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Chapter 1

Basic definitions

1.1 Fusion systems

Let p be a prime and S a finite p-group.

Definition 1.1.1 The complete injective category on S is the small category
I = I(S), where Ob(I) is the set of all subgroups of S and, for P,Q ∈ Ob(I),
the morphism set HomI(P,Q) coincides with Inj(P,Q), the set of all injective
homomorphisms from P to Q.

If a homomorphism is injective then any restriction of this homomor-
phism is also injective, and so I(S) is closed with respect to the operation of
restriction. Let us give a precise definition and set notation for restriction.

Note that we use the right notation for mappings.

Definition 1.1.2 Suppose φ : P → Q is a group homomorphism. We will
view P and Q as attributes of φ, P being the source group of φ and Q the
target group of φ.

For subgroups P ′ ≤ P and Q′ ≤ Q, such that P ′φ ≤ Q′, let φP ′,Q′ be the
homomorphism from P ′ to Q′, such that, for x ∈ P ′, we have xφP ′,Q′ = xφ.
Clearly, P ′ and Q′ are the source and target of ψ = φP ′,Q′, respectively.

We will say that ψ is a restriction of φ and that φ is an extension of ψ.
If Q = Q′ then we will simply write ψ = φP ′ and if P = P ′ then we will

write ψ = φ,Q′.

It is well known that conjugation by x ∈ S, i.e., the mapping cx : S → S
sending y 7→ yx = x−1yx, is an automorphism of S, hence an injective
homomorphism from S back to S. Therefore, cx ∈ HomI(S, S) for all x ∈ S.
Note that cx = cy if and only if xy−1 ∈ Z(S).

We are now ready to give our main definition.
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Definition 1.1.3 A fusion system F on a p-group S is a plain subcategory
of I = I(S) (‘plain’ means that Ob(F) = Ob(I)), satisfying two further
properties:

• HomF(S, S) contains all conjugation automorphisms cx, x ∈ S;

• F is closed with respect to restriction, that is, if φ ∈ HomF(P,Q) and
if P ′ ≤ P and Q′ ≤ Q such that Pφ ≤ Q then φP ′,Q′ ∈ HomF(P ′, Q′);
and

• F is closed with respect to inversion, that is, if φ ∈ HomF(P,Q) is an
isomorphism between P and Q then φ−1 ∈ HomF(Q,P ).

For example, F = I is a fusion system, the largest fusion system on S.
Hence at least one fusion system on S exists!

The following general construction can be used to build more fusion sys-
tems.

Definition 1.1.4 Suppose a p-group S is a subgroup of a group G, which
can be finite or infinite. Let F = FS(G) be the plain subcategory of I(S)
with morphism sets HomF(P,Q) = {(cx)P,Q | x ∈ G,P x ≤ Q}.

Note that, for P,Q,R ≤ S and for φ = (cx)P,Q ∈ HomF(P,Q) and
ψ = (cy)Q,R ∈ HomF(Q,R), we have that φψ = (cx)P,Q(cy)Q,R = (cxy)Q,R ∈
HomF(Q,R), and so F is closed for composition. Also, ιP,P = (c1)P,P is the
identity morphism in HomF(P, P ) for every P ≤ S. Hence F = FS(G) is
indeed a category, namely, a plain subcategory of I(S).

Proposition 1.1.5 For a group G and a p-subgroup S, the category FS(G)
is always a fusion system on S.

Proof. Since F is a plain subcategory of I = I(S), we just need to verify
the additional properties.

First of all, since S ⊆ G, we see that (cx)P,P ∈ HomF(P, P ) for all x ∈ S.
Hence the first property holds.

Suppose that φ = (cx)P,Q ∈ HomF(P,Q) for some x ∈ G. Consider
P ′ ≤ P and Q′ ≤ Q such that P ′φ ≤ Q′, that is, (P ′)x ≤ Q′. Then
φP ′,Q′ = (cx)P ′,Q′ , and so φP ′,Q′ ∈ HomF(P ′, Q′), proving that F is closed for
restriction.

Finally, if φ = (cx)P,Q is an isomorphism then, clearly, P x = Q, and so
P = Qx−1

. This means that φ−1 = (cc−1)Q,P ∈ HomF(Q,P ), and hence F is
closed for inverses.
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For example, taking G = S, we build the fusion system S = S(S) =
FS(S), whose morphism sets are HomS(P,Q) = {(cx)P,Q | x ∈ S, P x ≤ Q}.
Comparing with the definition of fusion systems, we see that HomS(P,Q) ⊆
HomF(P,Q) for all fusion systems F on S. This is because cx ∈ HomF(S, S)
and F is closed for restriction. It follows that in addition to the largest fusion
system on S, namely, I = I(S), we also have the smallest fusion system on
S, namely, S = S(S). All other fusion systems on S are somewhere between
I and S.

Let us also note the following.

Proposition 1.1.6 If Fi, i ∈ I, are fusion systems on S then ∩i∈IFi is
again a fusion system on S.

Proof. Indeed, all properties of fusion systems are preserved by intersec-
tion.

Hence the structure (poset) of all fusion systems on S is closed for inter-
section. As usual, this means that we can talk about generation for fusion
systems.

Definition 1.1.7 Suppose X is a set of morphisms from I = I(S), that is,
X is a subset of ∪P,Q≤SHomI(P,Q). Then we let 〈X〉 denote the smallest
fusion system on S containing all morphisms from X. We call 〈X〉 the fusion
system on S generated by X.

Of course, 〈X〉 is simply the intersection of all fusion systems containing
X.

In general, since all fusion systems on S have the same set of objects,
we may identify them with their set of morphisms, particularly, since by our
definition every morphism ‘knows’ its source and target group.

Exercise 1.1.8 Work out an explicit description of the morphism set of 〈X〉.

Exercise 1.1.9 Suppose P ≤ S has the property that P is not conjugate in
S to a subgroup of the source group of any morphism from X. Show that
Hom〈X〉(P,Q) = HomS(P,Q) for all Q ≤ S.

