
NOTES ON LOCALITIES AND LINKING SYSTEMS

Venezia, Augosto 2013

These notes are intended as an introduction to linking systems as partial groups, and
their connection with fusion systems. The development will, I hope, be not too fast and
not too slow - in other words: just exactly at the right pace. Alas ! We live in a fallen
world ! (How could it be otherwise ?) So, we will all have to make adjustments for the
inevitable short-comings of the approach taken here.

Section 1: Partial groups

For any set X write W(X) for the free monoid on X. Thus, an element of W(X)
is a finite sequence of (or word in) the elements of X, and the multiplication in W(X)
consists of concatenation of sequences (denoted u ◦ v). So, if u = (x1, · · · , xm) and
v = (y1, · · · , yn) then u ◦ v = (x1, · · · , xm, y1, · · · , yn). The length `(w) of the word
w = (x1, · · · , xn) is n. The “empty word” is the word (∅) of length 0, and it is the
identity element of the monoid W(X). We make no careful distinction between the set
X and the set of words of length 1. That is, we regard X as a subset of W(X) via the
identification x 7→ (x).

The use of the same symbol “◦” for concatenation of sequences and (later on) for
composition of functions should cause no confusion.

Definition 1.1. Let L be a non-empty set, let W = W(M) be the free monoid on L,
and let D = D(L) be asubset of W such that:

(1) L ⊆ D (i.e. D contains all words of length 1), and

u ◦ v ∈ D =⇒ u, v ∈ D.

(Notice that (1) implies that also the empty word is in D.) A mapping Π : D →M is a
product if:

(2) Π restricts to the identity map on L, and

(3) u ◦ v ◦ w ∈ D =⇒ u ◦ (Π(v)) ◦ w ∈ D, and Π(u ◦ v ◦ w) = Π(u ◦ (Π(v)) ◦ w).

An inversion on M consists of an involutory bijection f 7→ f−1 on M, together with
the mapping u 7→ u−1 on W (also an involutory bijection) given by

(x1, · · · , xn) 7→ (x−1
n , · · ·x−1

1 ).
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A partial group consists of a product Π : D → L, together with an inversion (−)−1 on L,
such that:

(4) u ∈ D =⇒ u−1 ◦ u ∈ D and Π(u−1 ◦ u) = 1,
where 1 denotes the image of the empty word under Π. (Notice that (1) and (4) yield
u−1 ∈ D if u ∈ D, and since (u−1)−1 = u it follows that the condition (4) is in fact
symmetric.)

Example/exercise (a partial group which isn’t a group). Let L be the 3-element
set {1, a, b} and let D be the subset of W(L) consisting of words w such that the word
obtained from w by deleting all entries equal to 1 is an alternating string of a’s and b’s
(of odd or even length, beginning with a or beginning with b). Define Π : D → L by the
formula: Π(w) = 1 if the number of a-entries in w is equal to the number of b’s; Π(w) = a
if the number of a’s exceeds the number of b’s (necessarily by 1); and Π(w) = b it the
number of b’s exceeds the number of a’s. Define inversion on L by 1−1 = 1, a−1 = b,
and b−1 = a. Now check that L with these structures is a partial group.

It will be convenient to forget for the moment, that the notion of “group” is a familiar
one, and to make the definitions: A group is a partial group in which D = W, and a binary
group is the more familiar thing - a set G with a binary operation (g, h) 7→ gh, such that
the usual “axioms” hold (associativity, existence of an identity element, and existence of
inverses). The connection between the two notions is provided by the following lemma.

Lemma 1.2 (exercise).

(a) Let G be a binary group, and let Π : W(G) → G be the “multivariable product”
given by (g1, · · · , gn) 7→ g1 · · · gn. Then G, together with Π and the inversion in
G, is a partial group, with D(G) = W(G).

(b) Let L be a partial group for which W = D. Then L is a
(1) binary group with respect to the binary operation given by restricting Π to words

of length 2, and with respect to the inversion in L. Moreover, Π is then the
multivariable product on L defined as in (a).

