NOTES ON LOCALITIES AND LINKING SYSTEMS

Venezia, Augosto 2013

These notes are intended as an introduction to linking systems as partial groups, and
their connection with fusion systems. The development will, I hope, be not too fast and
not too slow - in other words: just exactly at the right pace. Alas ! We live in a fallen
world ! (How could it be otherwise ?) So, we will all have to make adjustments for the
inevitable short-comings of the approach taken here.

Section 1: Partial groups

For any set X write W(X) for the free monoid on X. Thus, an element of W (X)
is a finite sequence of (or word in) the elements of X, and the multiplication in W (X))
consists of concatenation of sequences (denoted w o v). So, if u = (1, -+ ,2,,) and
v = (y1,-"* ,yn) then uov = (z1, -+ , T, Y1, ,Yn). The length (w) of the word
w = (r1, -+ ,%,) 18 n. The “empty word” is the word ({)) of length 0, and it is the
identity element of the monoid W (X). We make no careful distinction between the set
X and the set of words of length 1. That is, we regard X as a subset of W (X)) via the
identification x — ().

The use of the same symbol “o” for concatenation of sequences and (later on) for
composition of functions should cause no confusion.

Definition 1.1. Let £ be a non-empty set, let W = W (M) be the free monoid on L,
and let D = D(L) be asubset of W such that:

(1) £LC D (i.e. D contains all words of length 1), and

uov€eD = wu,v €D.

(Notice that (1) implies that also the empty word is in D.) A mapping II: D — M is a
product if:

(2) II restricts to the identity map on £, and

(3) uovow €D = wo (II(v)) ow € D, and II(u o v ow) = I(uo (II(v)) o w).

An inversion on M consists of an involutory bijection f — f~! on M, together with
the mapping u +— u~! on W (also an involutory bijection) given by

—1 —1>.

(33'1,"' axn)'_)(xn ]
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A partial group consists of a product IT : D — L, together with an inversion (—)~1

such that:
(4) ueD = v ltoueDand M(utou)=1,

where 1 denotes the image of the empty word under II. (Notice that (1) and (4) yield
u~! € D if u € D, and since (u=1)~! = u it follows that the condition (4) is in fact
symmetric. )

on L,

Example/exercise (a partial group which isn’t a group). Let £ be the 3-element
set {1,a,b} and let D be the subset of W(L) consisting of words w such that the word
obtained from w by deleting all entries equal to 1 is an alternating string of a’s and b’s
(of odd or even length, beginning with a or beginning with b). Define IT: D — L by the
formula: TI(w) = 1 if the number of a-entries in w is equal to the number of b’s; II(w) = a
if the number of a’s exceeds the number of b’s (necessarily by 1); and II(w) = b it the
number of b’s exceeds the number of a’s. Define inversion on £ by 1! =1, a=! = b,
and b~! = a. Now check that £ with these structures is a partial group.

It will be convenient to forget for the moment, that the notion of “group” is a familiar
one, and to make the definitions: A group is a partial group in which D = W, and a binary
group is the more familiar thing - a set G with a binary operation (g, h) — gh, such that
the usual “axioms” hold (associativity, existence of an identity element, and existence of
inverses). The connection between the two notions is provided by the following lemma.

Lemma 1.2 (exercise).

(a) Let G be a binary group, and let I1 : W(G) — G be the “multivariable product”
given by (g1, ,gn) — g1+ gn. Then G, together with 11 and the inversion in
G, is a partial group, with D(G) = W(G).

(b) Let L be a partial group for which W =D. Then L is a

(1) binary group with respect to the binary operation given by restricting I1 to words
of length 2, and with respect to the inversion in L. Moreover, 11 is then the
multivariable product on L defined as in (a).

We list some elementary consequences of definition 1.1, as follows.

Lemma 1.3. Let L (with D, I, and inversion) be a partial group.

(a) 1T is D-multiplicative. That is, if uov is in D then the word (II(u),11(v)) of
length 2 is in D, and

II(u o v) = I(w)I(v),

where II(u)II(v) is an abbreviation for II((II(u),I1(v)).
(b) II is D-associative. That is:

uovow €D = II(uov)I(w) = II(u)I(v o w).

(¢) IfuoveD thenuo(l)oveD and II(uo (1)owv) =II(uowv).
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(d) Ifuov € D then bothu™touov and uovov™ are in D, H(u~touov) = II(v),
and (uovov™t) =TII(u).

(e) The cancelation rule: If uov, uow € D, and II(uov) = II(uow), then II(v) = I (w)
(and similarly for right cancellation).

(f) Ifue D thenu! €D, and I(u™t) = U(u)~t. In particular, 171 = 1.

(g) The uncancelation rule: Let u,v,w € W, and suppose that both uwov and u o w
are in D and that II(v) = I(w). Then II(uowv) = II(uow). (Similarly for right
uncancellation.)

Proof. Let uowv € D. Then 1.1(3) applies to () o u o v and yields (II(u)) o v € D with
M(uowv) =T((IT(u)) o v). Now apply 1.1(3) to (II(u)) o v o (), to obtain (a).

Let uovow € D. Then uwowv and w are in D by 1.1(1), and D-multiplicativity yields
II(uowvow)=T(uowv)I(w). Similarly, IT(u o v o w) = ITI(u)II(v o w), and (b) holds.

Since 1 = II((), point (c) is immediate from 1.1(3).

Let uov € D. Then v"'ou"louowv € D by 1.1(4), and then u=! cuowv € D by
1.1(1). Multiplicativity then yields

Hu'ouowv) =T(u"" ouw)l(v) = 1II(v) = I(P)H(v) = (D o v) = I(v).

As (w1t = w for any w € W, one obtains wow™! € D for any w € D, and
I(wow™!) = 1. From this one easily completes the proof of (d).

Now let w o v and u o w be in D, with II(u o v) = II(u o w). Then (d) (together with
multiplicativity and associativity, which will not be explicitly mentioned hereafter) yield

M(v) = (v ouowv) = (v MII(w)(v) = M(u HIT(u)I(w) = (v cuow) = I(w),

and (e) holds.

Let u € D. Then uowu~! € D, and then IT(u)II(u~1) = 1. But also (II(u),I(u)~!) €
D, and I (u)II(u)~! = 1. Now (f) follows by 1.1(2) and cancellation.

Let u,v,w be as in (g). Then u ! ocuowv and u=! ouow are in D by (d). By two
applications of (d), II(u"touowv) = II(v) = (w) = H(u"touow), so I(uov) = I(uow)
by (e). That is, II(u)II(v) = II(u)II(w), and (g) holds. O

It is often convenient to eliminate the symbol “II” and to speak of “the product
fi--- fn” instead of II(f1, - - -, fn). More generally, if {X;}1<i<, is a collection of subsets
of £ then the “product set X; ---X,,” is by definition the image under II of the set of
words (f1, -, fn) € D such that f; € X; for all i. If X; = {f;} is a singleton then
we may write f; in place of X; in such a product. Thus, for example, the product X fg
stands for the set of all TI(z, f, g) with (z, f,g) € D, and with z € X.

A word of urgent warning: in writing products in the above way one may be led,
mistakenly, into imagining that “associativity” holds in a stronger sense than that which
is given by 1.3(b). For example, one should not suppose, if (f, g, h) € W, and both (f, g)
and (fg,h) are in D, that (f, g, h) is in D. That is, it may be that “the product fgh” is
undefined, even though the product (fg)h is defined. Of course, one is tempted to simply
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extend the domain D to include such triples (f, g, k), and to “define” the product fgh
to be (fg)h. The trouble is that it may also be the case that gh and f(gh) are defined

(via D), but that (fg)h # f(gh).

For £ a partial group and f € L, write D(f) for the set of all z € £ such that the
product f~!xf is defined. There is then a mapping

cy:D(f) = L

given by x — f~lzf (and called conjugation by f). Our preference is for right-hand
notation for mappings, so we write

z i (x)cy or xrsaf

for conjugation by f.

The following result provides an illustration of the preceding notational conventions,
and introduces a theme which will be developed further as we pass from partial groups
to entities (objective partial groups, linking systems) which are more narrowly defined.

Lemma 1.4. Let L be a partial group, let f,g € L with f € D(g) and with g € D(f),
and suppose that f9 = f. Then fg = gf and gf = g.

Proof. We're given (97, f,9) € D, (f ', g,f) € D,andg~'fg = f. Then (9,97, f,9) €
D by 1.(4), (g, f) € D by 1.1(1), and gg~'fg = gf by uncancelation. Thus fg = gf

)
(1.3(c)). A further application of uncancelation yields f~'fg = f~lgf, and so ¢/ =
g. U

Notational Convention. In any given partial group £, usage of the symbol “z/” (for
xz and f in £) shall be taken to imply D(f). More generally, for X a subset of £ and
f € L, usage of “X7/” shall be taken to mean that X C D(f); whereupon X/ is by
definition the set of all z/ with « € X.

At this early point, and in the context of arbitrary partial groups, one can say very
little about the maps cy. The cancelation rule 1.2(e) implies that each cy is injective,
but beyond that, the following lemma may be the best that can be obtained.

Lemma 1.5. Let L be a partial group and let f € L. Then the following hold.

(a) 1 €D(f) and 17 = 1.

(b) D(f) is closed under inversion, and (x=1)f = (x/)~ for all x € D(f).
(c) cf is a bijection D(f) — D(f~1), and ¢;—1 = (¢p)~ .

(d) L=D(), and 2t = x for each x € L.

Proof. By 1.1(4), foo f~' = fof~ ! €D, so 1 € D(f) and then 1/ = 1 by 1. 3( ).
Thus (a) holds. Now let x € D(f) and set w = (f~!,z, f). Then w € D, and w™! =
(f~Y 271, f) by definition in 1.1. Then 1.1(4) yields w='ow € D, and so w™! € D
by 1.1(1). This shows that D(f) is closed under inversion. Also, 1.1(4) yields 1 =
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M(w™ ' ow) = (z71) 2/, and then (z71)/ = (2/)" by 1.3(f). This completes the proof
of (b).