Exercise 1.1.10 Would a similar statement involving target groups of mor-
phisms be true?
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1.2 Conjugate fusion systems and automor-

phisms

The definition of an isomorphism of fusion systems is quite straightforward.

Definition 1.2.1 Suppose that F1 and F2 are fusion systems on p-groups S1

and S2, respectively. An isomorphism from F1 onto F2 is a group isomor-
phism π : S1 → S2 such that, for all P,Q ≤ S1, we have HomcF2(Pπ,Qπ) =
HomF1(P,Q)π = π−1HomF1(P,Q)π = {π−1φπ | φ ∈ HomF1(P,Q)}.

Clearly, every isomorphism π : S1 → S2, as above induces an isomorphism
functor π̂ from F1 onto F2, sending each P ≤ S1 to Pπ ≤ S2 and each
φ ∈ HomF1(P,Q) to φπ = π−1φπ ∈ HomF2(Pπ,Qπ).

Exercise 1.2.2 Why cannot we just define an isomorphism of fusion sys-
tems as an arbitrary isomorphism functor? Give examples of ‘nonsense’
isomorphism functors.

Let us now concentrate on the case S1 = S2 = S. Then any automorphism
π ∈ Aut(S) transforms (conjugates!) each fusion system F on S into another
(or same) fusion system Fπ. Clearly, inclusion between fusion systems is
preserved. In other words, Aut(S) acts on the poset of fusion systems on S.

Proposition 1.2.3 Two fusion systems on S are isomorphic if and only if
they are conjugate under the above action.

Proof. Immediately follows from the definitions.

Finally, we can define the automorphism group of a fusion system.

Definition 1.2.4 The autmorphism group Aut(F) of a fusion system F on
S consists of all automorphisms π ∈ Aut(S) which preserve F , i.e., such that
Fπ = F .

Therefore, Aut(F) is a subgroup of Aut(S).

Exercise 1.2.5 Check that Aut(cF ) can also be defined as the stabilizer of
F in the action of Aut(S) on the poset of all fusion systems on S.

We conclude this section with the following observation.

Proposition 1.2.6 The group Inn(S) of inner automorphisms of S is con-
tained in Aut(F) for all fusion systems F on S.
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Proof. Take x ∈ S and set π = cx. If φ ∈ HomF(P,Q) for P,Q ≤ S then
φπ = (cx−1)Px,Pφ(cx)Q,Qx ∈ HomF(P x, Qx). Hence Fπ = F .

It follows that the action of Inn(S) on the poset of all fusion systems
is trivial. Hence it is in fact the group of outer automorphisms, Out(S) =
Aut(S)/Inn(S), that conjugates fusion systems.

Exercise 1.2.7 Determine the poset of all fusion systems on S = C2, C3,
C2 × C2, D8, Q8.

1.3 Another definition

Our definition of fusion systems is, in fact, not the definition that is widely
used. So we will also give that other definition and show equivalence. First,
we need the following.

Definition 1.3.1 For P,Q ≤ S, let ιP,Q be the inclusion mapping (c1)P,Q ∈
HomS(P,Q). If Q = S, we simply write ιP for this inclusion mapping.

Proposition 1.3.2 A plain subcategory F of I = I(S) is a fusion system if
and only if

• HomS(P,Q) ⊆ HomF(P,Q) for all P,Q ≤ S; and

• every morphism in F decomposes as an F-isomorphism followed by an
inclusion mapping.

Proof. Suppose F is a fusion system on S. Since F contains all conjugation
mappings cx, x ∈ S, and since F is closed for restriction, we have that
HomS(P,Q) ⊆ HomF(P,Q) for all P,Q ≤ S. In particular, ιP,Q = (c1)P,Q ∈
HomF(P,Q) whenever P ≤ Q.

Furthermore, if φ ∈ HomF(P,Q) is an arbitrary morphisms, then ψ =
φ,Pφ is an isomorphism of groups, since φ is injective. As F is closed for in-
verses, ψ is an F -isomorphism. Manifestly, φ = ψιPφ,Q, and so φ decomposes
as an F -isomorphism followed by an inclusion.

Let us insert a couple of related exercises.

Exercise 1.3.3 Verify that the two factors in the above decomposition are
unique. That is, if φ = ψ1ι1 = ψ2ι2, where ψi are isomorphisms and ιi are
inclusions, then ψ1 = ψ2 and ι1 = ι2.
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We will refer to ψ = φP,Pφ as the core of φ, i.e., it is the isomorphism
hidden in φ. We see from Proposition 1.3.2 that the fusion system is fully
defined (generated!) by the isomorphisms it contains.

Our proof of Proposition 1.3.2 is in fact incomplete. The second half of
the proof is the next exercise.

Exercise 1.3.4 Complete the proof of Proposition 1.3.2, that is, prove that
every plain subcategory of I satisfying the two conditions from the proposition
must be a fusion system.

1.4 Isomorphisms

We saw in the preceding section that isomorphisms play a special role in
each fusion system. In this section we collect some observations concerning
isomorphisms.

Proposition 1.4.1 Suppose F is a fusion system on S. A morphism φ ∈
HomF(P,Q), for P,Q ≤ S, is an isomorphism if and only if |P | = |Q|.

Proof. Note that P and Q are finite groups. Since φ is injective, Pφ ∼= P
and so |Pφ| = |P |. Hence Pφ = Q if and only if |P | = |Q|. Therefore φ is
surjective (and so an isomorphism) if and only if |P | = |Q|.

It follows that if |P | = |Q| then every morphism in HomF(P,Q) got to be
an isomorphism, and if |P | < |Q| then none of the morphisms in HomF(P,Q)
is an isomorphism. Note also that if |P | > |Q| then HomF(P,Q) must be
empty.

Clearly, if Q = P then |P | = |Q|. Therefore, we have the following.

Corollary 1.4.2 For P ≤ S, every morphism in HomF(P, P ) is an isomor-
phism. In particular, HomF(P, P ) is a group with respect to composition,
namely, a subgroup of Aut(P ).

