Definition A1. Let (\mathcal{L}, Δ, S) be a locality, set $\mathcal{F} = \mathcal{F}_S(\mathcal{L})$, and write M_P for $N_{\mathcal{L}}(P)$ (for $P \in \Delta$). Then (\mathcal{L}, Δ, S) is a *reduced* if the following condition hold.

(R) $C_{M_P}(O_p(M_P)) \leq O_p(M_P)$ for all $P \in \Delta$.

Definition A.2. Let (\mathcal{L}, Δ, S) be a reduced locality. An object $P \in \Delta$ is Alperin-Goldschmidt essential in \mathcal{L} if either P = S or:

- (1) $C_{\mathcal{L}}(P) \leq P$,
- (2) $N_S(P) \in Syl_p(N_{\mathcal{L}}(P))$, and

(3) $N_{\mathcal{L}}(P)/P$ has a strongly *p*-embedded subgroup.

Write $\mathbf{A}(\mathcal{L})$ for the set of all $P \leq S$ such that P is Alperin-Goldschmidt essential in \mathcal{L} .

Definition A.3. Let (\mathcal{L}, Δ, S) be a reduced locality and let $f \in \mathcal{L}$. Then f is $\mathbf{A}(\mathcal{L})$ decomposable if there exists $w \in \mathbf{D}$ and a sequence σ of members of $\mathbf{A}(\mathcal{L})$:

$$w = (f_1, \cdots f_n), \quad \sigma = (P_1, \cdots, P_n),$$

such that the following hold.

- (1) $S_f = S_w$ and $f = \Pi(w)$.
- (2) $P_i = S_{f_i}$ for all *i*.
- (3) For all *i*: either $f_i \in O^{p'}(N_{\mathcal{L}}(P_i))$ or $P_i = S$.

We also say that (w, σ) is an $\mathbf{A}(\mathcal{L})$ -decomposition of f.

The reader may have noticed that condition (2) in A.3 implies that the sequence σ is determined by w. Thus there is some redundancy in the definition. For that reason we shall also speak of the $\mathbf{A}(\mathcal{L})$ -decomposition w and its *auxiliary sequence* σ .

Lemma A.4. Let $\mathcal{L} = (\mathcal{L}, \Delta, S)$ be a reduced locality. Then every element of \mathcal{L} has an $\mathbf{A}(\mathcal{L})$ -decomposition.

Proof. Set $\mathbf{A} = \mathbf{A}(\mathcal{L})$. Among all $f \in \mathcal{L}$ such that f has no \mathbf{A} -decomposition, choose f with $P := S_f$ as large as possible. If P = S then (f) is an \mathbf{A} -decomposition of f (with auxiliary sequence (S)). Thus, $P \neq S$. Set $P' = P^f$, and set $\mathcal{F} = \mathcal{F}_S(\mathcal{L})$.

By 2.9 there exists an \mathcal{L} -conjugate Q of P (and hence also of P') such that both Qand $Q \cap T$ are fully normalized in \mathcal{F} . As $P, P' \in \Delta$ there are then elements $g, h \in \mathcal{L}$ with $Q = P^g = (P')^h$. Since $N_S(Q) \in Syl_p(N_{\mathcal{L}}(Q))$ it follows from 2.3(b) and Sylow's theorem that g and h may be chosen so that $N_S(Q)$ contains both $N_S(P)^g$ and $N_S(P')^h$. The maximality of P then implies that g and h possess **A**-decompositions. The same is then true of g^{-1} and h^{-1} via the inverses of the words (and the reversals of the sequences of subgroups of S) which yield **A**-decomposability for g and h.

Set $f' = g^{-1}fh$, $M = N_{\mathcal{L}}(Q)$, and $R = N_S(Q)$. Then $f' \in M$, $u := (g, f', h^{-1}) \in \mathbf{D}$ via Q, and $\Pi(u) = f$. If f' has an **A**-decomposition then so does f, and thus we may assume that f = f' and P = Q = P'. Morever, $P = O_p(M)$ since we now have $f \in M$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

and $O_p(M) \leq S_f$. Applying the Alperin-Goldschmidt Theorem [Gold] to M, we find that the conjugation automorphism $c_f \in Aut(P)$ is a composition $c_f = c_{x_1} \circ \cdots \circ c_{x_n}$ with $x_i \in N_M(E_i)$ for some $E_i \in \mathbf{A}(M)$, and where $\mathbf{A}(M)$ denotes the Alperin-Goldschmidt conjugation family. Thus $N_M(E_i)/E_i$ has a strongly *p*-embedded subgroup, and hence $Q \leq E_i$ for all *i*.

