaton whose transitions are
labeled with automata that form a partition of the set of S(Σ) of Σ-labeled sequences. Hence,
different labels in the ‘partitioned automaton’ correspond to (automata accepting) disjoint
sets of Σ-labeled sequences. Moreover, the partitioned automaton can be effectively con-
structed from the original one. A similar partition lemma holds for temporalized logics too
(cf. Lemma 3.2.6 below).

Lemma 3.2.3 (Partition Lemma for temporalized automata)

Let A be a temporalized automaton in A1(A2). If A2 is closed under Boolean operations
(union, intersection, and complementation), then there exists a finite alphabet Γ′(Σ) ⊆ A2

and a temporalized automaton A′ over Γ′(Σ) such that L(A) = L(A′) and {L(X) | X ∈
Γ′(Σ)} forms a partition of S(Σ). Moreover, if A2 is effectively closed under Boolean oper-
ations and it is decidable, then A′ can be effectively computed from A.

Proof.
To construct Γ′(Σ) and A′ we proceed as follows. Suppose A = (Q, q0, ∆,M,Ω), over

Γ(Σ) = {X1, . . . , Xn} ⊆ A2 . For every 1 ≤ i ≤ n and j ∈ {0, 1}, let Xj
i = Xi if j = 0, and

Xj
i = S(Σ) \Xi if j = 1. Given (j1, . . . , jn) ∈ {0, 1}n, let Cap(j1,...,jn) =

⋂n
i=1 Xji

i . We define
Γ1(Σ) as the set of all and only Cap(j1,...,jn) such that (j1, . . . , jn) ∈ {0, 1}n. Since A2 is closed
under Boolean operations, Γ1(Σ) ⊆ A2. Moreover, let Γ2(Σ) = {X ∈ Γ1(Σ) | L(X) 6= ∅}.
We set Γ′(Σ) = Γ2(Σ), and, for 1 ≤ i ≤ n, Γ′i(Σ) = {X ∈ Γ′(Σ) | X ∩ Xi 6= ∅}. Note
that {L(X) | X ∈ Γ′(Σ)} forms a partition of S(Σ). Moreover, for every 1 ≤ i ≤ n,
{L(X) | X ∈ Γ′i(Σ)} forms a partition of L(Xi). We define A′ = (Q, q0, ∆′,M, Ω) over
Γ′(Σ), where ∆′ contains all and only the triples (q1, X, q2) ∈ Q × Γ′(Σ) × Q such that
X ∈ Γ′i(Σ) and (q1, Xi, q2) ∈ ∆ for some 1 ≤ i ≤ n. It is easy to see that L(A) = L(A′).

We now prove the first transfer theorem: closure under Boolean operations transfers
through temporalized automata.

Theorem 3.2.4 (Transfer of closure under Boolean operations)

Closure under Boolean operations (union, intersection, and complementation) transfers
through temporalized automata: given two classes A1 and A2 of automata which are (ef-
fectively) closed under Boolean operations, the class A1(A2) of temporalized automata is
(effectively) closed under Boolean operations.

Proof.
Let X, Y ∈ A1(A2).

Union We must provide an automaton A ∈ A1(A2) that recognizes the language L(X)∪
L(Y). Define A = (X↑∪Y ↑)↓. We show that L(A) = L(X)∪L(Y). Let x = (N, <, g) ∈ L(A).
Hence, there is y = (N, <, V) ∈ L(A↑) = L(X↑) ∪ L(Y ↑) such that, for every i ∈ N,
g(i) ∈ L(V (i)). Suppose y ∈ L(X↑). It follows that x ∈ L(X). Hence x ∈ L(X) ∪ L(Y).
Similarly if y ∈ L(Y ↑).

We now show the opposite direction. Suppose that x = (N, <, g) ∈ L(X) ∪ L(Y). If
x ∈ L(X), then there is y = (N, <, V) ∈ L(X↑) such that, for every i ∈ N, g(i) ∈ L(V (i)).
Hence, y ∈ L(X↑) ∪ L(Y ↑) = L(X↑ ∪ Y ↑) = L(A↑). It follows that x ∈ L(A). Similarly if
x ∈ L(Y).

3.2. AUTOMATA FOR COMBINED TEMPORAL LOGICS 41

Complementation We must provide an automaton A ∈ A1(A2) that recognizes the lan-
guage S(S(Σ)) \ L(X). Given the Partition Lemma 3.2.3, we may assume that {L(Z) | Z ∈
Γ(Σ)} forms a partition of S(Σ). We define A = (S(Γ(Σ)) \ X↑)↓. We show that L(A) =
S(S(Σ)) \ L(X). Let x = (N, <, g) ∈ L(A). Hence, there exists y = (N, <, V) ∈ L(A↑) =
S(Γ(Σ)) \ L(X↑) such that, for every i ∈ N, g(i) ∈ L(V (i)). Suppose, by contradiction, that
x ∈ L(X). It follows that there exists z = (N, <, V ′) ∈ L(X↑) such that, for every i ∈ N,
g(i) ∈ L(V ′(i)). Hence, for every i ∈ N, g(i) ∈ L(V (i)) ∩ L(V ′(i)). Since, for every i ∈ N,
L(V (i))∩L(V ′(i)) = ∅ whenever V (i) 6= V ′(i), we conclude that V (i) = V ′(i). Hence V = V ′

and thus y = z. This is a contradiction since y and z belong to disjoint sets. It follows that
x ∈ S(S(Σ)) \ L(X).

We now show the opposite direction. Let x = (N, <, g) ∈ S(S(Σ))\L(X). It follows that,
for every y = (N, <, V) ∈ L(X↑), there exists i ∈ N such that g(i) 6∈ L(V (i)). Suppose, by
contradiction, that x ∈ S(S(Σ)) \ L(A). It follows that, for every z = (N, <, V) ∈ L(A↑) =
S(Γ(Σ)) \ L(X↑), there exists i ∈ N such that g(i) 6∈ L(V (i)). We can conclude that, for
every v = (N, <, V) ∈ S(Γ(Σ)), there exists i ∈ N such that g(i) 6∈ L(V (i)). This is a
contradiction: since {L(Z) | Z ∈ Γ(Σ)} forms a partition of S(Σ), for every i ∈ N, there is
Yi ∈ Γ(Σ) such that g(i) ∈ L(Yi). We have that (N, <, V ′), with V ′(i) = Yi, is an element of
S(Γ(Σ)) and, for every i ∈ N, g(i) ∈ L(V ′(i)). We conclude that x ∈ L(A).

Intersection Follows from closure under union and complementation using De Morgan’s
laws.

Note that, if A = (X↑ ∩ Y ↑)↓, then L(A) ⊆ L(X) ∩ L(Y), but equivalence does not
hold in general. Here is a counterexample of L(A) ⊇ L(X) ∩ L(Y). Let Γ(Σ) = {A, B},
X↑ be the automata accepting sequences starting with symbol A and Y ↑ be the automata
accepting strings starting with symbol B. Then, L(X↑ ∩ Y ↑) = ∅ and hence L(A) = ∅.
Given Σ = {a, b}, let A be an automaton accepting sequences with an odd number of
symbols a and B be an automaton recognizing sequences with a prime number of symbols
b. Thus L(X) ∩ L(Y) contains a combined structure starting with a sequences with exactly
13 symbols a, and hence it is not empty.

We now investigate the transfer problem for automata with respect to the decidability
property. Given A ∈ A1(A2), it is easy to see that a sufficient condition for L(A) = ∅ is
that L(A↑) = ∅. However, this condition is not necessary, since A may be labeled with
some A2-automaton accepting the empty language. Nevertheless, if we know that A is
labeled with A2-automata recognizing non-empty languages, then the condition L(A↑) = ∅
is both necessary and sufficient for L(A) = ∅. In the following theorem, we apply these
considerations to devise an algorithm that checks emptiness of a temporalized automaton.

Theorem 3.2.5 (Transfer of decidability)

Decidability transfers through temporalized automata: given two decidable classes A1 and
A2 of automata, the class A1(A2) of temporalized automata is decidable.

Proof.
Let A be a temporalized automaton in A1(A2). We describe an algorithm that returns

1 if L(A) = ∅ and returns 0 otherwise.

Step 1 Check whether L(A↑) = ∅ using the emptiness algorithm for A1. If L(A↑) = ∅,
then return 1.

42 CHAPTER 3. THE COMBINING APPROACH

Step 2 For every X ∈ Γ(Σ), if L(X) = ∅ (this check is performed exploiting the empti-
ness algorithm for A2), then remove every transition of the form (q1, X, q2) from the
transition relation of A.

Step 3 Let B be the temporalized automaton resulting from A after Step 2. Check, using
the emptiness algorithm for A1, whether L(B↑) = ∅. If L(B↑) = ∅, then return 1, else
return 0.

Note that the above algorithm always terminates returning either 1 or 0. We prove that
the algorithm returns 1 if and only if L(A) = ∅. Suppose that the algorithm returns 1.
If L(A↑) = ∅, then L(A) = ∅. Suppose now that L(A↑) 6= ∅ and L(B↑) = ∅. Note that
L(A) = L(B), since B is obtained from A by cutting off automata accepting the empty
language. Assume, by contradiction, that there is x ∈ L(A). Since L(A) = L(B), we have
that x ∈ L(B). Hence L(B) in not empty. Since L(B↑) = ∅, we have that L(B) is empty. A
contradiction. Hence L(A) = ∅.

Suppose now that the algorithm returns 0. Then L(B↑) contains at least one element,
say x = (N, <, V). Since B uses only non-empty A2-automata as alphabet symbols, we have
that, for every i ∈ N, L(V (i)) 6= ∅. Hence y = (N, <, g), with g such that, for every i ∈ N,
g(i) equals to some element of L(V (i)), is an element of L(A). Hence L(A) 6= ∅

Finally, we investigate the transfer of expressive equivalence with respect to temporal
logics through temporalized automata. We first state a partition lemma for temporalized
logics. The proof is similar to the one of the corresponding lemma for temporalized automata.

Lemma 3.2.6 (Partition Lemma for temporalized logics)
Let ϕ be a temporalized formula of T1(T2) and α1, . . . , αn be the maximal T2-formulas

of ϕ. Then, there is a finite set Λ of T2-formulas such that:

1. the set {M(α) | α ∈ Λ} forms a partition of
⋃n

i=1M(αi), and

2. the formula ϕ′ obtained by replacing every T2-formula αi in ϕ with
∨{α | α ∈ Λ and M(α)∩

M(αi) 6= ∅} is equivalent to ϕ, i.e., M(ϕ) = M(ϕ′).

We now show that expressive equivalence transfers through temporalized automata.

Theorem 3.2.7 (Transfer of expressive equivalence w.r.t. temporal logic)
Expressive equivalence w.r.t. temporal logic transfers through temporalized automata: let

A2 be closed under Boolean operations. If A1 ¿ T1 and A2 ¿ T2, then A1(A2) ¿ T1(T2).

Proof.
We first prove that A1(A2) → T1(T2). Let A ∈ A1(A2) be a temporalized automaton

over Γ(Σ) = {X1, . . . , Xn} ⊆ A2. We have to find a temporalized formula ϕA ∈ T1(T2)
such that L(A) = M(ϕA). Because of the Partition Lemma 3.2.3, we may assume that
{L(X1), . . . ,L(Xn)} partitions S(Σ). Since A1 → T1, we have a translation τ1 from A1-
automata to T1-formulas such that, for every X ∈ A1, L(X) = M(τ1(X)). Let ϕA↑ =
τ1(A↑). The formula ϕA↑ uses proposition letters in {PX1 , . . . , PXn}. Moreover, since A2 →
T2, we have a translation σ1 from A2-automata to T2-formulas such that, for every X ∈ A2,
L(X) = M(σ1(X)). For every 1 ≤ i ≤ n, let ϕXi = σ1(Xi). For every proposition letter PXi

appearing in ϕA↑ , replace PXi with ϕXi in ϕA↑ and let ϕA be the resulting formula. Note
that ϕA ∈ T1(T2). We claim that L(A) = M(ϕA).

3.2. AUTOMATA FOR COMBINED TEMPORAL LOGICS 43

(⊆) Let x = (N, <, g) ∈ L(A). Hence, there is x↑ = (N, <, V) ∈ S(Γ(Σ)) such that
x↑ ∈ L(A↑) and, for every i ∈ N, g(i) ∈ L(V (i)). Since L(A↑) = M(ϕA↑), we have that
x↑ ∈M(ϕA↑). We claim that, for every i ∈ N and j ∈ {1, . . . , n}, x↑, i |= PXj iff x, i |= ϕXj .
We prove the claim. Let i ∈ N and j ∈ {1, . . . , n}. We know that x↑, i |= PXj iff V (i) = Xj .
We prove that V (i) = Xj iff g(i) ∈ L(Xj). The left to right direction of the previous
claim follows since g(i) ∈ L(V (i)). We prove the right to left direction by contradiction.
Suppose g(i) ∈ L(Xj) and V (i) = Xk 6= Xj . Hence g(i) ∈ L(V (i)) = L(Xk) and thus
g(i) ∈ L(Xj)∩L(Xk). A contradiction, since L(Xj)∩L(Xk) = ∅. Hence V (i) = Xj . Finally,
g(i) ∈ L(Xj) iff g(i) ∈ M(ϕXj) iff x, i |= ϕXj . Hence the claim is proved. Summing up, we
have that x↑ ∈ M(ϕA↑) and, for every i ∈ N and j ∈ {1, . . . , n}, x↑, i |= PXj iff x, i |= ϕXj .
It follows that x ∈M(ϕA).

(⊇) Let x = (N, <, g) ∈M(ϕA). We define x↑ = (N, <, V) ∈ S(Γ(Σ)) such that, for every
i ∈ N, V (i) = Xj if and only if g(i) ∈ M(ϕXj) = L(Xj). Note that V (i) is always defined,
since {L(X1), . . . ,L(Xn)} partitions S(Σ). We claim that, for every i ∈ N and j ∈ {1, . . . , n},
we have that x↑, i |= PXj iff x, i |= ϕXj . We prove the claim. Let i ∈ N and j ∈ {1, . . . , n}.
We know that x↑, i |= PXj iff V (i) = Xj . We prove that V (i) = Xj iff g(i) ∈ L(Xj). The left
to right direction of the previous claim follows by definition of x↑.The right to left direction
follows since L(Xj) ∩ L(Xk) = ∅ whenever k 6= j. Finally, g(i) ∈ L(Xj) iff g(i) ∈ M(ϕXj)
iff x, i |= ϕXj . Hence the claim is proved. It follows that x↑ ∈ M(ϕA↑) = L(A↑). Moreover,
for every i ∈ N, g(i) ∈M(ϕXj) = M(ϕV (i)) = L(V (i)). Therefore, x ∈ L(A).

We now prove that T1(T2) → A1(A2). Let ϕ ∈ T1(T2) be a temporalized formula. We have
to find a temporalized automaton Aϕ ∈ A1(A2) such that M(ϕ) = L(Aϕ). Let α1, . . . , αn

be the maximal T2-formulas of ϕ. Because of the Partition Lemma 3.2.6, we may assume
that there is a finite set Λ of T2-formulas such that the set {M(α) | α ∈ Λ} forms a
partition of

⋃n
i=1M(αi), and every maximal T2-formula αi in ϕ has the form

∨{α | α ∈
Λ and M(α) ∩M(αi) 6= ∅}.

Let ϕ↑ be the formula obtained from ϕ by replacing every T2-formula α ∈ Λ appearing in
ϕ with proposition letter Pα and by adding to the resulting formula the conjunct Pβ ∨ ¬Pβ,
where β is the T2-formula ¬∨n

i=1 αi. Let Q = {Pα | α ∈ Λ ∪ {β}} be the set of proposition
letters of ϕ↑. Since T1 → A1, we have a translation τ2 from T1-formulas to A1-automata
such that, for every ψ ∈ T1, M(ψ) = L(τ2(ψ)). Let Aϕ↑ = τ2(ϕ↑). The automaton Aϕ↑

labels its transitions with symbols in 2Q. Moreover, since T2 → A2, we have a translation σ2

from T2-formulas to A2-automata such that, for every ψ ∈ T2, M(ψ) = L(σ2(ψ)). For every
α ∈ Λ ∪ {β}, let Aα = σ2(α). Finally, let Aϕ be the automaton obtained by replacing every
label X ⊆ Q on a transition of Aϕ↑ with the A2-automaton

⋂
Pα∈X Aα = σ2(

∧
Pα∈X α). We

have that Aϕ ∈ A1(A2) and L(Aϕ) = M(ϕ). The proof is similar to the case L(A) = M(ϕA).
Note that to prove this direction we do not use the hypothesis of closure under Boolean
operations of A2.

As a corollary, we have the following:

Corollary 3.2.8 If T1 → A1, T2 → A2, and both A1 and A2 are decidable, then T1(T2)
is decidable.

Theorems 3.2.4, 3.2.5 and 3.2.7 hold for finite sequences as well. Moreover, they immedi-
ately generalize to finite and infinite trees. Corollary 3.2.8 permits us to show the decidability
of many temporalized logics. For instance, we have seen in Chapter 2 that QLTL (and all its
fragments) over infinite sequences can be embedded into Büchi sequence automata, QCTL∗k

44 CHAPTER 3. THE COMBINING APPROACH

(and all its fragments) over infinite k-ary trees can be embedded into Rabin k-ary tree au-
tomata, and both Büchi sequence and Rabin k-ary tree automata are decidable. Moreover,
QLTL (and all its fragments) over finite sequences can be embedded into finite sequence
automata, QCTL∗k (and all its fragments) over finite k-ary trees can be embedded into finite
k-ary tree automata, and both finite sequence and finite k-ary tree automata are decidable.
It follows that any temporalized logic T1(T2), where T1 and T2 are (fragments of) QLTL
or QCTL∗k, interpreted over either finite or infinite structures, are decidable. In particular,
PLTL(CTL∗k) and EQLTL(EQCTL∗k) over infinite sequences of infinite (resp. finite) trees
are decidable. We will use these temporal logics in Chapter 4. Note that the decidability
of PPLTL(PPLTL) over infinite sequences of infinite sequences has been previously proved
in [44].

We conclude this section by showing how the model checking problem for temporalized
logics can be reduced to the emptiness problem for temporalized automata. Let T1 and T2

be either linear or branching time logics as defined in Section 2.4 such that T1 → A1 and
T2 → A2. The linear and branching time model checking problems for T1(T2) are defined
as for component logics (cf. Section 2.4) with respect to temporalized Kripke structures. A
temporalized Kripke structure is a triple (W,R, g), where W is a set of worlds, R ⊆ W ×W is
a binary relation on W , and g is a total function mapping worlds in W into Kripke structures
(W ′, R′, V), with R′ ⊆ W ′ ×W ′ and V : W ′ → 2P . A similar definition holds for directed
k-ary temporalized Kripke structures. Let M be a (directed k-ary) temporalized Kripke
structure and ϕ be a T1(T2)-formula. Let AM be the A1(A2)-automaton recognizing the
set of T1(T2)-models encoded by M, and let Aϕ be the A1(A2)-automaton accepting the
set of T1(T2)-models of ϕ, whose existence is guaranteed by Theorem 3.2.7. Then, the
model checking problem for M and ϕ is equivalent to the language containment problem
L(AM) ⊆ L(Aϕ). If A1 and A2 are closed under Boolean operations, the latter problem is
equivalent to the emptiness problem L(AM ∩Aϕ) = ∅. Finally, if A1 and A2 are decidable,
the latter problem is decidable too. In Section 3.3 we will propose an automata-free model
checking algorithm for temporalization, independent combination and join of temporal logics.

3.3 Model checking combined temporal logics

In this section we study the combination of model checking procedures with respect to the
three modes of combining logics presented above. We analyze the computational complexity
of the proposed procedure and reports on our experiments with implementations. It will
turn out that, in contrast to combining deductive engines, combinations of model checking
procedures are well behaved, even in the presence of interaction, thus supporting the general
believe that modularity is easier to achieve in model checking than in theorem proving
approaches [62]. In particular, complexity upper bounds for model checking transfer from
the components to the combination.

3.3.1 Combined model checkers

In this section we introduce model checkers for temporalization, independent combination
and join.

We start with temporalization. We first define the global model checking problem for
the temporalized logic T(L). Let M = (W,R, g) be a T(L)-model. We say that M is finite
if W and R are finite and, for every w ∈ W , g(w) is finite. Let M = (W,R, g) be a finite
T(L)-model and ψ a formula in LT(L). The global model checking problem for T(L) is to

3.3. MODEL CHECKING COMBINED TEMPORAL LOGICS 45

Function MCT(L)

Input: a T(L)-model M = (W,R, g) and a formula ψ ∈ LT(L)

compute MMLL(ψ) and ψ↑

for every α ∈ MMLL(ψ)
for every w ∈ W

if MCL(g(w), α) = true then
V (w) = V (w) ∪ {Pα}

return MCT((W,R, V), ψ↑)

Figure 3.5: Model checking procedure for temporalized logics.

check whether there exists w ∈ W such that M, w |=T(L) ψ. We use ‘model checker’ for
a program that solves the global model checking problem. Let ψ be a T(L)-formula and
MMLL(ψ) the set of maximal monolithic subformulas of ψ belonging to LL; ψ↑ denotes the
T-formula obtained from ψ by replacing every formula α ∈ MMLL(ψ) by a new proposition
letter Pα. Moreover, let MCT and MCL be model checkers for T and L, respectively. Given
an appropriate model checking instance, these programs return true if the corresponding
instance is a “yes” instance, false otherwise.

In Figure 3.5, we present the pseudo-code of a model checker MCT(L) for T(L) that
exploits MCT and MCL. Given a model M = (W,R, g) and a formula ψ, the function MCT(L)

first computes the set MMLL(ψ) and the formula ψ↑. Then, for every maximal monolithic
formula α ∈ MMLL(ψ) and every world w ∈ W , it invokes the model checker for logic L
with input the L-model g(w) and the L-formula α, and, accordingly to the result, it updates
a valuation function V . Finally, it calls the model checker for T with input the T-model
(W,R, V) and the T-formula ψ↑, and returns the output of this invocation.

It is easy to prove that:

Theorem 3.3.1 (Termination, Soundness, and Completeness)
Let M = (W,R, g) be a finite model for T(L) and ψ ∈ LT(L). If MCL and MCT are

terminating, sound and complete, then:

1. Termination: the function MCT(L), with input M and ψ, terminates, returning either
true or false;

2. Soundness: if MCT(L) returns true on input M and ψ, then there exists w ∈ W such
that M, w |=T(L) ψ;

3. Completeness: if MCT(L) returns false on input M and ψ, then, for every w ∈ W ,
M, w 6|=T(L) ψ.

An alternative model checking algorithm for T1(T2) can be obtained via a reduction to
temporalized automata as described in Section 3.2.

We now give a general algorithm for solving the global model checking problem for the
independently combined logic T1 ⊕ T2. Let T1 and T2 be two temporal logics, and let
M = (W,R1,R2, V) be a model for T1⊕T2. We say that M is finite if W , R1, and R2 are
finite, and, for every w ∈ W , V (w) is finite. The global model checking problem for T1⊕T2

46 CHAPTER 3. THE COMBINING APPROACH

Procedure MCT1⊕T2

Input: a T1 ⊕T2-model M = (W,R1,R2, V) and a formula ψ ∈ LT1⊕T2

compute C1
M, C2

M, and MSub(ψ)
for every w ∈ W let V (w) = V (w)
for every i = 1, . . . , |ψ|

for every ϕ ∈ MSub(ψ) such that |ϕ| = i
case on the form of ϕ

ϕ = P , P ∈ P: skip
ϕ = ϕ1 ∧ ϕ2: for every w ∈ W

if (ϕ1 ∈ V (w) and ϕ2 ∈ V (w)) then
V (w) = V (w) ∪ {ϕ} ; V (w) = V (w) ∪ {Pϕ}

ϕ = ¬ϕ1: for every w ∈ W
if (not ϕ1 ∈ V (w)) then

V (w) = V (w) ∪ {ϕ} ; V (w) = V (w) ∪ {Pϕ}
ϕ = O(ϕ1, . . . , ϕc), O ∈ OP(LTi

), i ∈ {1, 2}
let Φ = {α ∈ Sub(ϕ) ∩MSub(ψ) | 1 < |α| < |ϕ|} and ϕ′ = ϕ
for every α ∈ Φ replace α in ϕ′ with Pα

for every (U,S) ∈ Ci
M

for every u ∈ U let V ′(u) = V (u)
MCTi((U,S, V ′), ϕ′)
for every u ∈ U

if ϕ′ ∈ V ′(u) then
V (u) = V (u) ∪ {ϕ} ; V (u) = V (u) ∪ {Pϕ}

Figure 3.6: Model checking procedure for independently combined logics.

is defined just as for T(L). Let C1
M and C2

M be the sets of connected components of (W,R1)
and (W,R2), respectively. Since M is a model for T1 ⊕T2, every connected component in
C1
M (resp. C2

M) is a model for T1 (resp. T2). Sub(ϕ) is the set of subformulas of ϕ, and
MSub(ϕ) ⊆ Sub(ϕ) is constructed as follows. Let S = Sub(ϕ) ∩ LT1⊕T2 . Let i ∈ {1, 2}. For
every formula O(ϕ1, . . . , ϕn) in S, with O ∈ OP(LTi) ∪ {∧,∨,¬}, if, for every j = 1, . . . , n,
ϕj is a proposition letter or its main operator is in OP(LTi)∪{∧,∨,¬}, then delete formulas
ϕ1, . . . , ϕn from S; MSub(ϕ) is the set S at the end of this procedure. Note that if ϕ ∈ LTi ,
then MSub(ϕ) = {ϕ}.

Below, we view model checkers as procedures that receive a model (W,R, V) and a formula
ψ as input, and that extend the valuation V (which maps a state to a set of proposition
letters) to a valuation V ′ mapping states to sets of subformulas of ψ in the following way: for
every subformula ϕ of ψ and every node w, V ′(w) contains ϕ iff ϕ is true at w in (W,R, V).
Let MCT1 and MCT2 be model checkers for T1 and T2, respectively. In Figure 3.6, we present
the pseudo-code of a model checker for T1⊕T2 that exploits the procedures MCT1 and MCT2 .
Given a model M = (W,R1,R2, V) and a formula ψ, the procedure MCT1⊕T2 first computes
the sets of connected components C1

M and C2
M and the set of formulas MSub(ψ). Then, it

model checks formulas in MSub(ψ) in increasing order with respect to their lengths, and
accordingly it extends the valuation V . In particular, propositional cases are easily solved,
while cases of formulas ϕ ∈ MSub(ψ), with main operator in the language of Ti, i ∈ {1, 2},
are resolved by taking advantage of the corresponding model checker for Ti. Note that the
traversal of MSub(ψ) instead of Sub(ψ) is not essential but it saves time. The following can

3.3. MODEL CHECKING COMBINED TEMPORAL LOGICS 47

Procedure MCT1⊗T2

Input: a T1 ⊗T2-model M = (W1,R1,W2,R2, V) and a formula ψ ∈ LT1⊗T2

compute MSub(ψ)
for every w ∈ W2 compute R̂1

w; for every w ∈ W1 compute R̂2
w

for every (w1, w2) ∈ W1 ×W2 let V ((w1, w2)) = V ((w1, w2))
for every i = 1, . . . , |ψ|

for every ϕ ∈ Sub(ψ) ∩ (LT1 ∪ LT2) such that |ϕ| = i
case on the form of ϕ

ϕ = P , P ∈ P: skip
ϕ = ϕ1 ∧ ϕ2: for every (w1, w2) ∈ W1 ×W2

if ϕ1 ∈ V ((w1, w2)) and ϕ2 ∈ V ((w1, w2)) then
V ((w1, w2)) = V ((w1, w2)) ∪ {ϕ}
V ((w1, w2)) = V ((w1, w2)) ∪ {Pϕ}

ϕ = ¬ϕ1: for every (w1, w2) ∈ W1 ×W2

if not ϕ1 ∈ V ((w1, w2)) then
V ((w1, w2)) = V ((w1, w2)) ∪ {ϕ}
V ((w1, w2)) = V ((w1, w2)) ∪ {Pϕ}

ϕ = O(ϕ1, . . . , ϕc), O ∈ OP(LTi), i ∈ {1, 2}
let Φ = {α ∈ Sub(ϕ) ∩MSub(ψ) | 1 < |α| < |ϕ|} and ϕ′ = ϕ
for every α ∈ Φ replace α in ϕ′ with Pα

for every w ∈ Wi

if i = 1 then D = W1 × {w} else D = {w} ×W2

for every (u, v) ∈ D let V ′((u, v)) = V ((u, v))
MCTi((D, R̂i

w, V ′), ϕ′)
for every (u, v) ∈ D

if ϕ′ ∈ V ′((u, v)) then V ((u, v)) = V ((u, v)) ∪ {ϕ};
V ((u, v)) = V ((u, v)) ∪ {Pϕ}

Figure 3.7: Model checking procedure for joined logics.

be easily proved.

Theorem 3.3.2 (Termination, Soundness, and Completeness)

Let M = (W,R1,R2, V) be a finite model for T1 ⊕ T2 and ψ ∈ LT1⊕T2. If MCT1 and
MCT2 are terminating, sound, and complete, then:

1. Termination: the procedure MCT1⊕T2, with input M and ψ, terminates;

2. Soundness and Completeness: let V be the (extended) valuation function after termi-
nation of procedure MCT1⊕T2, with input M and ψ. Then, for every subformula ϕ of
ψ and every world w ∈ W , ϕ ∈ V (w) if and only if M, w |=T1⊕T2 ϕ.

Finally, we give a general algorithm that solves the global model checking problem for T1⊗
T2. Let T1 and T2 be temporal logics andM = (W1,R1,W2,R2, V) be a model for T1⊗T2.
We say that M is finite if W1, W2, R1 and R2 are finite, and, for every (w1, w2) ∈ W1×W2,
V ((w1, w2)) is finite. Let M = (W1,R1,W2,R2, V) be a finite T1 ⊗ T2-model and ψ ∈
LT1⊗T2 . The global model checking problem for T1 ⊗ T2 is to check whether there exist
w1 ∈ W1 and w2 ∈ W2 such that M, w1, w2 |=T1⊗T2 ψ.