In view of this, it is common to write AutF(P ) for the group HomF(P, P ).
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Chapter 2

Saturation

2.1 Extension control

We know that fusion systems is always closed with respect to restriction of
morphisms. Extension of morphisms is the operation inverse to restriction.
Hence ψ ∈ HomF(P ′, Q′) is an extension of φ ∈ HomF(P,Q) if P ≤ P ′,
Q ≤ Q′, and xφ = xψ for all x ∈ P . In particular, this means that Pψ ≤ Q.

Our axioms do not promise that extension of φ to a pair of overgroups
P ′ ≥ P and Q′ ≥ Q is always possible. This prompts the following natural
question: How far can we extend a morphism?

If φ ∈ HomF(P,Q) and Q ≤ Q′ then we can extend φ to ψ = φιQ,Q′ ∈
HomF(P,Q′). That is, we can always increase Q in any way we like, and
these extensions are a trivial matter. Hence the real problem is whether we
can increase the source group P .

Definition 2.1.1 A morphism φ ∈ HomF(P,Q) is extendible if it admits
an extension ψ ∈ HomF(P ′, Q′) with P < P ′.

If a morphism ψ is an extension of φ then the core ψ,P ′ψ of ψ extends the
core φ,Pφ of φ. In particular, if ψ extends φ nontrivially, i.e., P < P ′, them
also the extension of cores is nontrivial. In view of this, we restrict ourselves
to just extending isomorphisms.

Furthermore, note that if P < P ′ then also P < NP ′(P ), since S, and
hence also P ′, is a p-group. Furthermore, ψNP ′ (P ) is an extension of φ. Hence,
when deciding whether φ is extendible, it suffices to only consider P ′ in which
P is normal, that is, we can assume that P ′ ≤ NS(P ).

For our next step, two further bits of notation are needed.

Definition 2.1.2 For P ≤ S, let εP : NS(P )→ HomF(P, P ) = AutF(P ) be
the homomorphism sending x ∈ NS(P ) to (cx)P,P ∈ AutF(P ).

7



Note that the kernel of εP is CS(P ). Furthermore, checking the relevant
definitions, one may notice that the image of the homomorphism εP coincides
with HomS(P, P ) = AutS(P ), where S is the minimal fusion system on S.
In particular, AutS(P ) is a p-group isomorphic to NS(P )/CS(P ).

Definition 2.1.3 For an isomorphism φ ∈ HomF(P,Q), let φ̂ be the induced
isomorphism AutF(P ) → AutF(Q) defined by α 7→ ℵφ = φ−1αφ, where,
naturally, α ∈ AutF(P ).

We will need the following observation.

Lemma 2.1.4 Suppose an isomorphism ψ ∈ HomF(P ′, Q′) extends an iso-
morphism φ ∈ HomF(P,Q) and P ′ ≤ NS(P ). Then

• Q′ ≤ NS(Q); and

• ψεQ = εP φ̂ on P ′.

Proof. Since ψ is an isomorphism between P ′ and Q′ and since P is normal
in P ′, we have that Pψ = Pφ = Q is normal in P ′ψ = Q′.

For the second claim, take x ∈ P ′ and let y = xψ. To show that x(ψεQ) =

x(εP φ̂), we need to apply the morphisms in the left and right sides to the
same t ∈ Q. Since φ is an isomorphism, there is z ∈ P such that zφ = t.

On the one hand, t(x(ψεQ)) = t(yεQ) = t(cy)Q,Q = ty. On the other hand,

t(x(εP φ̂)) = t((cx)P,P φ̂) = tφ−1(cx)P,Pφ = z(cx)P,Pφ = (zx)φ = (zx)ψ = ty.
Here we used that ψ is an extension of φ. This means both that (zx)φ = (zx)ψ
and that zψ = zφ.

Since both sides evaluate to the same element ty of Q, the second claim
holds.

Recall that AutS(P ) is a p-subgroup of AutF(P ) and, similarly, AutS(Q)
is a p-subgroup of AutF(Q). Recall further that φ̂ is an isomorphism be-
tween AutF(P ) and AutF(Q). Hence AutS(Q)φ̂−1 is a second p-subgroup in
AutF(P ).

Definition 2.1.5 We call the intersection Cφ = AutS(P )∩AutS(Q)φ̂−1 the
control subgroup of φ. Let also Nφ be the full preimage of Cφ under εP .

Note that Cφ is a subgroup of AutS(P ), which is the image of the homo-
morphism εP . In particular, our definition of Nφ makes sense.

Let us record the following useful fact.

Proposition 2.1.6 If φ ∈ HomF(P,Q) then Nφ ≥ CS(P ).
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Proof. Indeed, Nφ is a full preimage of Cφ under εP and hence it contains
the kernel of εP , which is none else but CS(P ).

The following proposition explains our ‘control’ terminology.

Proposition 2.1.7 Suppose that ψ ∈ HomF(P ′, Q′) is an extension of φ ∈
HomF(P,Q) and also that P ′ ≤ NS(P ). Then P ′ ≤ Nφ.

Proof. Clearly, we may assume that ψ and φ are isomorphisms.
Let x ∈ P ′. Since P ′ ≤ NS(P ), we have that α = xεP is defined and

it lies in AutS(P ). Let β = αφ̂. By the second claim of the lemma, β =
x(εP φ̂) = x(ψεQ) = yεQ, where y = xψ. By the first claim of the lemma,

y ∈ Q′ ≤ NS(Q) and so β = yεQ ∈ AutS(Q). We conclude that α = βφ̂−1

also lies in AutS(P )φ̂−1. Therefore, α ∈ Cφ, and so x ∈ Nφ.

Hence the subgroups Cφ andNφ control extensions of φ. Namely, φ cannot
be ‘normally’ extended beyond Nφ.

Exercise 2.1.8 State and prove a corollary for arbitrary (i.e., non-‘normal’)
extensions of φ.

We conclude the present section with the following definition.

Definition 2.1.9 A morphism φ ∈ HomF(P,Q) is called fully extendible if
it extends to ψ ∈ HomF(P ′, Q′) with P ′ = Nφ.

