
Definition A1. Let (L,∆, S) be a locality, set F = FS(L), and write MP for NL(P )
(for P ∈ ∆). Then (L,∆, S) is a reduced if the following condition hold.

(R) CMP
(Op(MP )) ≤ Op(MP ) for all P ∈ ∆.

Definition A.2. Let (L,∆, S) be a reduced locality. An object P ∈ ∆ is Alperin-
Goldschmidt essential in L if either P = S or:

(1) CL(P ) ≤ P ,
(2) NS(P ) ∈ Sylp(NL(P )), and
(3) NL(P )/P has a strongly p-embedded subgroup.
Write A(L) for the set of all P ≤ S such that P is Alperin-Goldschmidt essential in

L.

Definition A.3. Let (L,∆, S) be a reduced locality and let f ∈ L. Then f is A(L)-
decomposable if there exists w ∈ D and a sequence σ of members of A(L):

w = (f1, · · · fn), σ = (P1, · · · , Pn),

such that the following hold.
(1) Sf = Sw and f = Π(w).
(2) Pi = Sfi for all i.
(3) For all i: either fi ∈ Op′

(NL(Pi)) or Pi = S.
We also say that (w, σ) is an A(L)-decomposition of f .

The reader may have noticed that condition (2) in A.3 implies that the sequence σ is
determined by w. Thus there is some redundancy in the definition. For that reason we
shall also speak of the A(L)-decomposition w and its auxiliary sequence σ.

Lemma A.4. Let L = (L,∆, S)) be a reduced locality. Then every element of L has an
A(L)-decomposition.

Proof. Set A = A(L). Among all f ∈ L such that f has no A-decomposition, choose f
with P := Sf as large as possible. If P = S then (f) is an A-decomposition of f (with
auxiliary sequence (S)). Thus, P 6= S. Set P ′ = P f , and set F = FS(L).

By 2.9 there exists an L-conjugate Q of P (and hence also of P ′) such that both Q
and Q ∩ T are fully normalized in F . As P, P ′ ∈ ∆ there are then elements g, h ∈ L
with Q = P g = (P ′)h. Since NS(Q) ∈ Sylp(NL(Q)) it follows from 2.3(b) and Sylow’s
theorem that g and h may be chosen so that NS(Q) contains both NS(P )g and NS(P ′)h.
The maximality of P then implies that g and h possess A-decompositions. The same is
then true of g−1 and h−1 via the inverses of the words (and the reversals of the sequences
of subgroups of S) which yield A-decomposability for g and h.

Set f ′ = g−1fh, M = NL(Q), and R = NS(Q). Then f ′ ∈ M , u := (g, f ′, h−1) ∈ D
via Q, and Π(u) = f . If f ′ has an A-decomposition then so does f , and thus we may
assume that f = f ′ and P = Q = P ′. Morever, P = Op(M) since we now have f ∈ M
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and Op(M) ≤ Sf . Applying the Alperin-Goldschmidt Theorem [Gold] to M , we find that
the conjugation automorphism cf ∈ Aut(P ) is a composition cf = cx1 ◦ · · · ◦ cxn with
xi ∈ NM (Ei) for some Ei ∈ A(M), and where A(M) denotes the Alperin-Goldschmidt
conjugation family. Thus NM (Ei)/Ei has a strongly p-embedded subgroup, and hence
Q ≤ Ei for all i.

Set x = x1 · · ·xn and suppose that x has a A-decomposition. Set z = fx−1. Then
z ∈ CM (P ), and since L is reduced (by hypothesis), we obtain hence z ∈ Op(M).
Thus z ∈ P . Let (w, σ) be an A-decomposition of x. Then ((z) ◦ w, (S) ◦ σ) is an
A-decomposition of f . We conclude that

(*) x has no A-decomposition.
There is then an index k such xk has no A-decomposition. Then Q = Ek by the
maximality of Q, and hence M/Q has a strongly p-embedded subgroup. Thus Q ∈ A.
By the Frattini Lemma (for groups) we may write x = ab where a ∈ Op′

(M) and where
b ∈ NM (NS(Q)). Then b has an A-decomposition by the maximality of Q, while (a,Q)
is itself a A-decomposition for a. This shows that x has a A-decomposition, contrary to
(*), and completing the proof. �

The proof of A.4 can be altered to yield a proof of:

Lemma A5. Let (L,∆, S) be a locality, and set F = FS(L). Then F is generated
by its fusion subsystems FNS(P )(MP ), as P varies over objects P ∈ ∆ such that P is
fully normalized in F , and such that either P = S or MP /P has a strongly p-embedded
subgroup.

Proof. [Exercise: Just follow along with the proof of A4, using F instead of L.] �

Remark. With A5 we now have the result (stated as 2.10.5 in the lectures) that if
(L,∆, S) is a locality then its fusion system F := FS(L) is ∆-saturated. That is, (A)
every P ∈ ∆ has an L-conjugate which is fully normalized in F ; (B) each MP := NF (P )
for P a fully normalized object satisfies the condition that FNS(P )(MP ) is equal to
NF (P ); and(C) F is generated by the fusion subsystems NF (P ) for P ∈ ∆ ∩Fc with P
fully normalized.

In the case that Fc ⊆ ∆, these conditions suffice to guarantee that F is in fact
saturated. The proof of this can be found in David Craven’s book on fusion systems
(somewhere in the middle: sorry for the imprecise reference). The proof is lengthy - and
one wonders if it can be simplified. (It’s based on the proof in [BCGLO1].) But A4 is so
much nicer than A5 that one is led to make the following definitions.

Definition A6. Let F be a saturated fusion system on S, and let P ≤ S be a subgroup
of S. Then P is radical in F if Inn(P ) = Op(AutF (P ). (Write Fcr for the set of
all P ≤ S such that P is both centric and radical in F .) We say that the subgroup
P ≤ S is subcentric in F if P has a fully normalized F-conjugate such that the group
AP := AutF (Q) satisfies the condition: CAP

(Op(AP )) ≤ Op(AP ). (Write Fs for the set
of all P ≤ S such that P is subcentric in F . Terminology and notation due to Ellen
Henke.)
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Definition A7. Let (L,∆, S) be a locality, and set F = FS(L). Then (L,∆, S) is a
∆-linking system if the following conditions hold.
(LS1) F is saturated.
(LS2) Fcr ⊆ ∆ ⊆ Fs.
(LS3) CL(Op(NL(P )) ≤ Op(NL(P )) for all P ∈ ∆.
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