As w € D, 1.3(d) implies that f ow and then fowo f~! are in D. Now 1.1(3) and
two applications of 1.3(d) yield

fel foE =00 T = T f ) o fo 7)) =T, [ e) = o

Thus =/ € D(f~1) with (z/)/" = 2, and thus (c) holds.
Finally, 1 = 17! by 1.3(f), and Doz 0 ) = x € D for any = € M, proving (d). O

Definition 1.6. Let £ be a partial group and let H be a non-empty subset of £. Then
H is a partial subgroup of L if H is closed under inversion (f € H implies f~! € H)
and with respect to products. The latter condition means that II(w) € H whenever
w € W(H) N D. The partial subgroup H is a subgroup of L if W(H) C D. A partial
subgroup N of L is normalin £ if 29 € N for all pairs (z, g) € N x L for which z € D(g).
(Another - equivalent - way to state the condition for normality is to say that the partial
subgroup N of £ is normal in £ is g7'Ng C N for all g € L. Note that this formulation
relies on one of the notational conventions introduced above, for interpreting product
sets XY Z.) We shall write
H<SL

to indicate that H is a partial subgroup of £, and write
NIL

to indicate that N is a partial normal subgroup of L.

Lemma 1.7 (Exercise). Let H and K be partial subgroups of a partial group L, and
let {H;}icr be a set of partial subgroups of L.
(a) Each partial subgroup of H is a partial subgroup of L.
(b) If K CH then K is a partial subgroup of 'H.
(¢) If H is a subgroup of L then HNK is a subgroup of H and of K.
(d) Suppose KK < L. Then HNK I H. Moreover, HN K is a normal subgroup of H
if H is a subgroup of L.
(e) N{H; | © € I} is a partial subgroup of L, and is normal in L (i.e. is a partial
normal subgroup of L) if H; I L for all i.
O
For any subset X of a partial group £ we define the partial subgroup (X) of £ generated

by X to be the intersection of the set of all partial subgroups of £ containing X. Then
(X) is itself a partial subgroup of £ by 1.7(e).

Lemma 1.8. Let X be a subset of L such that X is closed under inversion (v € X —
!t € X). Set Xog = X and recursively define X,, for n >0 by

X, ={II(w) | w e W(X,,—1) N D}.
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Then (X) = U{ Xn}n>o0-

Proof. Let Y be the union of the sets X;. Each X; is closed under inversion by 1.3(f),
and Y # () since 1 = TI((})). Since Y is closed under products by construction, we get
Y < (X), and then Y = (X) by the definition of (X). O

Lemma/Exercise 1.9 (Dedekind Lemma). Let L be a partial group, let H, K, and
A be partial subgroups of L, and suppose that L = HK.
(a) If K < A then A= (ANH)K.
(b) If H < A then A=H(ANK).
O

Definition 1.10. Let £ and £’ be partial groups, let 8: L — £’ be a mapping, and let
B* : W — W’ be the induced mapping of free monoids. Then (3 is a homomorphism (of
partial groups) if:

(H1) Dg* C D/, and

(H2) (II(w))B = II'(wf*) for all w € D.
The kernel of 3 is the set Ker(3) of all g € £ such that g8 = 1’. We say that [ is an
isomorphism if there exists a homomorphism (' : £ — £ such that So 3 and 8’ o 3 are
identity mappings.

We end this section with a few exercises (or lemmas). Some of these are perhaps not
much more than observations.

Lemma/Exercise 1.11. Let §: L — L' be a homomorphism of partial groups. Then
18=1', and (fHB = (fB)"t forall fc L. O

Lemma/Exercise 1.12. Let 5: L — L' be a homomorphism of partial groups, and set
N = Ker(8). Then N is a partial normal subgroup of L. [

Lemma/Exercise 1.13. Let f: L — L' be a homomorphism of partial groups, and let
M be a subgroup of L. Then M is a subgroup of L'. (What might go wrong if M is
merely a partial subgroup of L 2 Ie. why shouldnt M3 be a partial subgroup of L' in
that case ?) O

Lemma/Exercise 1.14. Let o : G — G’ be a homomorphism of “binary groups” (i.e.
a homomorphism of groups in the usual sense - see 1.2). Then « is a homomorphism of
partial groups. [J

Section 2: Objective partial groups and localities

Recall that if X is a subset of a partial group £, then any statement involving the
expression “Xf” should be understood as being based on the tacit hypothesis that X C

D(f).
Throughout this section L is a partial group. For subgroups X and Y of L, set

Ne(X,Y)={feL|X CD(f) and X/ <Y},
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and define the normalizer
Ne(X)={fe L] X CD(f) and X/ = X}.

The centralizer C(X) is defined to be the set of all f € Nz (X) such that 2/ = x for all
reX.

Definition 2.1. Let £ be a partial group and let A be a collection of subgroups of L.
Define Da to be the set of all w = (f1, -, fn) € W(L) such that:

(*) there exists (Xo,---, X,) € W(A) with (X;_1)7 = X; for all i (1 <i < n).
Then (£, A) is an objective partial group (in which A is the set of objects), if the following
three conditions hold.

(O1) D =Da,.

(O2) A is overgroup closed. That is, whenever X, Z are objects, and Y is a subgroup
of Z containing X, then Y is an object.

(0O3) A is closed under “L-fusion”. That is whenever X and Y are objects, and g €
N (X,Y) is given, with the property that X9 is a subgroup of Y, then X9 is an
object.

It should be emphasized that in the condition (O3) it is required that X9 be a subgroup
of Y, in order to conclude that X9 be an object. Notice that the two conditions (O1)
and (0O2) may be summarized by saying:
(02’) Every subgroup of £ which contains an L-conjugate of an object, and which is
contained in an object, is itself an object.

Example. Let G be a finite group, B a subgroup of GG, and let A be a collection of
subgroups of B such that X9 € A whenever X € A and g € G with X9 < B. Assume
also that A is closed with respect to overgroups in B. Let £ be the set of all g € GG such
that BN BY € A, and let D be the subset DA of W(L). Then L is a partial group (via
the multivariable product in G and the inversion in G), and (£, A) is an objective partial
group. Specifically:
(a) If A ={B} then £ = Ng(B), and L is a group.
(b) (Exercise) Take G = GL3(2), B € Syl2(G), and let M; and My be the two
maximal subgroups of G containing B. Set A = Fp(G)¢. Then £ = M; U M.
On the other hand, if A is taken to be the set of all non-identity subgroups of B
then £ = M1M2 U Mle.

In an objective partial group (£, A) we say that the word w = (f1,---, fn) is in D
via (Xo,- -+, X,) if the condition (*) in 2.1 applies specifically to w and (Xq, -+, X,,).
We may also say, more simply, that w is in D via X, since the sequence (Xo, -, X,)
is determined by w and Xj.

Examples/Exercises.

(1) Let G be a group and let A be a non-empty collection of subgroups of G. Assume
that A satisfies (03’) with respect to G: Every subgroup of G which contains a
7



G-conjugate of a member of A and which is contained in a member of A is itself
a member of A. Set

L£L={geG|3X,Y €A with X9 =Y},

set D = Dj, and let Il : W(G) — G be the multivariable product in G. Then
the restriction II of Il to D maps D into L, £ is a partial group with respect to
IT and the inversion in G, and (£, A) is objective.

If, in (1), there exists X € A such that every G-conjugate of X is in A, then L is
the group G (see 1.2 for the definition of “group”). In particular, this will be the
case if the identity subgroup of G - or any other normal subgroup of G - is in A.
Let G be the group O} (2). That is, let G be a semidirect product V x S where
V is an elementary abelian, normal subgroup of G of order 9, and where S is a
dihedral subgroup of G of order 8 acting faithfully on V. (Another description
of G is that G is the “wreath product” of the symmetric group of degree 3 with
a cyclic group of order 2.) Let A be the set of all non-identity subgroups of the
fixed Sylow 2-subgroup S of G, and form £ as in (1). Check that SN S9 # 1
for all ¢ € G, and conclude that G = L as sets. But L is not a group (i.e.
D(L) £ W(L)).

Google “John Conway M(13)” to find out about the “puzzle” My3. Then figure
out how to view Mi3 as an objective partial group £ in which each X € A is
isomorphic to the Mathieu group Mj2 (and where the cardinality of A is 13).
Find out about “centric linking systems” from [BLO] or [AKO]. Thus, a centric
linking system L€ is a category whose set A of objects is a set of subgroups of
a group S. Moreover, L¢ comes equipped with “inclusion morphisms” ¢ PP for

objects P and P such that P < P. Because of this, one can define v_vhai it means
for an L%isomorphism ¢ : P — @ to extend to an L%isomorphism ¢ : P — Q. It
just means that the diagram

P—".0Q

LP,?T T‘Q,@
P2

commutes. Let &~ be the weakest equivalence relation on the set Iso(L®) of
L¢-isomorphisms, such that ¢ ~ 1 if ¢ extends to ¥. The set Iso(L¢)/ ~ of
equivalence classes is then a partial group £ via composition in the category
L (one has to show that ~ respects composition in order to establish that the
product is well defined) and via inversion of isomorphisms. (Again, one has to
show that ~ is compatible with inversion.) Moreover, (£, A) is objective. The
details of this are somewhat lengthy, and may be found in the Appendix to
[Chl]. The only point to mentioning this “example” here, is to indicate how
partial groups and objective partial groups were originally conceived.
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Lemma 2.2. Let (£,A) be an objective partial group.

(a) Nz(X) is a subgroup of L for each X € A.
(b) Let g € L and let X € A withY := X9 € A. Then N.(X) C D(g), and

Cg . NE(X) — Ng(Y)

s an isomorphism of groups.
(¢) Letw= (g1, " ,9n) € D via (Xg, -+, X,). Then

Cgy © 7+ 0 Cg, = Cr1(w)

as maps (isomorphisms) from Xg to X,,.