2.2 Receptive subgroups

The following is a key concept needed for the definition of saturated fusion
systems.

Definition 2.2.1 A subgroup Q ≤ S is receptive if every F-isomorphism φ
with target group Q is fully extendible.

That is, for each R ≤ S that is F -conjugate to Q, each morphism φ ∈
HomF(R,Q) extends to the corresponding overgroup Nφ ≥ R.

Let us compare this concept with the following one:

Definition 2.2.2 A subgroup Q ≤ S is maximally centralized if |CS(Q)| ≥
|CS(R)| for all R ≤ S that are F-conjugate to Q.

Proposition 2.2.3 If Q is receptive then it is maximally centralized.
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Proof. Take R ≤ S that is F conjugate to Q and φ ∈ HomF(R,Q). Let
ψ ∈ HomF(P ′, Q′) be an extension of φ with P ′ = Nφ. Such an extension
exists since Q is receptive.

By Proposition 2.1.6, Nφ ≥ CS(R). Since ψ is a homomorphisms and
since Rψ = Rφ = Q, we have that CS(R)ψ ≤ CS(Q). As ψ is injective, this
clearly means that |CS(R)| ≤ |CS(Q)|.

Exercise 2.2.4 Which Q ≤ S could be called fully centralized? Give a
suitable definition and verify whether receptive subgroups are fully centralized.

Exercise 2.2.5 Suppose G ≥ S and F = FS(G). Prove that Q ≤ S is
receptive if CS(Q) is a Sylow p-subgroup of CG(Q). Give an example where
the converse statement fails.

Exercise 2.2.6 Suppose again that F = FS(G) for some G ≥ S. If S is a
Sylow p-subgroup of G. Prove that

• every Q ≤ S is F-conjugate to a receptive subgroup; and

• Q ≤ S is receptive if and only if it is maximally centralized.

2.3 Fully normalized subgroups

We know already that AutS(P ) is a p-subgroup of AutF(P ) for all P ≤ S.

Definition 2.3.1 A subgroup Q ≤ S is fully automized if AutF(Q) is a
Sylow p-subgroup of AutF(Q).

This definition expresses the idea that AutS(Q) is as big as it can be.

Proposition 2.3.2 If Q is fully automized then, for every R that is F-
conjugate to Q, there exists φ ∈ HomF(R,Q) with Nφ = NS(R).

Proof. Let us start with an arbitrary morphism π ∈ HomF(R,Q), which
exists since R and Q are F -conjugate. Since π̂ is an isomorphism between
AutF(R) and AutF(Q), we have that AutS(R)π̂ is a p-subgroup of AutF(Q).
Since Q is fully automized, AutS(Q) is a Sylow p-subgroup of the same
group AutF(Q). Hence there exists β ∈ AutF(Q) such that (AutS(R)π̂)β ≤
AutS(Q).

Set φ = πβ. Then AutS(R)φ̂ = AutS(Q)πβ = (AutS(R)π̂)β ≤ AutS(Q).
Thus, AutS(R)φ̂ ≤ AutS(Q), or equivalently, AutS(R) ≤ AutS(Q)φ̂−1.

Clearly, this means that Cφ = AutS(R) ∩ AutS(Q)φ̂−1 = AutS(R), and
so Nφ = NS(R), because the latter is the full preimage of AutS(R) under εP .
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Definition 2.3.3 A subgroup Q ≤ S is fully normalized if it is fully au-
tomized and receptive.

The following result justifies our terminology.

Proposition 2.3.4 If Q is fully normalized and R is F-conjugate to Q
then there exists a morphism φ ∈ HomF(R,Q) extendible to a morphism in
HomF(NS(R), NS(Q)). In particular, HomF(NS(R), NS(Q)) is nonempty.

Proof. Since Q is fully automized, it follows from Proposition 2.3.2 that
there exists φ ∈ HomF(R,Q) with Nφ = NS(R). Since Q is receptive, φ
extends to an isomorphism ψ ∈ HomF(R′, Q′) with R′ = Nφ = NS(R). As
ψ is a homomorphism and Rψ = Q, we have that Q′ = R′ψ ≤ NS(Q). In
particular, ψιQ′,NS(Q) is the desired extension of φ in HomF(NS(R), NS(Q)).

Exercise 2.3.5 Suppose F = FS(G) for an overgroup G of S. Prove that
Q ≤ S is fully normalized whenever NS(Q) is a Sylow p-subgroup of NG(Q).

Definition 2.3.6 A subgroup Q ≤ S is maximally normalized if |NS(Q)| ≥
|NS(R)| for all R that are F-conjugate to Q.

The following is an immediate consequence of Proposition 2.3.4.

Corollary 2.3.7 Every fully normalized subgroup is maximally normalized.

2.4 Saturated fusion systems

We are now in a position to give the following key definition.

Definition 2.4.1 A fusion system F on a p-group S is saturated if every
Q ≤ S is F-conjugate to a fully normalized subgroup.

A wealth of examples of saturated fusion systems can be obtained from
the following fundamental (though easy!) result.

Proposition 2.4.2 If S is a Sylow p-subgroup of a finite group G then F =
FS(G) is a saturated fusion system.

Exercise 2.4.3 Provide a proof for this proposition.
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Exercise 2.4.4 How would you define a (finite) Sylow p-subgroup of an infi-
nite group G? With this definition, see that the above proposition generalizes
to infinite groups G.

In the remainder of the section we prove that in the presence of fully
normalized conjugates maximally centralized subgroups are receptive and
maximally normalized subgroups are fully normalized.

Proposition 2.4.5 Suppose Q ≤ S is F-conjugate to R that is fully nor-
malized. If Q is maximally centralized then it is receptive.

Proof. Since R is fully normalized, Proposition 2.3.4 implies that there
exists a morphism π ∈ HomF(NS(Q), NS(R)) such that Qπ = R. Let ρ =
πQ,R be the corresponding restriction.

Consider an isomorphism φ ∈ HomF(P,Q) for some P F -conjugate to Q.
We need to show that φ extends to a morphism in HomF(Nφ, NS(Q)).