We list some elementary consequences of definition 1.1, as follows.

Lemma 1.3. Let L (with D, Π, and inversion) be a partial group.
(a) Π is D-multiplicative. That is, if u ◦ v is in D then the word (Π(u),Π(v)) of

length 2 is in D, and

Π(u ◦ v) = Π(u)Π(v),

where Π(u)Π(v) is an abbreviation for Π((Π(u),Π(v)).
(b) Π is D-associative. That is:

u ◦ v ◦ w ∈ D =⇒ Π(u ◦ v)Π(w) = Π(u)Π(v ◦ w).

(c) If u ◦ v ∈ D then u ◦ (1) ◦ v ∈ D and Π(u ◦ (1) ◦ v) = Π(u ◦ v).
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(d) If u ◦ v ∈ D then both u−1 ◦u ◦ v and u ◦ v ◦ v−1 are in D, Π(u−1 ◦u ◦ v) = Π(v),
and Π(u ◦ v ◦ v−1) = Π(u).

(e) The cancelation rule: If u◦v, u◦w ∈ D, and Π(u◦v) = Π(u◦w), then Π(v) = Π(w)
(and similarly for right cancellation).

(f) If u ∈ D then u−1 ∈ D, and Π(u−1) = Π(u)−1. In particular, 1−1 = 1.
(g) The uncancelation rule: Let u, v, w ∈ W, and suppose that both u ◦ v and u ◦ w

are in D and that Π(v) = Π(w). Then Π(u ◦ v) = Π(u ◦ w). (Similarly for right
uncancellation.)

Proof. Let u ◦ v ∈ D. Then 1.1(3) applies to (∅) ◦ u ◦ v and yields (Π(u)) ◦ v ∈ D with
Π(u ◦ v) = Π((Π(u)) ◦ v). Now apply 1.1(3) to (Π(u)) ◦ v ◦ (∅), to obtain (a).

Let u ◦ v ◦w ∈ D. Then u ◦ v and w are in D by 1.1(1), and D-multiplicativity yields
Π(u ◦ v ◦ w) = Π(u ◦ v)Π(w). Similarly, Π(u ◦ v ◦ w) = Π(u)Π(v ◦ w), and (b) holds.

Since 1 = Π(∅), point (c) is immediate from 1.1(3).
Let u ◦ v ∈ D. Then v−1 ◦ u−1 ◦ u ◦ v ∈ D by 1.1(4), and then u−1 ◦ u ◦ v ∈ D by

1.1(1). Multiplicativity then yields

Π(u−1 ◦ u ◦ v) = Π(u−1 ◦ u)Π(v) = 1Π(v) = Π(∅)Π(v) = Π(∅ ◦ v) = Π(v).

As (w−1)−1 = w for any w ∈ W, one obtains w ◦ w−1 ∈ D for any w ∈ D, and
Π(w ◦ w−1) = 1. From this one easily completes the proof of (d).

Now let u ◦ v and u ◦ w be in D, with Π(u ◦ v) = Π(u ◦ w). Then (d) (together with
multiplicativity and associativity, which will not be explicitly mentioned hereafter) yield

Π(v) = Π(u−1 ◦ u ◦ v) = Π(u−1)Π(u)Π(v) = Π(u−1)Π(u)Π(w) = Π(u−1 ◦ u ◦w) = Π(w),

and (e) holds.
Let u ∈ D. Then u ◦ u−1 ∈ D, and then Π(u)Π(u−1) = 1. But also (Π(u),Π(u)−1) ∈

D, and Π(u)Π(u)−1 = 1. Now (f) follows by 1.1(2) and cancellation.
Let u, v, w be as in (g). Then u−1 ◦ u ◦ v and u−1 ◦ u ◦ w are in D by (d). By two

applications of (d), Π(u−1 ◦u◦v) = Π(v) = Π(w) = Π(u−1 ◦u◦w), so Π(u◦v) = Π(u◦w)
by (e). That is, Π(u)Π(v) = Π(u)Π(w), and (g) holds. �

It is often convenient to eliminate the symbol “Π” and to speak of “the product
f1 · · · fn” instead of Π(f1, · · · , fn). More generally, if {Xi}1≤i≤n is a collection of subsets
of L then the “product set X1 · · ·Xn” is by definition the image under Π of the set of
words (f1, · · · , fn) ∈ D such that fi ∈ Xi for all i. If Xi = {fi} is a singleton then
we may write fi in place of Xi in such a product. Thus, for example, the product Xfg
stands for the set of all Π(x, f, g) with (x, f, g) ∈ D, and with x ∈ X.

A word of urgent warning: in writing products in the above way one may be led,
mistakenly, into imagining that “associativity” holds in a stronger sense than that which
is given by 1.3(b). For example, one should not suppose, if (f, g, h) ∈ W, and both (f, g)
and (fg, h) are in D, that (f, g, h) is in D. That is, it may be that “the product fgh” is
undefined, even though the product (fg)h is defined. Of course, one is tempted to simply
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extend the domain D to include such triples (f, g, h), and to “define” the product fgh
to be (fg)h. The trouble is that it may also be the case that gh and f(gh) are defined
(via D), but that (fg)h 6= f(gh).

For L a partial group and f ∈ L, write D(f) for the set of all x ∈ L such that the
product f−1xf is defined. There is then a mapping

cf : D(f) → L

given by x 7→ f−1xf (and called conjugation by f). Our preference is for right-hand
notation for mappings, so we write

x 7→ (x)cf or x 7→ xf

for conjugation by f .

The following result provides an illustration of the preceding notational conventions,
and introduces a theme which will be developed further as we pass from partial groups
to entities (objective partial groups, linking systems) which are more narrowly defined.

Lemma 1.4. Let L be a partial group, let f, g ∈ L with f ∈ D(g) and with g ∈ D(f),
and suppose that fg = f . Then fg = gf and gf = g.

Proof. We’re given (g−1, f, g) ∈ D, (f−1, g, f) ∈ D, and g−1fg = f . Then (g, g−1, f, g) ∈
D by 1.(4), (g, f) ∈ D by 1.1(1), and gg−1fg = gf by uncancelation. Thus fg = gf
(1.3(c)). A further application of uncancelation yields f−1fg = f−1gf , and so gf =
g. �

Notational Convention. In any given partial group L, usage of the symbol “xf” (for
x and f in L) shall be taken to imply xD(f). More generally, for X a subset of L and
f ∈ L, usage of “Xf” shall be taken to mean that X ⊆ D(f); whereupon Xf is by
definition the set of all xf with x ∈ X.

At this early point, and in the context of arbitrary partial groups, one can say very
little about the maps cf . The cancelation rule 1.2(e) implies that each cf is injective,
but beyond that, the following lemma may be the best that can be obtained.

Lemma 1.5. Let L be a partial group and let f ∈ L. Then the following hold.
(a) 1 ∈ D(f) and 1f = 1.
(b) D(f) is closed under inversion, and (x−1)f = (xf )−1 for all x ∈ D(f).
(c) cf is a bijection D(f) → D(f−1), and cf−1 = (cf )−1.
(d) L = D(1), and x1 = x for each x ∈ L.

Proof. By 1.1(4), f ◦ ∅ ◦ f−1 = f ◦ f−1 ∈ D, so 1 ∈ D(f) and then 1f = 1 by 1.3(a).
Thus (a) holds. Now let x ∈ D(f) and set w = (f−1, x, f). Then w ∈ D, and w−1 =
(f−1, x−1, f) by definition in 1.1. Then 1.1(4) yields w−1 ◦ w ∈ D, and so w−1 ∈ D
by 1.1(1). This shows that D(f) is closed under inversion. Also, 1.1(4) yields 1 =
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Π(w−1 ◦ w) = (x−1)fxf , and then (x−1)f = (xf )
−1

by 1.3(f). This completes the proof
of (b).