Proof. (a) Let X € A and let u € W(N,(X). Then v € D via X, 1 € N.(X) (1.5(d)),
and Nz (X)™! = N.(X) (1.5(c)). This shows that N, (X) is a subgroup of L.

(b) Let z,y € Ng(X) and set v = (¢71,2,9,97%,9,9). Then v € D via Y, and then
II(v) = (xy)? = 29y9 (using points (a) and (b) of 1.3). Thus, the conjugation map
cg : Ng(X) — Ng(Y) is a homomorphism of “binary groups” (see 1.2), and hence a
homomorphism of partial groups (1.14). Since c,-1 = cg_1 by 1.5(c), it follows that ¢, is
an isomorphism of groups.

(c) Let € Nz (Xp), set u, = w™! o (x) o w, and observe that u, € D via X,,. Then
II(u;) can be written as (--- (z)f )¢, and this yields (¢). O

The next lemma provides two basic computational tools (and indicates that objective
partial groups are perhaps “closer” to being groups than are partial groups in general).

Lemma 2.3. Let (£, A) be an objective partial group.

(a) Let (a,b,c) € D, and set d = abc. Then bec = a~'d and ab = dc™1 (and all of
these products are defined).

(b) Let (f,g) € D and let X € A. Suppose that both X and Y9 are in A. Then
Xf9 = (Xf)g,

Proof. (a) As (a,b,c) € D = Da, with abc = d, it follows from 2.2(c) that there is a
commutative diagram of conjugation maps:

BLC

aT Tc
AT)D

in which the arrows are labelled by the conjugating elements, and where A, B,C, D are

objects. Since ¢! = (c;)7! for any x € £, one may read off from the diagram that
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(a,a”t,d) € D, and then aa~'d = d by 1.3. Since also abc = d, left cancelation yields
a~'d = be. Similarly for ab = dc=*.

(b) As (f,g) € A we have also (™', f,g) € A, and g = II(f ', f.9) = f~'(fg). Now
observe that (f~1, fg) € D via P/, and apply 2.2(c) to obtain P79 = ((Pf)ffl)fg =
(PH9. O

The following corollary should be compared with 1.4.

Corollary /Exercise 2.4. Let (L,A) be an objective partial group, let f,g € L, and
suppose that f9 = f. Then g/ = g and fg = gf.

The following result is, in some sense, the first non-trivial result in these notes. It is
fundamental to everything that follows.

Proposition 2.5. Let (£, A) be an objective partial group, and suppose that there exists
S € A such that A is a set of subgroups of S. For each f € L, define Sy to be the set of
allz € D(f) NS such that x¥ € S. Then Sy € A, and Sp-1 = (Sy)7.

Proof. Fix f € L. Every word of length 1 is in D by 1.1(2). As D = Da by (O1),
there then exists X € A such that Y := X/ € A. Let a € Sy and set b = a/. Then
X% and X° are subgroups of S (as a,b € S) and so X* and Y® are in A by (02).

Then (a~!, f,b) € D via X%, and (f,b) € D via X. Also, (a, f) € D via X* '. Since
f~taf = b we get af = fb by cancelation, and hence

a7 fo=a" (b)) =a 7 (af) = (a ') f = |

by D-associativity. Since a~! fb conjugates X to Y, we draw the following conclusion.
(1) X< Sy and (X%)/ € A for all @ € Sy, and for all X € A for which X7/ € A.

Now let ¢,d € Sy. Then (1) shows that both X¢ and X are members of A which are

conjugated to members of A by f. Setting w = (f~',¢, f, f1,d, f), we conclude (by

,C
following X/ along the chain of conjugations given by w) that w € D via X/. One then
observes via 1.1(3) that

(2) (w) = (cd)’ = cfd’.

Thus cd € S¢. Since Sy is closed under inversion by 1.5(b), we conclude that Sy is a
subgroup of S. As X < Sy < S, where X and S are in A, (02) now yields Sy € A. Since
cp—1 = (cg)7 1 it follows that S;—1 = (Sy)f. O

Lemma 2.6. Assume the hypothesis of 2.5, and let w = (g1,--- ,gn) € W(L). Set
Yo ={(x0, - ,xn) € W(S) | (zi-1)% = x; for all i with 1 <i <n},
and set

Sw={x0 €S| Ixo,--+ ,xn) € Xy}
10



Then Sy, is a subgroup of S, and S, € A if and only if w € D.

Proof. Let xg,yo € Sy and let 0 = (g, -+ ,z,) and 7 = (Yo, -+ ,Yn) be the correspond-
ing sequences in Y, (determined by z,y, and w). Set S; = S, (1 < j < n). Then
xi—1 and y;_1 are elements of S;_1, and so z;_1y;—1 € Si—1 by 2.5. As ¢, restricts to a
homomorphism on S;_; (see 2.2(b)) it follows that z;y; € S;. Thus S, is closed under
the binary multiplication in S. That S,, is closed under inversion is given by 1.5(b), so
Sw is a subgroup of S. If S, € A then w € D via S,,. Conversely, if w € D then P < S,
for some P € A, and then S,, € A by (02). O

We are now going to narrow the focus considerably, by restricting attention to objec-
tive partial groups whose underlying set of elements is finite, and which satisfy further
conditions related to a prime p.

Definition 2.7. Let p be a prime, let £ be a finite partial group, let S be a p-subgroup
of £, and let A be a set of subgroups of S. Then (£, S) is a locality if the following two
conditions hold.

(L1) (£,A) is objective, and
(L2) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

For any locality (L£,A,S) there is associated fusion system Fg(L£) on S. Namely,
Fs(L) is defined to be the fusion system on S which is generated by the conjugation
maps ¢, : Sg — S (g € £). Recall (7) that this means that the Fg(£)-homomorphisms
are the mappings between subgroups of S that can be expressed as compositions of
restrictions of the maps ¢, for g € L.

Example/Lemma 2.8. [RESTATE IN TERMS OF EARLIER EXAMPLE.] Let G be
a finite group, let S be a Sylow p-subgroup of G, set F = Fg(QG), and let T be a non-empty
F-invariant collection of subgroups of S, such that I" is overgroup closed in S. Define L
to be the set of all g € G such that SN SY9 € I', and set D = Dy. Then L is a partial
group wvia the restriction of the multivariable product in G to D, as in the examples (1)
through (3) following 2.1. Moreover, one may verify (L,T,.S) is a locality; to be denoted

Lr(G).

Proof. -

If g € £ then (SNSY )9 = SNSY €T, and then (SNSY ) € T since I' is F-invariant.
Thus £ C D, and £ is contained in the partial group M = M(M,T) given by example
2.4(2). In that example, M is the set of all ¢ € M such that there exists P € I" with
P9 € T'. Such an element g has the property that SNSY € I since I is overgroup closed,
and so L = M. Example 2.4(2) now shows that £ is a partial group with respect to the
multivariable product and the inversion in G. The condition (O1) for objectivity is given
by the definition of D, while (02) is immediate from the assumption that I" is overgroup
closed and F-invariant. Thus, (£,I") is objective. All members of I" are subgroups of S,
and S is maximal in the poset of p-subgroups of G, so (£, S) is a locality via I'. [
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Lemma 2.9. Let (L,A,S) be a locality and let P € A. Then there exists g € N (P, S)
such that Ng(P?) € Syl,(PY).

proof. Since S is maximal in the poset of p-subgroups of L, S is a Sylow p-subgroup of
the (finite) group N,(.5), and so the lemma holds for P = S (and with g = 1).

Assume now that the lemma is false, and among all P € A for which no there exists no
g € Nz (P, S) such that Ng(P7) is a Sylow subgroup of Nz (P7), choose P so that | P| is as
large as possible, and then so that |Ng(P)| is as large as possible. Set R = Ng(P) and let
R* be a Sylow p-subgroup of N (P) containing R. Then R < R* (proper subgroup), and
then also R < Ng«(R). Observe that since P # S we have P < R, and the maximality of
|P| then yields the existence of an element f € Nz (R, S) with Ng(R') € Syl,(Nz(R”).

By 2.2(b) there is an isomorphism

N (R) L N (RF)

induced by conjugation by f. Apply Sylow’s Theorem to N (R7) to obtain an element
r € Nz(RY) such that (Ng-(R))* < Ng(R’). Here (f,x) € D via R, so 2.2(c) yields
(Nr<(R)¥)* = Ng«(R)/*. Thus, by replacing f with fr, we may assume that f was
chosen to begin with so that Ng«(R)/ < Ng(R/). Since R* normalizes P, and since cy is
an isomorphism, it follows that Ng-(R)/ normalizes P/, and thus |Ng(P7)| > |Ng(P)|.
The maximality of |Ng(P)| in the choice of R then implies that P/ is not a counter-
example to the lemma. Set Q = P/. Thus, there exists h € N-(Q, S) such that Ng(Q")
is a Sylow subgroup of N.(Q"). Since (f,h) € D via P we have Q" = P9 where g = fh,
and thus P is not a counter-example. [

At this point it may be helpful to review the peculiar definition of saturation, and of
A-saturation, from section 0.

Proposition 2.10. Let (L,A,S) be a locality and set F = Fs(L). Then F is A-
saturated.

Proof. We first show that every P € A has a fully normalized F-conjugate. Namely,
by 2.9 we may assume (after possibly conjugating P by a suitable element of N (P, S5))
that Ng(P) is a Sylow p-subgroup of N, (P). Now let ) be an F-conjugate of P. Thus
@ = P¢ where ¢ is a composition of restrictions of £-conjugation maps. All images of P
in S under £-conjugation are objects, by (03), so 2.2(c) implies that in fact Q = P/ for
some f € L. Note that, as in the proof of 2.9, c¢;-1 : N£(Q) — N (P) is an isomorphism,

and there exists x € N (P) such that NS(P)f_lx < Ng(P). Setting g = f~'z (product
defined via Q) we obtain Q9 = P and Ng(Q)?9 < Ng(P). Since ¢, is an F-homomorphism
Ng(Q) — S we conclude that P is fully normalized in F.