Clearly, φρ ∈ HomF(P,R). We first prove that Nφ ≤ Nφρ. Since ρ ex-
tends to π, whose source is the whole of NS(Q), we have that Nρ = NS(Q),
which means that Cρ = AutS(Q). Therefore, AutS(Q) ≤ AutS(R)ρ̂−1 be-
cause Cρ is by definition AutS(Q) ∩ AutS(R)ρ̂−1.

Hence Cφ = AutS(P ) ∩ AutS(Q)φ̂−1 ≤ AutS(P ) ∩ (AutS(R)ρ̂−1)φ̂−1 =

AutS(P ) ∩ AutS(R)(φ̂ρ)−1 = Cφρ. Thus, indeed, Nφ ≤ Nφρ, as these are the
full preimages of Cφ and Cφρ under εP , respectively.

Since R is receptive, φρ extends to a morphism ψ ∈ HomF(Nφρ, NS(R)).
Our next goal is to show that Nφψ ≤ NS(Q)π. (Here we use that Nφ ≤ Nφρ,
and so ψ can be applied to Nφ.)

First of all, by Lemma 2.1.4, ψεR = εP φ̂ρ. Applying this to Nφ, we obtain

(Nφψ)εR = (NφεP )φ̂ρ = (Cφ)φ̂ρ = (Cφφ̂)ρ̂ = (AutS(P )φ̂ ∩ AutS(Q))ρ̂ ≤
AutS(Q)ρ̂. Thus, (Nφψ)εR ≤ AutS(Q)ρ̂.

Hence we achieve our goal if we show that NS(Q)π is the full preimage of
AutS(Q)ρ̂ under εR. Let the latter group be denoted by T . Applying Lemma
2.1.4 to the morphism π, we get (NS(Q)π)εR = (NS(Q)εQ)ρ̂ = AutS(Q)ρ̂.
Hence NS(Q)π is contained in T . Let us compare the sizes. Clearly, |T | =
|CS(R)| · |AutS(Q)ρ̂| = |CS(R)| · |AutS(Q)|, since CS(R) is the kernel of εR
and ρ̂ is an isomorphism. Also, |NS(Q)π| = |NS(Q)| = |CS(Q)| · |AutS(Q)|.
This is because π is injective and CS(Q) is the kernel of εQ. Since R is fully
normalized, it is receptive, and hence maximally centralized. By assumption,
Q is also maximally centralized, that is, |CS(R)| = |CS(Q)|. Clearly, this
means that |NS(Q)π| = |T | and so NS(Q)π = T , as claimed. Now, since
NS(Q)π is the full preimage of AutS(Q)ρ̂ under εR and since (Nφψ)εR ≤
AutS(Q)ρ̂, we get Nφψ ≤ NS(Q)π.
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Finally, the composition of three morphisms, the restriction ψNφ,Nφψ, the
inclusion ιNφψ,NS(Q)π (defined because Nφψ ≤ NS(Q)π), and the inverse of the
restriction π,NS(Q)π, is a morphism in HomF(Nφ, NS(Q)) and its restriction
to P and Q is φ since (xψ)π−1 = (xφρ)ρ−1 = xφ for every x ∈ P .

Proposition 2.4.6 Suppose Q ≤ S is F-conjugate to R that is fully nor-
malized. If Q is maximally normalized then it is fully normalized.

Proof. Note that R is maximally normalized by Corollary 2.3.7. So if Q is
also maximally normalized then |NS(Q)| = |NS(R)|.

Note that |CS(Q)| ≤ |CS(R), because R is receptive and hence maximally
centralized. Also, AutS(Q) is a p-subgroup in AutF(Q), which is isomorphic
to AutF(R) since Q and R are F -conjugate. It follows that |AutS(Q)| ≤
|AutS(R)|. This is because AutS(R) is a Sylow p-subgroup in AutF(R) since
R is fully automized.

Now, |NS(Q)| = |CS(Q)| · |AutS(Q)| and, similarly, |NS(R)| = |CS(R)| ·
|AutS(R)|. Taking into account that |NS(Q)| = |NS(R)| and the above two
inequalities, we deduce that |CS(Q)| = |CS(R)| and |AutS(Q)| = |AutS(R)|.
The first equality means that Q is maximally centralized and so it is receptive
by Proposition 2.4.5. The second equality means that AutS(Q) is Sylow in
AutF(Q), and so Q is maximally automized. Therefore, Q is fully normalized,
as claimed.

The two preceding results have the following implication for saturated
fusion systems.

Corollary 2.4.7 In a saturated fusion system F on S, a subgroup P ≤ S is
receptive if and only if it is maximally centralized and P is fully normalized
if and only if it is maximally normalized.

We conclude this chapter with a second definition of the saturation prop-
erty.

Proposition 2.4.8 A fusion system F on a p-group S is saturated if and
only if the following conditions hold:

• every maximally normalized subgroup of S is maximally centralized and
fully automized; and

• every maximally centralized subgroup is receptive.
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Proof. We have shown that the two properties above always hold in a sat-
urated fusion system. Conversely, suppose that the two properties hold for
F . Every F -conjugacy class certainly contains a maximally normalized sub-
group. By the first property, this subgroup is fully automized and maximally
centralized. By the second property, the subgroup is receptive, hence it is
fully normalized.
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Chapter 3

Essential subgroups

3.1 Conjugation families

In this chapter we discuss conjugation families, Alperin’s Theorem, and es-
sential subgroups.

Definition 3.1.1 Suppose C is a set of subgroups of S. For a morphism
φ ∈ HomF(P,Q) we say that it is expressible via S if, for some k ≥ 0,
there exist subgroups P0 = P, P1, . . . , Pk = Q, also there exist elements of C,
say, C1, . . . , Ck, and finally, there exist morphisms ψ1 ∈ AutF(C1), . . . , ψk ∈
AutF(Ck), such that

• Pi−1, Pi ≤ Ci for i = 1, . . . , k;

• Pi−1ψi ≤ Pi, for i = 1, . . . , k, so that the restriction φi = ψQi−1,Qi is
defined; and

• φ = φ1 · · ·φk.