48 CHAPTER 3. THE COMBINING APPROACH

Given a T1 ⊗ T2-model M = (W1,R1,W2,R2, V), a binary relation R ∈ R1 on W1

(resp. R ∈ R2 on W2), and a world w ∈ W2 (resp. w ∈ W1), we use R̂1
w (resp. R̂2

w) to
denote the binary relation on W1 × W2 (resp. W2 × W1) such that R̂1

w((x1, y1), (x2, y2)) if
and only if R(x1, x2) and y1 = y2 = w (resp. R̂2

w((x1, y1), (x2, y2)) if and only if R(y1, y2)
and x1 = x2 = w). Moreover, let R̂1

w = {R̂1
w | R ∈ R1} and R̂2

w = {R̂2
w | R ∈ R2}. Finally,

let i = 2 if i = 1, and i = 1 if i = 2.
In Figure 3.7, we present the pseudo-code for a model checker for T1 ⊗T2 that exploits

model checkers MCT1 and MCT2 for the component logics T1 and T2, respectively. The
implementation is similar to that of the model checker for T1 ⊕T2.

Theorem 3.3.3 (Termination, Soundness, and Completeness)
Let M = (W1,R1,W2,R2, V) be a finite model for T1 ⊗T2 and ψ ∈ LT1⊗T2. If MCT1

and MCT2 are terminating, sound, and complete, then:

1. Termination: the procedure MCT1⊗T2, with input M and ψ, terminates;

2. Soundness and Completeness: let V be the (extended) valuation function after termi-
nation of procedure MCT1⊗T2, with input M and ψ. Then, for every subformula ϕ of ψ
and every pair w1, w2 ∈ W1×W2, ϕ ∈ V ((w1, w2)) if and only if M, w1, w2 |=T1⊗T2 ϕ.

3.3.2 Computational Complexity

We now turn to an analysis of the computational complexity of the model checkers proposed
in the previous section. An instance for the model checking problem has two components: a
model (W,R, V) and a formula ψ. In our analysis, we will consider three main complexity
parameters: the cardinality n of W , the sum m of the cardinalities of the relations in R, and
the length k of ψ, i.e., the number of operators and proposition letters in ψ. Given w ∈ W ,
we will heavily use the following operations on the (extended) valuation V (w): checking
whether a formula ϕ belongs to V (w), and adding a formula ϕ to V (w). Both operations
can be efficiently implemented in constant time by representing V as a 2-dimensional bit
array of size n× k [18].

We will express the complexity of the combined model checker in terms of that of the
component model checkers. It will turn out that the complexity of the combined model
checker is the sum of two factors: the communication overhead and the model checking cost.
The communication overhead is the time spent for “packing” the inputs for the components
and for “unpacking” their outputs; this represents the cost of the interaction between the
components. The model checking cost represents the cost of performing the actual model
checking of the component logics.

We first consider the case of temporalization. Let L be a logic and T a temporal logic. We
write CT(L)(·, ·, ·) (resp. CL(·, ·), CT(·, ·, ·)) for the complexity function of the model checker
MCT(L) (resp. MCL, MCT). Note that CL(·, ·) has two parameters (the size of the model and
the length of the formula).

Theorem 3.3.4 Let (W,R, g) be a finite T(L)-model and ψ a T(L)-formula. The complex-
ity of MCT(L) on input M and ψ is

O(n) · [O(k) · CL(N, O(1)) + O(1) · CL(N, O(k))] + CT(n,m,O(k)),

where n = |W |, m =
∑

R∈R |R|, k = |ψ| and N = maxw∈W |g(w)|.

3.3. MODEL CHECKING COMBINED TEMPORAL LOGICS 49

Proof.
The set of formulas MMLL(ψ) and the formula ψ↑ can be computed in one pass through

ψ, hence in O(k).
The subsequent nested for loop costs

∑

α∈MMLL(ψ)

∑

w∈W

CL(|g(w)|, |α|) ≤ n ·
∑

α∈MMLL(ψ)

CL(N, |α|).

To bound the last sum, notice that the set MMLL(ψ) contains only subformulas of ψ and
its cardinality is O(k). Since a set of cardinality n can be partitioned either into Θ(n) sets
of cardinality Θ(1) or into Θ(1) sets of cardinality Θ(n), the above sum is

O(n) · [O(k) · CL(N,O(1)) + O(1) · CL(N, O(k))].

Finally, as the length of ψ↑ is O(k), the unique call to MCT costs CT(n,m, O(k)). Summing
up, the overall cost is

O(n) · [O(k) · CL(N,O(1)) + O(1)CL(N, O(k))] + CT(n, m,O(k)).

The communication overhead is the cost of computing the set MMLL(ψ) and the formula
ψ↑. It equals O(k) and is dominated by the model checking cost. For instance, if T is CTL
(hence CT(n,m, k) = O((n + m) · k)), and L is a logic such that CL(n, k) = O(n · k), then
the model checking cost is O(k · (n ·N + m)), hence still linear in the size of the model and
in the length of the formula.

We now treat the independent combination of two temporal logics T1 and T2.

Theorem 3.3.5 Let M = (W,R1,R2, V) be a finite T1 ⊕ T2-model and ψ a T1 ⊕ T2-
formula. The complexity of MCT1⊕T2 on input M and ψ is:

O(m1 + m2 + n · k)+∑2
i=1(O(k) · CTi(O(n), O(mi), O(1))+

O(n) · CTi(O(1), O(1), O(k))+
O(1) · CTi(O(n), O(mi), O(k)))

where n = |W |, mi =
∑

R∈Ri
|R|, for i = 1, 2, and k = |ψ|.

Proof.
The set of connected components C1

M (resp. C2
M) can be computed in time O(n + m1)

(resp. O(n + m2)) by means of a depth-first visit of the graph (W,R1) (resp. (W,R2)). The
cost of computing MSub(ψ) is linear in the size of ψ, and hence it is O(k).

The cost of the second part of the computation is:
∑

ϕ∈MSub(ψ) C(ϕ), where the cost
factor C(ϕ) depends on the form of ϕ. In particular, if ϕ is a proposition letter, then
C(ϕ) = O(1). If ϕ = ϕ1 ∧ ϕ2, or ϕ = ¬ϕ1, then C(ϕ) = O(n). If i ∈ {1, 2} and
ϕ = O(ϕ1, . . . , ϕc), with O ∈ OP(LTi), then the cost C(ϕ) is computed as follows. Let
Ci
M = {(U i

j , S
i
j) | j = 1, . . . , ci}, ni

j and mi
j be the cardinalities of U i

j and Si
j , respectively,

for j = 1, . . . , ci. The replacement of subformulas α in ϕ′ with letters Pα costs O(|ϕ′|).
Since |ϕ′| = O(|ϕ|), the replacement costs O(|ϕ|). Moreover, for every connected component
(U i

j , S
i
j) in Ci

M, the following steps are performed:

• the valuation V ′ is computed in O(ni
j);

50 CHAPTER 3. THE COMBINING APPROACH

• the formula ϕ′ is model checked in CTi(n
i
j ,m

i
j , O(|ϕ|));

• the valuation V is updated in O(ni
j).

It follows that, in this case, C(ϕ) amounts to

O(|ϕ|) +
ci∑

j=1

(
O(ni

j) + CTi(n
i
j ,m

i
j , O(|ϕ|))) .

Since Ci
M contains either Θ(n) connected components with Θ(1) nodes or Θ(1) connected

components with Θ(n) nodes, C(ϕ) is as follows:

O(|ϕ|) + O(n) + O(n) · CTi(O(1), O(1), O(|ϕ|)) + O(1) · CTi(O(n), O(mi), O(|ϕ|)).

Moreover, since the set MSub(ψ) contains either Θ(k) formulas of length Θ(1) or Θ(1)
formulas of length Θ(k), the cost of the second part of the computation is:

O(n · k) +
∑2

i=1 (O(k) · CTi(O(n), O(mi), O(1))+
O(n) · CTi(O(1), O(1), O(k))+
O(1) · CTi(O(n), O(mi), O(k)))

and, hence, the overall complexity is:

O(m1 + m2 + n · k) +
∑2

i=1 (O(k) · CTi(O(n), O(mi), O(1)) +
O(n) · CTi(O(1), O(1), O(k)) +
O(1) · CTi(O(n), O(mi), O(k))) .

The communication overhead is the cost of computing the connected components, of
preparing the valuation as input to the model checking procedure, and of updating the
valuations when the procedure returns. It adds up to O(m1 + m2 + n · k), which is more
significant than in the case of temporalization. By way of example, if both T1 and T2

are CTL, and m = m1 = m2, then the communication overhead is O(m + n · k), which
is proportional to the model checking cost of O((n + m) · k). So, the overall cost of the
model checker for CTL⊕CTL is O((n + m) · k), which is linear in the size of the model and
in the length of the formula. If both T1 and T2 are CTL∗, then the model checking cost
is exponential in the length k of the formula, and hence it dominates the communication
overhead.

Finally, we consider the join of temporal logics T1 and T2.

Theorem 3.3.6 Let M = (W1,R1,W2,R2, V) be a finite T1⊗T2-model and ψ a T1⊗T2-
formula. Let 1 = 2 and 2 = 1. The complexity of MCT1⊗T2 on input M and ψ is:

O(n1 ·m2 + n2 ·m1 + n1 · n2 · k)+∑2
i=1 O(ni) · [O(k) · CTi(ni,mi, O(1)) + O(1) · CTi(ni,mi, O(k))],

where ni = |Wi|, mi =
∑

R∈Ri
|R|, for i = 1, 2, and k = |ψ|.

Proof.
The sets R̂1

w and R̂2
w can be computed in O(n2 ·m1) and O(n1 ·m2), respectively. The

cost of computing MSub(ψ) is linear in the size of ψ, hence it is O(k). The cost of the second
part of the computation is:

∑
ϕ∈MSub(ψ) C(ϕ), where the cost factor C(ϕ) depends on the

3.3. MODEL CHECKING COMBINED TEMPORAL LOGICS 51

form of ϕ. In particular, if ϕ is a proposition letter, then C(ϕ) = O(1). If ϕ = ϕ1 ∧ ϕ2, or
ϕ = ¬ϕ1, then C(ϕ) = O(n1 · n2). If ϕ = O(ϕ1, . . . , ϕc), with O ∈ OP(LT1), the cost C(ϕ)
amounts to O(|ϕ|) to replace subformulas α in ϕ with letters Pα, plus n2 times the sum of
the following factors:

• n1 to compute V ′;

• CT1(n1,m1, O(|ϕ|)) to model check ϕ;

• n1 to update V .

That is, C(ϕ) is
O(|ϕ|) + O(n2) · [O(n1) + CT1(n1,m1, O(|ϕ|))].

Similarly, if ϕ = O(ϕ1, . . . , ϕc), with O ∈ OP(LT2), the cost C(ϕ) amounts to

O(|ϕ|) + O(n1) · [O(n2) + CT2(n2,m2, O(|ϕ|))].

It follows that the cost of the second part of the computation is

O(n1 · n2 · k)+∑2
i=1 O(ni) · [O(k) · CTi(ni, mi, O(1)) + O(1) · CTi(ni,mi, O(k))],

and, hence, the overall complexity is:

O(n1 ·m2 + n2 ·m1 + n1 · n2 · k)+∑2
i=1 O(ni) · [O(k) · CTi(ni, mi, O(1)) + O(1) · CTi(ni,mi, O(k))].

The communication overhead is the cost of computing the sets R̂1
w and R̂2

w plus the cost of
preparing and updating the valuation functions before and after the invocation of the model
checking procedure, respectively. It amounts to O(n2 ·m1+n1 ·m2+n1 ·n2 ·k). For instance, if
both T1 and T2 are CTL, n = n1 = n2, and m = m1 = m2, then the communication cost is
O(n ·(m+n ·k)), which is proportional to the model checking cost of O(n ·(n+m) ·k). Hence,
the overall cost of the model checker for CTL⊗CTL is O(n · (n + m) · k). If m = Θ(n), the
cost is O(n2 ·k), hence it is linear in the size of the model and the length of the formula, else if
m = Θ(n2), then the complexity is O(n3 ·k). As in the case of the independent combination,
if both T1 and T2 are CTL∗, the model checking dominates the communication overhead.

3.3.3 Experimental Results

We report on experimental results based on implementations of (combined) model checkers
for CTL(CTL) and CTL⊕CTL. The model checkers have been implemented in C, and are
available from http://www.science.uva.nl/~mdr/ACLG/Software/. Tests were carried on
a Sun ULTRA II (300MHz) with 1Gb RAM, under Solaris 5.2.5.

First, we treat the case of temporalization of CTL by means of CTL. We tested the model
checker on “linear” and “dense” models, varying the size of the model. LetM be a model for
CTL(CTL) and ϕ a formula in the language of CTL(CTL). In the first test, we fixed ϕ to be
A1G1A2(P U2 Q), and we adopted as model M1 = (W,R, g), where (W,R) is a complete
binary tree of height h1 and, for every w ∈ W , g(w) is a labeled complete binary tree of
height h2. Hence, this model contains n = n1 ·(n2+1) nodes, and m = n1 ·n2−1 edges, where
n1 = 2h1+1 − 1 and n2 = 2h2+1 − 1. Moreover, the trees g(w) are labeled so that every node

52 CHAPTER 3. THE COMBINING APPROACH

h1 h2 # nodes # edges tms

4 4 992 960 10
5 5 4032 3968 30
6 6 16256 16128 110
7 7 65280 65024 380
8 8 261632 261120 1490
9 9 1047552 1046528 5850

Table 3.1: Trees and A1G1A2(P U2 Q)

n1 n2 # nodes # edges tms

32 32 1056 33792 20
64 64 4160 266240 110

128 128 16512 2113536 820
256 256 65792 16842752 6010
512 512 262656 134479872 47970

1024 1024 1049600 1074790400 386760

Table 3.2: Complete graphs and A1G1E2(P U2 Q)

and every edge is processed during the checking of A2(P U2 Q). The experimental outcomes
we have obtained on this instance are summarized in Table 3.1, where tms represents the
CPU time in milliseconds. Note that the time needed to perform the model checking grows
linearly in the size of the model.

In the second test, we checked the formula ϕ = A1G1E2(P U2 Q), and we adopted as
model M2 = (W,R, g), where (W,R) is a complete graph of n1 nodes and, for every w ∈ W ,
g(w) is a complete graph of n2 nodes. Hence, this model contains n = n1 · (n2 + 1) nodes,
and m = n1 · (n2

2 + n1) edges. The models g(w) are labeled in an appropriate way in order
to process every node and every edge during the checking of E2(P U2 Q). The outcomes
are summarized in Table 3.2. Once again, the time needed to perform the model checking
grows linearly in the size of the model. Moreover, as expected, the complexity of the model
checker depends on the number of edges too. Indeed, if we compare the costs of the above
two instances for the same number of nodes, we note that checking the second instance in
harder. This is because M2 contains dense graphs, i.e., graphs in which the number of edges
is quadratic in the number of nodes, while M1 is based on linear graphs, i.e., graphs in which
the number of edges is linear in the number of nodes.

Next, we treat the case of the independent combination of CTL and CTL. We tested
the model checker on “square grid” models, varying the size of the model (and fixing the
formula) or varying the “degree of interaction” of the formula (and fixing the model). Let
M be a model for CTL⊕ CTL and ϕ a formula in the language of CTL⊕ CTL.

In the first test, we fixed ϕ to be A1G1Q ∧ A2G2Q, and we adopted as our model
M = (W,R1, R2, V) a square grid in which the rows are the connected components of
(W,R1) and the columns are the connected components of (W,R2). We tested the model
checker on square grids with a side of size l, hence with number of nodes n = l2 and a number
of edges m = 2 · l · (l − 1). The outcomes are summarized in Table 3.3. Note that the time
needed to perform the model checking grows linearly in the size of the model.

3.4. DISCUSSION 53

l # nodes # edges tms

32 1024 1984 90
64 4096 8024 340

128 16384 32512 1400
256 65396 130560 5760
512 262144 532264 23480

1024 1048576 2095104 118980

Table 3.3: Square grids and A1G1Q ∧ A2G2Q

r 0 3 7 11 15 19
tms 1870 2540 2970 3860 4720 5590

Table 3.4: Fixed square grids and alternating formulas

In our second test, we fixed the model M to be a square grid with a side of size 256,
and hence with 65396 nodes and 130560 edges, and we changed the degree of interaction
of the formula. Define f0 = Q, and fk+1 = EiXifk, for k ≥ 0 and i ∈ {1, 2}. We call the
token EiXi in fk a quantifier of fk and the token EiXiEjXj , with i 6= j, an alternation of
quantifiers of fk. We tested the model checker on f20, varying the number r of alternations of
quantifiers of f20 from 0 (no interaction at all) to 19 (maximal interaction). The outcomes are
summarized in Table 3.4. As expected, the greater the degree of interaction of the formula
is, the longer the response time of the model checker becomes. Indeed, the communication
overhead is higher when checking formulas with strong interaction, due to the time spent on
packing the input and unpacking the output during the switches between the main model
checker and the component’s ones.

3.4 Discussion

One of the main reasons for the relative ease with which we can make combinations work
in this chapter, is that the modes of combining that we consider require no synchronization
between the components. Although there may be interaction between the components—as
we have seen with the join—, this is only a very loose kind of interaction. This is in contrast
with modular model checking, which has been proposed as a way to address the so-called
state-explosion problem. In modular verification, the specification of a module consists of two
parts. One part describes the guaranteed behavior of the module. The other part describes
the assumed behavior of the environment with which the module is interacting; this is called
the assume-guarantee paradigm [74, 83]. The level of interaction between the module and
its environment is far more intricate than the kinds of interaction we have been discussing,
and, hence, in modular model checking the computational overhead for the combination is
much more significant than in our setting [78].

It is worth remarking that we do not consider in this thesis the (nontrivial) problem of
decomposing a complex system into simpler components. We simply assume that the target
system is already expressible as a combination of components according to some combining
method. We showed that in some cases, for instance for granular reactive systems and for
mobile reactive systems, this assumption is satisfied. However, we are aware that there are
models that cannot be obtained as a composition of simpler components. For instance, not

54 CHAPTER 3. THE COMBINING APPROACH

every S52-model is a join of two models for S5. For systems modelled by such models, our
modular approach cannot be adopted.

4
Temporal logics and automata for

time granularity

In this chapter we define and study temporal logics and automata over downward unbounded
layered structures (Section 4.1), n-layered structures (Section 4.2) and upward unbounded
layered structures (Section 4.3). To this end, we take advantage of the combining method
introduced in Chapter 3. We first reinterpret layered structure as models for temporaliza-
tion that embeds a vertical flow of time (temporal refinement) inside an horizontal flow of
time (temporal evolutions). Accordingly, we define temporalized logics and temporalized
automata over layered structures, and study their expressive power as well as their compu-
tational complexity. Temporalized automata will be particularly useful: they will provide
decision algorithms for temporalized logics, by embedding formulas into automata. More-
over, they will be exploited to define more expressive temporal logics for time granularity,
preserving nice computational properties. Finally, we apply the combining approach to
model, specify and verify granular reactive systems (Section 4.4).

4.1 Downward unbounded layered structures

In this section we define temporal logics and finite-state automata for DULSs. We investigate
both the expressive power and the complexity of the defined tools, and relate them with
the monadic theories interpreted over DULSs. In Section 4.1.1 we define a temporal logic
counterpart for the path fragment of the monadic second-order theory of DULSs. We show
that the satisfiability problem for the defined temporal logic is elementarily decidable and
we precisely characterize its complexity. In Section 4.1.2 we define finite-state automata for
the second-order theory of DULSs. Moreover, we take advantage of the defined automata
class to devise an elementarily decidable temporal logic counterpart of the full second-order
theory of DULSs.

4.1.1 Temporal logics for DULSs

In this section we define a temporal logic for DULSs, and study its expressive power and
complexity.

56 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

r
r r©©©©

HHHH

r r r r¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢A A A A A A A A
. .

t0 t1r
r r©©©©

HHHH

r r r r
...

...

...

...

¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢A A A A A A A A
. ...

Figure 4.1: A tree sequence.

We start by giving an alternative characterization of DULSs in terms of tree sequences.
Let Tk(P) be the set of P-labeled infinite k-ary trees (Tk, (↓i)k−1

i=0 , <pre, V) with V : Tk →
2P . Let S(Tk(P)) be the set of infinite sequences of P-labeled infinite k-ary trees, that is,
temporalized models (N, <, g) where g : N → Tk(P) is a total function mapping worlds in
N into P-labeled infinite k-ary trees in Tk(P). We show that P-labeled DULSs correspond
to tree sequences in S(Tk(P)), and vice versa. A P-labeled DULS t can be viewed as an
infinite sequence of P-labeled infinite k-ary trees, whose i-th tree, denoted by ti, is the P-
labeled tree rooted at the i-th point i0 of the coarsest domain T 0 of t (cf. Figure 4.1). Such
a sequence can be represented as the temporalized model (N, <, g) ∈ S(Tk(P)) such that,
for every i ∈ N, g(i) = ti. Similarly, a P-labeled DULS can be viewed as a P-labeled tree
sequence.

Since DULSs correspond to temporalized models, we can use temporalized logics T1(T2),
where T1 is a linear time logic and T2 is a branching time logic, to express proper-
ties of DULSs. In the following, we show that the temporalized logics PLTL(CTL∗k) and
PPLTL(PCTL∗k), interpreted over (temporalized models corresponding to) DULSs, are ex-
pressively equivalent to the monadic path theory of DULSs. To avoid confusion we rename
linear temporal operators of PLTL and PPLTL as follows: we write 4 , 4−1, © , ©−1, 2,
and 3 instead of U, S, X, X−1, G, and F, respectively.

It will be convenient to work with a different but equivalent monadic path logic that
replaces the total ordering < with two partial orderings <1 and <2 defined as follows. Let
t = 〈U , (↓i)k−1

i=0 , <〉 be a DULS. According to the above reinterpretation of DULSs as tree
sequences, given x, y ∈ U , we define x <1 y iff x is the root of some tree ti of t, y is the root
of some tree tj of t, and i < j over natural numbers. Moreover, x <2 y iff x and y belong to
the same tree, say ti, of t, and x <pre y over ti. We have the following equivalence.

Proposition 4.1.1 MPLP [<1, <2, (↓i)k−1
i=0] ¿ MPLP [<, (↓i)k−1

i=0] over DULSs.

Proof.
Let T0(x) be a shorthand for ¬∃y ∨k−1

i=0 ↓i(y) = x. We first encode < in MPLP [<1, <2

, (↓i)k−1
i=0]. We have that x < y if and only if either x and y belong to the same tree and

x lexicographically precedes y, or x belongs to a tree that precedes the tree y belongs to.
Hence, x < y if and only if

x <2 y ∨ ∃z(
∨

0≤i<j≤k(↓i(z) ≤2 x ∧ ↓j(z) ≤2 y))∨
∃r1∃r2(T 0(r1) ∧ T 0(r2) ∧ r1 <1 r2 ∧ r1 ≤2 x ∧ r2 ≤2 y).

We now encode <1 and <2 in MPLP [<, (↓i)k−1
i=0]. We have x <1 y if and only if

T0(x) ∧ T0(y) ∧ x < y.

4.1. DOWNWARD UNBOUNDED LAYERED STRUCTURES 57

Furthermore, x <2 y if and only if

∃X(x ∈ X ∧ y ∈ X) ∧ x < y.

Note that Proposition 4.1.1 generalizes to monadic chain and second-order logics. How-
ever, we conjecture that it does not hold in monadic first-order logic. In particular, we have
that MFOP [<, (↓i)k−1

i=0] → MFOP [<1, <2, (↓i)k−1
i=0], since, the encoding of < is the proof of

Proposition 4.1.1 is at first-order. We conjecture that the opposite embedding does not hold.
In the following we will focus on MPLP [<1, <2, (↓i)k−1

i=0] interpreted over P-labeled DULSs
〈U , (↓i)k−1

i=0 , <1, <2, (P)P∈P〉. We show that the temporalized logic PLTL(CTL∗k) is expres-
sively equivalent to MPLP [<1, <2, (↓i)k−1

i=0] over P-labeled DULSs. One direction of the proof
is easier: there exists a standard embedding of PLTL(CTL∗k) into MPLP [<1, <2, (↓i)k−1

i=0].

Theorem 4.1.2 PLTL(CTL∗k) can be embedded into MPLP [<1, <2, (↓i)k−1
i=0], when inter-

preted over DULSs.

Proof.
We know that PLTL → MFOP [<]. Hence, there exists a standard translation τx from

PLTL-formulas into MFOP [<]-formulas with one free variable x such that, for every PLTL-
formula ϕ, every PLTL-model M and every point x of M, it holds that M, x |= ϕ iff
M, x |= τx(ϕ). Let τ̂x be the embedding τx in which symbol < is replaced by symbol
<1. Moreover, we know that CTL∗k → MPLP [<pre, (↓i)k−1

i=0]. Thus, there exists a standard
translation σx from CTL∗k-formulas into MPLP [<pre, (↓i)k−1

i=0]-formulas with one free variable
x such that, for every CTL∗k-formula ϕ, every CTL∗k-model M and every point x of M, it
holds that M, x |= ϕ iff M, x |= σx(ϕ). Let σ̂x be the embedding σx in which symbol <pre is
replaced by symbol <2. An embedding of PLTL(CTL∗k)-formulas into MPLP [<1, <2, (↓i)k−1

i=0]
is as follows. Given ϕ ∈ PLTL(CTL∗k), let ϕ↑ be the PLTL-formula obtained by replacing in
ϕ every maximal monolithic CTL∗k-subformula α of ϕ by a new proposition letter Pα. Let
ϕ1(x) = τ̂x(ϕ↑). Let ϕ2(x) be the MPLP [<1, <2, (↓i)k−1

i=0]-formula obtained by replacing in ϕ1

every atomic formula of the form y ∈ Pα by the formula σ̂y(α). We have that ϕ is equivalent
to ϕ2(00) modulo the above described isomorphism between DULSs and tree sequences.

In order to prove the opposite direction, that is, to show that PLTL(CTL∗k) is expressively
complete with respect to MPLP [<1, <2, (↓i)k−1

i=0], we follow a ‘decomposition method’ similar
to that exploited by Hafer and Thomas in [61] to prove the expressive completeness of CTL∗

with respect to MPL[<]. We first decompose the model checking problem for an MPLP [<1

, <2, (↓i)k−1
i=0]-formula and a DULS into a finite number of model checking subproblems for

formulas and structures that do not refer to the whole tree sequence anymore, but only to
certain disjoint components of it. Then, taking advantage of such a decomposition step, we
map every MPLP [<1, <2, (↓i)k−1

i=0]-formula into an equivalent (but sometimes much longer)
PLTL(CTL∗k)-formula. We will focus on monadic path logic over full paths. As previously
pointed out, monadic path logic over paths has the same expressive power than monadic
path logic over full paths.

As a preliminary step, we show that the addition of past operators to PLTL(CTL∗k) does
not increase its expressive power.

Lemma 4.1.3 PPLTL(PCTL∗k) is expressively equivalent to PLTL(CTL∗k).

58 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

Proof.
We know that PCTL∗k can be embedded into CTL∗k. Hence, any PPLTL(PCTL∗k)-formula

p can be replaced by an equivalent PPLTL(CTL∗k)-formula q. Let q1, . . . , qn be the maximal
monolithic CTL∗k-subformulas of q. Regarding q1, . . . , qn as additional atomic propositions
within q, we may consider q as a PPLTL-formula. We know that PPLTL can be embedded
into PLTL. Hence q can be replaced by an equivalent PLTL-formula that contains q1, . . . , qn

as subformulas. Thus the thesis.

Let ≡n be a relation over P-labeled DULSs such that t ≡n t′ if and only if t and t′ satisfy
the same sentences of MPLP [<1, <2, (↓i)k−1

i=0] of quantifier depth n. It is possible to show
that ≡n is an equivalence relation of finite index. Its equivalence classes are called n-types
and are described by path formulas called n-types descriptors.

Definition 4.1.4 (n-types descriptors)

Let t be a P-labeled DULS, a = a1 . . . , ar be a sequence of r elements of t, P = P1 . . . , Ps

be a sequence of s full paths of t, and n ≥ 0. We denote by Π(t) the set of full paths of t.
An n-type descriptor ψn

t,a,P
is a path formula defined as follows:

ψ0
t,a,P

=
∧{ϕ(x1 . . . xr, X1 . . . Xs) | ϕ atomic or negated atomic and t, a, P |= ϕ}

ψn+1
t,a,P

=
∧

a∈t ∃xr+1ψ
n
t,aa,P

∧ ∨
a∈t ∀xr+1ψ

n
t,aa,P

∧∧
P⊆Π(t) ∃Xr+1ψ

n
t,a,PP

∧ ∨
P⊆Π(t) ∀Xr+1ψ

n
t,a,PP

.
2

The relation ≡n can be characterized by an Ehrenfeucht game Gn(t, t′) as follows (basics
on Ehrenfeucht games can be found, for instance, in [31]). A play of this game is played by
two players Spoiler and Duplicator on P-labeled DULSs t and t′ and consists of n rounds.
At each round, Spoiler chooses an element or a full path either from t or from t′; Duplicator
reacts by choosing an object of the same kind in the other structure. After n rounds,
elements a1, . . . , ar (a for short) and full paths P1, . . . , Ps (P) in t (with n = r + s), and the
corresponding elements b1, . . . , br (b) and full paths Q1, . . . , Qs (Q) in t′, have been chosen.
Duplicator wins if the map a → b is a partial isomorphism from (t, P) to (t′, Q), i.e., it is
injective and respects <1, <2, ↓i, for i = 0, . . . , k − 1, as well as membership in P , for every
P ∈ P. The game can be naturally extended to Gn((t, P), a, (t′, Q), b), where a and P (resp.
b and Q) are a finite sequence of elements and a finite sequence of full paths in t (resp. in
t′), respectively.