In order to complete the proof of A-saturation it remains to show that for each P € A
with P fully normalized in F, there exists a group Mp such that P < Mp, Ng(P) €
Syl,(Mp), and such that

(*) Fng(p)(Mp) = Nz(P).
12



The obvious candidate for Mp is N, (P) - and indeed it remains only to verify (*). The
inclusion Fy,(py(Mp) € Nx(P) of fusion systems is immediate from the definition of F.
In order to prove the opposite inlusion, let ¢ be a homomorphism in in Nz(P). Then ¢
is the restriction of an F-homomorphism ¢ : R — R’ where P < R, P < R/, and where
Py = P. By 2.2(c), 9 is given by conjugation by an element g € £, and then the same is
true of ¢. Since g € Nz (P) we conclude that ¢ is an Fy,(p)(Mp)-homomorphism; and
so the proof of (*), and of A-saturation, is complete. [

Proposition 2.11. Let (£, A,S) be a locality and let H be a subgroup of L.

(a) There exists an object P € A such that H < N, (P). [All subgroups are “local”
subgroups. |

(b) If H is a p-group then there exists g € L such that H9 < S. [S is a “Sylow
subgroup” of L.]

Proof. (a) For any w = (hy,--- ,h,) € W(H) let w’" be the word (g1, -, gn) defined
by gi = h1---h;. As L is finite, so is H, and one may therefore choose w € W(H) so
that the cardinality of the set X = {g1, -+, gn} is as large as possible. Suppose X # H,
let g € H— X, and set h = II(w)~'g. Then the set of entries of (wo (h)) is X U {g},
contrary to the maximality of X. Thus X = H.

We have W(H) C D by our definition of subgroup, so w € D via some P € A. Then
P9 = Phihi < G for all 4, and so P*" < S for all h € H. Set U = (P" | h € H) (the
subgroup of S generated by the union of all P* for h € H). Then U € A by (02), so
it now suffices to show that H < N, (U). For this it suffices to observe that, by 2.3(b),
(P7)9 is defined and is equal to P79 for all f,g € H.

(b) By point (a) there exists U € A with H < N (U), and by 2.9 there exists V' € A and
g € L such that V = UY and such that Ng(V') € Syl,(N.(V). Let ¢4 : Ng(U) — Ng(V)
be the isomorphism given by 2.2(b). Thus HY is a p-subgroup of N, (V'), so there exists
x € N (V) with (H9)* < Ng(V). Since (g,z) € D via U we may apply 2.2(c), obtaining
(H9)* = H9*. Thus (b) holds with gz in the role of g. O

Recall (7) that for any subgroup X of a partial group £, the normalizer Nz (X) is the
set of all elements g € £ such that X9 = X.

Lemma 2.12. Let (£,A,S) be a locality, let T be a subgroup of S, and setAr =
{Np(T)| T < PeA}.
(a) N(T) is a partial subgroup of L.
(b) If Ap C A, then (Nz(T),Ar) is an objective partial group.
(c) If Ap € A, and |Ns(T')| > |Ns(U)| for every L-conjugate U of T in S, then
(Nz(T),Ns(T)) is a locality via Ar.

Proof. [FIX THE REFERENCES.| Let w = (f1, -, fn) € W(Ng(T)), and suppose
that w € D := D(L) via a sequence (FPp,--- , P,) of objects. Then (P;_1,T) < Sy, for
all 7, by completeness, and then

(Pi_1,T) = (P, T).
13



Thus, T' < S, and we may assume for the sake of simplicity that 7" < P; for all 4.
Set f = I(w). Then 2.8(c) yields T/ = T, and so N.(T) is closed under products.
One observes that if f € Nz(T) and # € T, with (f~!,z,f) € D via P € A, then
(f,z=1, f71) € D via P*’ . Since an analogous statement holds when x is replaced by
71, it follows that N (T) is closed under inversion, and so (a) is proved.

For the remainder of the proof, we may assume that Ar C A. Set

Dr=DanN W(N[;(T))

(where D is defined in 2.6). With w and (P, -, P,) as in the proof of (a), we may
then replace P; with Np,(T'), and this shows that Dy is contained in the subset Da,. of
W(N,(T)). The reverse inclusion is obvious, so (Nz(T'), Ns(T')) satisfies the condition
(O1) for objectivity. Any overgroup in Ng(T') of an element of Ar is again in A, so
the condition (O2) is satisfied, and (Nz(T"), Ar) is an objective partial group. Thus, (b)
holds.

Now assume further that 7" has been chosen so that |Ng(7T')| > |Ng(U)| for each
L-conjugate U of T in S. In order to show that (N.(T'), Ns(T')) is a locality via Ar,
it suffices to show that Ng(T") is maximal in the poset of p-subgroups of N (T). Set
R = Ng(T), let Ry be a p-subgroup of N.(T') containing R, and set Ry = Ng, (R). As
R € A, there exists f € £ such that Q := R/ is fully normalized in Fs(£), by 2.17(a).
Then Ng(Q) is a Sylow p-subgroup of N, (Q), and so there exists g € N (Q) such that
(R2)79 < Ns(Q). But (Ry)/9 < Ng(T/9), and the maximality condition on R then
yields R = Ry and R = R;. This completes the proof of (¢). O

Definition 2.13. Let (£, A, S) be a locality, and let T' C A be a non-empty subset such
that T" is both overgroup-closed in S and Fg(L£)-invariant. Set D = D(L), set

D |ri={weD]|S, eI},

and let £ |r be the set of words of length 1 in D |p, regarded as a subset of £. The
restriction of L to T' consists of L |p together with the restriction to D |p of the product
in £, and the restriction to £ | of the inversion in L.

Lemma 2.14. [FIX THE REFERENCES.] Let (L,A,S) be a locality, and let T" be a
non-empty subset of A, such that T is both overgroup-closed in S and Fs(L)—invariant.
(a) D |p is the set Dr of 2.6, and (L |p,T,S) is a locality.
(b) If L is a group M, then L |r is the locality Lr(M) given by 2.10.1.

Proof. Set M = L |p. For any w € W, the condition that S,, be in I is the defining
condition for D |p, and in view of 2.13(a) it is also the defining condition for Dr.
These subsets of W are therefore identical, and (M, I") satisfies the condition (O1) for
objectivity. Condition (O2) is given by the assumption that I' is closed in Fg(L), so
(M, T) is objective. All members of I' are subgroups of S, and S is maximal in the poset
of p-subgroups of M since the corresponding statement holds in £. As L is finite, so is
M, so M is a locality, and (a) holds.
14



Suppose that £ is in fact a group M, and set K = Lp(M). By definition, an element
g of M isin K if and only if SN.SY € I'. The latter condition means that S, = SN ngl,
so g € K if and only if S, € I'. Similarly, w € D(K) if and only if S,, € I'. This shows

that D(K) = Dr, and then (b) follows from (a). O
We refer to the locality (£ |p,T',.S) as the restriction of £ to I'.

Section 3: Partial normal subgroups of localities

This section contains three results (3.5 through 3.7) which enable the construction of
quotient localities. Throughout, we fix a locality The following hypothesis, and notation,
will be assumed throughout. £ = (£, A, S) and a partial normal subgroup AN of L. Set
T =SNN, and set F = Fs(L).

Lemma 3.1.

(a) T is strongly closed in F, and T is mazximal in the poset of all p-subgroups of N.
(b) Let x € N and let P be a subgroup of S,. Then PT = P*T.
(¢) T is maximal in the poset of p-subgroups of N.

Proof. (a) Let g € £ and let t € SyNT. Then t9 € S, and ty "N as N < L. Thus
t9 € T. Since F is generated by the conjugation maps ¢, : Sg — S, point (a) follows.

(b) Let @ € P. Then (P*)* < S and P* = P. Setting w = (a™',271,a,z) we then
have w € D via P*. Now Il(w) = a~'a® € S, while also II(w) = (7 1) € N,
and so II(w) € T. Then a® € aT, and we have thus shown that P* < PT. Then
P*T < PT. The equality P*T = PT can then be deduced from (a) (which implies that
|P*NT|=|PNT]|), or from symmetry with 27! and P* in place of x and P.

(¢c) Let R be a p-subgroup of N containing T'. By 2.9(b) there exists g € £ with R < S,
and then R < SNN = T. As conjugation by ¢ is injective (and since the groups we
are working with are finite) we conclude that T'= R. [

Lemma 3.2. Let z,y € N and let f € N(T).
(a) If (z, f) € D then (f, f~ Y x,f) €D, of = fa!, and S(z,f) = S(pary = Sz NSy

(b) If (f?y) € D then (f?yuf_lvf) € D) fy = yf71y7 and S(f,y) = S(yf_17y) =
Syf’l N Sf.

Proof. For point (a): Set QQ = S(, sy and note that 7" < Sy by hypothesis. We have
QT = QT by 3.1(b), so @ < Sy. Thus Q@ < P := S, NSy. But also P*T = PX, so
P = Q. Moreover, we now have (f,f~ 1, z,f) € D via Q, and then II(f, f~ %, 2, f) =
xf = fo/. Thus, (a) holds.

For point (b): Set R = S(s,). Then RIVT = RIT < Sy-1, 80 (fy, f71,f) €D
via R, and fy = y/ ' f. The remainder of (b) now follows as an application of (a) to

v/, f). O
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Definition 3.3. Let £ o A be the set of all pairs (f,P) € £ x A such that P < Sy.
Define a relation T on £o A by (f, P) T (g, Q) if there exist elements = € Nxr(P, Q) and
y € Nar(PY,Q9) such that zg = fy.