Note that k = 0 is possible, but only for the identity morphisms: P = Q
and φ = ιP,P .

Definition 3.1.2 For set of subgroups C, let XC = ∪C∈CAutF(C).

The following is a restatement of Definition 3.1.1.

Proposition 3.1.3 A morphism φ is expressible via F if and only if, for
some k ≥ 0, we have φ = φ1 · · ·φk, where each φi is a restriction of some
morphism from XF
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Note that if an isomorphism φ is a restriction of another isomorphism
ψ then φ−1 is a restriction of ψ−1. Also, the conjugations cx, x ∈ S, are
contained in XC if S ∈ C. This yields the following.

Proposition 3.1.4 Assuming that S ∈ C, a morphism φ is expressible via
C if and only if φ is contained in the fusion system FC = 〈XC〉 generated by
XF .

Hence it will be convenient for us to set the following notation.

Definition 3.1.5 We let FC denote the fusion system FC = 〈XC〉. Clearly,
this is a subsystem of F .

We now turn to the main definition of this chapter.

Definition 3.1.6 We say that the set C is a conjugation family if every
morphism in F is expressible via C.

We saw above that it is convenient to have S ∈ C. It turns out this is
almost always true for conjugation families.

Proposition 3.1.7 If S 6= 1 then S ∈ C for any conjugation family C.

Proof. Consider P = 1, Q = S, and φ = ιP,Q. Since C is a conjugation
family, φ must be expressible via C. Hence, for some k ≥ 1 (since S 6= 1, we
have that P 6= Q), we have φ = φ1 · · ·φk, where each φi is a restriction of a
morphism from XC. Note that the target group of φk is S, which means that
φk is a restriction of a morphism from AutF(S), and so S ∈ C.

Of course, we are not interested in S = 1 and so from now on S is a mem-
ber of any conjugation family. The following is immediate from Proposition
3.1.4.

Proposition 3.1.8 If S ∈ S then C is a conjugation family if and only if
X = ∪C∈CAutF(C) generates F , that is, FC = F .

Exercise 3.1.9 Can we omit the ‘if ’ part? That is, can we claim that C is
a conjugation family if and only if X = ∪C∈CAutF(C) generates F?

The presence of S in C means that all inclusion maps are contained in
FC. Since every morphism in F is a composition of an isomorphism and
inclusion, we have the following.

Proposition 3.1.10 If S ∈ C then C is a conjugation family if and only if
every F-isomorphism is contained in FC.

Exercise 3.1.11 Describe fusion systems for which the ‘if ’ clause in Propo-
sition 3.1.10 cannot be omitted.

16



3.2 Minimal conjugation family

It will be convenient for us to consider various subsets of C.

Definition 3.2.1 For P ≤ S, let C+
P be the set of all C ∈ C with |C| > |P |

and let CP consist of C+
P and all C ∈ C that are F-conjugate with P .

Let us record the following observation.

Proposition 3.2.2 A morphism φ ∈ HomF(P,Q) is expressible via C if and
only if it is expressible via CP .

Proof. If φ is expressible via C then φ = φ1 · · ·φk, for some k ≥ 0, where
each φi is a restriction of a morphism ψi ∈ AutF(Ci) from XC. Let φ1, . . . , φs
are isomorphisms while φs+1 is not an isomorphism (or s = k).

On the one hand, if i > s then Ci contains the target group of φi, whose
size is greater than |P |. Hence Ci ∈ C+

P . On the other hand, if i ≤ s then
both the source and target groups of φ are F -conjugate to P . Hence either
Ci lies in C+

P , or Ci is F -conjugate to P . In either case Ci ∈ CP .

In fact, up to a factor, we can just get away with C+
P .

Proposition 3.2.3 If φ ∈ HomF(P,Q) is expressible via C then there exist
α ∈ AutF(P ) and π ∈ HomF(P,Q) such that φ = απ and π is expressible
via C+

P .

Proof. Again, write φ = φ1 · · ·φi, where each φi ∈ HomF(Pi−1, Pi) is a
restriction of a morphism ψi ∈ AutF(Ci) from XC.

Let the list (i1, . . . , ir) be obtained from (1, . . . , k) by removing all i such
that Ci is F -conjugate to P . Clearly, all i > s remain on the list, where
s be the number of factors φi in the beginning of the product, that are
isomorphisms. For convenience, let us set i0 = 0.

Let π = φi1 · · ·φir . (If r = 0 then π is the identity on P = Q.) This
product is well defined, since the target of φij−1

coincides with the source
of φij . Indeed, Pij−1

= Pij−1+1 = . . . = Pij−1, we only omitted the i, where
Pi−1 = Pi = Ci. For the same reason, π is a morphism from HomF(P,Q).

Also note that Pφ1 · · ·φs = Ps = Pφi1 · · ·φit , where t is largest such that
it ≤ s (and so (it+1, . . . , ir) = (s + 1, . . . , k)). Hence Pφ = Pφ1 · · ·φk =
Pφi1 · · ·φir = Pπ.

Setting α = φ,Pφ(π,Pφ)−1, we have that α lies in AutF(P ) and, clearly,
φ = απ, as claimed.

In the remainder of the section we consider a saturated fusion system F
on S. Under this assumption, we will show that conjugation families exist
and, furthermore, are equivalent in a sense that we will make precise.
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Definition 3.2.4 Let O be the set of all subgroups of S, that is, O = Ob(F).

Proposition 3.2.5 If F is saturated then O is a conjugation family. In
particular, conjugation families in F exist.

Proof. Clearly, S ∈ O, and so O is a conjugation family if and only if
F0 = FO coincides with F .

By contradiction, suppose that F 6= F0. Select a morphism φ that is not
in F0, with a largest possible source group P . Since AutF(S) ⊆ XO, we have
that P < S.

Without loss of generality we may assume that φ is an isomorphism,
because if it is not, we can substitute φ with its core. Let Q be the target
group of φ. Since φ is an isomorphism, P and Q are F -conjugate. Since
F is saturated, there exists R that is F -conjugate to P and Q and fully
normalized.