Set $x = x_1 \cdots x_n$ and suppose that x has a **A**-decomposition. Set $z = fx^{-1}$. Then $z \in C_M(P)$, and since \mathcal{L} is reduced (by hypothesis), we obtain hence $z \in O_p(M)$. Thus $z \in P$. Let (w, σ) be an **A**-decomposition of x. Then $((z) \circ w, (S) \circ \sigma)$ is an **A**-decomposition of f. We conclude that

(*) x has no **A**-decomposition.

There is then an index k such x_k has no **A**-decomposition. Then $Q = E_k$ by the maximality of Q, and hence M/Q has a strongly p-embedded subgroup. Thus $Q \in \mathbf{A}$. By the Frattini Lemma (for groups) we may write x = ab where $a \in O^{p'}(M)$ and where $b \in N_M(N_S(Q))$. Then b has an **A**-decomposition by the maximality of Q, while (a, Q) is itself a **A**-decomposition for a. This shows that x has a **A**-decomposition, contrary to (*), and completing the proof. \Box

The proof of A.4 can be altered to yield a proof of:

Lemma A5. Let (\mathcal{L}, Δ, S) be a locality, and set $\mathcal{F} = \mathcal{F}_S(\mathcal{L})$. Then \mathcal{F} is generated by its fusion subsystems $\mathcal{F}_{N_S(P)}(M_P)$, as P varies over objects $P \in \Delta$ such that P is fully normalized in \mathcal{F} , and such that either P = S or M_P/P has a strongly p-embedded subgroup.

Proof. [Exercise: Just follow along with the proof of A4, using \mathcal{F} instead of \mathcal{L} .] \Box

Remark. With A5 we now have the result (stated as 2.10.5 in the lectures) that if (\mathcal{L}, Δ, S) is a locality then its fusion system $\mathcal{F} := \mathcal{F}_S(\mathcal{L})$ is Δ -saturated. That is, (A) every $P \in \Delta$ has an \mathcal{L} -conjugate which is fully normalized in \mathcal{F} ; (B) each $M_P := N_{\mathcal{F}}(P)$ for P a fully normalized object satisfies the condition that $\mathcal{F}_{N_S(P)}(M_P)$ is equal to $N_{\mathcal{F}}(P)$; and (C) \mathcal{F} is generated by the fusion subsystems $N_{\mathcal{F}}(P)$ for $P \in \Delta \cap \mathcal{F}^c$ with P fully normalized.

In the case that $\mathcal{F}^c \subseteq \Delta$, these conditions suffice to guarantee that \mathcal{F} is in fact saturated. The proof of this can be found in David Craven's book on fusion systems (somewhere in the middle: sorry for the imprecise reference). The proof is lengthy - and one wonders if it can be simplified. (It's based on the proof in [BCGLO1].) But A4 is so much nicer than A5 that one is led to make the following definitions.

Definition A6. Let \mathcal{F} be a saturated fusion system on S, and let $P \leq S$ be a subgroup of S. Then P is radical in \mathcal{F} if $Inn(P) = O_p(Aut_{\mathcal{F}}(P))$. (Write \mathcal{F}^{cr} for the set of all $P \leq S$ such that P is both centric and radical in \mathcal{F} .) We say that the subgroup $P \leq S$ is subcentric in \mathcal{F} if P has a fully normalized \mathcal{F} -conjugate such that the group $A_P := Aut_{\mathcal{F}}(Q)$ satisfies the condition: $C_{A_P}(O_p(A_P)) \leq O_p(A_P)$. (Write \mathcal{F}^s for the set of all $P \leq S$ such that P is subcentric in \mathcal{F} . Terminology and notation due to Ellen Henke.) **Definition A7.** Let (\mathcal{L}, Δ, S) be a locality, and set $\mathcal{F} = \mathcal{F}_S(\mathcal{L})$. Then (\mathcal{L}, Δ, S) is a Δ -linking system if the following conditions hold.

- (LS1) \mathcal{F} is saturated.
- (LS2) $\mathcal{F}^{cr} \subseteq \Delta \subseteq \mathcal{F}^s$. (LS3) $C_{\mathcal{L}}(O_p(N_{\mathcal{L}}(P)) \leq O_p(N_{\mathcal{L}}(P))$ for all $P \in \Delta$.