This relation may be indicated by means of a commutative diagram:

Q —— Q7

g T
p L ps

of conjugation maps, labeled by the conjugating elements, and in which the horizontal
arrows are isomorphisms and the vertical arrows are injective homomorphisms. The
relation (f, P) T (g, Q) may also be expressed by:

w = (x,g,y_l,f_l) € D via P, and II(w) = 1.

It is easy to see that T is a reflexive and transitive relation on £ o A. We say that
(f, P) is mazimal in Lo A if (f,P) T (g,Q) implies that |P| = |Q|. As S is finite there
exist maximal elements in £ o A. It’s clear that (f, P) 1 (f,Sy) for (f,P) € Lo A, by
taking z = y = 1 in the diagram (*); so P = S for every maximal (f, P). For this
reason, we will say that an element f € £ is T-mazimal if (f, Sy) is maximal in £ o A.
Lemma/Exercise/Observation 3.4. Let f € L.

(a) If f € Nz(S) then f is T-mazimal.
(b) f is T-mazimal < f~1 is T-mazimal.
(¢) T is a transitive relation.
(d) For each (f, P) € LoA there exists a mazimal (f', P') such that (f,P) T (f', P’).

O
The first main result of this section is as follows.

Proposition 3.5. Let f € L and suppose that f is T-mazimal. Then T < Sy.
The proof requires two preliminary lemmas.

Lemma 3.5.1. Let (h,P) 1 (h/, P’), and assume that T < P’. Then there exists y € N
such that h = yh'. Moreover, we then have the following.

(a) y € Ny(P,P'), and P < Sy pry.

(b) If Np(P") € Syl,(Nx(P")) then Ny (PY) € Syl,(Nx(PY)).

Proof. Set R = P" and R’ = (P")". We are given a commutative diagram

p'L)R/



as in the definition of the relation 1. (So, u,v € N, and uh’ = hv). Since T' < P’ we
get T =T" < R from 3.1(a), and we get R*T = RT from 3.1(b). Thus RT < R', and
similarly PT' < R.

Set w = (u,h',v~1, (h)~1). Then w € D via the sequence

(P, P, Pl = ptv pt = R R,

Set y = II(w). Thus y = u(v=1)*) ™", and so y € N, and indeed y € Ny (P, P'). One
checks that
yh' = uh/v™t = hov' = h

(by checking that the products are defined), so we have produced the required element
y, and we’ve established point (a).

Notice that Nar(R) is a normal subgroup of (the group) N.(R), by 1.7(d). By (a)
and 2.2(b) we have an isomorphism of groups

Cpr

N (PY) — Nc(R),
which then restricts to an isomorphism
Ny (PY) — Ny (R),

and which (since T' < P’) restricts further to an isomorphism Np(PY) — Np(R). As-
suming now that Np(R) is a Sylow subgroup of Nxr(R), we conclude that Ny (PY) is a
Sylow subgroup of Nas(PY). That is, (b) holds. O

Lemma 3.5.2. Suppose that f is T-mazimal, and let y € Nar(S¢,S). Then [T NSy =
TN (S¢)Y|, and (f,Sf) T (v~ f,(S¢)Y). In particular, y=' f is T-mazimal.

Proof. Set P = S¢. Then PYT = PT, by 3.1(b). Then
|PY: PYAT|=|PYT:T|=|PT:T|=|P: PNT|,

and so |T'N P| = |T'N PY|. The following diagram

pyﬂ)pf

yT Tl
P T> pf

shows that (f, P) 1 (y~1f, PY). Transitivity of | now implies that (y~!f, P¥) is maximal
in £LoA. That is, y~ ! f is T-maximal. O

Proof of Proposition 3.5. Let f be T-maximal, set P = Sy, and set Q) = Pt
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STEP 1: Suppose first that Np(P) € Syl,(Na(P)), and consider the isomorphism
N (P) 5 N£(Q)

and its restriction (as in the proof of 3.5.1) to an isomorphism

Nar(P) — Ny (Q).

Then Nr(P)f € S p(NN(Q), and Sylow’s Theorem yields an element = € N (Q) such
that Nr(Q) < ( (P) )*. Here (f,z) € D via P, so (Ngp(P)/)* = Np(P)/*

Set P = Np(Q)U=)"~ 'P, and ovserve now that (f,P) 1 (fz,P) via the following
diagram.

P2 Np(Q)Q
/| E
P Q

f

Maximality of (f, P) yields |P| = |P|, so P = P and Q = N7(Q)Q. Thus N7(Q) < Q,
whence T' < ), and T' < P. We have thus shown:

(*) For any g € £ such that g is T-maximal, and such that Np(P) € Syl,(Na(P),
we have T' < Sy.

STEP 2: Among all counter-examples to the proposition, assume that f has been chosen
so that first |[P N T'| is as large as possible, and then so that |P| is as large as possible.
As above, write P = Sy, Q@ = P/. By 2.9 we may choose g € N.(Q,S) such that
Ng(Q7) € Syl,(Ne(Q7)). Set R = Q9. Since Npr(R) is a normal subgroup of N, (R) we
obtain

(**) Nr(R) € Sylp(Na(R)).
(The intersection of a normal subgroup N of a finite group G with any given Sylow
subgroup of G is a Sylow subgroup of N.)

Set h = fg (defined via P) and let (h’, P’) be maximal in Lo A, with (h, P) T (h', P’)
(3.4(d)). In the usual way, we express this relation by a diagram.

P R

P —— R
h

There are now two possibilities.

Case (A): Assume T £ P’. Then I’ is a counter-example to the proposition. Since
|[PNT| <|P'NT]| it follows from the maximality of (|PNT|,|P]) in our choice of f that
18



|P| = |P'|. Then h is T-maximal, and h~! is [-maximal (3.4(b)). Then (**) and (*) yield
T < R,and so T < P (3.1(a)). That is, f is not a counter-example to the proposition.

Case (B): Assume T' < P’. Then 3.5.1 applies, and yields an element y € Nxr(P, P’)
such that h = yh’. Then 3.5.2 applies and shows that y~!f is J-maximal and (f, P) 1
(f~ty,PY). As(f, P)is I-maximal, and since (f 'y, P¥) T (f 'y, Sy-1,), the transitivity
of T yields P¥ = S -1y.

Since Ngs(P") € Syl,(Nz(P")) by (**), we have Ng(PY) € Syl,(Nz(PY) by 3.5.1(b),
and then Np(PY) € Syl,(Na(PY). Then (*) applies to y~! f in the role of f, and yields
T < PY. Then T < P and, once again, f is not a counter-example. This completes the
proof. [

Corollary 3.6 (Frattini Lemma). Let £ = (L£,A,S) be a locality, let N be a partial
normal subgroup of L, and set T = SNN. Then L=NN,(T)= N.(T)N.

Proof. Let f € L, set P =S¢, and choose (g,Q) € Lo A so that (f,P) T (¢9,Q) and so
that ¢g is T-maximal. By transitivity of T, we may take Q = S,. Then T' < @ by 4.5,
and then 4.5.1 yields an element y € Nar(P, Q) with f = yg. Here g € N-(T') by 3.1(a).
Thus f € NNz(T). By 3.2 we have also f = fy/ € No(T)N. O

Lemma 3.7 (Splitting Lemma). Let (x, f) € D with x € N and with f -mazimal.
Then S(x,f) = Smf = S(f@f).

Proof. Appealing to 3.2, set y = 2/ and g = 2 f (so that also g = fy), and set Q = Sz, 1))
(so that also @ = S(f,)). Thus Q < Sy NS, Set

PO:NSf(Q)’ Pl:NSg(Q)’ P = (P, ),

and set R = PyN P;. Then Q < R. In fact, 2.3(b) shows that y = f~!g and that
(R')Y = RY, s0 R < @, and thus Py N P, = Q. Assume now that (x, f) is a counter-

example to the lemma. That is, assume @@ < S, (proper inclusion). Then ) < P; and
SO P1 f Po. Thus:

(*) P1 £ Sy

Among all counter-examples, take (z, f) so that |@Q] is as large as possible.
CASE 1: The case z € N (T).

As f € No(T) (3.5) we get T < @, and then x € Nz(Q) by 3.1(b). Thus Q9 = Q*/ =
Q'. Set Q' = Q9. Then 2.2(b) yields an isomorphism c; : Nz(Q) — Nz(Q'). Since f =

x~tg, 2.2(c) yields cf=cy-10cq. Asx € Ny(Q) < Ng(Q), we get (Pl)l’_1 < Na(Q) Py,
and then

(P = ((P)* ) < (Na(Q)P1)? = Na(Q)Ns(Q').
Also (Py)f < Ng(Q'), so

(**) PF < Ny (Q)Ns(Q).
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Since T' < @', 3.1(c) implies that T" is a Sylow p-subgroup of Ny (Q'), and hence Ng(Q')
is a Sylow p-subgroup of Nx(Q')Ns(Q'). Then (**) and Sylow’s Theorem together yield
an element v € Na(Q') such that P/* < Ng(Q’). In particular, we have P < Sy, (and
where fo is defined via Q).

Set u = v/ . Then 3.2 yields (u, f) € D and S(u’f) = S(f,v). If S(f’v) = Suy then
(f,v) € D via P, so that P < S}, contrary to (*). Thus Sy, =# Suy, and so (u, f) is a
counter-example to the lemma. As QQ < P, the maximality of |@Q| in our choice of (z, f)
implies that Q = P, so Q = P;, and we again contradict (*). Thus, we are reduced to:

CASE 2: The case z € N (T).

Let h be T-maximal, with (g, S,) T (h, Sp). Then T' < S}, by 3.5, and then 3.5.1 yields
an element r € N with g = rh and (3.5.1(a)) with Sy < S(.p). Set w = (f~1, 21,7, h)
and observe that w € D via Q9 and that II(w) = (f~'27!)(rh) = g7'g = 1. Then 2.3
yields h = r=lzf. Since both f and h are in Nz (T), 2.2(c) yields r~'z € N(T), and
so 11z € Npr(T). Then Case 1 applies to (r~'z, f), and thus S), = Str—1a,5) < Sy
(using 3.2). By definition of 7 there exist a,b € N such that one has the usual sort of

“commutative diagram”:

Sh L Sh—l

aT Tb .