By Proposition 2.3.4, there exists π ∈ HomF(NS(P ), NS(R)) such that
Pπ = R and, similarly, there exists ρ ∈ HomF(NS(Q), NS(R)) such that
Qρ = R. Since both π and ρ have larger target groups than φ, we must
have that π and ρ lie in F0. Taking restrictions, we see that ψ = πP,Rρ

−1
Q,R ∈

HomF(P,Q) is also contained in F0.
Finally, α = φψ−1 ∈ AutF(P ) and so it lies in XO, and hence in F0. This

implies that φ = απ is in F0, a contradiction.

Hence conjugation families definitely exist in saturated systems. Next,
let us see how much flexibility we have in choosing members of conjugation
families.

Proposition 3.2.6 Suppose C is a conjugation family in F . If C contains
P and Q such that P 6= Q and Q is F-conjugate with P then C \ {Q} is also
a conjugation family.

Proof. Let C0 = C \ {Q} and F0 = FC0 . We know that F = FC and we
need to show that F = F0. Since XC and XC0 differ by AutF(Q), it suffices
to show that AutF(Q) is contained in F0.

Since C is a conjugation family and since P and Q are F -conjugate,
there is a morphism in HomF(P,Q) expressible via C. By Proposition 3.2.3,
we must have possibly another morphism φ ∈ HomF(P,Q) such that φ is
expressible via C+

P . Clearly, C+
P ⊆ C0, and so φ lies in F0. However, this

means that AutF(Q) = AutcF (P )φ̂ = φ−1AutF(P )φ is contained in F0,
since AutcF (P ) is contained in XC0 . Hence F0 = F , as claimed.

This means that we never need more than one member of any given F -
conjugacy class. In fact, as the following corollary shows, any representative
of that class will do.
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Corollary 3.2.7 Suppose C is a conjugation family in F , P ∈ C, and Q is
F-conjugate with P . Then (C \ {P}) ∪ {Q} is again a conjugation family.

Proof. Clearly, we may assume that Q 6= P . If C is a conjugation family,
then so is also C ∪ {Q}. Hence (C \ {P}) ∪ {Q} = (C ∪ {Q}) \ {P} is a
conjugation family by the preceding proposition.

Definition 3.2.8 We call two sets C and C ′ of subgroups of S similar if they
meet the same F-conjugacy classes.

What we proved can now be restated as follows: if C is a conjugation
family then any similar set C ′ is also a conjugation family.

Definition 3.2.9 A set C ⊂ Ob(F) is full if it is a union of several F-
conjugacy classes.

Clearly, every C is similar to a unique full set C ′. We note also that any
intersection of full sets is again full.

Proposition 3.2.10 If C and C ′ are two full conjugation families then C∩C ′
is again a conjugation family.

Proof. Let F0 = FC∩C′ . As usual, we need to show that F0 = F . Suppose
by contradiction that F0 6= F . Then, since FC′ = F , we have that there
exists P ∈ C ′ such that AutF(P ) is not contained in F0. In particular, there
exist P ≤ S such that AutF(P ) is not contained in F0. Choose such a P
with P as large as possible. Clearly, P cannot lie in both C and C ′. Without
loss of generality, let us assume that P 6∈ C.

Consider φ ∈ AutF(P ). Since C is a conjugation family, φ is expressible
via C, and so it is expressible via CP . However, C does not contain P and it
is full, hence C contains no F -conjugates of P . This means that CP = C+

P .
However, 〈XC+P 〉 is contained in F0 by our choice of P . This shows that φ lies

in F0; this is a contradiction as φ is an arbitrary morphism from AutF(P ).

Clearly, we also have the following corollary.

Corollary 3.2.11 If conjugation families in F exist then F has a unique
smallest full conjugation family Cmin. Furthermore, a set C of subgroups of S
is a conjugation family in F if and only if it meets every F-conjugacy class
present in Cmin.

This set Cmin is just the intersection of all full conjugation families in F .
Note that Cmin always exists if F is saturated.
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3.3 Essential subgroups

In this section we just deal with fusion systems which admit conjugation
families, such as, say, saturated fusion systems. In particular, Cmin exists in
F .

We have already discussed that S lies in every conjugation family.

Definition 3.3.1 The F-conjugacy classes contained in Cmin\{S} are called
essential. Also, the subgroups from the essential classes are called essential
subgroups. The number of essential classes in F is called the essential rank
of F .

Exercise 3.3.2 Prove that if F is a saturated fusion system of essential
rank zero then there is a finite group G ≥ S, such that S is a normal Sylow
p-subgroup of G and F = FS(G).

We now want to develop properties of essential subgroups. The following
statement provides a useful characterization.

Proposition 3.3.3 A subgroup P ≤ S is essential if and only if AutF(P )
is not contained in 〈XO+

P
〉.

The proof is left as an exercise.

Definition 3.3.4 A subgroup P ≤ S is centric in F if CS(Q) ≤ Q for every
Q that is F-conjugate with P .

In a sense, we should be talking about centric F -conjugacy classes instead
of subgroups, as the property depends on all subgroups in the class. However,
sometimes it can be read off a single subgroup.

Proposition 3.3.5 Suppose P is F-conjugate to Q which is receptive. Then
P is centric if and only if CS(Q) ≤ Q.

Exercise 3.3.6 Provide a proof for this proposition.

Proposition 3.3.7 If F is a saturated fusion system on S then every essen-
tial subgroup in S is centric.
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Proof. According to Proposition 3.3.5, we can take P fully normalized (and
hence, receptive) and show that CS(P ) ≤ P .

By contradiction, suppose that CS(P ) 6≤ P . Then P ′ = PCS(P ) > P .
Consider φ ∈ AutF(P ). Since Nφ ≥ CS(P ), we have that Nφ ≥ P ′. Since
P is receptive, φ extends to a morphism ψ with the source group P ′. As
P ′ > P , OP ′ ⊆ O+

P , and so ψ and φ are expressible via O+
P . Since φ was

arbitrary in AutF(P ), we conclude that AutF(P ) is fully contained in 〈XO+
P
〉.