Let∼n be a relation such that, for any pair of structures (t, a, P) and (t′, b,Q), (t, a, P) ∼n

(t′, b, Q) if and only if Duplicator wins Gn((t, P), a, (t′, Q), b). The following result easily
follows from the well-known Ehrenfeucht-Fräıssé Theorem.

Theorem 4.1.5 Given P-labeled DULSs t and t′, element sequences a in t and b in t′, full
path sequences P in t and Q in t′, the following are equivalent conditions:

1. (t, a, P) ∼n (t′, b,Q);

2. t′, b, Q |= ψn
t,a,P

;

3. a, P satisfy in t the same formulas of MPLP [<1, <2, (↓i)k−1
i=0] of quantifier depth less

than or equal to n as b, Q in t′.

4.1. DOWNWARD UNBOUNDED LAYERED STRUCTURES 59

Corollary 4.1.6 Given n ≥ 0 and an MPLP [<1, <2, (↓i)k−1
i=0]-formula ϕ(x,X) of quantifier

depth less than or equal to n, ϕ is equivalent to a finite disjunction of formulas ψn
t,a,P

such

that t, a, P |= ϕ.

Similar definitions and results hold for k-ary tree structures and infinite as well as finite
word structures. In the former case, n-type descriptors are path formulas in the language of
k-ary trees MPLP [<pre, (↓i)k−1

i=0]. In the latter case, the rules of the game are that Spoiler and
Duplicator can only pick elements from the given pair of words; hence, n-type descriptors
are formulas in the first-order language of sequences MFOP [<].

In the following it is convenient to view a DULS as a Kripke structure t = (U , (↓i)k−1
i=0 , <1

, <2, V), with V : U → 2P . Let k0 ∈ U be an element belonging to the i-th tree of t, n ≥ 0,
and m be the index of ≡n. We enlarge the alphabet P to P1 = P ∪ {Zj | j ∈ {1, . . . ,m}},
where Zj serves as index for the j-th n-type. We denote by v1(t, k0) the finite P1-labeled
sequence whose l-th element has label X ∪{Zj}, X ⊆ P, if V (l0) = X and the tree rooted at
it has n-type j. Moreover, we denote by v3(t, k0) the infinite P1-labeled sequence whose l-th
element has label X∪{Zj}, X ⊆ P, if V ((i+1+l)0) = X and the tree rooted at it has n-type j.
Similarly, we enlarge the alphabet P to P2 = P∪{Zj | j ∈ ({0, . . . , k−1}×{1, . . . , m})k−1},
and we denote by P the finite path from 0i up to and excluding k0. We denote by v2(t, k0) the
P2-labeled finite sequence whose l-th element has label X ∪ {Z(a1,b1),...,(ak−1,bk−1)}, X ⊆ P,
if V (P (l)) = X, and, for r = 1, . . . , k− 1, the ar-th son of it that does not belong to P roots
a tree of n-type br.

We need to prove the following auxiliary lemma, which states that combining local win-
ning strategies on disjoint parts of two tree sequences it is possible to obtain a global winning
strategy on the two tree sequences. Given a node x of a DULS t, we denote by tx the tree
in t rooted at x.

Lemma 4.1.7 For arbitrary P-labeled DULSs t = (U , (↓i)k−1
i=0 , <1, <2, V) and t′ = (U , (↓i

)k−1
i=0 , <1, <2, V

′), and arbitrary elements k0, k
′
0 ∈ U , if vi(t, k0) ∼n vi(t′, k′0), for i = 1, 2, 3,

t↓i(k0) ∼n t′↓i(k0), for i = 0, . . . , k − 1, and V (k0) = V ′(k′0), then (t, k0) ∼n (t′, k′0).

Proof.
Suppose that Spoiler picks an element k (different from k0) in t. If k belongs to some path

vi(t, k0) or to some t↓i(k0), then Duplicator chooses k′ in t′ according to the corresponding
local winning strategies. If k belongs to the tree k0 belongs to, and neither k <2 k0 nor
k0 <2 k, then Duplicator looks for the last node k1 belonging to the path v2(t, k0) such that
k1 <2 k. Let k2 be the son of k1 such that there is a path from k2 to k. Suppose that k2

is the i-th son of k1. Duplicator chooses k′1 in the path v2(t′, k′0) according to his winning
strategy on v2(t, k0), v2(t′, k′0). Let k′2 be the i-th son of k′1. Hence, k1 and k′1 have the same
label from 2P2 and thus the subtrees rooted at their successors k2 and k′2 have the same
n-type. Hence, by Theorem 4.1.5 (its variant for k-ary trees), Duplicator has a winning
strategy on these subtrees and can use this strategy to choose an element k′ corresponding
to k in the subtree rooted at k′2. Finally, if k and k0 belong to different trees, then Duplicator
chooses k′ in t′ exploiting, in a similar way, his winning strategy on v1(t, k0), v1(t′, k′0) or on
v3(t, k0), v3(t′, k′0).

Suppose now that Spoiler picks a full path P0 in t. Let A (resp. A′) be the finite path
from the root of the tree k0 (resp. k′0) belongs to up to (and excluding) k0 (resp. k′0). If
k0 ∈ P0, then P0 has the form A, k0, B, where B is a path on t↓i(k0), for some i. Hence,
Duplicator chooses a path B′ in t′k′0,i according to his local strategy on t↓i(k0), t′k′0,i, and he

60 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

responds to Spoiler with the full path A′, k′0, B
′. If k0 6∈ P0 and P0 belongs to the tree k0

belongs to, then P0 = A1k1C, where k1 is the last node of P0 which belongs to A and C
is a path on tk1,i, for some i. Duplicator first chooses k′1 according to his local strategy on
v2(t, k0), v2(t′, k′0). Let A′1 be the finite path from the root of the tree k′0 belongs to up to
(and excluding) k′1. Then, Duplicator picks a path C ′ on t′k′1,i exploiting his winning strategy
on tk1,i, t′k′1,i, and, finally, he responds to Spoiler with the full path A′1, k

′
1, C

′ . The case in
which P0 does not belong to the tree k0 belongs to is similar to the previous one, and thus
its analysis is omitted.

The following lemma states that checking a path formula ϕ(x) at a node k0 belonging to
the DULS t corresponds to verifying a number of sentences that do not refer to properties of
x relative to the whole structure anymore, but only relative to certain disjoint components
of it. In particular, these disjoint substructures are as follows: suppose k0 belong to the
i-th tree of t. We consider the sequence of roots from 00 up to 0i−1 and the sequence of
roots 0i+1, 0i+2, . . ., with the trees rooted at them, as well as the path rooted at 0i up to and
excluding k0, with the trees rooted at successor nodes that are not in it, the node k0, and
finally the k trees rooted at the k successors of k0.

Lemma 4.1.8 (First Decomposition Lemma)
For every MPLP [<1, <2, (↓i)k−1

i=0]-formula ϕ(x) of quantifier depth n, there exists a fi-
nite set Φ of elements of the form (ψ1, ψ2, X, β0, . . . , βk−1, ψ3), where ψ1 and ψ3 are n-type
descriptors in MFOP1 [<], ψ2 is an n-type descriptor in MFOP2 [<], X ∈ 2P , and βi, for
i = 0, . . . , k−1, are n-type descriptors in MPLP [<pre, (↓i)k−1

i=0], such that, for every P-labeled
DULS t = (U , (↓i)k−1

i=0 , <1, <2, V) and every element k0 in U , it holds that:

t, k0 |= ϕ(x) if and only if there exists (ψ1, ψ2, X, β0, . . . , βk−1, ψ3) in Φ such that
vi(t, k0) |= ψi, for i = 1, 2, 3, V (k0) = X, and t↓i(k0) |= βi, for i = 0, . . . , k − 1.

Proof.
By Corollary 4.1.6, ϕ(x) is equivalent to a finite disjunction

∨{ψn
t′,k′0

| t′, k′0 |= ϕ(x)}.
Hence, t, k0 |= ϕ(x) if and only if there exist t′, k′0 such that t′, k′0 |= ϕ(x) and t, k0 |= ψn

t′,k′0
(x).

By Theorem 4.1.5, this holds true if and only if there exist t′, k′0 such that t′, k′0 |= ϕ(x) and
(t, k0) ∼n (t′, k′0). We claim that this is equivalent to the existence of t′′, k′′0 such that
t′′, k′′0 |= ϕ(x), vi(t, k0) ∼n vi(t′′, k′′0), for i = 1, 2, 3, V (k0) = V ′′(k′′0) and t↓i(k0) ∼n t′′↓i(k′′0),
for i = 0, . . . , k − 1. We show the claim. The implication from right to left follows from
Lemma 4.1.7 by setting t′ = t′′ and k′0 = k′′0 . To prove the opposite implication, take t′′ = t
and k′′0 = k0. Since ∼n is reflexive, we only have to show that t, k0 |= ϕ(x). Observe that,
by hypothesis, (t, k0) ∼n (t′, k′0) and (t′, k′0) |= ϕ(x). Since ϕ(x) is of quantifier depth n, by
applying Theorem 4.1.5, we have that t, k0 |= ϕ(x).

We proceed by invoking the analogous of Theorem 4.1.5 for sequences and k-ary trees,
to obtain, respectively, appropriate n-type descriptors ψi = ψn

vi(t′′,k′′0), for i = 1, 2, 3, and
βi = ψn

t′′↓i(k
′′
0)

, for i = 0, . . . , k− 1, such that vi(t, k0) |= ψi, for i = 1, 2, 3, and t↓i(k0) |= βi, for

i = 0 . . . k−1. By collecting all such n-type descriptors, we obtain a set Φ as required. Since,
for every n ≥ 0, the equivalence relation ≡n has finite index, by virtue of Theorem 4.1.5,
there is a finite number of non equivalent n-type descriptors. From this, it follows that the
set Φ is finite.

It is possible to prove a similar decomposition lemma for the second-order case. To
state it, we need the following definition. Let t be a P-labeled DULS and P0 be a full path

4.1. DOWNWARD UNBOUNDED LAYERED STRUCTURES 61

in t. We denote by v2(t, P0) the P2-labeled infinite sequence whose l-th element has label
X ∪ {Z(a1,b1),...,(ak−1,bk−1)}, X ⊆ P, if V (P0(l)) = X, and, for r = 1, . . . , k − 1, the ar-th
son of it that does not belong to P0 roots a tree of n-type br. The proof of Lemma 4.1.9 is
similar to that of Lemma 4.1.8.

Lemma 4.1.9 (Second Decomposition Lemma)

For every MPLP [<1, <2, (↓i)k−1
i=0]-formula ϕ(X) of quantifier depth n, there exists a fi-

nite set Φ of elements of the form (ψ1, ψ2, ψ3), where ψ1 and ψ3 are n-type descriptors in
MFOP1 [<] and ψ2 is an n-type descriptor in MFOP2 [<] such that, for every P-labeled DULS
t and every full path P0 in t, it holds that:

t, P0 |= ϕ(X) if and only if there exists (ψ1, ψ2, ψ3) in Φ such that v1(t, k0) |= ψ1,
v2(t, P0) |= ψ2 and v3(t, k0) |= ψ3.

We are now ready to prove the following result.

Theorem 4.1.10 (Expressiveness of PLTL(CTL∗k))

PLTL(CTL∗k) is expressively equivalent to MPLP [<1, <2, (↓i)k−1
i=0], when interpreted over

DULSs.

Proof.
The embedding of temporal formulas into monadic ones has been proved in Theo-

rem 4.1.2. We prove that every MPLP [<1, <2, (↓i)k−1
i=0]-sentence corresponds to an equivalent

PLTL(CTL∗k)-formula. We focus on the two relevant cases: ϕ = ∃xφ(x) and ϕ = ∃Xφ(X).
Let ϕ = ∃xφ(x). By Lemma 4.1.8, checking φ(x) in (t, k0) is equivalent to checking

certain sentences ψ1, ψ2, β0, . . . , βk−1, and ψ3, and a label X ∈ 2P , taken from a finite set
Φ, in particular substructures of t. It suffices to consider the case in which |Φ| = 1. By
Theorem 2.4.4, the first-order sentence ψ1 can be mapped into an equivalent PLTL-formula
h1. Given the formula h1, we construct the dual formula h−1

1 ∈ PPLTL, that is, a formula
such that, for every finite sequence w of length l, w, 0 |= h1 if and only if w, l − 1 |= h−1

1 .
The formula h−1

1 contains atomic propositions P ∈ P1, which must be replaced by suitable
CTL∗k-formulas qP . Hereinafter, we will denote by pj the CTL∗k-formula equivalent to the
j-th n-type descriptor, whose existence is guaranteed by Theorem 2.4.7. Let qP = P if
P ∈ P, and qP = pj if P = Zj . Let (h−1

1)′ be the PPLTL(PCTL∗k)-formula obtained from
h−1

1 by replacing propositions P ∈ P1 by formulas qP (and using the symbols © , 4 , ©−1,
and 4−1 for the linear time operators that occur in h−1

1).
In a similar way, the first-order sentence ψ3 can be mapped into a PLTL-formula h3.

The formula h3 can be turned into a PLTL(CTL∗k)-formula (h3)′ by replacing propositions
P ∈ P1 by CTL∗k-formulas qP as in the previous case (notice that, in this case, linear past
operators are not needed).

Finally, the first-order sentence ψ2 can be mapped into an equivalent PLTL-formula h2,
whose dual version h−1

2 is obtained as already explained in the case of h1. The formula h−1
2

contains atomic propositions P ∈ P2, which must be replaced by suitable CTL∗k-formulas
qP . Let qP = P if P ∈ P, and qP =

∧k−1
r=1 EXarpbr if P = Z((a1,b1),...,(ak−1,bk−1)). The

PCTL∗k-formula (h−1
2)′ is obtained by replacing propositions P ∈ P2 by formulas qP .

As for the path sentences βi, for i = 0, . . . , k − 1, let bi be the index of the n-type
descriptor βi. By exploiting once more Theorem 2.4.7, we obtain a CTL∗k-formula pbi , for
each i = 0, . . . , k − 1.

62 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

Merging together the above results, we have that the given MPLP [<1, <2, (↓i)k−1
i=0]-formula

ϕ is equivalent to the PPLTL(PCTL∗k)-formula:

pϕ = 3(©−1(h−1
1)′ ∧ EFp ∧ © (h3)′),

where

p = X−1(h−1
2)′ ∧

∧

P∈X

P ∧
k−1∧

i=0

EXipbi .

Theorem 4.1.3 guarantees that there exists a PLTL(CTL∗k)-formula p′ϕ, devoid of past
operators, which is equivalent to pϕ, and, thus, equivalent to ϕ.

Let ϕ = ∃Xφ(X). By Lemma 4.1.9, checking φ(X) in (t, P0) is equivalent to checking
certain sentences ψ1, ψ2, and ψ3 in particular substructures of t. In analogy to the case
of first-order quantification, ψ1, ψ2, and ψ3 can be replaced by a PPLTL(PCTL∗k) formula
(h−1

1)′, a CTL∗k formula (h2)′, and a PLTL(CTL∗k) formula (h3)′, respectively. It is easy
to check that the MPLP [<1, <2, (↓i)k−1

i=0]-formula ϕ is equivalent to the PPLTL(PCTL∗k)-
formula:

pϕ = 3(©−1(h−1
1)′ ∧ E(h2)′ ∧ © (h3)′).

Again, by Theorem 4.1.3, there exists a PLTL(CTL∗k)-formula p′ϕ which is equivalent to
pϕ, and, thus, equivalent to ϕ.

We show some examples of properties that can be expressed in PLTL(CTL∗k). Let us
consider the following property over DULSs: we say that proposition P densely holds at
node x if, for every i ≥ 0, there is y ∈↓i (x) such that P holds at y. We recall that, for i ≥ 0,
↓i (x) is the i-th layer of the tree rooted at x. The property ‘P densely holds at some x’ can
be written in monadic path logic as follows:

∃X(x ∈ X ∧ ∀y(y ∈ X → x ≤2 y) ∧ ∀y(y ∈ X → y ∈ P)).

The same property can be (more concisely) expressed in PLTL(CTL∗k) by the formula

3EFEGP.

Moreover, the property ‘P holds along the leftmost path’, where the leftmost path is the
path 00, 01, . . ., is encoded in monadic path logic as

∃X(00 ∈ X ∧ ∀y(y ∈ X → ↓0(y) ∈ X) ∧ ∀y(y ∈ X → y ∈ P)),

where 00 is first-order definable as follows: x = 00 iff ∀y(x ≤1 y). The same property is
(more elegantly) expressible in temporal logic as follows:

E(P ∧ GX0P).

However, things are not always that easy. For instance, formulas of the form ‘there is exactly
one point in which P holds’ can be easily encoded in first-order logic as ∃x(x ∈ P ∧ ∀y(y 6=
x → y 6∈ P)), while it is not easy at all to express them in temporal logic. Moreover,
since MPLP [<1, <2, (↓i)k−1

i=0] is nonelementarily decidable, while PLTL(CTL∗k) is elementarily
decidable, the translation τ of path formulas into temporal formulas in nonelementary. In
other words, for every n ∈ N, there is a path formula ϕ such that τ(ϕ) has length greater
than κ(n, |ϕ|) (an exponential tower of height n).

4.1. DOWNWARD UNBOUNDED LAYERED STRUCTURES 63

We consider the decidability and the complexity of the combined temporal logic PLTL(CTL∗k).
Since PLTL(CTL∗k) can be embedded into MPLP [<1, <2, (↓i)k−1

i=0] over DULSs, and since the
latter is decidable, we have that PLTL(CTL∗k) over DULSs is decidable. Unfortunately,
MPLP [<1, <2, (↓i)k−1

i=0] is nonelementarily decidable. On the contrary, PLTL(CTL∗k) is ele-
mentarily decidable, and its exact complexity is shown in the following result.

Theorem 4.1.11 (Complexity of PLTL(CTL∗k))
The satisfiability problem for PLTL(CTL∗k) over DULSs is 2EXPTIME-complete.

Proof.
Hardness follows from 2EXPTIME-hardness of the component logic CTL∗ [116]. Recall

that B is the class of Büchi sequence automata (Definition 2.3.2) and Rk is the class of
Rabin k-ary tree automata (Definition 2.3.6). To show that the satisfiability problem for
PLTL(CTL∗k) belongs to 2EXPTIME, we give a doubly exponential time algorithm that first
embeds temporalized formulas in PLTL(CTL∗k) into equivalent temporalized automata in
B(Rk), and then checks B(Rk)-automata for emptiness. The embedding of temporal formulas
into automata is described in the proof of Theorem 3.2.7. Recall that PLTL-formulas can be
embedded into B-automata with a singly exponential blow-up in the length of the formula,
and CTL∗k-formulas can be embedded into Rk-automata with a doubly exponential number
of states and a singly exponential number of accepting pairs in the length of the formula.
Given a PLTL(CTL∗k)-formula φ of length n, the equivalent formula ψ resulting from the
partition step in the proof of Theorem 3.2.7 is obtained by replacing CTL∗k-formulas in φ
by finite disjunctions of CTL∗k-formulas taken from a set Λ. Since the cardinality of Λ is
O(2n), the formula ψ has length O(2n). The formula ψ↑ has the same length and hence
the corresponding Büchi sequence automaton has O(22n

) states. Each CTL∗k-formula in ψ
belonging to Λ has length O(n) and is associated with a Rabin tree automata with O(2n·2n

)
states and O(2n) accepting pairs. Hence, the resulting B(Rk)-automaton Aψ associated
with ψ has O(22n

) states, and is labeled with O(2n) Rabin tree automata with O(2n·2n
)

states and O(2n) accepting pairs. We check the emptiness of Aψ by using the algorithm
described in the proof of Theorem 3.2.5. That algorithm checks for emptiness the Rabin tree
automata labelling Aψ, and then it checks for emptiness the Büchi sequence automaton A↑ψ.
Since Rabin tree automata can be checked for emptiness in polynomial time in the number
of states and singly exponential time in the number of accepting pairs, and the emptiness
problem for Büchi sequence automata is polynomial in the number of states, we conclude
that Aψ can be checked for emptiness in time doubly exponential.

In Section 4.1.2 we will introduce an elementarily decidable extension of PLTL(CTL∗k)
that is expressively equivalent to the full second-order theory of DULSs.

4.1.2 Automata for DULSs

In this section we define finite-state automata accepting labeled DULSs. We study both the
expressive power and the complexity of the defined automata class. Moreover, we exploit
automata to devise a temporal logic counterpart of the full second-order theory of DULSs.

Recall that DULSs correspond to tree sequences. Since tree sequences are temporalized
models embedding trees into sequences, we can use temporalized automata in the class
A1(A2), where A1 is a sequence automata class and A2 is a tree automata class, to express
properties of DULSs. In particular, we will consider the temporalized automata class B(Rk)
embedding Rabin k-ary tree automata (cf. Definition 2.3.6) into Büchi sequence automata

64 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

(cf. Definition 2.3.6). We call an automaton in B(Rk) an infinite tree sequence automaton.
Since both B and Rk are effectively closed under Boolean operations and are decidable, so
is the class B(Rk) of infinite tree sequence automata (cf. Theorems 3.2.4 and 3.2.5). The
complexity of the emptiness problem for infinite tree sequence automata is the following. Let
A ∈ B(Rk). Let n be the number of states of A and N (resp. M) be the maximum number
of states (resp. accepting pairs) of a Rabin tree automaton labelling transitions in A. Recall
that the emptiness of Büchi sequence automata can be checked in polynomial time in the
number of states and that of Rabin tree automata can be verified in time polynomial in the
number of states and exponential in the number of accepting pairs. Hence, accordingly to the
algorithm proposed in the proof of Theorem 3.2.5 for checking the emptiness of temporalized
automata, the complexity to verify if A accepts the empty language is polynomial in n and
N , and exponential in M .

Theorem 4.1.12 (Complexity of infinite tree sequence automata)
The emptiness problem for infinite tree sequence automata is decidable in polynomial time

in the number of states, and exponential time in the number of accepting pairs.

The following theorem proves that infinite tree sequence automata are expressively equiv-
alent to the monadic second-order theory of DULSs.

Theorem 4.1.13 (Expressiveness of infinite tree sequence automata)
Infinite tree sequence automata are expressively equivalent to the monadic second-order

logic over DULSs.

Proof.
We prove that:

1. for every automaton A ∈ B(Rk) over Γ(Σ) there is a formula ϕA ∈ MSOPΣ
[<1, <2, (↓i

)k−1
i=0] over PΣ such that L(A) = M(ϕA);

2. for every formula ϕ ∈ MSOP [<1, <2, (↓i)k−1
i=0] over P there is an automaton Aϕ ∈ B(Rk)

over some Γ(2P) such that M(ϕ) = L(Aϕ).

We follow a standard proof technique for embedding automata into monadic formulas
and viceversa (see, for instance, the proof of Büchi’s Theorem in [114]). We first introduce
some shorthands that are easily definable in the monadic second-order logic over DULSs. Let
+1 be a binary predicate such that +1(x, y) iff x and y belong to the first domain and y is
the immediate successor of x. We will write x + 1 ∈ X for ∃y(+1(x, y) ∧ y ∈ X). Moreover,
let T0(x) be a shorthand for “x belongs to the first domain”, 00 ∈ X be a shorthand for “the
first element of the first domain belongs to X”, and Path(X, x) be a shorthand for “X is a
path rooted at x”.

We prove point 1 for k = 2. The generalization to k > 2 is straightforward. Let A =
(Q, q0, ∆, F) be a B(R2)-automaton over Γ(Σ) ⊂ R2 accepting tree sequences in S(T2(Σ)).
We will construct a formula ϕA ∈ MSOPΣ

[<1, <2, ↓0, ↓1] using monadic predicates in PΣ =
{Pa | a ∈ Σ} and interpreted over S(T2(Σ)) such that L(A) = M(ϕA). We assume Q =
{0, . . . ,m} and q0 = 0. For every Z ∈ Γ(Σ), let Z = (QZ , q0

Z , ∆Z , ΓZ) over Σ, with QZ =
{0, . . . ,mZ}, q0

Z = 0, and ΓZ = {(LZ
i , UZ

i) | 1 ≤ i ≤ rZ}.
The formula ϕA in MSOPΣ

[<1, <2, ↓0, ↓1] corresponding to automata A encodes the
combined acceptance condition for B(R2)-automata. The outermost part of the sentence

4.1. DOWNWARD UNBOUNDED LAYERED STRUCTURES 65

expresses the existence of an accepting run over the first layer of the tree sequence for the
Büchi sequence automaton A↑. It uses second-order variable Xi for the set of positions of
the run that assume state i, and monadic predicate QZ for the set of positions of the run
that are labeled with Rabin tree automaton Z. The innermost part RAC(x,Z) captures the
existence of an accepting run over the tree rooted at x for the Rabin tree automaton Z. It
uses second-order variables Yi for the set of positions of the run that assume state i. The
formula ϕA is the following:

(∃QZ)Z∈Γ(Σ)(∃Xi)m
i=0(

∧m
i=0 ∀x(x ∈ Xi → T0(x)) ∧ ∧

Z∈Γ(Σ) ∀x(x ∈ QZ → T0(x))∧
00 ∈ X0 ∧

∧
i6=j ¬∃y(y ∈ Xi ∧ y ∈ Xj)∧

∀x(T0(x) → ∨
(i,Z,j)∈∆(x ∈ Xi ∧ x ∈ QZ ∧ x + 1 ∈ Xj))∧∨

i∈F ∀x(T0(x) → ∃y(T0(y) ∧ x <1 y ∧ y ∈ Xi))∧∧
Z∈Γ(Σ) ∀x(x ∈ QZ → RAC(x,Z))

where RAC(x,Z) stands for:

(∃Yi)
mZ
i=0(

∧mZ
i=0 ∀y(y ∈ Yi → x ≤2 y) ∧ x ∈ Y0 ∧

∧
i6=j ¬∃y(y ∈ Yi ∧ y ∈ Yj)∧

∀y(x ≤2 y → ∨
(i,a,j0,j1)∈∆Z

(y ∈ Yi ∧ y ∈ Pa ∧ ↓0(y) ∈ Yj0 ∧ ↓1(y) ∈ Yj1))∧
∀W (Path(W,x) → ∨rZ

i=0(
∧

j∈LZ
i
∃u(u ∈ W ∧ ∀v(v ∈ W ∧ u <2 v → v 6∈ Yj))∧∨

j∈UZ
i
∀u(u ∈ W → ∃v(v ∈ W ∧ u <2 v ∧ v ∈ Yj)))))

We now prove point 2. Let P = {P1, . . . , Pn}. We prove this direction for MSOP [<1, <2

, (↓i)k−1
i=0 ,+1]. It is immediate to see that the latter is equivalent to MSOP [<1, <2, (↓i)k−1

i=0].
Given a formula in MSOP [<1, <2, (↓i)k−1

i=0 ,+1] using monadic predicates in P and interpreted
over P-labeled tree sequences in S(Tk(P)), we will construct an automaton Aϕ ∈ B(Rk) over
some Γ(2P) and accepting in S(Tk(P)) such that L(Aϕ) = M(ϕ).

We first remove the ordering relations <1 and <2 as follows. We replace x <1 y by

T0(x) ∧ T0(y) ∧ ∀X(x + 1 ∈ X ∧ ∀z(z ∈ X → z + 1 ∈ X) → y ∈ X)),

and x <2 y by

∀X(
k−1∧

i=0

↓i(x) ∈ X ∧ ∀z(z ∈ X →
k−1∧

i=0

↓i(z) ∈ X) → y ∈ X).

Hence MSOP [<1, <2, (↓i)k−1
i=0 , +1] is as expressive as MSOP [(↓i)k−1

i=0 , +1]. In the follow-
ing, we introduce an equivalent variant of MSOP [(↓i)k−1

i=0 , +1], which will be denoted by
MSO[(↓i)k−1

i=0 , +1], which uses free set variables Xi in place of predicate symbols Pi and is
interpreted over {0, 1}n-labeled tree sequences in S(Tk({0, 1}n)). The idea is to encode a set
X ⊆ P with the string i1 . . . , in ∈ {0, 1}n such that, for j = 1, . . . , n, ij = 1 iff Pj ∈ X. We
now reduce MSO[(↓i)k−1

i=0 ,+1] to a simpler formalism MSO0[(↓i)k−1
i=0 , +1], where only second-

order variables Xi occur and atomic formulas are of the forms Xi ⊆ Xj (Xi is a subset of
Xj), Projm(Xi, Xj), with m = 0, . . . , k − 1 (Xi and Xj are the singletons {x} and {y},
respectively, and ↓m(x) = y), and Succ(Xi, Xj) (Xi and Xj are the singletons {x} and {y},
respectively, and x + 1 = y). This step is performed as in the proof of Büchi’s Theorem.

Finally, given a MSO0[(↓i)k−1
i=0 , +1]-formula ϕ(X1, . . . , Xn), we prove, by induction on the

complexity of ϕ, that there exists a temporalized automaton Aϕ accepting in S(Tk({0, 1}n))
such that M(ϕ) = L(Aϕ). A corresponding automaton accepting in S(Tk(P)) can be ob-
tained in the obvious way. As for atomic formulas, let αi,j be the Rabin tree automaton over
{0, 1}n for Xi ⊆ Xj . The temporalized automaton for Xi ⊆ Xj is depicted in Figure 4.2

66 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

α n

i,j

ζ ζ

α
i α

j

ζ ζ

i,jα

Figure 4.2: Temporalized automata for atomic formulas.

(top). Moreover, let ζ be the Rabin tree automaton over {0, 1}n acceptance the singleton set
containing a tree labeled with 0n everywhere, and let αm

i,j be the Rabin tree automaton over
{0, 1}n for Projm(Xi, Xj). The temporalized automaton for Projm(Xi, Xj) is depicted in
Figure 4.2 (middle). Finally, let αi be the Rabin tree automaton over {0, 1}n acceptance the
singleton set containing a tree labeled with 0i−110n−i at the root, and labeled with 0n else-
where. The combined automaton for Succ(Xi, Xj) is depicted in Figure 4.2 (bottom). The
induction step is clear from the closure of B(Rk) automata under Boolean operations and
projection. It is easy to see that B(Rk)-automata are closed under projection: given a B(Rk)
automaton A, the corresponding projected B(Rk) automaton is obtained by projecting every
Rabin automaton that labels some transition of A.