Sy —— Sy
g

As T < Sy, 3.1(b) yields
Sy < S,T = (S4)T < Sh,

and so S, < Sf. This again contradicts (*), and completes the proof. [
The Splitting Lemma yields a useful criterion for partial normality, as follows.

Corollary 3.8. Let L be a locality, let N < L, and let K < N be a partial normal
subgroup of N'. Suppose that K is N (T)-invariant. Le. suppose that z"* € K for all
(h=1,z,h) € D such that x € K and h € Ng(T).) Then K < L.

Proof. Let z € K and let f € £ such that 27 is defined. By the Frattini Lemma we may
write f = xh with x € N and with A T-maximal, and then the Splitting Lemma yields
Sy = Sn). Set u = (f~Yz,f)and v = (h=Y,g7 1, 2,9,h). Then S, = S, € A, and
) =Tl(u) = I(v) = (29)". Thus 2/ € K, and L < L. O

Lemma 3.9. Let h be T-mazimal. Then Nh=hN ={g€ L | (g,54) T (h,Sh)}.

Proof. Given (g,S,) 1 (h,Sp) with the usual diagram:

Sh L) Sh—l

uT T

Sy —— Sy
g
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one sees (as in 2.3) that the word w = (u, h,v=1,h=t h,g~!) € D via P, that II(w) = 1,
and then that g = u(v=')" 'h € AN'h. Then also g € hA by 3.2.

Conversely, let g be an element of N'h. So, g = xh with x € N, and where Sy = S, 5
by th Splitting Lemma. Then S, < S}, by 3.2, and we get

(S9)" < (S3)°T = 8,T < S,

using 3.1(b) and 3.5. Similarly, since g~ = h~ 'z~ = (z71)"h ! one finds that S, T <
Sh—l. Then

Sy — s S,

d [+

Sy —— S,

is a diagram which expresses (g, Sg) T (h,Sp). O

Lemma 3.10. The following hold.

(a) N =N forall f € N.(T).

(b) If (9,S4) 1 (h,Sh) and h is T-mazimal then Ny C Nh.

(¢) L is partitioned by the set of all subsets N f such that f is T-mazimal.

(d) Let u= (g1, - ,9n) € D, and let v= (hy,--- ,h,) be a sequence of up-mazximal
elements of L such that g; € N'h; for alli. Thenv € D, and T'S, < S,.

Proof. Point (a) is contained in 3.2, and is included here for emphasis. Now let h be
T-maximal and let ¢ € N'h. Thus ¢ = zh for some z € N, and then the Splitting
Lemma (3.7) yields Sy = Sz 1), and Sy < S by 3.2. Let y € N with (y,g) € D. Then
(y,z,h) € D via S(y ), and yg = (yz)h € N'h. Thus Ng C N'h, and we have (b).

Next, let f and g be T-maximal in N' with Nf N Ng # 0, and let h € Nf N Ng.
Then N'h C N f N Ng by point (b). Write h = zf with € N. The Splitting Lemma
yields (z=1,h) € D via (S3)%,s0 f =2 'h € Nh,and so f € Ngand N'f C Ng by (b).
Similarly Ng < N f, and (c) holds.

Finally, let v and v be given as in (d), and write g; = x;h; with z; € N. Set
w = (x1,h1, -+ ,Tn, hy). Then S, = S, by splitting (and by induction on n). Since
T < S, by 3.5, it suffices to show that S, < S, in order to prove (d).

Set P = S, and proceed by induction on n. Suppose geq2 and set ug = (g1, , gn—1)
and vg = (hy,--- ,hp—1). Then P < S, and so P < S,, by the inductive hypothesis.
Set g = II(up) and set Q = PY9. Then Q < S,, = S, h,), and in this way we are
reduced to the case n = 1. Here P** < PT by 3.1(b), and so P** < Sj,, by 3.2. Thus
P <S,, as required. [

We refer to the sets N f with f T-maximal as the maximal cosets of N. Notice that
N f is a maximal coset if and only if AN'f is maximal in the poset of all subsets Ng
(partially ordered by set-theoretic inclusion), by points (b) and (c) of 3.10. We write
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L/N, or simply L, for the set of maximal cosets of A'. Let p : £ — L be the quotient
map, sending g € L to the unique maximal coset [g] of N/ containing g.

Set W := W(L) and W = W(L), and let p* : W — W be the induced mapping of
free monoids. For any subset or element X of W, write X for the image of X under p*,
and similarly if Y is a subset or element of £ write Y for the image of Y under p. In
particular, D is the image of D under p*. Set A = {P | P € A}.

For w € W, we shall say that w is T-maximal if every entry of w is T-maximal.

Lemma 3.11. There is a unique mapping 11 : D — L, a unique involutory bijection

= =1 = . — = - . .
f—f on L, and a unique element 1 of L such that L, with these structures, is a
partial group, and such that p is a homomorphism of partial groups.

Proof. Let u = (g1, ,gn) and v = (hq, -, hy,) be members of D such that w = v.
By 3.10(d) there exists for each ¢ an J-maximal f; € £ with g;,h; € Nf;. Set w =
(fi, -+, fn). Then w € D by 3.13(e), and then 3.3(a) shows that II(u) and II(v) are
elements of NTI(w). Thus II(u) = I(w) = II(v), and there is a well-defined mapping
II: D — £ given by

() I(w) = II(w).

For any subset X of E write X ! for the set of inverses of elements of X. For any f € £
we then have Nf)t=f N1 by 1.1(4). Here N=1 = N as N is a partial group, and
then (N f)~! = N f~! by 3.13(a). The inversion map N f — N f~! is then well-defined,
and is an involutory bijection on £. Set 1 = N,

We now check that the axioms in 2.1, for a partial group, are satisfied by the above
structures. Since D is the image of D under p*, we get L C D. Now let W = ToT € D, let
u,v be [-maximal pre-images in W of u, and v, and set w = uowv. Then w is -maximal,
and so w € D by 3.12(e). Then u and v are in D, and so @ and T are in D. Thus D
satisfies 1.1(1). Clearly, (*) implies that II restricts to the identity on £, so II satisfies
1.1(2).

Next, let TWoTow € D, and choose corresponding T-maximal pre-images u, v, w. Set
g = II(v). Then g = II(v) by (*). By 1.1(3) we have both uovow and uo (g) ow in
D, and these two words have the same image under II. Applying p* we obtain words in
D having the same image under II, and thus II satisfies 1.1(3). By definition, II(})) = 1,
and then the condition 1.1(4) is readily verified. Thus, £ is a partial group.

By definition, D is the image of D under p*. So, in order to check that p is a
homomorphism of partial groups it suffices to show that if w € D then II(wp*) =
II(w)p. But this is simply the statement (*). Moreover, it is this observation which
establishes that the given partial group structure on £ is the unique one for which p is a
homomorphism of partial groups. We have f € Ker(y) if and only if fy =1 = A. Since
Nf =N implies f = 1f € N, and since N is the maximal coset of £ containing 1, we
obtain Ker(y) =N. O

We end this section with an important example.
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Proposition 3.12. Let (£, A,S) be a locality having the property that for each P € A,
Cr(P) is the direct product of a p-group with a (necessarily unique) p'-group ©(P), and
set

o= J{ewr)|PeAal
Then © < L.

Section 4: Quotients and products

We begin this section by showing that the image of a locality under a “strongly
surjective” homomorphism £ in induces the structure of a locality on the image of .
[We need the following result on finite p-groups, to be placed in Appendix G.]

Lemma G.n. Let S be a finite p-group, let P < S be a subgroup, and let C be a set of
S-conjugates of P. Set X = |JC, and suppose that P* € C for all x € X. Then either
X = P or Ng(P) N X properly contains P.

Proof. Set S = S, and define S for n > 0 by S = [§(»~1) G|, Then P9 < PSM)
for all g € S, and so X C PSM. Set Xy = X, and define X,, for n > 0 by X,, = [J{P* |
x € X,—1}. A straightforward argument by induction shows that X, C PS+) " and
hence there is a least index k£ such that X, = P. Assuming that X # P we get k > 0,
and then P 75 Xk,1 S Ns(P) L]

Proposition 4.1. Let (L, A,S) be a locality, let L' be a partial group, and let 3 : L — L’
be a homomorphism of partial groups. Set D = D(L) and D' = D(L'), " = S0, and
set A" ={Pg | P € A}. Assume that DB* =D’. Then (L', A, S") is a locality, and the
following hold.

(a) For any subgroup M of L, the restriction of B to M is a surjective homomorphism
By 2 M — MpB of groups.

(b) If w e D via P € A, then wB* € D’ via PS.

(c) Let w' € D' via P' € A’, and let P be the pre-image of P’ via the restriction Bg
of B to S. Then there exists w € D such that each entry of w is T-maximal with
respect to Ker(8) and such that wB* = w'. Moreover, any such w is in D via P.

(d) If Ker(8) =1 then 3 is an isomorphism.

Proof. We note first of all that the hypothesis DG* = D’ implies that §* maps the set
of words of length 1 in £ onto the set of words of length 1 in £'. Thus 3 is surjective
and, in particular, £’ is finite.

Let M be a subgroup of £. Then W(M) C D by 1.2. Note that W(Xv) = W(X)~*
for any set X and any mapping v on X. As Dp* C D’ by (1), one concludes that
W(MpB) C D/, and hence Mg is a subgroup of £’. Then [ induces a homomorphism
M — M of groups, by 1.13. Thus (a) holds. In particular, S’ is a p-group, and A’ is a
set of subgroups of S’.