However, this means that P is not essential in view of Proposition 3.3.3.

We will also need the following well known concept arising in the classi-
fication of finite simple groups.

Definition 3.3.8 Suppose that G is a group and H is a proper subgroup of
G with p dividing |H|. We say that H is a strongly p-embedded subgroup of
G if, for any x ∈ G, either H = Hx, or H ∩Hx has a p′-order.

If H is a strongly p-embedded subgroups then H contains NG(Q) for all
p-subgroups Q ≤ H with Q 6= 1. On the one hand, this implies that H
contains a Sylow p subgroup T of G. On the other hand, it also means that
H contains K = 〈NG(Q) | 1 6= Q ≤ T 〉. It can be shown that K is a strongly
p-embeddable subgroup of G as long as K < G.

Definition 3.3.9 If K = 〈NG(Q) | 1 6= Q ≤ T 〉 is a proper subgroup of G
then we call K the minimal strongly p-embeddable subgroup of G.

Every nontrivial p-subgroup of G is contained in a unique strongly p-
embedded subgroup. Furthermore, all minimal strongly p-embedded sub-
groups of G are conjugate in G.

Proposition 3.3.10 If F is a saturated fusion system on S and P < S is
essential then AutF(P )/Inn(P ) has a strongly p-embedded subgroup.

Proof. Let F0 = FO+
P

be the subsystem generated by XO+
P

. Since P is

essential, we have that AutF(P ) is not contained in F0. Hence H = AutF0(P )
is a proper subgroup of G = AutF(P ). Let the bar indicate images in the
factor group Ḡ = AutF(P )/Inn(P ).

Without loss of generality, let us assume that P is fully normalized. In
particular, T = AutS(P ) = NS(P )εP is a Sylow p-subgroup of G and T̄ is
a Sylow p-subgroup of Ḡ. Naturally, T is contained F0 and so T ≤ H and
T̄ ≤ H̄. In particular, since Inn(P ) ≤ T ≤ H, we conclude that H̄ < Ḡ,
since H < G.

Consider Q ≤ T with Q > Inn(P ), which is equivalent to Q̄ 6= 1. We
claim that NḠ(Q̄) ≤ H̄. Indeed, suppose that φ ∈ G = AutF(P ) such that
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φ̄ normalizes Q̄. Since Q is the full preimage of Q̄ in G, φ normalizes Q. In
particular, Q ≤ T ∩ T φ̂ = AutS(P ) ∩ AutS(P )φ̂ = Cφ, the control subgroup
of φ. Therefore, R ≤ Nφ, where R is the full preimage of Q under εP . As
P is fully normalized and hence receptive, φ extends to a morphism ψ with
the source group R. However, R > P (as Q > Inn(P ) = PεP ) and F is
saturated. Hence ψ is expressible via OR ⊆ O+

P . This shows that φ, being a
restriction of ψ, lies in F0, that is, φ ∈ H.

We have shown that NĜ(Q̄) ≤ H̄, for all 1 6= Q̄ ≤ T̄ . Hence 〈NĜ(Q̂) |
1 6= Q̄ ≤ T̂ 〉 is a proper subgroup of Ĝ, and so indeed Ĝ has a strongly
p-embedded subgroup.

We have reached an important milestone.

Corollary 3.3.11 (Alperin-Goldschmidt Theorem) In a saturated fu-
sion system F , the set consisting of S together with all fully normalized cen-
tric subgroups P < S such that AutF(P )/Inn(P ) has a strongly p-embedded
subgroup, is a conjugation family.

Returning to the essential subgroups P , we know that P is centric and
AutF(P )/Inn(P ) has a strongly p-embedded subgroup. In fact, the converse
is also true.

Proposition 3.3.12 Suppose F is saturated. If P < S satisfies:

• P is centric; and

• AutF(P )/Inn(P ) has a strongly p-embedded subgroup,

then P is essential.

The proof is left as an exercise; in fact, a series of exercises corresponding
to the steps of the proof.

Suppose that P < S satisfies the two conditions in the proposition. We
adopt some notation from the proof of Proposition 3.3.10. Namely, let F0 =
FC+P . Also, let G = AutF(P ) and Ḡ = G/Inn(P ). Let T = AutS(P ). Note

that we do not assume that P is fully normalized, and so T does not have to
be Sylow in G.

Exercise 3.3.13 Show that εP establishes a bijective correspondences be-
tween the set of overgroups of P lying in NS(P ) and the set of overgroups of
Inn(P ) lying in T (and so we also get a bijective correspondence with the set
of all subgroups of T̄ ).
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In particular, T > Inn(P ) and T̄ 6= 1. Define E(P ) as the full preimage
in G of the minimal strongly p-embedded subgroup of Ḡ containing T̄ . Note
that E(P ) < G.

Exercise 3.3.14 Suppose an isomorphism φ ∈ HomF(P,Q) is a restriction
of a morphism with a larger source group. (In particular, φ ∈ F0.) Show
that E(P )φ̂ = E(Q).

From this one can derive the following.

Exercise 3.3.15 Show that we have E(P )φ̂ = E(Q) for any isomorphism
φ ∈ HomF0(P,Q).

The next exercise is based on the Frattini argument.

Exercise 3.3.16 Prove that ¯E(P ) is self-normalized in Ḡ, and so also E(P )
is self-normalized in G.

Finally, it is time to show that P is essential.

Exercise 3.3.17 Prove that AutF0(P ) = E(P ). In particular, F0 6= F , and
so P is essential.

The final exercise characterizes other isomorphisms from F0.

Exercise 3.3.18 Show that and isomorphism φ ∈ HomF(P,Q) lies in F0 if
and only if E(P )φ̂ = E(Q).

Let us conclude this chapter with an additional property that all essential
subgroups possess.

Definition 3.3.19 A subgroup P ≤ S is called radical if Inn(P ) coincides
with Op(AutF(P )), the largest normal p-subgroup of AutF(P ).

Exercise 3.3.20 Prove that every essential subgroup in a saturated fusion
system is radical.
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