With the aid of infinite tree sequence automata, we are able to extend the result proved
in Theorem 4.1.10 to the full second-order theory of DULSs. We know that B ¿ QLTL
and B ¿ EQLTL (cf. Theorem 2.3.7 point 2 and Theorem 2.4.5). Moreover, Rk ¿ QCTL∗k
and Rk ¿ EQCTL∗k (cf. Theorem 2.3.7 point 4 and Theorem 2.4.8). Since Rabin tree
automata are closed under Boolean operations, by applying Theorem 3.2.7, we have that
QLTL(QCTL∗k) ¿ B(Rk) and EQLTL(EQCTL∗k) ¿ B(Rk)1. From Theorem 4.1.13, we con-
clude that QLTL(QCTL∗k) ¿ MSOP [<1, <2, (↓i)k−1

i=0] and EQLTL(EQCTL∗k) ¿ MSOP [<1

, <2, (↓i)k−1
i=0]. Hence we have proved the following.

Theorem 4.1.14 (Expressiveness of QLTL(QCTL∗k) and EQLTL(EQCTL∗k))
QLTL(QCTL∗k) and EQLTL(EQCTL∗k) are expressively equivalent to MSOP [<1, <2, (↓i

)k−1
i=0], when interpreted over DULSs.

By way of example, the property ‘P holds everywhere on every even tree’ can be encoded
in EQLTL(CTL∗k) as follows:

∃Q(Q ∧ ©¬Q ∧ 2(Q ↔ © © Q) ∧ 2(Q → AGP)).

1It is worth noting that the partition step in Theorem 3.2.7 for temporal formulas in EQCTL∗k generates
formulas of the form ¬∃Q1 . . . ∃Qnϕ, with ϕ a CTL∗k-formula, which are not in the language of EQCTL∗k,
since the latter is not closed under negation. However, formulas of the form ¬∃Q1 . . . ∃Qnϕ can still be
embedded into Rabin tree automata. The Rabin tree automaton for ¬∃Q1 . . . ∃Qnϕ is obtained by taking
the complementation of the projection, with respect to Q1, . . . , Qn, of the Rabin tree automaton for ϕ.

4.2. N -LAYERED STRUCTURES 67

It is worth noting that this property cannot be expressed in PLTL(CTL∗k), since PLTL cannot
express the property ‘P holds on every even point’ [125]. Similarly, the property ‘P holds
everywhere on every even domain’ can be encoded in PLTL(EQCTL∗k) as follows:

2∃Q(Q ∧ AX¬Q ∧ AG(Q ↔ AXAXQ) ∧ AG(Q → P)).

It is worth noting that this property cannot be expressed in PLTL(CTL∗k).
Since MSOP [<1, <2, (↓i)k−1

i=0] is decidable, both QLTL(QCTL∗k) and EQLTL(EQCTL∗k)
are decidable. Moreover, the latter is elementarily decidable.

Theorem 4.1.15 (Complexity of EQLTL(EQCTL∗k))
The satisfiability problem for EQLTL(EQCTL∗k) over DULSs is in ELEMENTARY.

Proof.
The proof is similar to that of Theorem 4.1.11. An embedding into B(Rk)-automata,

as described in the proof of Theorem 3.2.7, is used to decide EQLTL(EQCTL∗k). Note that
EQLTL can be elementarily embedded into Büchi sequence automata. Indeed, given an
EQLTL-formula ∃Q1 . . . ∃Qnϕ, the PLTL-formula ϕ can be converted into a Büchi sequence
automaton Aϕ of size O(2|ϕ|). A Büchi sequence automaton for ∃Q1 . . . ∃Qnϕ can be ob-
tained by taking the projection of Aϕ with respect to letters Q1, . . . , Qn, that is, by deleting
letters Q1, . . . , Qn from the transitions of Aϕ. The resulting automaton is of size O(2|ϕ|).
Similarly, EQCTL∗k-formulas can be embedded into Rabin tree automata with a doubly ex-
ponential number of states and a singly exponential number of accepting pairs in the length
of the formula. Moreover, as previously pointed out, the partition step in Theorem 3.2.7
for temporal formulas in EQCTL∗k generates formulas of the form ¬∃Q1 . . .∃Qnϕ which are
not in the language of EQCTL∗k. However, a Rabin tree automaton for ¬∃Q1 . . .∃Qnϕ is
obtained by taking the complementation of the projection, with respect to Q1, . . . , Qn, of the
Rabin tree automaton for ϕ. The resulting automaton for ¬∃Q1 . . .∃Qnϕ has elementary
size. Hence, any EQLTL(EQCTL∗k) can be converted into an equivalent B(Rk)-automaton
of elementary size. Since B(Rk)-automata are elementarily decidable, we have the thesis.

Summing up, we have that EQLTL(EQCTL∗k) is elementarily decidable and expressively
equivalent to MSOP [<1, <2, (↓i)k−1

i=0] over DULSs.

4.2 n-layered structures

In this section we define temporal logics (Section 4.2.1) and finite-state automata (Sec-
tion 4.2.2) for n-LSs. We study their expressive power with respect to that of monadic
theories over n-LSs as well as their decidability and complexity.

4.2.1 Temporal logics for n-LSs

Temporal logics for n-LSs can be defined as done for DULSs. Let Fk(P) be the set of P-
labeled finite k-ary trees (D, (↓i)k−1

i=0 , <pre, V) with D a finite k-ary tree domain and V : D →
2P . Moreover, let Fn

k (P) be the set of P-labeled finite complete k-ary trees of height n. Let
S(Fk(P)) be the set of infinite sequences of P-labeled finite k-ary trees, that is, temporalized
models (N, <, g) where g : W → Fk(P) is a total function mapping worlds in W into P-
labeled finite k-ary trees in Fk(P). Similarly S(Fn

k (P)) is defined. It is immediate to see that
P-labeled n-LSs correspond to tree sequences in S(Fn

k (P)), and vice versa. Accordingly, we

68 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

can use temporalized logics T1(T2), where T1 is a linear time logic and T2 is a branching
time logic, to express properties of n-LSs. In particular, the temporalized logic PLTL(CTL∗k),
interpreted over (temporalized models corresponding to) n-LSs, is expressively equivalent to
the monadic path logic theory of n-LSs. Here, we give a strong interpretation to the next
operators of CTL∗k: Xϕ holds true on a node u iff u has a successor v and ϕ holds on v.
Similarly for Xi, for i = 0, . . . , k − 1. Consequently, Xtrue holds true on u iff u has a
successor, and ¬Xtrue holds true on u iff u is a leaf. The proof of Theorem 4.2.1 is similar
to that of Theorem 4.1.10.

Theorem 4.2.1 (Expressiveness of PLTL(CTL∗k))
PLTL(CTL∗k) is expressively equivalent to MPLP [<, (↓i)k−1

i=0], when interpreted over n-
LSs.

By way of example, consider a 2-layered binary structure. The property ‘P holds on
every even point of the finest domain T 1’ can be encoded in PLTL(CTL∗k) as follows:

2EX0P.

However, the property ‘P holds on every even point of the coarsest domain T 0’ cannot be
expressed in PLTL(CTL∗k), since PLTL cannot express the property ‘P holds on every even
point’ [125].

Since MPLP [<, (↓i)k−1
i=0] over n-LSs is decidable, we have that PLTL(CTL∗k) over n-LSs

is decidable too. In Section 4.2.2 we will study the complexity of PLTL(CTL∗k) and we will
introduce a decidable extension of PLTL(CTL∗k) that is expressively equivalent to the full
second-order theory of n-LSs.

4.2.2 Automata for n-LSs

In Section 4.2.1 we have showed that n-LSs correspond to (particular) temporalized models
embedding trees into sequences. Hence, we can use temporalized automata in the class
A1(A2), where A1 is a sequence automata class and A2 is a tree automata class, to express
properties of n-LSs. Consider the temporalized automata class B(Dk) embedding finite k-
ary tree automata (cf. Definition 2.3.5) into Büchi sequence automata (cf. Definition 2.3.6).
We call an automaton in B(Dk) a finite tree sequence automaton. Since both B and Dk

are effectively closed under Boolean operations and are decidable, so is the class B(Dk) of
finite tree sequence automata (cf. Theorems 3.2.4 and 3.2.5). However, finite tree sequence
automata do not fit our purposes, since they accept tree sequences in S(Fk(Σ)), while n-
LSs correspond to tree sequences in S(Fn

k (Σ)). Nevertheless, S(Fn
k (Σ)) ⊂ S(Fk(Σ)), and

automata in B(Dk) work over trees sequences in S(Fn
k (Σ)) as well. We show that B(Dk)-

automata are closed under Boolean operations over the set S(Fn
k (Σ)). More precisely, let

A,B ∈ B(Dk). We show that:

• Complementation: there is C ∈ B(Dk) such that

L(C) ∩ S(Fn
k (Σ)) = S(Fn

k (Σ)) \ L(A);

• Union: there is C ∈ B(Dk) such that

L(C) ∩ S(Fn
k (Σ)) = (L(A) ∪ L(B)) ∩ S(Fn

k (Σ));

4.2. N -LAYERED STRUCTURES 69

• Intersection: there is C ∈ B(Dk) such that

L(C) ∩ S(Fn
k (Σ)) = (L(A) ∩ L(B)) ∩ S(Fn

k (Σ)).

As for complementation, let C = A. We have:

L(C) ∩ S(Fn
k (Σ)) =

L(A) ∩ S(Fn
k (Σ)) =

(S(Fk(Σ)) \ L(A)) ∩ S(Fn
k (Σ)) =

(S(Fk(Σ)) ∩ S(Fn
k (Σ))) \ (L(A) ∩ S(Fn

k (Σ))) =
S(Fn

k (Σ)) \ (L(A) ∩ S(Fn
k (Σ))) =

S(Fn
k (Σ)) \ L(A)

Similarly, C = A ∪B in the case of union and C = A ∩B in the case of intersection.
The following theorem proves that finite tree sequence automata and monadic second-

order logic have the same expressive power over n-LSs.

Theorem 4.2.2 (Expressiveness of finite tree sequence automata)

Finite tree sequence automata are expressively equivalent to monadic second-order logic
over n-LSs.

Proof.
We prove that:

1. for every automaton A ∈ B(Dk) over Γ(Σ) there is a formula ϕA ∈ MSOPΣ
[<, (↓i)k−1

i=0]
such that L(A) ∩ S(Fn

k (Σ)) = M(ϕA);

2. for every formula ϕ ∈ MSOP [<, (↓i)k−1
i=0] there is an automaton Aϕ ∈ B(Dk) over some

Γ(2P) such that M(ϕ) = L(Aϕ) ∩ S(Fn
k (P)).

The proof is similar to that of Theorem 4.1.13. The embedding of automata into formu-
las is performed by encoding the combined acceptance condition for B(Dk)-automata into
MSOP [<, (↓i)k−1

i=0]. The embedding of formulas into automata takes advantage of the closure
properties of B(Dk)-automata over n-LSs.

We now study the decidability of the emptiness problem for B(Dk)-automata over S(Fn
k (Σ)).

More precisely, given a B(Dk)-automaton A, we study the following problem: is there a tree
sequence t ∈ S(Fn

k (Σ)) such that t ∈ L(A)? Equivalently, does L(A) ∩ S(Fn
k (Σ)) 6= ∅? By

virtue of Theorem 4.2.2, the described problem can be reduced to the satisfiability prob-
lem for the monadic second-order logic over n-LSs, which is known to be nonelementarily
decidable. A finer result is the following.

Theorem 4.2.3 The emptiness problem for finite tree sequence automata over n-LSs is
decidable in polynomial time.

Proof.
We give a polynomial reduction of the the emptiness problem for B(Dk)-automata over

S(Fn
k (Σ)) to the the emptiness problem for B(Dk)-automata over S(Fk(Σ)). Since Büchi

sequence automata and finite tree automata are decidable in polynomial time, the latter is
decidable in polynomial time too (cf. Theorem 3.2.5).

70 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

Let A be a finite tree sequence automaton. The problem is to verify if L(A)∩S(Fn
k (Σ)) 6=

∅ We build a finite tree sequence automaton Fn of size n recognizing the set S(Fn
k (Σ))

of Σ-labeled sequences of complete k-ary trees of height n. The temporalized automaton
Fn = ({q}, q, ∆, {q}), where ∆(q,X, q) for every X ∈ Γ(Σ). The alphabet Γ(Σ) = {Yn},
where Yn is a finite tree automaton accepting Fn

k . The automaton Yn = (Q, in,∆, F), where
Q = {q1, . . . , qn}, in(a, q1) for every a ∈ Σ, ∆((qi)k, a, qi+1) for every i = 1, . . . , n − 1 and
every a ∈ Σ, and F = {qn}. Clearly, Yn accept a finite tree t iff t is complete, k-ary and
of height n. Moreover, Fn accepts the set of infinite sequences of complete, k-ary trees of
height n. Note that the size of Fn is n. Hence the problem L(A)∩S(Fn

k (Σ)) 6= ∅ reduces to
the question L(A ∩ Fn) 6= ∅.

A consequence is that PLTL(CTL∗k) over n-LSs is elementarily decidable. Given a
PLTL(CTL∗k)-formula ϕ, we construct a B(Dk)-automaton Aϕ as done in the proof of The-
orem 3.2.7, and check whether Aϕ accepts some tree sequence in S(Fn

k (Σ)) as described in
the proof of Theorem 4.2.3. An easy analysis of the complexity of the described algorithm
yields the following bound.

Theorem 4.2.4 (Complexity of PLTL(CTL∗k))

The satisfiability problem for PLTL(CTL∗k) over n-LSs is in 2EXPTIME.

As done for DULSs, Theorem 4.2.1 can be extended to the full second-order case by taking
advantage of automata. The proof of the following result is similar to that of Theorem 4.1.14

Theorem 4.2.5 (Expressiveness of QLTL(QCTL∗k) and EQLTL(EQCTL∗k))

QLTL(QCTL∗k) and EQLTL(EQCTL∗k) are expressively equivalent to MSOP [<, (↓i)k−1
i=0],

when interpreted over n-LSs.

For instance, consider a 2-layered binary structure. The property ‘P holds on every even
point of the coarsest domain T 0’ can be expressed in EQLTL(CTL∗k) as follows:

∃Q(Q ∧ ©¬Q ∧ 2(Q ↔ © © Q) ∧ 2(Q → P)).

Finally, we have the following result.

Theorem 4.2.6 (Complexity of EQLTL(EQCTL∗k))

The satisfiability problem for EQLTL(EQCTL∗k) over n-LSs is in 3EXPTIME.

Proof.
The proof is similar to that of Theorem 4.1.15. EQLTL(EQCTL∗k)-formulas are embedded

into B(Dk)-automata of size triple exponential in the length of the input formula. This
bound holds since nondeterministic finite tree automata can be complemented with a singly
exponential blow-up. Finally, the emptiness problem for B(Dk)-automata over n-LSs can be
decided in polynomial time (cf. Theorem 4.2.3).

We conclude that EQLTL(EQCTL∗k) is elementarily decidable and expressively equivalent
to MSOP [<, (↓i)k−1

i=0] over n-LSs.

4.3. UPWARD UNBOUNDED LAYERED STRUCTURES 71

r r r r
r r r

¡
¡

¡
¡

@
@

@
@r r r r

¡ ¡@ @r r r r

. . .
t0 t1 t2 t3

Figure 4.3: A increasing binary tree sequence.

4.3 Upward unbounded layered structures

In this section we define temporal logics and finite-state automata for UULSs. We investigate
both the expressive power and the complexity of the defined tools, and relate them with the
monadic theories interpreted over UULSs. In Section 4.3.1 we define a temporal logic coun-
terpart for the path fragment of the monadic second-order theory of UULSs. In Section 4.3.2
we define finite-state automata for the second-order theory of UULSs. Moreover, we take
advantage of the defined automata class to devise an elementarily decidable temporal logic
counterpart of the full second-order theory of DULSs.

4.3.1 Temporal logics for UULSs

In this section we define a temporal logics for UULSs and study its expressive power. The
complexity of the temporal logic for UULS will be studied in Section 4.3.2.

We start by giving an alternative characterization of UULSs in terms of tree sequences.
To this end, we need to introduce the notions of almost k-ary tree and of increasing tree
sequence. For k ≥ 2, an almost k-ary finite tree is a complete finite tree whose root has
exactly k − 1 sons 0, . . . , k − 2, each of them is the root of a finite (complete) k-ary tree.
Let Hk(P) be the set of P-labeled almost k-ary finite trees. A P-labeled increasing k-ary
tree sequence (ITS, for short) is a tree sequence such that, for every i ∈ N, the i-th tree
of the sequence is a P-labeled almost k-ary tree of height i (cf. Figure 4.3). A P-labeled
ITS can be represented as a temporalized model (N, <, g) such that, for every i ∈ N, g(i) is
the i-th tree of the sequence. Let ITSk(P) be the set of P-labeled k-ary ITSs. It is worth
noting that ITSk(P) is not the temporalized class of models embedding almost k-ary finite
trees into infinite sequences. Indeed, ITSk(P) (S(Hk(P)): an increasing tree sequence is
a particular sequence of almost k-ary finite trees, but a sequence of almost k-ary finite trees
is not necessary increasing.

We show that a P-labeled UULS corresponds to a P-labeled ITS and vice versa. Recall
that an UULS can be viewed as an infinite complete k-ary tree generated from the leaves.
Intuitively, the tree sequence is obtained starting from the first point of the first layer of
the UULS and climbing up along the leftmost path of the structure. The i-th tree in the
sequence is obtained by taking the tree rooted at the i-th point of the leftmost path, and by
deleting from it the subtree rooted at the leftmost son of its root. More precisely, let t be a
k-ary UULS. For every node x in t, we define tx to be the finite complete k-ary tree rooted
at x. For every i ≥ 0, let t̂0i be the almost k-ary finite tree obtained from t0i by deleting,
whenever i > 0, the subtree t0i−1 from it. The ITS (N, <, g) associated with the UULS t is
obtained by defining, for every i ≥ 0, g(i) = t̂0i . The embedding of a binary UULS into a
binary ITS is depicted in Figure 4.4. Similarly, an UULS can be viewed as an ITS.

72 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

r r r r
r r r

¡
¡

¡
¡

@
@

@
@r r r r

¡ ¡@ @r r r r

. . .
00 01 02 03

10 11 12

20 30 21 31

40 50 60 70

Figure 4.4: Mapping an UULS into an increasing tree sequence.

Since UULSs correspond to (particular) temporalized models embedding trees into se-
quences, we can use temporalized logics T1(T2), where T1 is a linear time logic and T2 is a
branching time logic, to express properties of UULSs. More precisely, we interpret T1(T2)
over S(Hk(P)) but, since we are interested in increasing tree sequences, we study the prop-
erties of T1(T2) such as expressiveness and decidability with respect to the set ITSk(P). In
particular, we consider the temporalized logics PLTL(CTL∗k) and PPLTL(PCTL∗k). We show
that, PLTL(CTL∗k) and PPLTL(PCTL∗k) are expressively equivalent to monadic path logic
over increasing tree sequences, or, equivalently, over UULSs. To avoid confusion, as done in
the case of DULSs, we rename linear temporal operators of PLTL and PPLTL as follows:
we write 4 , 4−1, © , ©−1, 2, and 3 instead of U, S, X, X−1, G, and F, respectively.

It will be convenient to work with a different but equivalent monadic path logic that
replaces the total ordering < with a partial ordering <pre defined as follows. Let t = 〈U , (↓i

)k−1
i=0 , <〉 be an UULS. Given x, y ∈ U , we define x <pre y iff y is different from x and y

belongs to the tree tx rooted at x. The following proposition proves that both < and <pre

are redundant in monadic path logic over UULSs.

Proposition 4.3.1 Both MPLP [<, (↓i)k−1
i=0] and MPLP [<pre, (↓i)k−1

i=0] are expressively equiv-
alent to MPLP [(↓i)k−1

i=0] over UULSs.

Proof.
We first show how to encode <pre into MPLP [(↓i)k−1

i=0]. We have that x <pre y if and
only if

(x 6= y) ∧ ∃X(x, y ∈ X ∧ ∃z(
k−1∨

i=0

↓i(z) = x ∧ z 6∈ X)).

We now show how to write < into MPLP [(↓i)k−1
i=0]. We have that x < y if and only if

x ∈ t↓0(y) ∨ y ∈
k−1⋃

i=1

t↓i(x) ∨ ∃z(x ∈ t↓0(z) ∧ y ∈
k−1⋃

i=1

t↓i(z)),

where y ∈ t↓i(x) stands for ↓i(x) ≤pre y, and <pre can be encoded into MPLP [(↓i)k−1
i=0] as

shown above.

It follows that MPLP [<, (↓i)k−1
i=0] and MPLP [<pre, (↓i)k−1

i=0] are expressively equivalent.
The same result holds for monadic chain and second-order logics: in the proof, it is suffi-
cient to constrain second-order variables to range over paths. However, we conjecture that it

4.3. UPWARD UNBOUNDED LAYERED STRUCTURES 73

does not hold in monadic first-order logic. In particular, we have that MFOP [<, (↓i)k−1
i=0] →

MFOP [<pre, (↓i)k−1
i=0], since < can be encoded in MFOP [<pre, (↓i)k−1

i=0] as shown in Proposi-
tion 4.3.1. We conjecture that the opposite embedding does not hold.

We can reason as in Lemma 4.1.3 to prove that PLTL(CTL∗k) and PPLTL(PCTL∗k) are
equivalently expressive. This helps us in proving the expressive equivalence of PLTL(CTL∗k)
with respect to MPLP [<pre, (↓i)k−1

i=0] over UULSs.

Theorem 4.3.2 (Expressiveness of PLTL(CTL∗k))
PLTL(CTL∗k) is expressively equivalent to MPLP [<pre, (↓i)k−1

i=0] over UULSs.

Proof.
The embedding of PLTL(CTL∗k) into MPLP [<pre, (↓i)k−1

i=0] is standard and is similar to
that of Theorem 4.1.2. The only difference in that PLTL-formulas have to be translated over
the leftmost path of the UULS, while CTL∗k-formulas have to be translated over almost k-ary
trees rooted at nodes in the leftmost path of the UULS. Let us define in MPLP [<pre, (↓i)k−1

i=0]
the binary predicate <1 as follows: x <1 y iff D0(x) ∧ D0(y) ∧ y <pre x, where D0(x) iff
x belongs to the leftmost path. We know that there exists a standard translation τx from
PLTL-formulas into equivalent MFOP [<]-formulas with one free variable x. Let τ̂x be the
embedding τx in which symbol < is replaced by symbol <1. Moreover, we know that there
exists a standard translation σx from CTL∗k-formulas into equivalent MPLP [<pre, (↓i)k−1

i=0]-
formulas with one free variable x. Let σ̂x be the embedding σx in which (i) every atomic
formula x = ↓i(y), with i ∈ {0, . . . , k − 2}, is replaced by

(D0(y) → x = ↓i+1(y)) ∧ (¬D0(y) → x = ↓i(y)),

(ii) every atomic formula x = ↓k−1(y) is replaced by

(D0(y) → x = ⊥) ∧ (¬D0(y) → x = ↓k−1(y)),

where ⊥ stands for undefined and is a shorthand for ↓0(00), and (iii) every atomic formula
x <pre y is replaced by

(D0(x) →
k−1∨

i=1

↓i(x) ≤pre y) ∧ (¬D0(y) → x <pre y).

The embedding of PLTL(CTL∗k) into MPLP [<pre, (↓i)k−1
i=0] is obtained by combining the

embeddings τ̂x and σ̂x as in the proof of Theorem 4.1.2.
The opposite direction is more involved but the proof is similar to that of Theorem 4.1.10.

We invite the reader to recall proof of Theorem 4.1.10 before proceeding. The proof exploits
the same decomposition method we used to prove Theorem 4.1.10: we decompose the model
checking problem for an MPLP [<pre, (↓i)k−1

i=0]-formula and an increasing tree sequence into a
finite number of model checking subproblems for formulas and structures that do not refer
to the whole tree sequence anymore, but only to certain disjoint components of it. Then,
taking advantage of such a decomposition step, we map every MPLP [<pre, (↓i)k−1

i=0]-formula
into an equivalent (but sometimes much longer) PLTL(CTL∗k)-formula.

Let t be an increasing tree sequence, whose trees are denoted by t0, t1, . . ., and let r be
a node in t. Let ti be the tree r belongs to. We can decompose the structure t with respect
to r into the following disjoint substructures:

(S1) the finite increasing tree sequence from t0 up to ti−1;

74 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

(S2) the finite path π from the root of ti up to and excluding r, accompanied with the finite
trees rooted at the sons, not belonging to π, of nodes in π;

(S3) the node r;

(S4) the k finite trees rooted at the k sons of r;

(S5) the infinite increasing tree sequence ti+1, ti+2,

It is possible to define Ehrenfeucht games over increasing tree sequences and show that
two increasing tree sequences satisfy the same formulas in MPLP [<pre, (↓i)k−1

i=0] if and only
if Duplicator has a winning strategy over them (as done in Theorem 4.1.5). Moreover, it is
possible to prove that combining local winning strategies on the above defined disjoint parts
of two increasing tree sequences it is possible to obtain a global winning strategy on the two
increasing tree sequences (as done in Lemma 4.1.7). This game-theoretic result permits us
to prove two decomposition lemmas for UULSs, corresponding to Lemmas 4.1.8 and 4.1.9
in the case of DULSs. In particular, the first lemma states that, given the formula φ(x) in
MPLP [<pre, (↓i)k−1

i=0], checking φ(x) in (t, r) is equivalent to verify certain sentences ψ1 on
substructure (S1) of t, ψ2 on substructure (S2) of t, a label X ⊆ P on substructure (S3) of
t, β0, . . . , βk−1 on substructures (S4) of t, and ψ3 on substructure (S5) of t.

The final step of the proof is the mapping of MPLP [<pre, (↓i)k−1
i=0]-formulas into equivalent

PLTL(CTL∗k)-formulas. We focus on the two relevant cases: ϕ = ∃xφ(x) and ϕ = ∃Xφ(X).
Let ϕ = ∃xφ(x). Exploiting the above decomposition lemma, checking φ(x) in (t, r) is
equivalent to verify sentences ψ1 on (S1), ψ2 on (S2), X ⊆ P on (S3), β0, . . . , βk−1 on (S4),
and ψ3 on (S5). As done in the proof of Theorem 4.1.10, formula ψ1 can be mapped into
an equivalent PPLTL(CTL∗k)-formula (h−1

1)′, formula ψ2 can be turned into an equivalent
PCTL∗k-formula (h−1

2)′, formulas βi can be encoded into equivalent CTL∗k-formulas pbi
, and

formula ψ3 can be turned into an equivalent PLTL(CTL∗k)-formula (h3)′. The only difference
with respect to the proof of Theorem 4.1.10 is that here we need to invoke a version of
Theorem 2.4.7 for finite trees. Merging together the above results, we have that the given
MPLP [<pre, (↓i)k−1

i=0]-formula ϕ is equivalent to the PPLTL(PCTL∗k)-formula:

3(©−1(h−1
1)′ ∧ EFp ∧ © (h3)′),

where

p = X−1(h−1
2)′ ∧

∧

P∈X

P ∧
k−1∧

i=0

EXipbi .

Since PLTL(CTL∗k) and PPLTL(PCTL∗k) are equivalent, we have the proof of this part.
The case ϕ = ∃Xφ(X) is similar.

For instance, consider a binary UULS. The property ‘P holds on every exponential point
02i for i ∈ N of the finest domain T 0’ can be easily encoded in PLTL(CTL∗k) as follows:

©2EX1G((Xtrue → X0true) ∧ (¬Xtrue → P)).

It is worth noting that the similar property ‘P holds on every point 2i for i ∈ N’ cannot be
expressed in QLTL.

The temporal logic PLTL(CTL∗k) over UULSs is decidable: given a formula p in PLTL(CTL∗k),
we translate it into an equivalent formula ϕp of MPLP [<pre, (↓i)k−1

i=0], and we check whether

4.3. UPWARD UNBOUNDED LAYERED STRUCTURES 75

ϕp is satisfiable using the algorithm for deciding MPLP [<pre, (↓i)k−1
i=0]. However, the com-

plexity of this procedure is nonelementary in the size of the checked formula. In Section 4.3.2,
we will give an algorithm for deciding PLTL(CTL∗k) with elementary complexity. Moreover,
we will introduce an elementarily decidable extension of PLTL(CTL∗k) that is expressively
equivalent to the full second-order theory of UULSs.

4.3.2 Automata for UULSs

In this section we define finite-state automata accepting labeled UULSs. We study both the
expressive power and the complexity of the defined automata class. Moreover, we exploit
automata to devise a elementarily decidable temporal logic counterpart of the full second-
order theory of UULSs.

We start by introducing the following definition of finite tree. A set D ⊆ N∗ is a tree
domain if:

1. D is prefix closed, that is, x ∈ D and y <pre x implies y ∈ D, for every x, y ∈ N∗;
2. for every x ∈ N∗, xi ∈ D implies xj ∈ D for every i, j ∈ N and j < i.

A finite tree is a relational structure 〈D,<pre〉, where D is a finite tree domain.