Let P € A and let w € D via P. If w = ({)) is the empty word then so is w3*, and
then (see definition 2.1) wB* € D’ via any member of A’. Suppose that w = (f) has
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length 1, and set Q = P/. Let x € P. Then (f~',z,f) € D, and 2/ € Q. As 8 is
a homomorphism we get (f~!,z, )3 € D' and (z8)/? = (z/)3 € QB. Then 1.5(c)
shows that conjugation by f( defines a bijection from Pg3 to Qf, where P and 3 are
subgroups of S’ by (a).

Now suppose that w = (f1, -, fn) € D via (Py,---,P,), write wf* = w' =

(fi,--+,fl), and set P/ = P;3. Here w' € D’ since 8 is a homomorphism, and the
argument of the preceding paragraph shows that (P/_,)/i = P; for all 4 with 1 < i < n.
This is all that we mean by saying that w’ € D’ via (P},---, P)), or via P} for short.

Thus (£, A’) satisfies the condition (O1) for objectivity in definition 2.1.

In the remaining arguments we shall need to consider the partial normal subgroup
N := Ker(B) of L (see 1.12), and the group T := SNN. By 3.14 L is partitioned by
the maximal cosets of N, while 3.13(b) shows that each maximal coset is of the form
Nh where h is -maximal with respect to /. Plainly, § is constant on each coset of N,
hence every fiber of § contains an T-maximal representative.

Let f/ € £’ and let f be [-maximal in £ with f8 = f’. Set P =S; and Q = P/, and
set P/ = PB and Q' = QB. Then P',Q’ € A’ and (P')f = Q'. Define X := S/, to be
the set of all z € S such that 2/ is defined and such that 2/ € §’. We now claim that
(P')* C X for all z € X. Indeed, let z € X and set y = x/'. Then (z~', f',y) € D’
via (P')*. Then (f',y) € D', while (z, /) € D’ via (P')* . From (f/)laf’ =y we get
xf' = f'y by 1.3(e), and hence z~ ' f'y = 2= Y(f'y) = 2= (xf’). As (z7 1,2, f') € D' by
1.3(d), we conclude that x =1 f'y = f’, and thus (P")* C X, as claimed.

Suppose that P’ # X. Then [the above LEMMA p-GROUPS]| shows that X N Ng/(P’)
properly contains P’. Let x € Ng/(P’) with ¢ P’, let a be a pre-image = under g,
and set A = P(a). We note that T' < P by 3.8, and we observe that T' = Ker(fs). As
Bs is a homomorphism S — S’ of groups, we get A < N, (P). Conjugation by f induces
an isomorphism N (P) — N(Q) by 2.3(b), so B := A/ is a p-subgroup of N(Q).
Set K = Nar(Q). Then K is a normal subgroup of the group M := N.(Q), by 1.7(d).
Moreover, T < Q by 2.10(a), and then T € Syl,(K) by 2.10(c). As BBy = (AB)!', we
find B < Ng(Q)K, and then Sylow’s theorem yields B¢ < Ng(Q) for some ¢ € K. Then
(P, f) T (A, fc), contrary to the T-maximality of f. Thus:

(1) (*) (Sy)B = Syp for every f € L such that f is T-maximal with respect to N.

It is immediate from (*) that the condition (O2) of definition 2.1 holds in £’. Since we
have already verified (O1), we now conclude that (£, A’) is an objective partial group.
If S” is properly contained in a p-subgroup R’ of L' then Sy, (s) yields a contradiction to
the maximality of S among the p-subgroups of L. Since it has already been established
that £’ is finite, we conclude that (L', A’, S") is a locality.

Let w’ € D’ via P’ € A/, let w be a lifting of w’ via (3, such that every entry of w is
T-maximal, and let P be the pre-image of P’ via fg. Then (*) implies that w € D via
P, and hence (c) is proved.

Finally, assume N’ = 1. Then every element of £ is J-maximal with respect to N,
and (g is an isomorphism. Let g1, g2 € £ with ¢’ := g18 = ¢2/3, and set A; = S,,. Then
AiB =S, by (*), and hence A; = Az. Then (97", g2) € D via (A1)%, and (g;'¢:)8 = 1.
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Thus g1 = g = g2, and [ is injective.
Set v = 37!, and let w’ € D’ via P’ € A’. Then (b) yields w'y € D, and we have

((w'y"))B = ' (w' (" 0 57)) = I (w").

Now apply 7 to obtain II(w'~*) = I'(w’)y. Thus 37! is a homomorphism, completing
the proof of (d). O

Definition 4.2. Let (£,A,S) and (L', A’,S’) be localities, and let 5 : L — L' be a
homomorphism of partial groups. Then (3 is a projection if the following two conditions
hold.

(1) D§* = D'
(2) A’ ={PB| P e Al

Theorem 4.3 (First Isomorphism Theorem). Let (£,A,S) be a locality, let N < L
be a partial normal subgroup, and let p : L — L be the homomorphism of partial groups
given by 3.15. Set A = {Pp| P € A}.
(a) (L,A,S) is a locality, and p : L — L is a projection.
(b) Let (£',D’,S") be a locality, let 3 : L — L' be a projection, and suppose that
N = Ker(B). Then there is a unique isomorphism 3 : L/IN — L' such that
p=pop.

Proof. By definition of the partial group £ in 3.15, the domain D(£) of the product II
is the image of D(L£) under p*. Point (a) is therefore immediate from 4.1, and from the
definition of projection (4.2).

Let 3: L — L' be a projection as in (b), and set N’ = Ker(3). Then N’ < L by 1.12.
Clearly, (3 is constant on cosets N f of N. Since L is partitioned by the maximal cosets
of NV, by 3.13(d), we may define a mapping 3 : £ — L' by applying 3 to each maximal
coset. Let 3 be the induced mapping W (L) — W (L) of free monoids.

Let w € D(L) and let w be an T-maximal word (i.e. in which each entry is {-maximal)
in W (L) such that wp* = w. Then w € D(L), and W3 = wB* by definition of 3. Here
wp* € D(L') is a homomorphism, and

() ' (wp") = ' (wf*) = M(w)B.

Let [II(w)] be the unique maximal coset of N containing IT(w). Then [II(w)] = II(w) by
definition of II, and then (*) yields

' (wf") = T(w)6 = [M(w)]F = (I(w))B.

Thus, (3 is a homomorphism of partial groups.
We note that B
D(L)F" = D(£)3" = D(L)
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as 3 is a projection. Similarly, we find that A = A’, and hence 3 is a projection.
Further, Ker(3) = 1 since Ker(3) = N, so 3 is an isomorphism by 4.1(d).

Finally, let v : £ — £’ be an isomorphism such that povy = 3. Let f € £ and let f
be an T-maximal pre-image of f via p. Then, in the obvious way:

fy="Ff(poy)=fB=flpoB) =[P,

and thus v = 3. This completes the proof of (b). [

Proposition 4.4 (Partial Subgroup Correspondence). Let (£, A,S) be a locality,
let N < L be a partial normal subgroup of L, and set T = SNN. Let (L,A,S) be the
quotient locality L/N, and let p : L — L be the canonical projection. Then p induces
a bijection o from the set § of partial subgroups H of L containing N to the set  of
partial subgroups H of L. Moreover, for any H € $, we have Ho < L/N if and only if
HAL.

Proof. Any partial subgroup of £ containing A is a union of maximal cosets of N, by
3.14. Then 4.3 enables the same argument as in ordinary groups, for the proof that p
induces a bijection $ — 9.

For any g € £ denote by [g] the maximal coset of A/ containing g. Now suppose that
H e $H with H<L. Let g € £ and h € H with @ := ([g71], [h], [g9]) € D(L/N). As above
(and in view of 3.7(b)) we may take h and g to be [-maximal, with (¢!, h,g) € D(L).
Then II(g~1, h,g) € H and II(u) € H. Thus H < L£/N in this case.

Conversely, let £ < £L/N, and let f € K and x € £ with (271, f,z) € D(L). Let y be
T-maximal in [z] and let h be T-maximal in [f]. Then ([z71],[f], [*]) = ([v~'], [g], [v]) €
D(L/N) and [¢g¥] € K. As [¢¥] = [f*], we conclude that f* € K, and thus £ < £. O

It may be worth-while to record the following essentialy trivial result.

Lemma 4.5. Let N < L and let p: L — L/N be the canonical projection. Further, let
H be a partial subgroup of L containing N and let X be an arbitrary subset of L. Then
(XNH)p=XpNHp.

Proof. By 3.14, 'H is a union of maximal cosets of A/, and then Hp is the set of those
maximal cosets. On the other hand Xp is the set of all maximal cosets Ng of N such
that UNNg # (. Thus XpNHp C (X N'H)p. The reverse inclusion is obvious. O

Corollary 4.6. Let (£,A,S) be a locality, let N < L, and let M be a partial normal
subgroup of L containing N'. Let p : L — L/N be the canonical projection. Then
(SN M)p is a mazimal p-subgroup of Mp.

Proof. Write (£, A, S) for the quotient locality given by 4.3, and set M_: Mp. Applying
4.5 with S in the role of X, we obtain (SN M)p = 5N M. Since M < L, it follows
from 2.10(c) that S N M is maximal in the poset of p-subgroups of M, completing the
proof. [
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Proposition 4.7. Let (£,A,S) be a locality, and let M < L and N < L be partial
normal subgroups. Set U = SN M and V = SNN, and assume that the following
condition holds.

(*) M normalizes V, and N normalizes U.

Then MN = NM < L. Moreover, if L is a A-linking system and Cs(UV)UV € A
then SN MN =UV.

The proof will require the following result on “splitting”.

Lemma 4.8. Assume the hypothesis of 4.7, and let g € MN. Then there exists (x,y) €
D with x € M, y € N, and with Sy = S, ).

Proof. Among all (z,y) € DN (M x N) with zy = g, choose (z,y) so that
(U N S@upl VO Sy s Sy

is as large as possible in the lexicographic ordering. Set @ = S(, ) and set P = Ng, (Q).
It suffices to show that P = () in order to obtain the lemma.