Definition 4.3.3 (Finite tree automata)
A (nondeterministic bottom-up) finite tree automaton A over the alphabet Σ is a quadru-

ple (Q, in,∆, F) where Q is a finite set of states, in ⊆ Σ × Q is an input relation, ∆ ⊆
Q+ × Σ × Q is a transition relation, and F ⊆ Q is a set of final states. Given a Σ-labeled
finite tree t = (D, <pre, V), a run of A on t is a function σ : D → Q such that, for ev-
ery leaf u of t, (V (u), σ(u)) ∈ in. Moreover, for every internal node v of t with m sons
v0, . . . , v(m − 1), (σ(v0), . . . , σ(v(m − 1)), V (v), σ(v)) ∈ ∆. The automaton A accepts t if
there is a run σ of A on t such that σ(ε) ∈ F . The language accepted by A, denoted by L(A),
is the set of Σ-labeled finite trees accepted by A. 2

Finite tree automata are closed under Boolean operations and are decidable in polynomial
time [58]. This notion of finite tree is too general for our purposes, since our treelike structures
have always a bounded branching degree. Therefore, we introduce the following definition
of at most k-ary finite tree. A set D ⊆ Tk is an at most k-ary tree domain if:

1. D is prefix closed, that is, x ∈ D and y <pre x implies y ∈ D, for every x, y ∈ Tk;

2. for every x ∈ Tk, xi ∈ D implies xj ∈ D for every i, j ∈ Tk and j < i.

An at most k-ary finite tree is a relational structure 〈D, (↓i)k−1
i=0 , <pre〉, where D is an at

most k-ary finite tree domain, and the rest is as for k-ary finite trees. Let Gk(Σ) the set of
at most k-ary finite trees. We introduce the notion of at most k-ary finite tree automaton.

Definition 4.3.4 (At most k-ary finite tree automata)
A (nondeterministic bottom-up) at most binary finite tree automaton A over the alphabet

Σ is a quadruple (Q, in,∆, F) where Q is a finite set of states, in ⊆ Σ×Q is an input relation,
∆ ⊆ (Q ∪ Q2) × Σ × Q is a transition relation, and F ⊆ Q is a set of final states. Given
a Σ-labeled at most binary finite tree t = (D, ↓0, ↓1, <pre, V), a run of A on t is a function
σ : D → Q such that, for every leaf u of t, (V (u), σ(u)) ∈ in. Moreover, for every internal

76 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

node v of t with two sons v0 and v1, (σ(v0), σ(v1), V (v), σ(v)) ∈ ∆, and for every internal
node v of t with one son v0, (σ(v0), V (v), σ(v)) ∈ ∆. The automaton A accepts t if there is
a run σ of A on t such that σ(ε) ∈ F . The language accepted by A, denoted by L(A), is the
set of Σ-labeled at most binary finite trees accepted by A. At most k-ary finite tree automata,
for k > 2, can be defined similarly. Let Ck the class of at most k-ary finite tree automata 2

Note that a k-ary finite tree is a particular at most k-ary finite tree in which the internal
nodes have exactly k sons. Moreover, an at most k-ary finite tree is a particular finite tree in
which the branching degree is bounded by k. Furthermore, a k-ary finite tree automaton is a
particular at most k-ary finite tree automaton such that ∆ ⊆ Qk×Σ×Q, and an at most k-ary
finite tree automaton is a particular finite tree automaton in which ∆ ⊆ (

⋃k
i=1 Qi)×Σ×Q.

In particular, there exists a finite tree automaton that accepts the set of Σ-labeled at most
k-ary finite trees. Therefore, closure under Boolean operations and decidability of at most
k-ary finite tree automata easily follows from the same properties for finite tree automata.

Recall that UULSs correspond to increasing tree sequences. Since increasing tree se-
quences are (particular) temporalized models embedding trees into sequences, we can use
temporalized automata in the class A1(A2), where A1 is a sequence automata class and
A2 is a tree automata class, to express properties of UULSs. More precisely, we consider
automata in A1(A2) accepting in S(Gk(Σ)) but, since we are interested in increasing tree
sequences, we study the properties of A1(A2), such as closure under Boolean operations, ex-
pressiveness and decidability, with respect to the set ITSk(Σ). In particular, we will consider
the temporalized automata class B(Ck) embedding at most k-ary finite tree automata (cf.
Definition 4.3.4) into Büchi sequence automata (cf. Definition 2.3.6). We call an automaton
in B(Ck) a finite at most k-ary tree sequence automaton.

Since both B and Ck are effectively closed under Boolean operations and are decidable, so
is the class B(Ck) (cf. Theorems 3.2.4 and 3.2.5). We show that B(Ck)-automata are closed
under Boolean operations over the set ITSk(Σ) as well. More precisely, let A, B ∈ B(Ck).
We show that:

• Complementation: there is C ∈ B(Ck) such that

L(C) ∩ S(ITSk(Σ)) = S(ITSk(Σ)) \ L(A);

• Union: there is C ∈ B(Ck) such that

L(C) ∩ S(ITSk(Σ)) = (L(A) ∪ L(B)) ∩ S(ITSk(Σ));

• Intersection: there is C ∈ B(Ck) such that

L(C) ∩ S(ITSk(Σ)) = (L(A) ∩ L(B)) ∩ S(ITSk(Σ)).

It is sufficient to set C = A in case of complementation, C = A ∪B in the case of union
and C = A ∩ B in the case of intersection. The following theorem proves that finite at
most k-ary tree sequence automata are as expressive as the monadic second-order theory of
UULSs.

Theorem 4.3.5 (Expressiveness of finite at most k-ary tree sequence automata)
Finite at most k-ary tree sequence automata are expressively equivalent to monadic

second-order logic over UULSs.

4.3. UPWARD UNBOUNDED LAYERED STRUCTURES 77

Proof.
We prove that:

1. for every automaton A ∈ B(Ck) over Γ(Σ) there is a formula ϕA ∈ MSOPΣ
[<, (↓i)k−1

i=0]
such that L(A) ∩ ITSk(Σ) = M(ϕA);

2. for every formula ϕ ∈ MSOP [<, (↓i)k−1
i=0] there is an automaton Aϕ ∈ B(Ck) over some

Γ(2P) such that M(ϕ) = L(Aϕ) ∩ ITSk(P).

The proof is similar to that of Theorem 4.1.13. The embedding of automata into for-
mulas is performed by encoding the combined acceptance condition for B(Ck)-automata into
MSOP [<, (↓i)k−1

i=0]. As done in the proof of Theorem 4.3.2 for temporalized logics, the Büchi
acceptance condition have to be implemented over the leftmost path of the structure, and
the finite tree automata acceptance condition have to be constrained to hold over almost
k-ary trees rooted at nodes in the leftmost path of the structure. The embedding of formulas
into automata takes advantage of the closure properties of B(Ck)-automata over UULSs.

With the aid of automata, we are able to extend the results proved in Theorem 4.3.2 to
the full second-order theory of UULSs. We know that B ¿ QLTL and B ¿ EQLTL (cf.
Theorem 2.3.7 point 2 and Theorem 2.4.5). Moreover, Ck ¿ QCTL∗k and Ck ¿ EQCTL∗k
(the proof is similar to that of Theorem 2.3.7 point 4 and Theorem 2.4.8). Since finite at
most k-ary tree automata are closed under Boolean operations, by applying Theorem 3.2.7,
we have that QLTL(QCTL∗k) ¿ B(Ck) and EQLTL(EQCTL∗k) ¿ B(Ck) over sequences
of at most k-ary finite trees. Since increasing k-ary tree sequences are sequences of at
most k-ary finite trees, the above equivalences hold over increasing k-ary tree sequences as
well. From Theorem 4.3.5, we conclude that QLTL(QCTL∗k) ¿ MSOP [<pre, (↓i)k−1

i=0] and
EQLTL(EQCTL∗k) ¿ MSOP [<pre, (↓i)k−1

i=0]. Hence we have proved the following.

Theorem 4.3.6 (Expressiveness of QLTL(QCTL∗k) and EQLTL(EQCTL∗k))
QLTL(QCTL∗k) and EQLTL(EQCTL∗k) are expressively equivalent to MSOP [<pre, (↓i

)k−1
i=0] over UULSs.

For example, the property ‘P holds on every even point of the leftmost path’ can be
encoded in EQLTL(CTL∗k) as follows:

∃Q(Q ∧ ©¬Q ∧ 2(Q ↔ © © Q) ∧ 2(Q → P)).

It is worth noting that this property cannot be expressed in PLTL(CTL∗k), since PLTL
cannot express the property ‘P holds on every even point’ [125]. However, it seems not to
be immediate to codify the property ‘P holds on every even point of the finest domain T 0’.

The decidability of QLTL(QCTL∗k) and EQLTL(EQCTL∗k) immediately follows from that
of MSOP [<pre, (↓i)k−1

i=0] over UULSs.
We focus now on the decidability and complexity of the emptiness problem for finite at

most k-ary tree sequence automata over increasing k-ary tree sequences. Such a problem
can be formulated as follows: given an automaton A ∈ B(Ck), is there a increasing k-ary
tree sequence accepted by A? Equivalently, does L(A) ∩ ITSk(Σ) 6= ∅? Its (nonelementary)
decidability immediately follows from Theorem 4.3.5, since, given an automaton A, we can
build an equivalent monadic formula ϕA and check its satisfiability over UULSs. In the fol-
lowing, we give a necessary and sufficient condition that solves the problem in an elementary
way.

78 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

Let A = (Q, q0,∆, F) be an automaton in B(Ck) over the alphabet Γ(Σ) ⊂ Ck. Clearly,
L(A) 6= ∅ is necessary for L(A) ∩ ITSk(Σ) 6= ∅. However, it is not sufficient. By definition
of combined acceptance condition for A, we have that L(A) 6= ∅ if and only if there is
a finite sequence q0, q1, . . . , qm of distinct states in Q, a finite sequence X0, X1, . . . , Xm of
Ck-automata and j ∈ {0, . . . , m} such that:

1. ∆(qi, Xi, qi+1), for every i = 0, . . . , m− 1, and ∆(qm, Xm, qj);

2. qj ∈ F ;

3. L(Xi) 6= ∅, for every i = 0, . . . , m

To obtain a necessary and sufficient condition for L(A) ∩ ITSk(Σ) 6= ∅, we have to
strengthen condition (3) as follows. Let T i

k(Σ) be the set of almost k-ary finite trees of
height i:

3’. (3’a) L(Xi)∩ T i
k(Σ) 6= ∅, for every i = 0, . . . , j − 1, and (3’b) L(Xi) ∩ T i+y·l

k (Σ) 6= ∅, for
every i = j, . . . , m and y ≥ 0, where l = m− j + 1.

The conjunction of conditions (1,2,3’) is a necessary and sufficient condition for L(A) ∩
ITSk(Σ) 6= ∅. We show that conditions (1,2,3’) are elementarily decidable. Clearly, there are
elementarily many runs in A satisfying conditions (1,2). The following nontrivial Lemma 4.3.7
shows that condition 3’ is elementarily decidable.

Lemma 4.3.7 Let X be a finite at most k-ary tree automaton, and a, l ≥ 0. Then, the
problem L(X) ∩ T a+y·l

k (Σ) 6= ∅, for every y ≥ 0, is elementarily decidable.

Proof.
Let X = (Q, qin, ∆, F) over Γ(Σ). If l = 0, then the problem reduces to checking

L(X) ∩ T a
k (Σ) 6= ∅, for some a ≥ 0. For every a ≥ 0, the set T a

k is finite and hence regular.
Since finite at most k-ary tree automata are elementarily closed under Boolean operations
and are elementarily decidable, we conclude that in this case the condition is elementarily
effective.

Suppose now l > 0. For the sake of simplicity, we first give the proof for finite sequence
automata, and then we discuss how to modify it to cope with the case of finite at most
k-ary tree automata. Hence, let X be a finite sequence automaton. We have to give an
elementarily effective procedure that checks whether X recognizes at least one sequence of
length a, at least one of length a + l, at least one of length a + 2l, and so on. Without loss
of generality, we may assume that the set of final states of X is the singleton containing
qfin ∈ Q. Hence, the problem reduces to check, for every y ≥ 0, the existence of a path from
qin to qfin of length a + y · l in the state-transition graph associated with X. We thus need
to solve the following problem of Graph Theory, which we call the Periodic Path Problem
(PPP for short):

Given a finite directed graph G = (N, E), two nodes q1, q2 ∈ N , and two natural
numbers a, l ≥ 0, the question is: for every y ≥ 0, is there a path in G from q1

to q2 of length a + y · l?

In the following, we further reduce the PPP to a problem of Number Theory. Let
Πq1,q2(G) be the set of paths from q1 to q2 in the graph G. Given π ∈ Πq1,q2(G), we denote

4.3. UPWARD UNBOUNDED LAYERED STRUCTURES 79

by π	 the path obtained by eliminating cyclic subpaths from π. That is, if π is acyclic, then
π	 = π. Else, if π = αq′βq′γ, then π	 = α	q′γ	. Let ∼q1,q2 be the relation on Πq1,q2(G)
such that π1 ∼q1,q2 π2 if and only if π	1 = π	2 . Note that ∼q1,q2 is an equivalence relation of
finite index. For every equivalence class [π]∼q1,q2

, we need a formula expressing the length
of a generic path in the class. Note that every path in [π]∼q1,q2

differs from any other path
in the same class only because of some cyclic subpaths. More precisely, let µ be the shortest
path in [π]∼q1,q2

, let C1, . . . , Cn be the the cycles intersecting π, and let w1, . . . , wn be their
lengths, respectively. Note that µ does not cycle through any Ci. Every path in [π]∼q1,q2

starts from q1, cycles an arbitrary number of times (possibly zero) through every Ci, and
finally reaches q2. It is easy to see that the length of an arbitrary path σ ∈ [π]∼q1,q2

is given
by the parametric formula:

|σ| = |µ|+
n∑

i=1

xi · wi,

where xi ≥ 0 in the number of times the path σ cycles through Ci.
Let [π1]∼q1,q2

, . . . , [πm]∼q1,q2
be the equivalence classes of ∼q1,q2 . For every j = 1, . . . ,m, let

µj be the shortest path in [πj]∼q1,q2
, let Cj

1 , . . . , C
j
n be the the cycles intersecting πj , and let

wj
1, . . . , w

j
n be their lengths, respectively. Moreover, let

Yj = {y ≥ 0 | ∃x1, . . . , xn ≥ 0 (|µj |+
n∑

i=1

xi · wj
i = a + y · l)}.

The PPP reduces to the following problem of Number Theory:

Do the sets Y1, . . . , Ym cover the natural numbers? That is, does
⋃m

j=1 Yj = N?

We now solve the latter problem. Let wi ≥ 0, for i = 1, . . . , n. We are interested in the
form of the set S = {∑n

i=1 xi · wi | xi ≥ 0}. Let W = (w1, . . . , wn) and let d = GCD(W)
(the greatest common divisor of {w1, . . . , wn}). We distinguish the cases d = 1 and d 6= 1.
If d = 1, then it is easy to see that:

S = E ∪ {j | j ≥ k},

where E is a finite set of exceptions such that max(E) < k, and k = (wr − 1) · (ws − 1),
with wr = min(W) (the minimum of {w1, . . . , wn}) and ws = min(W \ wr). If d 6= 1, then
consider the set S′ = {∑n

i=1 xi · wi/d | xi ≥ 0}. Clearly, GCD(w1/d, . . . , wn/d) = 1 and
hence, as above, S′ = E′ ∪ {j | j ≥ k′} for some finite set E′ and some k′ ∈ N. Therefore, in
this case,

S = E′ · d ∪ {j | j ≥ k′ · d ∧ d div j},
where a div b stands for a divides b. Summing up, in any case, the set S can be described
as follows:

S = E ∪ {k + j · d | j ∈ N},
for some finite (computable) set E, some (computable) k ∈ N, and d = GCD(W). In other
words, the set S is the union of a finite and computable set of exceptions and an arithmetic
progression.

Now we consider the equation
∑n

i=1 xi · wi = y · l. Our aim in to describe the set
Y = {y ≥ 0 | ∃x1, . . . , xn ≥ 0 (

∑n
i=1 xi · wi = y · l)} in a similar way. Let e = GCD(d, l),

l = l′ · e and d = d′ · e. We have that:

80 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

y ∈ Y iff
y · l ∈ S iff
y · l ∈ E ∨ y · l ≥ k ∧ d div y · l iff
y · l ∈ E ∨ y ≥ dk/le ∧ d′ · e div y · l′ · e iff
y · l ∈ E ∨ y ≥ dk/le ∧ d′ div y

Therefore, the set Y is the union of a finite and computable set and an arithmetic
progression, i.e.,

Y = E′ ∪ {k′ + j · d′ | j ∈ N},
for some finite (computable) set E′, some (computable) k′ ∈ N, and d′ = d/GCD(d, l). The
set Y = {y ≥ 0 | ∃x1, . . . , xn ≥ 0 (

∑n
i=1 xi · wi = a + y · l)}, with a ∈ N, can be described in

the same way.
We have shown that, for i = 1, . . . , m, every Yi has the form Ei ∪ {ki + y · di | y ≥ 0} for

some finite Ei, and some ki, di ∈ N. We now give a solution to the problem
⋃m

i=1 Yi = N.
Let kr = min{k1, . . . , km} and D = LCM(d1, . . . , dm) (the lowest common multiple of
{d1, . . . , dm}). The algorithm works as follows: for every k < kr, we check whether k ∈ Yi

for some i = 1, . . . ,m. If this is not the case, the problem has no solution. Otherwise, we
verify whether, for every j = 0, . . . , D − 1, kr + j ∈ Yi for some i = 1, . . . , m. If this is the
case, then we have a solution, otherwise, there is no solution. Note that a solution can be
described in terms of an ultimately periodic word w = uvω, with u, v ∈ {1, . . . , m}∗, such
that, for every i ≥ 0, w(i) = j means that a path from q1 to q2 in the graph G belongs to
the j-th equivalence class [πj]∼q1,q2

.
The above algorithm solves the periodic path problem in doubly exponential time in the

number n of nodes of the graph G. The number of equivalence classes of the relation ∼q1,q2

over the set of paths from q1 to q2 in G may be exponential in n. Thus, we have m sets
Y1, . . . , Ym, each associated to a relevant equivalence class, and m = O(2n). Every set Yi can
be represented in polynomial time as Ei ∪ {ki + y · di | y ≥ 0} for some finite Ei, and some
ki, di ∈ N. Note that the cardinality of Ei is bounded by ki, ki = O(n2) and di = O(n).
The final step of the procedure makes k0 + D membership tests with respect to some set Yi,
where k0 = min{d1, . . . , dm}, and D = LCM(d1, . . . dm). Each test is performed in O(1).
Moreover, D is bounded by d0

m, where d0 = max{d1, . . . , dm}, and hence D = O(22n
).

Hence, the procedure works in time doubly exponential.
The general case of finite trees is similar. Let X be a finite at most k-ary tree automaton.

A path from q1 to q2 corresponds to a run of X such that the run tree is complete and k-ary,
the root of the run tree is labeled with state q1 and the leaves of the run tree are labeled
with state q2. A cycle is a path from q to q. The problem is to find, for every y ≥ 0, a path
from the initial state qin to the final state qfin of length a+y · l. The rest of the proof follows
the same reasoning done for sequence automata.

It follows that, given a B(Ck)-automaton A, we have an algorithm to solve the problem
L(A) ∩ ITSk(Σ) 6= ∅ in time doubly exponential in the size of A.

Theorem 4.3.8 The emptiness problem for finite at most k-ary tree sequence automata over
UULSs is in 2EXPTIME.

Since PLTL(CTL∗k)-formulas (resp. EQLTL(EQCTL∗k)-formulas) can be converted into
B(Ck)-automata with a doubly (resp. triply) exponential blow-up (as done for B(Dk)-automata
in Section 4.2.2), we have the following.

4.4. MODEL CHECKING GRANULAR REACTIVE SYSTEMS 81

Theorem 4.3.9 (Complexity of PLTL(CTL∗k) and EQLTL(EQCTL∗k))
The satisfiability problem for PLTL(CTL∗k) over UULSs is in 4EXPTIME. The satisfia-

bility problem for EQLTL(EQCTL∗k) over UULSs is in 5EXPTIME.

We conclude that EQLTL(EQCTL∗k) is elementarily decidable and expressively equivalent
to MSOP [<, (↓i)k−1

i=0] over UULSs.

A contribution of this section is an alternative characterization of systolic binary tree au-
tomata (cf. Definition 2.3.4). Systolic binary tree automata have been proved to be the
counterpart of MSOP [<, flip] over infinite sequences: for every monadic formula there is
an equivalent systolic automaton and vice versa. Moreover, MSOP [<, flip] over infinite
sequences is equivalent to MSOP [<, (↓i)k−1

i=0] over UULSs in the following sense: there ex-
ists an isomorphism ι between labeled infinite sequences and labeled UULSs such that: (i)
for every formula ϕ in MSOP [<, flip], there exists a formula ψ in MSOP [<, (↓i)k−1

i=0] with
ι(M(ϕ)) = M(ψ), (ii) for every formula ϕ in MSOP [<, (↓i)k−1

i=0], there exists a formula ψ
in MSOP [<, flip] with M(ϕ) = ι(M(ψ)). Therefore, ϕ and ψ are equivalent modulo an
isomorphism between the corresponding classes of models. Finally, we have proved in this
section that B(Ck)-automata are the counterpart of MSOP [<, (↓i)k−1

i=0] over UULSs: for every
monadic formula there is an equivalent temporalized automaton and vice versa. Merging
together all these results, we have that any systolic binary tree automaton can be converted
into an equivalent temporalized automaton and vice versa (modulo an isomorphism between
corresponding structures). In particular, any systolic binary tree automaton can be regarded
as a combined automaton that embeds finite tree automata, working over finite trees rooted
at nodes in the leftmost path of a layered structure, into a Büchi sequence automaton working
over the leftmost path of a layered structure.

4.4 Model checking granular reactive systems

In this section we apply the combining approach to model, specify and verify granular reac-
tive systems. In particular, we show how to encode (the state-transition representation of)
granular reactive systems into combined models. Accordingly, combined temporal logics and
combined automata may be adopted for the specification of requirements for such systems.
This makes it possible to apply combined model checking/satisfiablity procedures presented
in this thesis to verify granular reactive systems. The main advantage of the combining ap-
proach to system analysis is separability: different components are treated as different entities
during both the modeling and specifying tasks. Other advantages include modularity and
flexibility. Well-known modules, consisting of modeling and specification languages, as well
as verification techniques, are combined in such a way that the resulting framework inherits
nice features of the components. This improves the reuse of tools and software. Moreover,
the result of the combination forms a bag of solutions, instead of a specific tailored one,
where each possible solution is obtained by ‘plugging’ the preferred modules and ‘playing’
the combined solution.

A reactive system (RS) consists of a set of processes that execute concurrently and in-
teract with the system environment; the system is supposed to run forever. Temporal logics
have been used successfully for modeling and analyzing the behavior of reactive systems [104].
A granular reactive system (GRS) is a reactive system whose components (processes) have
dynamic behaviors regulated by very different—even by orders of magnitude—time con-
stants [92]. As an example, consider a pondage power station consisting of a reservoir, with

82 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

filling and emptying times of days or weeks, generator units, possibly changing state in a few
seconds, and electronic control devices, evolving in milliseconds or even less [17]. A complete
specification of the power station must include the description of these components and of
their interactions. A natural description of the temporal evolution of the reservoir state
will probably use days: “During rainy weeks, the level of the reservoir increases 1 meter a
day”, while the description of the control devices behavior may use milliseconds: “When an
alarm comes from the level sensors, send an acknowledge signal in 50 milliseconds”. It is
somewhat unnatural, and sometimes impossible, to force the specifier of these systems to
use a unique time granularity when describing the behavior of all the components. Indeed,
a good specification language must allow the specifier to easily describe all simple and in-
tuitively clear facts. Therefore, a specification language for granular reactive systems must
support different time granularities. Granular logics, interpreted over many-level temporal
structures, have been extensively studied in this Chapter.

A GRS can be viewed as a layered set of system components, each one evolving at a
different time granularity. Each system component can be regarded as a (flat) reactive system:
component states are represented as sets of propositions that hold at the state; component
computations are modeled as infinite sequences of component states. The component behavior
is a set of component computations, and it is usually represented as a Kripke structure. The
set of time granularities of the system (and thus the set of system components) is totally
ordered on the basis of the degree of fineness (coarseness) of its elements. As an example,
consider the set of time granularities including weeks, days, seconds, and milliseconds.
Time granularities are ordered as follows: weeks ≺ days ≺ seconds ≺ milliseconds, where
g1 ≺ g2 means that g1 is coarser than g2. If g1 ≺ g2, then there exists a conversion factor
between the g1 and g2 that allows one to map each time point of g1 into a set of time points
of g2. For instance, the conversion factor between weeks and days is 7. The behavior of the
whole GRS can be described in terms of the synchronized behavior of its components. A
system state corresponds to the set of states of all system components at/during an instant of
the coarsest time granularity; it can be represented as a tree such that the elements of its i-th
layer are the states of the i-th system component. Accordingly, a system computation can be
defined as an infinite sequence of system states (this is the state-based view). Equivalently,
a system computation can be expressed by a layered set of component computations, one
computation for each component (this is the component-based view). Finally, the system
behavior is a set of system computations. We consider the case of GRSs composed of a finite
number, say n, of system components. Hence, any system computation of such a GRS is an
n-layered structure. However, the generalization to the case of GRSs with an infinite number
of system components, either downward unbounded (there exists a coarsest component) or
upward unbounded (there exists a finest component) is immediate.

The operational behavior of a GRS can be naturally described as a suitable combination of
temporal evolutions (sequences of component states) and temporal refinements (mapping of
a component state into a finite sequence of states belonging to a finer component). According
to such a point of view, the model describing the operational behavior of the system and
the specification language can be obtained by combining simpler models and languages,
respectively, and model checking procedures for combined logics (cf. Section 3.3) can be used.
For instance, a temporalized model M = (W,R, g) can be used in both a component-based
and a state-based fashion for model checking purposes. In the component-based framework,
the frame (W,R) models the granular relationships among the different components: W is a
set of components, and R ⊆ W ×W is a linear relation such that (c1, c2) ∈ R if component c2

is a refinement of component c1. Moreover, for c ∈ W , the model g(c) is a Kripke structure

4.4. MODEL CHECKING GRANULAR REACTIVE SYSTEMS 83

(a) component-based (b) state-based

Figure 4.5: Frameworks for a GRS

that captures the internal behavior of the component c. (Figure 4.5(a)). The language of the
temporalized logic T1(T2) is the specification language, where T1 is a linear time logic and
T2 is a branching time logic. Component-based properties, that is, formulas that predicate
over temporal evolutions, are easily expressible in this framework. A typical component-
based property is the following one: “there exists a computation of a system component
during which P always holds”. This condition can be expressed in PLTL(CTL) by means of
the formula: F1E2G2P (we distinguish PLTL and CTL operators by using different indexes,
namely, 1 for PLTL and 2 for CTL).

In the state-based framework, the interpretation of the model is different: the frame (W,R)
models the evolution of the system states: W is a set of system states, R ⊆ W × W is a
relation such that (s1, s2) ∈ R if state s2 is reachable from state s1 in the system. Moreover,
for s ∈ W , the model g(s) is the tree representing the system state s (Figure 4.5(b)).
Specifications can be written in the language of the temporalized logic T1(T2), where T1

and T2 are either linear or branching time logics. As for expressiveness of such a framework,
state-based properties, which refer to temporal refinements, are immediately expressible.
A typical state-based requirement is the following one: “there exists a system state such
that every component state belonging to it satisfies P”. This condition can be captured in
CTL(CTL) by means of the formula: E1F1A2G2P .

As for the expressive power, both the component-based framework and the state-based
one suffer from some limitations. In the component-based framework, it is generally impos-
sible, to specify state-based properties. The reason is that such a framework focuses on the
temporal evolution of system components. The case of the state-based framework is dual:
it focuses on the temporal refinement of system states; as a consequence, component-based
properties are difficult, and often impossible, to capture. To overcome the limitations of
both frameworks, it is possible to combine them into a more expressive bi-temporal frame-
work. The bi-temporal framework exploits independent combination both to build a model
M = (W,R1, R2, V) of the behavior of GRSs, and to obtain a logical specification language
T1⊕T2 to express granular requirements. The connected components of (W,R1), which are
models of T1, capture the temporal evolution of the system components, while the connected
components of (W,R2), which are models of T2, represent the temporal refinement of the

84 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

Figure 4.6: Bi-temporal framework for a deterministic GRS

system states. For simplicity, we restrict ourselves to the simplified situation in which all
system components are deterministic, and hence the connected components of (W,R1) are
linear structures (Figure 4.6). In the bi-temporal framework, both component-based and
state-based requirements can be easily specified. Let us consider the previously introduced
examples. The (component-based) property “there exists a computation of a system compo-
nent during which P always holds” can be specified in PPLTL⊕ CTL as E2F2(H1P ∧G1P),
while the (state-based) property “there exists a system state such that every component state
belonging to it satisfies P” is expressible in PLTL⊕ CTL as F1A2G2P . Obviously, the in-
crease in expressiveness obtained by moving from the simpler temporalized frameworks to
the more complex bi-temporal one does not come for free. The task of encoding the system
behavior in the bi-temporal framework is indeed much harder than the task of encoding it
in the simpler temporalized setting. The reason is that the model used in the bi-temporal
framework admits a higher degree of interaction between system components.
One of the motivations for this thesis has been the need to develop model checking frame-

works for granular reactive systems and corresponding logics. We have shown that this is
indeed possible, using a divide and conquer strategy: we first isolate the orthogonal ‘simple’
entities in which a system can be decomposed. Then, we apply well-known structures and
logics to the component entities. Finally, we combine the component entities according to
a combining method and we use combined tools to analyze the system. We feel that this
divide and conquer approach can be useful to model and analyze many other complex sys-
tems, which, inherently, are the composition of simpler entities. One example are mobile
reactive systems [14]. A mobile reactive system (MRS) is a reactive system whose processes
(may) reside within a hierarchy of locations (ambient structure) and modify it. The system
may temporally evolve in two ways: a process may execute one step of computation, or it
can move (with its ambient and subambients) inside or outside another ambient. Moreover,
a process may dissolve the ambient of another process. The execution of a computation
step modifies the program state of the process that executes it, whereas the movement or
dissolution of an ambient modifies the ambient structures. Hence, the evolution of an MRS
takes place along three orthogonal dimensions: the temporal evolution of processes, modeled
by sequences of (program) states, the temporal evolution of ambients, modeled by sequences
of ambient structures, and the spatial distribution of processes within the ambient structures.
In [50], we adopted combined models and logics to model the behavior and the requirements
of MRSs, respectively, and we used combined model checking techniques to verify them.

4.5 Discussion

In this chapter we have often approached the problem of finding the temporal logic counter-
part T of a monadic theory L. We solved the problem with two different techniques: (1) the
decomposition method; (2) the automata reduction method. The decomposition method con-
sists in dividing the model checking problem for L-formula with respect to L-structures into
a finite number of model checking subproblems for L-formulas with respect to certain disjoint

4.5. DISCUSSION 85

substructures of the original structure. Such a result is obtained by exploiting Ehrenfeucht
games: local strategies, played over the disjoint substructures, can be composed to form a
global strategy over the whole structure. Taking advantage of such a decomposition step,
every L-formula is converted into an equivalent T-formula.

Instead of trying to establish a direct correspondence between monadic theories and tem-
poral logics, the automata reduction method connects them via automata. The first step
is to find the automata-theoretic counterpart A of temporal logic T. This step is relatively
easy, since, in general, automata and temporal logics represent two elementarily compara-
ble normal forms of monadic theories. The second step is to prove that A is expressively
equivalent to L. The mapping of monadic formulas into automata (the difficult direction) is
greatly benefit from automata closure properties. Composing these two steps, one obtains
that T is expressively equivalent to L.

The decomposition and the automata reduction methods are orthogonal: the former
works well for monadic first order or well-behaved second-order (like path) theories, but
does not naturally extend to the full second-order case. The reason is that full second-order
quantification ranges over arbitrary sets, which can spread all over the structure without any
control. This is in contrast with the decomposition strategy. The latter fits well to monadic
full second-order theories, since automata correspond to second-order formulas.

86 CHAPTER 4. TEMPORAL LOGICS AND AUTOMATA FOR TIME GRANULARITY

5
Extending the picture

In the previous chapters, the language for time granularity we focused on is the monadic
second-order logic in the signature with a total ordering < and k projection functions
↓0, . . . , ↓k−1. The reader may wonder about the motivations for such a choice. In particu-
lar, is this language expressive enough to model interesting properties of time granularity?
Moreover, can this language, or some of its fragments, be extended with other significant
predicates while preserving decidability? In this chapter we try to answer these natural ques-
tions. We will consider rather natural predicates, such as the equi-level (resp. equi-column)
predicate constraining two time points to belong to the same layer (resp. column) as well
as the horizontal (resp. vertical) successor predicate relating a time point to its successor
within a given layer (resp. column). We call them global predicates, because they do not refer
to any particular layer or column. We will consider also the corresponding local predicates,
which, on the contrary, refer to a fixed layer or column.

In [92], among the many possible relations between time points belonging to the layered
temporal universe, the above local predicates are identified as the primitives for time gran-
ularity, that is, relations that any specification language for time granularity should be able
to express. Global predicates are a natural generalization of local ones. In the context of
time granularity, the utility of the equi-level is clear: it is a contextualization predicate that
permits to constrain the validity of a formula over a single (unspecified) domain. On the
other hand, the equi-column predicate may be useful to express time constraints such as the
uniform occurrence of a give event after the same number of ticks of the component clocks.

It is worth mentioning that the problem of the decidability of monadic theories extended
with equi-level and vertical successor predicates has been already studied in the literature.
In particular, the decidability of the first-order theory of two successors, devoid of free set
variables, over infinite binary trees, extended with the equi-level predicate, was first proved
by Elgot and Rabin in [33]. Thomas extended this result by showing that monadic chain logic
extended with the equi-level predicate over infinite k-ary trees is decidable [115]. Finally,
Läuchli and Savoiz proved the undecidability of (weak) monadic second-order theory of k
successors over infinite k-ary trees extended with either the equi-level or the vertical successor
predicate [85]. This chapter extends the above results in two ways: first, new predicates are
introduced, such as the horizontal successor and the equi-column predicates; second, monadic
theories are interpreted over more general structures, such as DULSs and UULSs.

We will show that every local predicate is definable in MSOP [<, (↓i)k−1
i=0] over layered

88 CHAPTER 5. EXTENDING THE PICTURE

MFO

MPLP

MPL MFOP

MFO

MCL

MCLPMSO

MSOP

»»»»»:
XXXXXy

»»»»»:
XXXXXy

»»»»»:

XXXXXy

XXXXXy

»»»»»:»»»»»9

XXXXXy

XXXXXy

Figure 5.1: A hierarchy of monadic theories.

structures. Since local predicates correspond to the primitives for time granularity, that is,
relations that any specification language for time granularity should be able to express [92],
we claim that MSOP [<, (↓i)k−1

i=0] is expressive enough. Moreover, we will show that global
predicates are not definable in MSOP [<, (↓i)k−1

i=0] over DULSs and UULSs, and, even worse,
their addition to such theories immediately leads to undecidability. We also point out the
different status of the equi-level and equi-column predicates with respect to the theory of
n-layered structures: while the first one is definable, the second one is undefinable and its
addition yields undecidability. These negative results do not prevent the possibility of study-
ing the effect of the addition of global predicates to fragments of the monadic second-order
theories of time granularity, such as their first-order, path, and chain fragments, possibly
devoid of monadic predicates in P. Indeed, a predicate may be undefinable in a decidable
logic, but its addition to the logic may preserve decidability. We systematically explore
all the possibilities, and give a number of positive and negative results. From a techni-
cal point of view, (un)definability and (un)decidability results are obtained by reduction
from/to a wide spectrum of undecidable/decidable problems. Some of the resulting decid-
ability problems are open. However, the achieved results suffice to formulate some general
statements. We prove that equi-level, horizontal successor, and vertical successor predicates
can be added to monadic first-order, path, and chain fragments, devoid of monadic pred-
icates in P, preserving decidability. We do not know yet whether the same holds for the
equi-column predicate or not. However, we know that the addition of the equi-column pred-
icate to monadic first-order fragments over ω-layered structures, with monadic predicates in
P, makes the resulting theory undecidable. As for the equi-level predicate, we know that
adding it to the monadic path fragment over DULSs, with monadic predicates in P, leads to
undecidability. Even though we do not have yet a formal argument, these results induce us
to conjecture that the complexity of the equi-column predicate is higher than the complexity
of the equi-level predicate. Finally, as far as the monadic second-order theory over UULSs is
concerned, we establish an interesting connection between its extension with the equi-level
(resp. equi-column) predicate and systolic Y-tree (resp. trellis) automata.

5.1 Local and global predicates

Given a finite set P of monadic predicates, recall that MSOP [τ] is defined as MSO[τ ∪ P]
(cf. Definition 2.2.1). We denote by MSO[τ] the monadic second-order language devoid of
monadic predicates in P. Moreover, let MFO[τ], MPL[τ] and MCL[τ] be the first-order,
path and chain fragments of MSO[τ]. Figure 5.1 summarizes the relationships between the
expressive power of all the defined monadic languages over layered structures (an arrow

5.1. LOCAL AND GLOBAL PREDICATES 89

q
T

⊕1

(((((((((⊗1

´
´́

³³³³³(((((((((((

D

q q©©©©
HHHH

q q q q¡
¡

¡
¡

@
@

@
@

q q q q q q q q¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

. .

q
q q©©©©

HHHH

q q q q
...

...

...

...

¡
¡

¡
¡

@
@

@
@

q q q q q q q q¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

. ...

Figure 5.2: The global predicates for time granularity.

from A to B means that A → B). Note that MSOP [<, (↓i)k−1
i=0] is expressively equivalent

to MSO[<, (↓i)k−1
i=0]. Indeed, any monadic predicate P ∈ P may be regarded as a free set

variable. Since MSOP [<, (↓i)k−1
i=0] over layered structures is decidable, all the theories in

Figure 5.1, when interpreted over layered structures, are decidable.
In the following, we investigate the possibility of defining meaningful binary predicates

within the monadic theories, and, whenever this is not possible, the possibility of adding
such predicates preserving decidability. Let U be the layered temporal universe. We focus
on the following predicates over U . Let nr,ms ∈ U :

1. equi-level predicate T , such that T (nr,ms) iff r = s;

2. i-th equi-level predicate T i, such that T i(nr,ms) iff r = s = i;

3. equi-column predicate D, such that D(nr,ms) iff n = m;

4. i-th equi-column predicate Di, such that Di(nr, ms) iff n = m = i;

5. horizontal successor +1, such that +1(nr,ms) iff r = s and m = n + 1;

6. i-th horizontal successor+i1, such that +i1(nr, ms) iff r = s = i and m = n + 1;

7. vertical successor ⊕1, such that ⊕1(nr,ms) iff n = m and s = r + 1;

8. i-th vertical successor ⊕i1, such that ⊕i1(nr,ms) iff n = m = i and s = r + 1.

A layered structure extended with the global predicates is depicted in Figure 5.2. We
will sometimes use the functional notation for the above predicates. For instance, we will
write T (x) = y for T (x, y). Moreover, we shall write T i(x) as a shorthand for T i(x, x) (x
belongs to the i-th layer). Predicates +i1 and T i are inter-definable in MSO[<, (↓i)k−1

i=0] over
layered structures:

+i1(x, y) = x < y ∧ T i(x, y) ∧ ∀z((T i(x, z) ∧ x < z) → y ≤ z)
T i(x, y) = ∃w(+i1(x, w)) ∧ ∃w(+i1(y, w))

Similarly, +1 and T are inter-definable in MSO[<, (↓i)k−1
i=0] as follows:

+1(x, y) = x < y ∧ T (x, y) ∧ ∀z((T (x, z) ∧ x < z) → y ≤ z);
T (x, y) = ∀X(x ∈ X ∧ ∀z(z ∈ X → ∃w(+1(z, w) ∧ w ∈ X)) → y ∈ X)∨

∀X(y ∈ X ∧ ∀z(z ∈ X → ∃w(+1(z, w) ∧ w ∈ X)) → x ∈ X)

As a consequence, we have that +i1 (resp. +1) is definable in MSO[<, (↓i)k−1
i=0] if and only

if T i (resp. T) is definable in MSO[<, (↓i)k−1
i=0]. In a similar way, it can be shown the inter-

definability of the pairs of predicates (⊕i1, Di), and (⊕1, D).

90 CHAPTER 5. EXTENDING THE PICTURE

We proceed as follows. For any predicate β, we try to define it in MSO[<, (↓i)k−1
i=0]

over layered structures. In the positive case (β is definable), we investigate its definability
into MSO[<, (↓i)k−1

i=0] fragments, possibly extended with monadic predicates P ∈ P. In the
negative case (β is not definable), we study the decidability of the extensions of MSO[<, (↓i

)k−1
i=0] and of its fragments with β.

5.2 Definability and decidability over n-LSs

In this section we explore definability and decidability of local and global predicates with
respect to the monadic theories of n-LSs. We start by defining the local predicates. Let
↓(x) = y be a shorthand for

∨k−1
j=0 ↓j(x) = y. The i-th equi-level predicate T i can be

inductively defined as follows:

T 0(x, y) = ¬∃z1(↓(z1) = x) ∧ ¬∃z2(↓(z2) = y);
T i+1(x, y) = ∃z1∃z2(T i(z1, z2) ∧ ↓(z1) = x ∧ ↓(z2) = y).

The equi-level predicate T (x, y) can be defined as
∨n−1

i=0 T i(x, y). Horizontal successors +i1
and +1 are definable in terms of T i and T , respectively. We consider now the equi-column
predicate Di. Let +ij(x, y) be a shorthand for (+i)j(x) = y. Given w ∈ {0, . . . , k − 1}∗, we
inductively define ↓w(x) as follows: if |w| = 0, then ↓w(x) = x, otherwise, for w = av, we
define ↓w(x) = ↓a(↓v(x)). Let 00 be the first-order definable origin of layer zero. We define

D0(x, y) =
n−1∨

i=0

(↓0i(00) = x) ∧
n−1∨

i=0

(↓0i(00) = y).

Then, for i > 0, we define

Di(x, y) =
∨n−1

j=0 ∃z(T j(z) ∧ D0(z) ∧ +ji(z, x))∧∨n−1
j=0 ∃z(T j(z) ∧ D0(z) ∧ +ji(z, y)).

The vertical successor predicate ⊕i1 can be defined in terms of Di. Since all the above
definitions do not use second-order quantification, we can conclude that local predicates and
global predicates T and +1 are definable in MFO[<, (↓i)k−1

i=0] over n-LSs.
We now turn to the global predicates equi-column D and vertical successor ⊕1. We

show that D is not definable in MSO[<, ↓0, ↓1] over binary 2-layered structures, and, even
worse, the addition of D to MSO[<, ↓0, ↓1] yields undecidability. Since D and ⊕1 are inter-
definable, we have that ⊕1 is not definable in MSO[<, ↓0, ↓1] over binary 2-layered structures
as well, and that its addition leads to undecidability. Moreover, it is easy to show that
MSO[<, ↓0, ↓1] over binary 2-layered structures is embeddable in MSO[<, (↓i)k−1

i=0] over k-ary
n-layered structures, and thus all the above results generalize to MSO[<, (↓i)k−1

i=0] over k-
ary n-layered structures. We begin with the following auxiliary lemma. Let us define the
predicate D over N as the reflexive and symmetric closure of the following set:

{(3k,
3k + 2

2
| k even} ∪ {(3k,

3k + 1
2

) | k odd}.

We show that MSO[<] over natural numbers cannot be extended with such a predicate
preserving decidability.

Lemma 5.2.1 MSO[<,D] over 〈N, <〉 is undecidable.

5.2. DEFINABILITY AND DECIDABILITY OVER N -LSS 91

r r r r r r r r r r

r r r r r

£
£
££

£
£
££

£
£
££

£
£
££

£
£
££

B
B

BB

B
B

BB

B
B

BB

B
B

BB

B
B

BB
. . .

. . .
1 2 4 5 7 8 10 11 13 14

0 3 6 9 12

Figure 5.3: The binary 2-layered structure over natural numbers.

Proof.
Let P0 = {3n | n ≥ 0}, P1 = {3n + 1 | n ≥ 0} and P2 = {3n + 2 | n ≥ 0} be three

unary predicates over natural numbers representing the congruence classes modulo 3. These
predicates can be easily defined in MSO[<]. For instance P0(x) is defined as follows:

∃X(x ∈ X ∧ 0 ∈ X ∧ ∀y, v, z, w(y ∈ X → ((+1(y, v) → v 6∈ X)∧
(+2(y, z) → z 6∈ X) ∧ (+3(y, w) → w ∈ X))),

where 0 is the first-order definable constant representing the natural number 0 and +1, +2
and +3 are the first-order definable predicates defining the first, second and third successor
of a point, respectively. By exploiting the relation D, we are able to define the relation 2×
such that 2× (x, y) iff y = 2x as follows:

2× (x, y) = (x = 0 → y = 0) ∧ ∃z, w
((P0(x) ∧ +1(x, w) ∧ D(w, z) ∧ w 6= z) → y = z ∧
(P1(x) ∧ +2(z, w) ∧ D(x, z) ∧ x 6= z) → y = w∧
(P2(x) ∧ +1(z, w) ∧ D(x, z) ∧ x 6= z) → y = w).

It is well known that MSO[<, 2×] over natural numbers is undecidable, since it allows one
to interpret full first-order arithmetic. We conclude that MSO[<,D] over natural numbers
is undecidable.

To prove our thesis, it suffices to show that MSO[<,D] over 〈N, <〉 can be embedded
into MSO[<, ↓0, ↓1, D] over binary 2-LSs.

Theorem 5.2.2 (Undefinability of equi-column and vertical successor)
The predicates D and ⊕1 are not definable in MSO[<, (↓i)k−1

i=0] over k-ary n-LSs. More-
over, the extension of MSO[<, (↓i)k−1

i=0] with D or ⊕1 is undecidable.

Proof.
We first show that MSO[<,D] over 〈N, <〉 can be embedded into MSO[<, ↓0, ↓1, D] over

2-layered binary structures (note that, for notational simplicity, we are overloading symbols
< and D). Let us consider the bijection τ : U2 → N depicted in Figure 5.3. It is formally
defined as follows: τ(n0) = 3n, τ(n1) = (3n+2)/2 if n is even, and τ(n1) = (3n+1)/2 if n is
odd. It is easy to see that τ is an isomorphism between 〈U2, <, D〉 and 〈N, <, D〉. It follows
that, for every ϕ ∈ MSO[<,D], ϕ is satisfiable over 〈N, <, D〉 if and only if ϕ is satisfiable
over 〈U2, <, D〉. From Lemma 5.2.1 it immediately follows that MSO[<, ↓0, ↓1, D] over binary
2-LSs is undecidable. Moreover, it is easy to show that MSO[<, ↓0, ↓1, D] over binary 2-LSs
is embeddable in MSO[<, (↓i)k−1

i=0 , D] over k-ary n-LSs. Hence, MSO[<, (↓i)k−1
i=0 , D] and, thus,

MSO[<, (↓i)k−1
i=0 ,⊕1] are undecidable. Since MSO[<, (↓i)k−1

i=0] over k-ary n-LSs is decidable
(Theorem 2.2.7), we have that D and ⊕1 are not definable in MSO[<, (↓i)k−1

i=0].

92 CHAPTER 5. EXTENDING THE PICTURE

Theory T +1 D ⊕1
MFO Decidable Decidable ? Decidable
MPL Decidable Decidable ? Decidable
MCL Decidable Decidable ? Decidable
MFOP Decidable Decidable ? ?
MPLP Decidable Decidable ? ?
MCLP Decidable Decidable ? ?
MSO Decidable Decidable Undecidable Undecidable

Table 5.1: Decidability over n-layered structures

Finally, it is possible to show that the extensions of the chain, path, and first-order
fragments of MSO[<, (↓i)k−1

i=0] with the undefinable predicate ⊕1 are decidable. It can indeed
be proved that MCL[<, (↓)k−1

i=0 ,⊕1] is decidable, and thus so are also MPL[<, (↓)k−1
i=0 ,⊕1]

and MFO[<, (↓)k−1
i=0 ,⊕1]. This result follows from Theorem 5.4.4, since n-LSs can be easily

embedded into DULSs. The decidability results for n-layered structures are summarized in
Table 5.1 (a question mark stands for an open problem).

5.3 Definability and decidability over UULSs

In this section, we explore definability and decidability issues for monadic theories of UULSs.
The local predicate i-th equi-level T i can be defined as follows:

T 0(x, y) = ¬∃z1(↓0(x) = z1) ∧ ¬∃z2(↓0(y) = z2);
T i+1(x, y) = ∃z1∃z2(T i(z1, z2) ∧ ↓0(x) = z1 ∧ ↓0(y) = z2).

The horizontal successor +i can be defined in terms of T i. As for Di, we first define D0 (00

is the first-order definable origin of layer zero):

D0(x, y) = ∃X(x ∈ X ∧ y ∈ X ∧ 00 ∈ X ∧
∀z((T 0(z) ∧ z 6= 00) → z 6∈ X)∧
∀z(z ∈ X → ∃w(↓0(w) = z ∧ w ∈ X)))∧
∀z((z ∈ X ∧ z 6= 00) → ∃w(↓0(z) = w ∧ w ∈ X)))).

Let ankn + . . . a0k
0 be the k-ary representation of i, for any i > 0. Di can be defined as

follows:

Di(x, y) = ∃z(D0(z) ∧ ↓a0...an(z) = x) ∧ ∃z(D0(z) ∧ ↓a0...an(z) = y).

The vertical successor ⊕i can be defined in terms of Di. Notice that second-order quantifi-
cation comes into play only in the definition of D0. Moreover, the semantics of D0 does not
change if we interpret the second-order variable X as a path. Hence, i-th equi-column Di

and i-th vertical successor ⊕i1 can be encoded in MPL[<, (↓i)k−1
i=0], and i-th equi-level T i

and i-th horizontal successor +i1 can be encoded in MFO[<, (↓i)k−1
i=0].

Consider now the global predicates. We start by showing that the addition of the vertical
predicate ⊕1 or D to the first-order theory MFOP [<, (↓i)k−1

i=0] makes it undecidable. The
proof reduces a suitable undecidable version of the tiling problem to the satisfiability problem
for MFOP [<, (↓i)k−1

i=0]-formulas and essentially exploits monadic predicates in P.

Theorem 5.3.1 MFOP [<, (↓i)k−1
i=0 ,⊕1] and MFOP [<, (↓i)k−1

i=0 , D] over k-ary UULSs are un-
decidable.

5.3. DEFINABILITY AND DECIDABILITY OVER UULSS 93

r
r r©©©©

HHHH

r rr r¡
¡

¡
¡

@
@

@
@

r rr r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

´
´

´
»»»»»»»

(((((((((((((((³³³³³³

((((((((((((((((((((((((((

r
»»»»»»»»XXXXXXXXr

r©©©©

HHHH

r¡
¡

¡
¡

@
@

@
@

r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

.

. . .

. . .

. . .

Figure 5.4: Shaping an octant over an UULS.

Proof.
We give the proof for binary UULSs. The general result follows. We show that MFOP [<

, ↓0, ↓1,⊕1] over binary UULSs is undecidable by embedding into it the octant tiling prob-
lem [65]. Since MFOP [<, ↓0, ↓1,⊕1] → MFOP [<, ↓0, ↓1, D], we have that MFOP [<, ↓0, ↓1, D]
is undecidable too.

Recall that the octant tiling problem asks: given a finite set of tile types T , can T tile
the octant (half of a quadrant) O =

⋃
i≥0{(i, j) | 0 ≤ j ≤ i}? For every tile type t ∈ T , let

right(t), left(t), up(t) and down(t) be the colors or the corresponding sides of t. The octant
tiling problem is to find a function f : O → T such that right(f(n,m)) = left(f(n+1,m))
and, whenever m < n, up(f(n,m)) = down(f(n,m + 1)). We will reduce the octant tiling
problem to the satisfiability problem for MFOP [<, ↓0, ↓1,⊕1] over binary UULSs. Suppose
that T = {T1, . . . , Tk} is the given set of tile types. We will construct a MFOP [<, ↓0, ↓1,⊕1]-
formula ϕT such that T tiles O if and only if ϕT is satisfiable over binary UULSs.

The first step is forcing the octant grid over a binary UULS 〈U , ↓0, ↓1, <〉. The octant
grid domain is the set G =

⋃
i≥0{(2(i−j)−1)j | 0 ≤ j ≤ i} ⊂ U . Notice that x ∈ G if and only

if x is reachable along a rightmost path rooted at some point in {0i | i ≥ 0}. The horizontal
grid successor is s0 such that, for every nr ∈ G, s0(nr) = nr+1 and the vertical grid successor
is s1 such that, for every nr ∈ G, r > 0, s1(nr) = (2n + 1)r−1 (cf. Figure 5.4). Note that,
for every nr ∈ G, r > 0, s0(s1(nr)) = s1(s0(nr)). We can define in MFOP [<, ↓0, ↓1,⊕1] a
monadic predicate grid such that grid(x) if and only if x belongs to the octant grid domain
G. Let Plp, Qgrid ∈ P. We have grid(x) if and only if

x ∈ Qgrid ∧ 00 ∈ Plp ∧
∀y((y ∈ Plp → ∃z(↓0(z) = y ∧ z ∈ Plp ∧ ↓1(z) 6∈ Plp))∧
(y 6∈ Plp ∧ ¬T 0(y) → ↓0(y) 6∈ Plp ∧ ↓1(y) 6∈ Plp))∧
∀y((y ∈ Plp → y ∈ Qgrid)∧
(y ∈ Qgrid ∧ y ∈ Plp ∧ ¬T 0(y) → ↓0(y) ∈ Qgrid ∧ ↓1(y) ∈ Qgrid)∧
(y ∈ Qgrid ∧ y 6∈ Plp ∧ ¬T 0(y) → ↓0(y) 6∈ Qgrid ∧ ↓1(y) ∈ Qgrid)∧
(y 6∈ Qgrid ∧ ¬T 0(y) → ↓0(y) 6∈ Qgrid ∧ ↓1(y) 6∈ Qgrid))

Moreover, the horizontal successor s0 is ⊕1, and the vertical successor s1 is ↓1. We now have
to write the tiling constraints on the grid. To this end, we make use of monadic predicates
in {P1, . . . , Pk} ⊂ P corresponding to the tile types in {T1, . . . , Tk}.

1. Exactly one tile is placed at each node:

φ1(x) =
i=k∨

i=1

x ∈ Pi

∧

1≤i<j≤k

¬(x ∈ Pi ∧ x ∈ Pj)

94 CHAPTER 5. EXTENDING THE PICTURE

2. Colors match going right:

φ2(x) =
∨

right(Ti)=left(Tj)

x ∈ Pi ∧ ⊕1(x) ∈ Pj

3. Colors match going up:

φ3(x) = ¬T 0(x) →
∨

up(Ti)=down(Tj)

x ∈ Pi ∧ ↓1(x) ∈ Pj

We define
ϕT = ∀x(grid(x) → φ1(x) ∧ φ2(x) ∧ φ3(x)).

It is easy to see that T tiles O if and only if ϕT is satisfiable over binary UULSs.

We do not know whether the same effect is produced by the addition of +1 (resp. T)
to MFOP [<, (↓i)k−1

i=0]. The decidability of MFOP [<, (↓i)k−1
i=0 ,+1] (resp. MFOP [<, (↓i)k−1

i=0 , T])
over UULSs is indeed an open problem. However, we have a proof of the undecidability of
MSO[<, (↓i)k−1

i=0 , +1] and MSO[<, (↓i)k−1
i=0 , T]. The proof rests on the undecidability of the

monadic second-order theory of binary UULSs extended with a binary predicate adj such
that adj(x, y) holds if and only if y is the adoptive son of x, that is, y is the horizontal
successor of the right son of x.

Theorem 5.3.2 MSO[<, (↓i)k−1
i=0 , +1] and MSO[<, (↓i)k−1

i=0 , T] over k-ary UULSs are unde-
cidable.

Proof.
We prove the thesis for binary UULSs. The general case follows. To show that MSO[<

, ↓0, ↓1, +1] is undecidable, we embed the theory MSO[<, adj] over 〈N+, <〉, which is known
to be undecidable (cf. Theorem 2.2.4), into MSO[<, ↓0, ↓1,+1] over binary UULSs. Since
T and +1 are inter-definable, the undecidability holds for MSO[<, ↓0, ↓1, T] also. Recall
that the predicate adj over positive natural numbers is defined as follows: adj(x, y) iff
x = 2kn + 2kn−1 + . . . + 2k0 , with kn > kn−1 > . . . > k0 > 0, and y = x + 2k0 + 2k0−1. We
define the binary predicate adj over UULSs as follows (we are overloading the symbol adj):
for every nr,ms ∈ U , we have adj(nr,ms) iff r > 0, s = r − 1, and m = 2(n + 1). Note that
adj(x, y) iff y is the adoptive son of x, that is, y is the horizontal successor of the right son
of x. Hence, adj is definable in MSO[<, ↓0, ↓1,+1] over 2-refinable UULSs as follows:

adj(x, y) = ∃z(↓1 (x) = z ∧ +1(z, y)).

Consider now the bijection τ : U → N+ depicted in Figure 5.5. Formally, τ is defined as
follows: for every nr ∈ U , τ(nr) = 2r + n2r+1. It is easy to see that τ is an isomorphism
between 〈U , <, adj〉 and 〈N+, <, adj〉. Since MSO[<, adj] over 〈N+, <〉 is undecidable, we
have that MSO[<, adj] over UULSs is undecidable. Finally, since MSO[<, adj] → MSO[<
, ↓0, ↓1, +1], we have the thesis.

Taking advantage of the bijection used in the proof of Theorem 5.3.2, it is possible
to embed the undecidable theory MSO[<, 2×] over 〈N+, <〉 into MSO[<, ↓0, ↓1,⊕1] over
binary UULSs (the double predicate 2× is encoded as the vertical successor ⊕1). Hence,
MSO[<, ↓0, ↓1] extended with either ⊕1 or D is undecidable (this result is however implied
by the stronger Theorem 5.3.1). We thus have the following.

5.3. DEFINABILITY AND DECIDABILITY OVER UULSS 95

r8

. . .

r r4 12

©

©©©©

HHHH

r r r r2 6 10 14¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

1 3 5 7 9 11 13 15

r
. . .

H 24

r r20 28©©©©

HHHH

r r r r18 22 26 30¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

17 19 21 23 25 27 29 31

. . .

. . .

. . .

. . .

. . .

Figure 5.5: The upward unbounded layered structure over natural numbers.

Theorem 5.3.3 (Undefinability of global predicates)
Global predicates are not definable in MSO[<, (↓i)k−1

i=0] over k-ary UULSs. Moreover, the
extension of MSO[<, (↓i)k−1

i=0] with any global predicate is undecidable.

To complete the picture, let us focus on the decidability problem for the extensions of
MSO[<, (↓i)k−1

i=0] fragments with global predicates. Surprisingly, the addition of T , +1, and
⊕1 to the chain fragment MCL[<, (↓i)k−1

i=0] preserves decidability (these global predicates are
obviously not definable in such a fragment). The proof exploits a reduction of MCL[<, (↓i

)k−1
i=0 , T,+1,⊕1] to the decidable theory MSO[<] over 〈N, <〉.

Theorem 5.3.4 MCL[<, (↓i)k−1
i=0 , T,+1,⊕1] over k-ary UULSs is decidable.