By 3.2 we have (y,y~',z,y) € D and g = yz¥. Suppose that P < S,. Then P¥ < S,
and since PY < § we conclude that P < S, ,v), and hence P = @), as desired. Thus we
may assume:

(1) P£8S,.
Let h be T-maximal in the maximal coset of M containing g. Then 3.9 yields an el-
ement r € M such that g = rh, and 3.11 yields S; = S, ). Then Q < S(;.p), so
(y=L,z7tr h) € D via Q9 and U(y~t, 21,7, h) =1I(g !, g) = 1. Thus:

(*) y=2x"'rh and h=r"lzy.

Since y, h € Nz (U), it follows that r—*x € Naq(U), and then that h = (r~1z)y € MN.

Suppose that h does not provide a counter-example to the lemma. That is, suppose
that there exists 2’ € M and y' € N such that (2/,y') € D, 'y’ = h, and S(,,,/) = Sh.
As r7lay = h = 2y we get 2y = r2'y’, and (r2’,y’) € D with rz’y’ = rh = g. The idea
now is to replace (z,y) with (rz’,y’) and to contradict the assumption that S; # Q. In
order to achieve this, note first of all that S, < S, since S, ;) = Srn = Sy. Then note
that (Sy)" < Sp, and that S, = S, ) < Spr. Thus (Sg)" < Spr, and so Sy < Sppr. As
rz'y’ = g we conclude that Sy < S(;,s ), which yields the desired contradiction. We
conclude that A is itself a counter-example to the lemma.

Since h = r~lzy by (*), and since h and y are in N, (U), we have r~tax € Ny (U),
and then U < S(.-1,,) since h € N, £(U). The maximality condition placed on @ in
our choice of g then yields U < @), and a symmetric argument yields V' < (). Setting
H = N;(Q), it now follows from 3.1(b) that z,y € H.

Set X =HNMandY = HNN. Then X,Y, and UV are normal subgroups of H,
and XY/UV is a p'-group. Here P < H, and in the quotient group H := H/(XNY)UV
we then have [P,g] = 1. As XNY =1 we have C5(P) = C(P) x C+(P). Asg =71y
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it follows that Z and ¥ centralize P. Thus P* < (X NY)P and P € Syl,((X NY)P).
Sylow’s Theorem then yields z € X NY with P* = P?. Replacing (z,y) with (zz7!, zy)
we get g = (227 ')(2y) and P < S(;,-1,,). This contradicts the maximality of @ and
yields a final contradiction, proving the lemma. [J

Proof of 4.7. Let w = (g1, ,gn) € W(MN)ND via Q € A. By 4.8 we may write
gi = zy; with z; € M, y; € N, and with Sy, = S, 4.). Set w' = (z1,y1,- , Tn, Yn)-
Then w’ € D via @ and II(w) = II(w’). Since each y; normalizes U, it follows from 3.4
that II(w’) = I(w") for some w” such that w”’ = wov € D, where u € W(M), and
where v € W(N). Thus MN is closed under II. In order to show that MN = (MN)~!
we note that if (z,y) € DN (M x N) then (y~!,27!) € D and that y~lz=! € MN by
3.2. Thus MN is a partial subgroup of £. Moreover, we have shown that MN = N M.

Let g € MN and let f € £ with (f~1,g,f) € D. As usual we may write f = hr
with r € N, h € Ng(V), and Sy = Ser,py- Write g = zy as in 4.8. By assumption
we have (f~1,g,f) € D via some P € A. Setting v = (r~*, h=1 z, y, h,r) it follows
that v € D via P and that g/ = II(u). Here 3.2 yields (h™!, h,y,h) € D via S(y,h)> SO
v =Y h 2, h by, h,r) € D via P and

g =1v) =) = (z"y")" € (MN)".

Since r € N, and MN is a partial group, we conclude that ¢/ € MN. Thus MN < L.

Now suppose that R := Cg(UV)UV € A and that £ is a A-linking system. Then
Nan (UV) is a subgroup of the group D := N, (R) by 3.4, and a normal subgroup by
1.7(d). Further, Na(U) and Nas (V') are contained in D as normal subgroups, and 2.10(c)
shows that Na(U)Nar(V)/UV is a product of two normal p’-subgroups of D/UV, and
is therefore itself a p’-group. Let s € Ng(UV) N MN. Then s € D, and thus the image
of s in D/UV is trivial. Thus SN MN = UV, and the proof is complete. [

Corollary 4.9. Let M,N < L and suppose that MNN < S. Then MN < L.
Proof. Immediate from 4.7 and 2.17. [

Proposition 4.10. Let (£, A,S) be a A-linking system, let N' < L be a partial normal
subgroup, and set T = SNN. Let (N(T),A,S) be the locality given by 2.14(a) and let
K =(C(T)N) be the partial subgroup of L generated by the set Cr(T)N. Assume that
Cs(TT € A. Then K<L and SNK =Cs(T)T.

Proof. Set Ly = Ng(T), Cr = Cc(T), Np = NN Ly, and T* = Cs(T)T. Then
N1 = Na(T*) by 3.4. Since Cr normalizes T, and N normalizes T*, 4.7 implies that
Cr N7 is a partial normal subgroup of L7 and that S NCprNp = T*.

Let p : L — L/N be the canonical projection given by 4.3, and let § be the restriction
of p to Lr. The definition of the product in £/N shows that for w € D(L/N) there
exists w € D(L£) with p* = w and such that each entry of w is T-maximal with respect
to N. Moreover, any such w is in D(L7) by 3.8, and thus (3 is a projection, with kernel
Nr. Let pr : Lr — L1 /Nt be the canonical projection. Then 4.3(b) yields a unique
isomorphism 3 : L7 /Np — L£L/N such that pr o 3 = #. This shows that the image of
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Cr under 3 is a partial normal subgroup of £/N. Its pre-image in £ is then a partial
normal subgroup of £ containing N by 4.4. Since K is the smallest partial subgroup of
L containing both N and Cr, we conclude that K < L.

We have seen that T* = SNCrNp. Then T*pr is a maximal p-subgroup of Cr Ny /Nt
by 4.6, and so T™*p is a maximal p-subgroup of IL/N. By 4.1(a), p restricts to a homo-
morphism S N — (SN K)p of groups, with kernel SN AN = T. The maximality of T"*p
then yields T* =SNK. O

[THE FOLLOWING APPLICATION OF 4.3 WON'T BE USED LATER ON IN
THIS PAPER. THE INTERNAL REFERENCES IN THE PROOF WILL BE FIXED
UP, LATER ]

Proposition 4.11. Let L = (L,A,S) be a locality and set F = Fg(L). For each P € A
set O(P) = OP(Cr(P)), and set

0=0,= ] o).
PeA

(a) Assume that each ©(P) is a p'-group. Then © is a partial normal subgroup of L,
ONS =1, and Cr/o(P) = Cc(P)/O(P) is a p-group for all P in A.

(b) Assume that F is saturated and that F© C A C F9. Then each ©(P) is a
p'-group, and L/0O is a A-linking system.

Proof. (a): Set F = Fs(L), and let P € A with P fully normalized in F. For any
g € C(P) the conjugation map ¢, : S; — S is an element of Cx(P). As P is F-centric,
Cx(P) is the fusion system Fy(U) where U = Cg(P). In particular, the subsystem
Fu(Cr(P)) of Cx(P) is the fusion system of a p-group, and so OP(C(P) is a p’-group.
The same is then true of any F-conjugate of P, so ©(P) is a p’-group for any P € A,
and ©NS = 1.

Assume that each O(P) is a p’-group for each P € A. Let f € ©, set R = S, and let
@ be maximal with respect to inclusion in {P € A | f € ©(P)}. Then [Ng(Q), f] < S
since 7t/ € S for all x € R. But also [Nr(Q), f] < ©(Q) since ©(Q) < N.(Q).
But SNO(P) =1 as O(P) is a p'-group, so [Nr(Q), f] = 1, and f is an element of
Cam(Ng(P)) of order prime to p. That is, we have f € ©(Ng(Q)), and the maximality
of @ then yields @ = R. Thus:

(*) No(P,S)=06(P) for all P € A.

Let w = (f1, -+, fn) € D with f; € O for all 4, and set P = S,,. Then (*) yields
fi € ©(P) for all 4, and so II(w) € O(P). As © is closed under inversion we conclude
that © is a partial subgroup of M. Now let ¢ € £, and suppose that f € D(f).
That is, suppose that (¢7!, f,g) € D via some P € A. Since ¢, is an isomorphism
Nz (P) — N (PY), by 2.7(b), ¢, maps O(P) to O(P/). Thus, f9 € ©, and so © < L.

Since O(P)N S =1 for all P, we have © NS =1, so A is equal to its image in the
quotent locality £/0©. Since N, (P)/O(P) = N.,o(P) by 4.13(b), (a) is proved.

29



(b): Suppose now that A is contained in the set F¢ of F-centric subgroups of S, and
let P € A. As F is A-saturated by 2.14(a), P has an L-conjugate () such that @ is
fully normalized in F. Then Cs(Q) = Z(Q) as @ is centric, and Ng(Q) € Syl,(N.(Q).
Thus Z(Q) is Sylow in Cz(Q), and so Cr(Q) = Z(Q) x ©(Q) where ©(Q) is a p’-group.
By conjugation (and 2.7(b)), the analogous factorization holds also for Cz(P). Now (a)
applies and yields Cz/g(P) = Z(P). Thus £/© is a A-linking system, and is a centric
linking system if A = F¢. 0O

Example 4.12. Let G be a finite group, let S be a Sylow p-subgroup of G, let F
be the fusion system Fg(G), and let A be an F-invariant, overgroup closed subset of
F9 containing F". Let 7 := Ta(G) be the A-transporter system given by 2.5. The
preceding theorem then yields a D-linking system LA (G) = (L/©,A,S).
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