Proof.
The proof is given for k = 2 and it can be easily extended to the general case of k > 2.
First note that MCL[<, ↓0, ↓1, T, +1,⊕1] → MCL[↓0, ↓1, T,⊕1]. Indeed, the horizontal

successor +1 is first-order definable in terms of T and <. Moreover, < is proved to be redun-
dant as shown in Proposition 4.3.1. Furthermore, it is easy to show that MCL[↓0, ↓1, T,⊕1]
is equivalent to a version of chain logic in which only second-order variables occur and atomic
formulas are of the form X1 ⊆ X2 (chain X1 is included in chain X2), Sing(X) (chain X is a
singleton), proji(X1, X2) (chain X1 = {x1}, chain X2 = {x2} and ↓i(x) = y), equiL(X1, X2)
(chain X1 = {x1}, chain X2 = {x2}, and T (x, y)), and vsucc(X1, X2) (chain X1 = {x1},
chain X2 = {x2}, and ⊕1(x, y)).

By induction on the formulas of the latter version of chain logic, it is possible to prove
that every formula of chain logic can be encoded into an equi-satisfiable formula in MSO[<]
over natural numbers, a theory known to be decidable. The idea is the following, and is
borrowed from [115]. Any second-order variable X interpreted as a chain is encoded by a
pair of set variables ChX and LvX over the natural numbers. ChX is interpreted as a set
of natural numbers encoding the leftmost upward unbounded path (starting form the first
layer) containing the chain X, i.e., i ∈ ChX iff the element of the i-th layer of the mentioned
path is a right-hand side son. LvX is interpreted as a set of natural numbers describing the
elements of the path actually belonging to the chain, i.e., i ∈ LvX iff the element of the i-th
layer of the path belongs to the chain X. To guarantee that a chain X corresponds to a
unique pair ChX and LvX , we have to use the following condition

unique(ChX , LvX) = ∀y(y ∈ ChX → min(LvX) ≤ y),

where min(X) is the minimum of the set X of natural numbers with respect to the usual
ordering relation <.

As for atomic formulas,

96 CHAPTER 5. EXTENDING THE PICTURE

Theory T +1 D ⊕1
MFO Decidable Decidable ? Decidable
MPL Decidable Decidable ? Decidable
MCL Decidable Decidable ? Decidable
MFOP ? ? Undecidable Undecidable
MPLP ? ? Undecidable Undecidable
MCLP ? ? Undecidable Undecidable
MSO Undecidable Undecidable Undecidable Undecidable

Table 5.2: Decidability for upward unbounded layered structures

• X1 ⊆ X2 is encoded as ChX1 ⊆ ChX2 ∧ LvX1 ⊆ LvX2 ;

• Sing(X) in encoded as ‘LvX is a singleton’, that is,

∃Y (Y ⊆ LvX ∧ LvX 6= Y ∧ ¬∃Z(Z ⊆ LvX ∧ Z 6= LvX ∧ Z 6= Y));

• proj0(X1, X2) is encoded as ChX1 = ChX2 , ‘LvX1 is a singleton {x1}’, ‘LvX2 is a
singleton {x2}’, and x1 = x2 + 1;

• proj1(X1, X2) is encoded as ‘LvX1 is a singleton {x1}’, ‘LvX2 is a singleton {x2}’,
x1 = x2 + 1, and ChX1 = ChX2 ∪ {x2};

• equiL(X1, X2) is encoded as ‘LvX1 is a singleton {x1}’, ‘LvX2 is a singleton {x2}’, and
x1 = x2;

• vsucc(X1, X2) is encoded as ‘LvX1 is a singleton {x1}’, ‘LvX2 is a singleton {x2}’,
x1 = x2 + 1 and ChX2 = {n + 1 | n ∈ ChX1}.

The induction cases for ∧ and ¬ are trivial. Finally, the second-order existentially quantified
chain formula ∃Xφ(X) is translated into the formula

∃ChX∃LvX(unique(ChX , LvX) ∧ φτ (ChX , LvX)),

where φτ is the translation of φ.

The decidability results for UULSs are summarized in Table 5.2. Interestingly, and with
some surprise, the horizontal successor predicate +1 can be defined in terms of the equi-
column predicate D.

Theorem 5.3.5 MFO[<, ↓0, ↓1, +1] can be embedded into MFO[<, ↓0, ↓1, D] over binary
UULSs.

Proof.
We have that +1(x, y) iff

(∃z(↓0(z) = x) → ∃z(↓0(z) = x ∧ ↓1(z) = y))∧
(∃z(↓1(z) = x) → ∃z(↓1(z) = x ∧ adj(z, y))),

where adj(z, y) says that y is the adoptive son of z whenever z does not belong to the first
layer of the structure. Moreover, y is the adoptive son of z means that y is the horizontal

5.4. DEFINABILITY AND DECIDABILITY OVER DULSS 97

successor of the right son of z. We need to encode the predicate adj into MFO[<, ↓0, ↓1, D].
We have that adj(x, y) iff φ(x, y), where φ(x, y) iff:

¬T 0(x) → ∃z1∃z2∃z3∃z4∃z5

(T 0(z1) ∧ D(z1, x)∧
+01(z1, z2)∧
⊕1(z2, z3)∧
↓0(z3) = z4 ∧
D(z4, z5) ∧ ∀w(D(z4, w) ∧ x ≤ w → z5 ≤ w)∧
(D0(x) ∧ x 6= 01 → ⊕1(z5, y))∧
((¬D0(x) ∨ x = 01) → z5 = y))

We prove that the above definition captures the predicate adj. Let x = nr, y = ms such
that x does not belong to the first layer of the structure, i.e., r ≥ 1. Note that adj(x, y)
if and only if r ≥ 1, s = r − 1 and m = 2(n + 1). Suppose that φ(x, y) holds. Then,
there exist zi, for i = 1, . . . , 5, such that z1 = n0, z2 = (n + 1)0, z3 = (n + 1)1, z4 =
(2(n + 1))0, and z5 = min{w | w = (2(n + 1))i and i ≥ 0 and nr ≤ w}. We claim that
z5 = y = (2(n + 1))r−1, and thus adj(x, y) holds, whenever (¬D0(x) ∨ x = 01), and
z5 = (2(n+ 1))r−2, y = (2(n +1))r−1, and thus adj(x, y) holds, whenever (D0(x) ∧ x 6= 01).
We prove the claim. Suppose ¬D0(x), that is, n ≥ 1. Since, for every i, j ≥ 0, ij < ij+1, we
only have to prove that (2(n + 1))r−2 < nr < (2(n + 1))r−1. To see that (2(n + 1))r−2 < nr,
note that (2(n+1))r−2 ≤ (4n)r−2. This holds since 2(n+1) ≤ 4n whenever n ≥ 1. Moreover,
(4n)r−2 < nr, since (4n)r−2 = ↓0(↓0(nr)), and, for every point v, ↓0(v) < v. We now show
that nr < (2(n+1))r−1. It holds since (2(n+1))r−1 = +1(↓1(nr)), and, for every v, v < ↓1(v)
and v < +1(v). The cases x = 01 and (D0(x) ∧ x 6= 01) are easier. Similarly, if adj(x, y)
holds, then φ(x, y) holds. Hence the thesis.

Since +1 and T are inter-definable in the monadic second-order theory of UULSs, and
the same holds for ⊕ and D, we have the following corollary.

Corollary 5.3.6 Let o ∈ {+1, T} and v ∈ {⊕1, D}. MSO[<, ↓0, ↓1, o] can be embedded into
MSO[<, ↓0, ↓1, v] over binary UULSs.

5.4 Definability and decidability over DULSs

We conclude this chapter by exploring definability and decidability issues for monadic the-
ories of DULSs. The local predicates T i and +i1 can be expressed as in the case of n-LSs
(Section 5.2), while the definition of the local predicate Di given in the case of n-LSs does
not work anymore since we have to cope with an infinite number of layers. We first define
D0(x, y) as follows:

∃X(x ∈ X ∧ y ∈ X ∧ 00 ∈ X ∧ ∀z(T 0(z) ∧ z 6= 00 → z 6∈ X)∧
∀z(z ∈ X → (↓0(z) ∈ X ∧ ∧k−1

i=1 ↓i(z) 6∈ X) ∧ z 6∈ X → ∧k−1
i=0 ↓i(z) 6∈ X)),

where 00 is the first-order definable origin of layer zero. For i > 0, let ankn + . . . + a0k
0 be

the k-ary representation of i. We define Di(x, y) as follows:

(
∨blogk(i)c

j=0 ∃z(D0(z) ∧ T j(z) ∧ +ji(z) = x) ∨ ∃z(D0(z) ∧ ↓a0...an(z) = x))∧
(
∨blogk(i)c

j=0 ∃z(D0(z) ∧ T j(z) ∧ +ji(z) = y) ∨ ∃z(D0(z) ∧ ↓a0...an(z) = y)).

As already shown, ⊕i1 can be defined in terms of Di. As in the case of UULSs, second-order
quantification is only used to define D0. Moreover, the semantics of D0 does not change

98 CHAPTER 5. EXTENDING THE PICTURE

r
r r©©©©

HHHH

r rr r¡
¡

¡
¡

@
@

@
@

r rr r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

´
´

´
»»»»»»»

(((((((((((((((³³³³³³

((((((((((((((((((((((((((

r
»»»»»»»»XXXXXXXX

. .

r
r©©©©

HHHH

r¡
¡

¡
¡

@
@

@
@

r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

Figure 5.6: Shaping an N× N-grid over a binary tree.

if we interpret the second-order variable X as a path. Hence i-th equi-column Di and i-th
vertical successor ⊕i1 can be encoded in MPL[<, (↓i)k−1

i=0], and i-th equi-level T i and i-th
horizontal successor +i1 can be encoded in MFO[<, (↓i)k−1

i=0].

Consider now global predicates. As in the case of UULSs, the addition of the vertical
predicates ⊕1 or D to MFOP [<, (↓i)k−1

i=0] leads to undecidability. The proof takes advantage
of a reduction of the N×N tiling problem to the satisfiability problem for MFOP [<, ↓0, ↓1,⊕1]
and essentially exploits the monadic predicates in P.

Theorem 5.4.1 MFOP [<, (↓i)k−1
i=0 ,⊕1] and MFOP [<, (↓i)k−1

i=0 , D] over k-ary DULSs are un-
decidable.

Proof.

We show that both the theories are undecidable over binary infinite trees. Since bi-
nary infinite trees are embeddable into k-ary DULSs, we have the thesis. We show that
MFOP [<, ↓0, ↓1,⊕1] over binary infinite trees is undecidable by a reduction of the N × N
tiling problem [11]. Since MFOP [<, ↓0, ↓1,⊕1] → MFOP [<, ↓0, ↓1, D], we have that MFOP [<
, ↓0, ↓1, D] is undecidable too. Recall that the N × N tiling problem asks: given a finite
set of tile types T , can T tile N × N? For every tile type t ∈ T , let right(t), left(t),
up(t) and down(t) be the colors or the corresponding sides of t. The N × N tiling problem
is to find a function f : N × N → T such that right(f(n,m)) = left(f(n + 1,m)) and
up(f(n,m)) = down(f(n,m+1)). We will reduce the N×N tiling problem to the satisfiability
problem for MFOP [<, ↓0, ↓1,⊕1] over binary infinite trees. Suppose that T = {T1, . . . , Tk}
is the given set of tile types. We will construct a monadic MFOP [<, ↓0, ↓1,⊕1]-formula ϕT
such that T tiles N× N if and only if ϕT is satisfiable over binary infinite trees.

The first step is forcing the grid over a binary infinite tree 〈{0, 1}∗, <pre〉. The grid is
given by the domain {0∗1∗}, the horizontal successor in s0(x) = x1 and the vertical successor
in s1(x) = 0x (cf. Figure 5.6). Note that, for every x ∈ {0∗1∗}, s0(s1(x)) = s1(s0(x)). We
define in MFOP [<, ↓0, ↓1,⊕1] a monadic predicate grid such that grid(x) if and only if x
belongs to the grid domain {0∗1∗}. Note that {0∗1∗} =

⋃
i≥0{0i1∗}. Hence, grid(x) if and

only if x is reachable along a rightmost path rooted at some point in {0∗}. Let Plp, Qgrid ∈ P.
We have grid(x) if and only if

5.4. DEFINABILITY AND DECIDABILITY OVER DULSS 99

x ∈ Qgrid ∧ ε ∈ Plp ∧
∀y((y ∈ Plp → ↓0(y) ∈ Plp ∧ ↓1(y) 6∈ Plp)∧
(y 6∈ Plp → ↓0(y) 6∈ Plp ∧ ↓1(y) 6∈ Plp))∧
∀y((y ∈ Plp → y ∈ Qgrid)∧
(y ∈ Qgrid ∧ y ∈ Plp → ↓0(y) ∈ Qgrid ∧ ↓1(y) ∈ Qgrid)∧
(y ∈ Qgrid ∧ y 6∈ Plp → ↓0(y) 6∈ Qgrid ∧ ↓1(y) ∈ Qgrid)∧
(y 6∈ Qgrid → ↓0(y) 6∈ Qgrid ∧ ↓1(y) 6∈ Qgrid))

Once we have shaped the grid, we can encode the horizontal and the vertical successors as
↓1 and ⊕1, respectively, and we can write the tiling constraints on the grid. To this end,
we make use of monadic predicates in {P1, . . . , Pk} ⊂ P corresponding to the tile types in
{T1, . . . , Tk}.

1. Exactly one tile is placed at each node:

φ1(x) =
i=k∨

i=1

x ∈ Pi

∧

1≤i<j≤k

¬(x ∈ Pi ∧ x ∈ Pj).

2. Colors match going right:

φ2(x) =
∨

right(Ti)=left(Tj)

x ∈ Pi ∧ ↓1 (x) ∈ Pj

3. Colors match going up:

φ3(x) =
∨

up(Ti)=down(Tj)

x ∈ Pi ∧ ⊕1(x) ∈ Pj .

We define
ϕT = ∀x(grid(x) → φ1(x) ∧ φ2(x) ∧ φ3(x)).

It is easy to see that T tiles N×N if and only if ϕT is satisfiable over binary infinite trees.

As a matter of fact, the proof of Theorem 5.4.1 does not exploit the whole DULS, but
only the first tree of it. It follows that the same result holds for binary infinite trees. As for
the equi-level predicate T , we have that its addition to MPLP [<, (↓i)k−1

i=0] does not preserve
decidability. The proof rests of an embedding of the N × N tiling problem, and essentially
uses the monadic predicates in P.

Theorem 5.4.2 MPLP [<, (↓i)k−1
i=0 , T] over k-ary DULSs is undecidable.

Proof.
We prove the theorem for binary DULSs. The general case follows. We show that

MPLP [<, ↓0, ↓1, T] over binary DULSs is undecidable by reducing to it the N × N tiling
problem (see proof of Theorem 5.4.1). Suppose that T = {T1, . . . , Tk} is the given set of tile
types. We will construct a MPLP [<, ↓0, ↓1, T]-formula ϕT such that T tiles N × N if and
only if ϕT is satisfiable over binary DULSs. The first step is forcing the grid over a binary
DULS 〈U , ↓0, ↓1, <〉. We define the grid domain as the set G =

⋃
i≥0{(i2j)j | j ≥ 0} ⊂ U ,

the horizontal successor s0(nr) = (n + 2r)r, and the vertical successor s1(nr) = (2n)r+1 (cf.

100 CHAPTER 5. EXTENDING THE PICTURE

r
r©©©©

HHHH

r¡
¡

¡
¡

@
@

@
@

r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

. .

r
r©©©©

HHHH

r¡
¡

¡
¡

@
@

@
@

r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

r
r©©©©

r¡
¡

r¢
¢

. . .

. . .

. . .

. . .

Figure 5.7: Shaping an N× N-grid over a DULS.

Figure 5.7). Note that, for every nr ∈ G, s0(s1(nr)) = s1(s0(nr)). Moreover, it is easy to
define in MPLP [<, ↓0, ↓1, T] a monadic predicate grid such that grid(x) if and only if x
belongs to the grid domain G. This predicate is true over x if and only if x is reachable along
a leftmost path rooted at some point belonging to the first layer of the structure. We have

grid(x) = ∃y(T 0(y) ∧ LP(y, x)),

where LP(y, x) iff x and y belongs to the same leftmost path. Formally, LP(y, x)) iff

∃X(x ∈ X ∧ y ∈ X ∧ ∀z(z ∈ X → ↓0(z) ∈ X)).

Moreover, the vertical successor can be defined as ↓0 and the horizontal successor as →,
where

→ (x, y) = ∃v, w(T (x, y) ∧ LP(v, x) ∧ T 0(v) ∧ +0(v, w) ∧ LP(w, y)).

The proof proceeds as in the proof of Theorem 5.4.1.

It is worth noting that the proof of Theorem 5.4.2 involves the whole DULS, and not
only its first tree, as it happens in the proof of Theorem 5.4.1. We do not know whether the
addition of the horizontal successor +1 to MPLP [<, (↓i)k−1

i=0] has the same effect. However,
since T and +1 are inter-definable in the monadic second-order theory, we know that MSO[<
, (↓i)k−1

i=0 ,+1] is undecidable. Summing up, we have the following theorem.

Theorem 5.4.3 (Undefinability of global predicates)

Global predicates are not definable in MSO[<, (↓i)k−1
i=0] over k-ary DULSs. Moreover, the

extension of MSO[<, (↓i)k−1
i=0] with any global predicate is undecidable.

The only positive result is the following, whose proof is similar to that of Theorem 5.3.4.

Theorem 5.4.4 MCL[<, (↓i)k−1
i=0 , T,+1,⊕1] over k-ary DULSs is decidable.

As for UULSs, we have that MSO[<, (↓i)k−1
i=0] and MCL[<, (↓i)k−1

i=0 , T,+1,⊕1] over DULSs
are orthogonal in their expressiveness.

The decidability results for DULSs are summarized in Table 5.3. As in the case of UULSs,
the horizontal successor +1 can be encoded in terms of the equi-column D.

Theorem 5.4.5 MFO[<, ↓0, ↓1, +1] can be embedded into MFO[<, ↓0, ↓1, D] over binary
DULSs.

5.4. DEFINABILITY AND DECIDABILITY OVER DULSS 101

Theory T +1 D ⊕1
MFO Decidable Decidable ? Decidable
MPL Decidable Decidable ? Decidable
MCL Decidable Decidable ? Decidable
MFOP ? ? Undecidable Undecidable
MPLP Undecidable ? Undecidable Undecidable
MCLP Undecidable ? Undecidable Undecidable
MSO Undecidable Undecidable Undecidable Undecidable

Table 5.3: Decidability over downward unbounded layered structures

Proof.
We have that +1(x, y) iff

(∃z(↓0(z) = x) → ∃z(↓0(z) = x ∧ ↓1(z) = y))∧
(∃z(↓1(z) = x) → ∃z(↓1(z) = x ∧ adj(z, y)))∧
(T 0(x) → +01(x, y)),

where adj(z, y) says that y is the adoptive son of z, that is, y is the horizontal successor of
the right son of z. We need to encode the predicate adj into MFO[<, ↓0, ↓1, D]. We have
that adj(x, y) iff φ(x, y), where φ(x, y) iff:

∃z1∃z2∃z3∃z4

(T 0(z1) ∧ D(z1, x)∧
+01(z1, z2)∧
↓0(z2) = z3 ∧
D(z3, z4) ∧ ∀w(D(z3, w) ∧ x ≤ w → z4 ≤ w)∧
((D0(x) ∨ D1(x)) → ⊕1(y, z4))∧
(¬D0(x) ∧ ¬D1(x) → z4 = y))

We prove that the above definition captures the predicate adj. Let x = nr, y = ms. Note
that adj(x, y) if and only if s = r + 1 and m = 2(n + 1). Suppose that φ(x, y) holds. Then,
there exist zi, for i = 1, . . . , 4, such that z1 = n0, z2 = (n + 1)0, z3 = (2(n + 1))1, and z4 =
min{w | w = (2(n + 1))i and i ≥ 0 and nr ≤ w}. We claim that z4 = y = (2(n + 1))r+1, and
thus adj(x, y) holds, whenever ¬(D0(x) ∨ D1(x)), and z4 = (2(n+1))r+2, y = (2(n+1))r+1,
and thus adj(x, y) holds, whenever (D0(x) ∨ D1(x)). Suppose ¬(D0(x) ∨ D1(x)), that is,
n > 1. Since, for every i, j ≥ 0, ij < ij+1, we only have to prove that (2(n + 1))r+2 < nr <
(2(n + 1))r+1. To see that (2(n + 1))r+2 < nr, consider the set {ir+2 | i ≥ 0}. It is easy to
verify that, for every i ≥ 4n, nr < ir+2, and, for every i < 4n, ir+2 < nr. We hence have to
show that 2(n + 1) < 4n, and this is true for n > 1. We now show that nr < (2(n + 1))r+1.
It holds since (2(n + 1))r+1 = +1(↓1(nr)), and, for every v, v < ↓1(v) and v < +1(v). The
case (D0(x) ∨ D1(x)) is easier. Similarly, if adj(x, y) holds, then φ(x, y) holds. Hence the
thesis.

Since +1 and T are inter-definable in the monadic second-order theory of DULSs, and
the same holds for ⊕ and D, we have the following corollary.

Corollary 5.4.6 Let o ∈ {+1, T} and v ∈ {⊕1, D}. MSO[<, ↓0, ↓1, o] can be embedded into
MSO[<, ↓0, ↓1, v] over binary DULSs.

102 CHAPTER 5. EXTENDING THE PICTURE

5.5 Reconciling the algebraic and the logical frameworks

In Section 1.1, we described two different approaches to represent and reason about time
granularity, namely the algebraic and the logical framework, and we pointed out the advan-
tages and the disadvantages of both of them. In this section, we propose a unifying approach
to represent and reason about a finite number of time granularities that captures both the
naturalness of the algebraic framework and the effectiveness of the logical one.

We aim at modelling time granularity according to the following definition.

Definition 5.5.1 A granularity is a mapping G from an index set N to subsets of a time
domain N such that: (1) if i < j then each element of G(i) is less than all elements of G(j),
(2) if i < j and G(j) is not empty, then G(i) is not empty, and (3) G(i) is a convex interval
for every i ∈ N.

The first condition states that granules in a granularity do not overlap and that their
index order is the same as their time domain order. The second condition states that the
subset of the index set that maps to nonempty granules forms an initial segment. The
third conditions avoids granularities with gaps inside the granules. With respect to the
original definition given in [8], we have fixed the index set and the time domain to be (N, <).
Moreover, empty granules may not be followed by nonempty granules. As a consequence,
empty granules, if any, form the tail of the granularity. These choices do not reduce the
generality of the definition. Finally, only granularities with no gap inside the granules are
treated (we will remove this assumption later). A granularity G is said:

• externally continuous, if there are no gaps between nonempty granules of G;

• internally continuous, if there are no gaps inside the granules of G;

• total, if the granules of G cover all the time domain;

• uniform, if all the granules of G have the same cardinality.

For instance, the granularity ‘days’ is internally and externally continuous, uniform and total.
Granularities ‘months’ and ‘years’ are not uniform, ‘years since 2000’ is not total, ‘business
week’ is not externally continuous, and ‘business month’ is not internally continuous. A
number of meaningful relationships can be established among granularities. In particular, a
granularity G is finer than a granularity H if, for every index i, there exists an index j such
that G(i) ⊆ H(j). A granularity G is coarser than a granularity H is H is finer than G. For
instance, days is finer than weeks, days is finer than months, while weeks and months are
incomparable.

In the following, we present an approach that uses labeled infinite sequences to represent
time granularities. Let G = {G1, . . . , Gn} be a finite set of granularities (we will refer to G
as a calendar) . Let PG = {PGi , QGi | 1 ≤ i ≤ n} be a set of proposition letters associated
to the calendar G. We use PG-labeled infinite sequences (N, <, V), where V : N → 2PG is a
valuation function, to represent the granularities in G. The idea is to use, for every G ∈ G,
the letter PG (resp. QG) to label the starting (resp. ending) point of an arbitrary granule of
G. More precisely:

Definition 5.5.2 An infinite sequence (N, <, V) is G-consistent whenever:

5.5. RECONCILING THE ALGEBRAIC AND THE LOGICAL FRAMEWORKS 103

• if PG ∈ V (i) for some i ∈ N, then either QG ∈ V (i) or QG ∈ V (j) for some j > i such
that PG 6∈ V (k) for every i < k ≤ j and QG 6∈ V (k) for every i < k < j;

• if QG ∈ V (i) for some i ∈ N, then either PG ∈ V (i) or PG ∈ V (j) for some j < i such
that QG 6∈ V (k) for every j ≤ k < i and PG 6∈ V (k) for every j < k < i.

The above conditions say that every starting point of a granule of G (a point labeled with
PG) has to match with a unique ending point of that granule (a point labeled with QG),
and every ending point of a granule of G has to match with a unique starting point of that
granule. It is easy to see that every G-consistent infinite sequence induces a granularity G
according to Definition 5.5.1, and vice versa. Let M = (N, <, V) be G-consistent. For i ∈ N,
the i-th granule of M with respect to G is the set of the natural numbers in the interval [r, s],
for some r, s ∈ N such that PG ∈ V (r), QG ∈ V (s) and there are exactly i natural numbers
less that r such that PG holds on them. The infinite sequence M induces the granularity G
such that, for every i ∈ N, G(i) is the i-th granule of M with respect to G, if it exists, and
G(i) = ∅ otherwise. For instance,

• the structure (N, <, V) such that V (i) = {PG} iff i is even, and V (i) = {QG} iff i is odd,
induces the uniform, continuous and total granularity G such that G(i) = {2 ·i, 2 ·i+1}
for every i ∈ N;

• the structure (N, <, V) such that V (0) = {PG}, V (1) = {QG}, V (3) = {PG}, V (5) =
{QG} induces the nonuniform, noncontinuous, nontotal granularity G such that G(0) =
{0, 1}, G(1) = {3, 4, 5}, and G(i) = ∅ for every i ≥ 2;

• the structure (N, <, V) such that V (0) = {PG}, V (1) = {QG, PG}, V (2) = {QG}
does not induce any granularity, since it is not G-consistent (indeed, the granules
G(0) = {0, 1} and G(1) = {1, 2} intersect).

Similarly, a granularity G induces a G-consistent infinite sequence. Since consistent
infinite sequences induce granularities, we can use a linear time logic, interpreted over infinite
sequences, to define (sets of) granularities. Our choice here is Past Propositional Linear
Temporal Logic (PPLTL). For instance, the following PPLTL-formula η(PG, QG) encodes
the set of all granularities (according to Definition 5.5.1):

η(PG, QG) = G((PG → α) ∧ (QG → β)),

where
α = QG ∨ X(¬(PG ∨ QG)U(¬PG ∧ QG))
β = PG ∨ X−1(¬(PG ∨ QG)S(PG ∧ ¬QG)).

Moreover, the formula

α = PG ∧ ¬QG ∧ X¬PG ∧ XQG ∧ G((PG ↔ XXPG) ∧ (QG ↔ XXQG))

encodes the singleton set containing the granularity G such that G(i) = {2 · i, 2 · i + 1}, for
every i ∈ N, while the formula

F(α ∧ X−1true → X−1H¬(PG ∨ QG))

captures the infinite set of granularities {G0, G1, . . .} such that G0 = G and, for every i > 0,
Gi is obtained by shifting G0 by i positions.

104 CHAPTER 5. EXTENDING THE PICTURE

Different granularities may be addressed in the same formula (but only a finite number).
For instance, given a calendar G = {G1, . . . , Gn}, the formula

∧n
i=1 η(PGi , QGi) defines the

set of all calendars with n granularities. Relations between granularities belonging to the cal-
endar G may be captured too. For example, the relation finer-than between two granularities
G1 and G2 is expressed by the formula

ϕ(PG1 , QG1 , PG2 , QG2) = η(PG1 , QG1) ∧ η(PG2 , QG2) ∧ G((PG1 → α) ∧ (QG1 → β)),

where
α = ¬(PG2 ∨ QG2)U(QG1 ∧ (QG2 ∨ X(¬PG2UQG2)))
β = ¬(PG2 ∨ QG2)S(PG1 ∧ (PG2 ∨ X−1(¬QG2SPG2)))

Hence, the formula
n∧

i=1

η(PGi , QGi) ∧
n−1∧

i=1

ϕ(Gi, Gi+1)

defines all the calendars with n granularities that are totally ordered with respect to the
finer-than relation.

Besides representing (sets of) granularities and relations among them, our framework per-
mits to effectively solve several interesting problems concerning time granularity. The con-
sistency problem is the problem of deciding whether a granularity representation corresponds
to a well-defined granularity (with respect to a given definition). The algorithmic solution
of the consistency problem is important to avoid the definition of inconsistent granularities
that may produce unexpected failures in the system. Given a PPLTL-formula ϕ(PG, QG),
one may verify whether it encodes a set of well-defined granularities (according to Defini-
tion 5.5.1) by checking the validity of the formula ϕ(PG, QG) → η(PG, QG). The equivalence
problem is the problem of deciding whether two different representations define the same
granularity. The decidability of the equivalence problem implies the possibility of effectively
testing the semantic equivalence of two different time granularity representations, making it
possible to use the smaller and more tractable one. Given PPLTL formulas ϕ1(PG1 , QG1)
and ϕ2(PG2 , QG2) representing sets of time granularities G1 and G2, respectively, one may
verify whether G1 and G2 are the same by checking whether ϕ1(PG1 , QG1) ↔ ϕ2(PG2 , QG2)
is valid. Finally, the classification problem is as follows: given a natural number n and a
granularity G, is there a granule of G containing n? The classification problem is strictly
related to the granule conversion problem which allows to relate granules of a given gran-
ularity to granules of another one. Let ϕ(PG, QG) be a PPLTL-formula representing a set
of granularities G. We inductively define the temporal operator Xnp as follows: X0p = p,
and, for n > 0, Xnp = XXn−1p. We have that n ≥ 0 is contained is some granule of every
granularity in G if the formula ϕ(PG, QG) → αn(PG, QG) is valid, where

αn(PG, QG) = Xn(PG ∨ QG) ∨ Xn(¬(PG ∨ QG)SPG ∧ ¬(PG ∨ QG)UQG).

We recall that checking the validity for a PPLTL-formula ϕ is equivalent to checking the
nonsatisfiability for ¬ϕ, and the latter is decidable in polynomial space.

The above framework does not consider granularities with gaps inside the granules (only
internally continuous granularities are treated). However, it can be easily extended to cope
with internal gaps. We first extend the definition of granularity to cope with internal gaps.

Definition 5.5.3 A granularity is a mapping G from N to subsets of N such that: (1) if
i < j then each element of G(i) is less than all elements of G(j), and (2) if i < j and G(j)
is not empty, then G(i) is not empty.

5.6. DISCUSSION 105

SLω(Trellis) ⊆ MSO[<, 2×] = MSO[<, ↓0, ↓1, D]

(⊆ ⊆

SLω(Y-Trees) (MSO[<, adj] = MSO[<, ↓0, ↓1, T]

(((

SLω(Binary Trees) = MSO[<, flip] = MSO[<, ↓0, ↓1]

Figure 5.8: Systolic ω-languages and monadic second-order theories

We still model granularities as labeled infinite sequences over the extended alphabet
PG = {PG, QG, PHG

, QHG
| G ∈ G}. The idea is to use letters PG and QG to delimit the

granules of G as before, and letters PHG
and QHG

to bound the gaps inside the granules of G.
Let us define a new granularity HG whose granules are the internal gaps of the granularity
G. Note that H is strictly finer than G. Indeed, every internal gap of G (a granule of H) is
a proper subset of some granule of G. We extend the definition of G-consistency as follows:

Definition 5.5.4 An infinite sequence M = (N, <, V) is G-gap-consistent whenever:

1. M is G-consistent;

2. M is HG-consistent;

3. every granule of M with respect to HG is a subset of some granule of M with respect
to G;

4. no granule of M with respect to G is the union of some granules of M with respect to
HG.

It is easy to show that a G-gap-consistent infinite sequence induces a granularity (accord-
ing to Definition 5.5.3) and vice versa. The set of well-defined granularities (according to
Definition 5.5.3) can be encoded by a temporal formula similar to the above defined formula
ϕ(PHG

, QHG
, PG, QG) saying that G and HG are granularities, HG is finer than G, and no

granule of G is the union of some granules of HG.
As for the expressive power of the proposed framework, it can express all the regular (sets

of) granularities according to the following definition. Given a granularity G, we denote by
M(G) the G-gap-consistent infinite sequence induced by G as shown above. Moreover, given
a set G of granularities, let M(G) = {M(G) | G ∈ G}.

Definition 5.5.5 A granularity G is regular if {M(G)} = L(A) for some Büchi automaton
A. A set of granularities G is regular if M(G) = L(A) for some Büchi automaton A.

From correspondence theorems linking Büchi automata to monadic theories and temporal
logics, we have that a granularity is regular if and only if it is definable in MSO[<] if and
only if it is definable in QLTL. Similarly for sets of granularities. Since every regular set of
infinite words contains an ultimately periodic word [114], we have that every regular set of
granularities contains a regular granularity.

106 CHAPTER 5. EXTENDING THE PICTURE

5.6 Discussion

The results for UULSs presented in this chapter allow us to connect monadic second-order
theories over binary UULSs (Figure 5.8, right column) to both monadic second-order theories
over positive natural numbers (Figure 5.8, middle column) and ω-languages recognized by
systolic binary tree automata, systolic Y-tree automata, and systolic trellis automata (Fig-
ure 5.8, left column). In this chapter, we established a connection between MSO[<, 2×] (resp.
MSO[<, adj]) over positive natural numbers and MSO[<, ↓0, ↓1, D] (resp. MSO[<, ↓0, ↓1, T])
over binary UULSs. Moreover, we have proved that MSO[<, ↓0, ↓1, T] is a proper extension
of MSO[<, ↓0, ↓1] and it can be embedded into MSO[<, ↓0, ↓1, D]. The other relationships
depicted in Figure 5.8 have been shown in [98, 99]. One advantage of such a connection is
a different and more intuitive characterization of systolic Y-tree automata: every systolic
Y-tree automaton A can be associated to a MSO[<, ↓0, ↓1, T]-formula ϕA interpreted over
binary UULSs such that the models of ϕA are, modulo an isomorphism, all and only the
infinite sequences accepted by A. Notice that the opposite embedding does not hold, since
systolic Y-tree automata are not closed under complementation. Similarly, systolic trellis
automata can be embedded into MSO[<, ↓0, ↓1, D]-formulas. In this case, the opposite em-
bedding is an open problem interestingly related to the closure under complementation of
the well-known computational complexity class NP [99].

Moreover, the results of Theorems 5.3.4 and 5.4.4 open an interesting discussion: since
the global predicates T , +1, and ⊕1 are not definable in MSO[<, (↓i)k−1

i=0] over UULSs and
DULSs, we have that MCL[<, (↓i)k−1

i=0 , T,+1,⊕1] can express new properties that are not
specifiable in MSO[<, (↓i)k−1

i=0]. On the other hand, since MSO[<, (↓i)k−1
i=0] admits full second-

order quantification, while MCL[<, (↓i)k−1
i=0 , T,+1,⊕1] restricts second-order quantification to

chains, there are properties that can be expressed in MSO[<, (↓i)k−1
i=0] but not in MCL[<, (↓i

)k−1
i=0 , T,+1,⊕1]. Of course, the intersection of the definable properties in the two theories is

not empty: for instance, every MCL[<, (↓i)k−1
i=0]-definable property can be expressed in both

MSO[<, (↓i)k−1
i=0] and MCL[<, (↓i)k−1

i=0 , T, +1,⊕1]. We conclude that MSO[<, (↓i)k−1
i=0] and

MCL[<, (↓i)k−1
i=0 , T, +1,⊕1] are incomparable from an expressiveness point of view. Since

both of them are (nonelementary) decidable, they can be regarded as orthogonal languages
for time granularity.

6
Conclusions and open problems

To goal of this thesis was to find expressive, flexible and effective tools to reason about
time granularity in a logical framework. We applied a divide and conquer methodology:
problems are split into sub-problems and these are delegated to well-known modules. The
main advantage of this solution is the reuse of tools like proofs of algorithms to obtain new
theorems and software. It is worth noting that the divide and conquer approach proposed
in this thesis is not tailored to time granularity. We feel that it can be useful in other
frameworks. One example is mobile computing, where the interaction of temporal and
spatial constraints is a major requirement.

The main contributions of this thesis can be summarized as follows:

• we studied various combinations of temporal logics and we proposed an approach to
combine automata which can be considered as the automata-theoretic counterpart of
the combining method for temporal logics known as temporalization. We studied the
transfer of properties like closure under Boolean operations, decidability, and expressive
equivalence from component to combined automata.

• we devised and implemented model checking procedures for combined temporal logics
and we analyzed their computational complexity;

• we provided combined temporal logics and combined automata for finitely and in-
finitely layered structures. We studied their expressive power and their computational
complexity by using transfer theorems for temporalized automata;

• we extended classical monadic logics over layered structures with new meaningful pred-
icates and studied the decidability of the resulting theories.

The main open problems related to this thesis are listed in the following:

• we mostly used temporalized logics and hence we developed an automata-theoretic
counterpart of temporalization. However, as pointed out in Chapter 3, there are at
least two other popular ways of combining logics: independent combination and join. It
would be interesting to study automata-theoretic counterparts of independent combi-
nation and join as well. More generally, one can study forms of automata combination
in which there is a stronger interaction between components (there is few component
interaction in temporalization).

108 CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS

• The decomposition method have been successfully used to prove expressive complete-
ness results for monadic path theories over trees [61], over upward unbounded lay-
ered structures (Theorem 4.1.10), and over downward unbounded layered structures
(Theorem 4.3.2). These proofs resemble a lot, and there should be a general method
underlying them. There are two (related) key issues in understanding this method.
The first is the kind of binary predicates that L has in its signature, the second in the
type of quantification (first-order, path, chain, second-order, . . .) that L allows. Why
is the prefix ordering predicate over trees well-behaved with respect the decomposition
strategy, while the lexicographical ordering one is not? Why does the decomposition
method work with path quantification, but it does not naturally extend to second-order
quantification?

• In Chapter 4 we have proposed automata over upward unbounded layered structures.
An automaton over UULSs embeds finite tree automata, working over finite trees rooted
at the nodes of the leftmost path of the UULS, into an infinite sequence automaton,
that scans the left most path of the UULS. We have shown that the emptiness problem
for these automata is in 2EXPTIME, but we did not prove that this complexity bound
is tight. We feel that the complexity lower bound for this problem is lower.

• As an alternative, one may consider the following notion of automata accepting UULSs.
Consider bottom-up finite tree automata as defined in Chapter 2. They accept finite
trees working bottom-up, from the leaves to the root of the tree. Recall that an
UULS can be viewed as a rootless infinite tree generated from the leaves. Hence, we
can define bottom-up infinite tree automata working over UULSs. The acceptance
condition is a Büchi acceptance condition over the leftmost path of the UULS. We
conjecture that this notion of automata over UULSs is expressively equivalent to the
notion defined in Chapter 4. Moreover, it would be interesting to compare bottom-up
infinite tree automata over UULSs and systolic tree automata over infinite sequences.
The two automata classes essentially work in the same way: they process an UULS
in a bottom-up way starting from the leaves and accepting over the leftmost path.
They differ because they accept different structures (UULSs and infinite sequences).
We feel that many problems for systolic tree automata over infinite sequences, like
emptiness and closure under Boolean operations, can be reduced to similar problems
for bottom-up infinite tree automata.

• In Chapter 5 we tried to extend different monadic theories with new meaningful pred-
icates while preserving decidability. A number of resulting decidability problems are
still open. In particular, a beautiful positive result states that monadic chain logic, ex-
tended with equi-level, horizontal successor and vertical successor is still decidable both
over DULSs and UULSs. This logic can express new properties that cannot be cap-
tured in monadic second-order logic over DULSs and UULSs. The main open problem
in this chapter concerns the decidability of monadic chain logic extended with the equi-
column predicate. We conjecture that the resulting theory is undecidable. Moreover,
the extension of monadic chain logic with equi-level, horizontal successor and vertical
successor is nonelementarily decidable. It would be useful to devise an expressively
complete and elementarily decidable temporal logic counterpart. A possible candidate
is the independent combination of PLTL and CTL∗k: the former runs horizontally over
the layers of the structures, the latter works vertically over the refinement trees of the
structures. Moreover, the decision procedure for MCL[<, (↓i)k−1

i=0 , T,+1,⊕1] exploits an

109

embedding into MSO[<] over infinite sequences. However, we know that MSO[<, flip]
properly extends MSO[<] over infinite sequences and that it is still decidable. This
suggests that MCL[<, (↓i)k−1

i=0 , T, +1,⊕1] can be further extended without losing the
decidability property.

110 CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS

Bibliography

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P. Chen,
editors, Proceedings of the International Conference on Data Engineering, pages 3–14.
IEEE Press, 6–10 March 1995.

[2] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. Lecture Notes
in Computer Science, 600:74–106, 1992.

[3] F. Baader and H. Ohlbach. A multidimensional terminological knowledge representa-
tion language. Applied NonClassical Logic, 5:153–197, 1995.

[4] C. Bettini, A. Brodsky, S. Jajodia, and X. S. Wang. Logical design for tempo-
ral databases with multiple granularities. ACM Transactions on Database Systems,
22(2):115–170, June 1997.

[5] C. Bettini, S. Jajodia, J. Lin, and X. S. Wang. Discovering frequent event patterns
with multiple granularities in time sequences. IEEE Transactions on Knowledge and
Data Engineering, 10(2):222–237, 1998.

[6] C. Bettini, S. Jajodia, and X. Wang. A general framework and reasoning models for
time granularity. In Proceedings of the International Workshop on Temporal Repre-
sentation and Reasoning, pages 104–111. IEEE Computer Society Press, 1996.

[7] C. Bettini, S. Jajodia, and X. S. Wang. Testing complex temporal relationships in-
volving multiple granularities and its application to data mining. In Proceedings of
the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
volume 15, pages 68–78. ACM Press, 1996.

[8] C. Bettini, S. Jajodia, and X. S. Wang. Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, 2000.

[9] C. Bettini and R. De Sibi. Symbolic representation of user-defined time granularities.
Annals of Mathematics and Artificial Intelligence, 30(1-4):53–92, 2000.

[10] P. Blackburn and J. Bos. Representation and Inference for Natural Language. Studies
in Logic, Language, and Information. CSLI Press. Forthcoming.

[11] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer,
Berlin, 1997.

[12] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grund-
lag. Math., 6:66–92, 1960.

112 BIBLIOGRAPHY

[13] J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proceedings
of the International Congress on Logic, Methodology, and Philosophy of Science, pages
1–11. Stanford University Press, 1962.

[14] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, June 2000.

[15] R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and temporal rules
in next generation databases. In A. K. Elmagarmid and E. Neuhold, editors, Proceed-
ings of the International Conference on Data Engineering, pages 264–273, Houston,
TX, February 1994. IEEE Computer Society Press.

[16] Z. Chouchen and M. R. Hansen. An adequate first order interval logic. Lecture Notes
in Computer Science, 1536:584–608, 1998.

[17] E. Ciapessoni, E. Corsetti, A. Montanari, and P. San Pietro. Embedding time granu-
larity in a logical specification language for synchronous real-time systems. Science of
Computer Programming, 20:141–171, 1993.

[18] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244–263, 1986.

[19] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching Time Temporal Logic. In D. Kozen, editor, Proceedings of the Work-
shop on Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages
52–71, Yorktown Heights, New York, May 1981. Springer.

[20] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications. In Conference Record of the
Annual ACM Symposium on Principles of Programming Languages, pages 117–126.
ACM, ACM, January 1983.

[21] C. Combi, F. Pinciroli, and G. Pozzi. Managing time granularity of narrative clinical
information: The temporal data model TIME-NESIS. In Proceedings of the Inter-
national Workshop on Temporal Representation and Reasoning, pages 88–93. IEEE
Computer Society Press, 1996.

[22] E. Corsetti, E. Crivelli, D. Mandrioli, A. Montanari, A. Morzenti, P. San Pietro, and
E. Ratto. Dealing with different time scales in formal specifications. In Proceedings of
the International Workshop on Software Specification and Design, pages 92–101. IEEE
Computer Society Press, 1991.

[23] E. Corsetti, A. Montanari, and E. Ratto. Dealing with different time granularities in
formal specifications of real-time systems. The Journal of Real-Time Systems, 3:191–
215, 1991.

[24] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. In Edmund M. Clarke and Robert P. Kur-
shan, editors, Proceedings of Computer-Aided Verification, volume 531 of Lecture Notes
in Computer Science, pages 233–242, Berlin, Germany, 1991. Springer.

BIBLIOGRAPHY 113

[25] D. Cukierman and J. Delgrande. Expressing time intervals and repetition within a
formalization of calendars. Computational Intelligence, 14(4):563–597, 1998.

[26] U. Dal Lago and A. Montanari. Calendars, time granularities, and automata. In Pro-
ceedings of the International Symposium on Spatial and Temporal Databases, volume
2121 of Lectures Notes on Computer Science, pages 279–298, Los Angeles, CA, USA,
2001.

[27] T. Dean and D. V. McDermott. Temporal data base management. Artificial Intelli-
gence, 32:1–55, 1987.

[28] J. E. Doner. Tree acceptors and some of their applications. Journal of Computer and
System Sciences, 4:406–451, 1970.

[29] W. Dreyer, A. K. Dittrich, and D. Schmidt. Research perspectives for time series
management systems. SIGMOD Record (ACM Special Interest Group on Management
of Data), 23(1):10–15, March 1994.

[30] C. E. Dyreson and R. T. Snodgrass. Temporal granularity. In R. T. Snodgrass, editor,
The TSQL2 Temporal Query Language, pages 347–385. Kluwer Academic Press, 1995.

[31] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[32] C. C. Elgot. Decision problems for finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

[33] C. C. Elgot and M. O. Rabin. Decidability and undecidability of second (first) order
theory of generalized successor. Journal of Symbolic Logic, 31:169–181, 1966.

[34] E. A. Emerson and C. S. Jutla. The Complexity of tree Automata and Logics of
Programs. In In Proceedings op the Annual IEEE-CS Symposium in Foundations of
Computer Science, pages 328–337, 1988.

[35] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and
Control, 61(3):175–201, June 1984.

[36] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, pages 995–1072. Elsevier Science Publishers
B.V., 1990.

[37] J. Engelfriet. Minimal temporal epistemic logic. Notre Dame Journal of Formal Logic,
37:233–259, 1996.

[38] J. Euzenat. An algebraic approach for granularity in qualitative space and time rep-
resentation. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, pages 894–900. Morgan Kaufmann, 1995.

[39] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT
Press, Cambridge, MA, 1995.

[40] J. L. Fiadeiro and T. Maibaum. Sometimes ”tomorrow” is ”sometime”: Action refine-
ment in a temporal logic of objects. In Dov M. Gabbay and Hans Jürgen Ohlbach,
editors, Proceedings of the International Conference on Temporal Logic, volume 827 of
Lectures Notes on Artificial Intelligence, pages 48–66, Berlin, July 1994. Springer.

114 BIBLIOGRAPHY

[41] K. Fine and G. Schurz. Transfer theorems for multimodal logics. In J. Copeland,
editor, Logic and Reality: Essays on the Legacy of Arthur Prior, pages 169–213. Oxford
University Press, Oxford, 1996.

[42] M. Finger. Handling database updates in two-dimensional temporal logic. Journal of
Applied Non-Classical Logics, 2(2):201–224, 1992.

[43] M. Finger. Changing the past: database applications of two-dimensional executable
temporal logics. PhD thesis, Imperial College, Department of Computing, 1994.

[44] M. Finger and D. M. Gabbay. Adding a temporal dimension to a logic system. Journal
of Logic Language and Information, 1:203–233, 1992.

[45] M. Finger and D. M. Gabbay. Combining temporal logic systems. Notre Dame Journal
of Formal Logic, 37:204–232, 1996.

[46] M. Finger and M. Reynolds. Two-dimensional executable temporal logic for bitempo-
ral databases. In Proceedings of Advances in Temporal Logic, pages 393–411. Kluver
Academic, 2000.

[47] D. Foster, B. Leban, and D. McDonald. A representation for collections of temporal
intervals. In Proceedings of the American National Conference on Artificial Intelligence,
pages 367–371, 1986.

[48] M. Franceschet and A. Montanari. Branching within time: an expressively complete
and elementarily decidable temporal logic for time granularity. Journal of Language
and Computation. To appear.

[49] M. Franceschet and A. Montanari. A combined approach to temporal logics for time
granularity. In Proceedings of the Workshop Methods for Modalities, 2001.

[50] M. Franceschet and A. Montanari. Towards an automata-theoretic counterpart of
combined temporal logics. In Proceedings of the International Workshop on Verification
and Computational Logic, pages 55–74, 2001.

[51] M. Franceschet, A. Montanari, and M. de Rijke. Model checking for combined logics.
In Proceedings of the International Conference on Temporal Logic, pages 65–73, 2000.

[52] M. Franceschet, A. Montanari, A. Peron, and G. Sciavicco. Definability and decidabil-
ity of binary predicates for time granularity. Technical Report 2/2002, Department of
Mathematics and Computer Science, University of Udine – Italy, 2002.

[53] D. Fum, G. Guida, A. Montanari, and C. Tasso. Using levels and viewpoints in text
representation. In Proceedings of the International Conference on Artificial Intelligence
and Information-Control Systems of Robots, pages 37–44, 1989.

[54] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal
logics: theory and applications. Forthcoming.

[55] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In
Proceedings of the ACM Symposium on Principles of Programming Languages, pages
163–173, 1980.

BIBLIOGRAPHY 115

[56] D. M. Gabbay and M. de Rijke, editors. Frontiers of Combining Systems 2, volume 7
of Studies in Logic and Computation. Research Studies Press/Wiley, 2000.

[57] D. M. Gabbay and V. Shehtman. Products of modal logics, part I. Logic Journal of
the IGPL, 6:73–146, 1998.

[58] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[59] J. Greer and G. McCalla. A computational framework for granularity and its applica-
tion to educational diagnosis. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 477–482. Morgan Kaufmann, 1989.

[60] J. Gruska. Synthesis, structure and power of systolic computations. Theoretical Com-
puter Science, 71(1):47–77, March 1990.

[61] T. Hafer and W. Thomas. Computation tree logic CTL* and path quantifiers in the
monadic theory of the binary tree. In T. Ottmann, editor, Proceedings of the Inter-
national Colloquium Automata, Languages and Programming, volume 267 of Lecture
Notes in Computer Science, pages 269–279, Karlsruhe, Germany, 1987. Springer.

[62] J. H. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A manifesto.
In Proceedings of the Conference on Principles of Knowledge Representation and Rea-
soning, pages 325–334, 1991.

[63] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, October 1991.

[64] J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and
time I: Lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.

[65] D. Harel. Effective transformations on infinite trees, with applications to high unde-
cidability, dominoes, and fairness. Journal of the ACM, 33(1):224–248, January 1986.

[66] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, Engle-
wood Cliffs, NJ, 1991.

[67] G. J. Holzmann and D. Peled. The state of spin. In Proceedings of the International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 385–389, New Brunswick, NJ, USA, 1996. Springer.

[68] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, N. Reading, MA, 1980.

[69] N. Immerman and D. Kozen. Definability with bounded number of bound variables.
Information and Computation, 83(2):121–139, 1989.

[70] S. Jajodia, W. Litwin, and G. Wiederhold. Dealing with granularity of time in temporal
databases. In R. Andersen, J. A. Bubenko jr., and A. Solvberg, editors, Advanced
Information Systems Engineering, pages 124–140. Springer, Berlin, 1991.

[71] S. Jajodia, W. Litwin, and G. Wiederhold. Integrating temporal data in a heteroge-
neous environment. In A. Tansel et al., editor, Temporal Databases: Theory, Design
and Implementation, pages 563–579. Database Systems and Applications Series, Ben-
jamin/Cummings Pub. Co., Redwood City, CA, 1993.

116 BIBLIOGRAPHY

[72] S. Jajodia, V. S. Subrahmanian, and X. S. Wang. Temporal modules: An approach
toward federated temporal databases. Information Sciences, 82:103–128, 1995.

[73] C. Jard and T. Jeron. On-line model checking for finite linear temporal logic specifi-
cations. In Proceedings of the Workshop on Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science, pages 189–196, Grenoble, France,
1989. Springer.

[74] C.B. Jones. Specification and design of (parallel) programs. In Information Processing
83: Proceedings IFIP World Congress, pages 321–332, 1983.

[75] H. Kamp. Tense logic and the theory of linear order. PhD thesis, University of Cali-
fornia, Los Angeles, 1968.

[76] M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal logics.
Journal of Symbolic Logic, 56(4):1469–1485, 1991.

[77] O. Kupferman. Augmenting branching temporal logics with existential quantification
over atomic propositions. Journal of Logic and Computation, 9(2):135–147, 1999.

[78] O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS’97, 1997.

[79] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

[80] R. Kurshan. Computer-aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

[81] A. Kurucz. S53 lacks the finite model property. In Proceedings of the International
Conference on Temporal Logic, 2000.

[82] P. Ladkin. The completeness of a natural system for reasoning with time intervals.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages
462–467. Morgan Kaufmann, 1987.

[83] L. Lamport. Specifying concurrent program modules. ACM Transaction on Program-
ming Language and Systems, 5:190–222, 1983.

[84] L. Lamport. On interprocess communication. Technical Report Research Report 8,
SRC, Palo Alto, CA, 1985.

[85] H. Läuchli and C. Savoiz. Monadic 2nd-order definable relations on the binary tree.
Journal of Symbolic Logic, 52:219–226, 1987.

[86] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In R. Parikh, editor,
Proceedings of the Conference on Logic of Programs, volume 193 of Lecture Notes in
Computer Science, pages 196–218, Brooklyn, NY, June 1985. Springer.

[87] Z. Manna and A. Pnueli. Specification and verification of concurrent programs by
∀ automata. In Proceedings of the ACM Symposium on Principles of Programming
Languages, pages 1–12, 1987.

BIBLIOGRAPHY 117

[88] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering Frequent Episodes in Se-
quences. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings of the International
Conference on Knowledge Discovery and Data Mining, Montreal, Canada, August
1995. AAAI Press.

[89] M. Marx. Complexity of products of modal logics. Journal of Logic and Computation,
9:221–238, 1999.

[90] R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521–530, 1966.

[91] J. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Science. Cam-
bridge University Press, 1995.

[92] A. Montanari. Metric and Layered Temporal Logic for Time Granularity. ILLC Dis-
sertation Series 1996-02, Institute for Logic, Language and Computation, University
of Amsterdam, 1996.

[93] A. Montanari and B. Pernici. Temporal reasoning. In A. Tansell, J. Clifford, S. Gadia,
S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design
and Implementation, Database Systems and Applications Series, chapter 21, pages
534–562. Benjamin/Cummings Pub. Co., Redwood City, CA, 1993.

[94] A. Montanari, A. Peron, and A. Policriti. Extending Kamp’s theorem to model time
granularity. Journal of Logic and Computation. To appear.

[95] A. Montanari, A. Peron, and A. Policriti. Decidable theories of ω-layered metric
temporal structures. Logic Journal of the IGPL, 7(1):79–102, 1999.

[96] A. Montanari, A. Peron, and A. Policriti. The taming (timing) of the states. Logic
Journal of the IGPL, 8(5):681–699, 2000.

[97] A. Montanari and A. Policriti. Decidability results for metric and layered temporal
logics. Notre Dame Journal of Formal Logic, 37:260–282, 1996.

[98] A. Monti and A. Peron. Systolic tree ω-languages: the operational and the logical
view. Theoretical Computer Science, 23:1–17, 2000.

[99] A. Monti and A. Peron. Logical definability of Y-tree and trellis systolic ω-languages.
Acta Cybernetica, 15:75–100, 2001.

[100] B. Moszkowski. Reasoning about digital circuits. PhD thesis, Department of Computer
Science, University of Stanford, 1983.

[101] E. Mota and D. Robertson. Representing interaction of agents at different time gran-
ularities. In Proceedings of the International Workshop on Temporal Representation
and Reasoning, pages 72–79. IEEE Computer Society Press, 1996.

[102] M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time. In
Proceeding of the International Conference on Information and Knowledge Manage-
ment, volume 752 of Lecture Notes in Computer Science, pages 161–168, Baltimore,
Maryland, November 1993.

118 BIBLIOGRAPHY

[103] P. Ning, S. Jajodia, and X. S. Wang. An algebraic representation of calendars. Annals
of Mathematics and Artificial Intelligence. To appear.

[104] A. Pnueli. The temporal logic of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

[105] M. Poesio and R. J. Brachman. Metric constraints for maintaining appointments:
Dates and repeated activities. In Proceedings of the National Conference on Artificial
Intelligence, pages 253–259. MIT Press, July 1991.

[106] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the International Symposium in Programming, pages 195–
220, 1981.

[107] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

[108] S. Safra. On the complexity of ω-automata. In In Proceedings of the Annual Symposium
on Foundations of Computer Science, pages 319–327, White Plains, New York, 24–26
October 1988. IEEE.

[109] A. Segev and R. Chandra. A data model for time-series analysis. Lecture Notes in
Computer Science, 759:191–212, 1993.

[110] Y. Shahar. Dynamic temporal interpretation contexts for temporal abstraction. In
Proceedings of the International Workshop on Temporal Representation and Reasoning,
pages 64–71. IEEE Computer Society Press, 1996.

[111] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733–749, 1985.

[112] E. Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics and
Computer Science, University of Amsterdam, 1993.

[113] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an ap-
plication to a decision problem of 2nd-order logic. Mathematical Systems Theory,
2(1):57–81, March 1968.

[114] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pages 133–191. Elsevier Science Publishers,
1990.

[115] W. Thomas. Infinite trees and automaton definable relations over ω-words. In Proceed-
ings Annual Symposium on Theoretical Aspects of Computer Science, pages 263–277.
Springer, 1990.

[116] M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In In Proceedings of the ACM Symposium on Theory of Computing, pages
240–251, Baltimore, USA, May 1985. ACM Press.

[117] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In In Proceedings of the Symposium on Logic in Computer Science, pages
332–345, Washington, D.C., USA, 1986. IEEE Computer Society Press.

BIBLIOGRAPHY 119

[118] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.

[119] Y. Venema. A Modal Logic for Chopping Intervals. Journal of Logic and Computation,
1(4):453–476, 1991.

[120] N. Vitacolonna. Decidability of interval temporal logics over split-frames via granu-
larity. Technical Report 1/2002, Department of Mathematics and Computer Science,
University of Udine – Italy, 2002.

[121] J. Wijsen. Design of temporal relational databases based on dynamic and temporal
functional dependencies. In S. Clifford and A. Tuzhilin, editors, Recent Advances in
Temporal Databases, pages 61–76, Zurich, Switzerland, September 1995. Springer.

[122] J. Wijsen. Reasoning about qualitative trends in databases. Information Systems,
23(7):469–493, 1998.

[123] J. Wijsen. Temporal FDs on complex objects. ACM Transactions on Database Systems,
24(1):127–176, March 1999.

[124] J. Wijsen. A string based-model for infinite granularities. In Proceedings of the AAAI
Workshop on Spatial and Temporal Granularity, pages 9–16. AAAI Press, 2000.

[125] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, January/February 1983.

[126] F. Wolter. The finite model property in tense logic. The Journal of Symbolic Logic,
60(3):757–774, 1995.

[127] F. Wolter. A counterexample in tense logic. Notre Dame Journal of Formal Logic,
37(2):167–173, Spring 1996.

[128] F. Wolter. Completeness and decidability of tense logics closely related to logics
above K4. The Journal of Symbolic Logic, 62(1):131–158, March 1997.

[129] F. Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing,
and M. Zakharyaschev, editors, Advances in Modal Logic. CSLI, Stanford, CA, 1998.

[130] F. Wolter. The product of converse pdl and polymodal K. Journal of Logic and
Computation, 10(2):223–251, 2000.

[131] F. Wolter and M. Zakharyaschev. Satisfiability problem in description logics with
modal operators. In Proceedings of the Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 512–523. Moragan Kaufman, 1998.