As w ∈ D, 1.3(d) implies that f ◦ w and then f ◦ w ◦ f−1 are in D. Now 1.1(3) and
two applications of 1.3(d) yield

fxff−1 = Π(f, f−1, x, f, f−1) = Π((f, f−1, x) ◦ f ◦ f−1) = Π(f, f−1, x) = x.

Thus xf ∈ D(f−1) with (xf )f−1
= x, and thus (c) holds.

Finally, 1 = 1−1 by 1.3(f), and ∅ ◦ x ◦ ∅ = x ∈ D for any x ∈M, proving (d). �

Definition 1.6. Let L be a partial group and let H be a non-empty subset of L. Then
H is a partial subgroup of L if H is closed under inversion (f ∈ H implies f−1 ∈ H)
and with respect to products. The latter condition means that Π(w) ∈ H whenever
w ∈ W(H) ∩D. The partial subgroup H is a subgroup of L if W(H) ⊆ D. A partial
subgroup N of L is normal in L if xg ∈ N for all pairs (x, g) ∈ N ×L for which x ∈ D(g).
(Another - equivalent - way to state the condition for normality is to say that the partial
subgroup N of L is normal in L is g−1N g ⊆ N for all g ∈ L. Note that this formulation
relies on one of the notational conventions introduced above, for interpreting product
sets XY Z.) We shall write

H ≤ L

to indicate that H is a partial subgroup of L, and write

N E L

to indicate that N is a partial normal subgroup of L.

Lemma 1.7 (Exercise). Let H and K be partial subgroups of a partial group L, and
let {Hi}i∈I be a set of partial subgroups of L.

(a) Each partial subgroup of H is a partial subgroup of L.
(b) If K ⊆ H then K is a partial subgroup of H.
(c) If H is a subgroup of L then H ∩K is a subgroup of H and of K.
(d) Suppose K E L. Then H ∩K E H. Moreover, H ∩K is a normal subgroup of H

if H is a subgroup of L.
(e) ∩{Hi | i ∈ I} is a partial subgroup of L, and is normal in L (i.e. is a partial

normal subgroup of L) if Hi E L for all i.
�

For any subsetX of a partial group L we define the partial subgroup 〈X〉 of L generated
by X to be the intersection of the set of all partial subgroups of L containing X. Then
〈X〉 is itself a partial subgroup of L by 1.7(e).

Lemma 1.8. Let X be a subset of L such that X is closed under inversion (x ∈ X =⇒
x−1 ∈ X). Set X0 = X and recursively define Xn for n > 0 by

Xn = {Π(w) | w ∈ W(Xn−1) ∩D}.
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Then 〈X〉 =
⋃
{Xn}n≥0.

Proof. Let Y be the union of the sets Xi. Each Xi is closed under inversion by 1.3(f),
and Y 6= ∅ since 1 = Π(∅). Since Y is closed under products by construction, we get
Y ≤ 〈X〉, and then Y = 〈X〉 by the definition of 〈X〉. �

Lemma/Exercise 1.9 (Dedekind Lemma). Let L be a partial group, let H, K, and
A be partial subgroups of L, and suppose that L = HK.

(a) If K ≤ A then A = (A ∩H)K.
(b) If H ≤ A then A = H(A ∩K).

�

Definition 1.10. Let L and L′ be partial groups, let β : L → L′ be a mapping, and let
β∗ : W → W′ be the induced mapping of free monoids. Then β is a homomorphism (of
partial groups) if:

(H1) Dβ∗ ⊆ D′, and
(H2) (Π(w))β = Π′(wβ∗) for all w ∈ D.

The kernel of β is the set Ker(β) of all g ∈ L such that gβ = 1′. We say that β is an
isomorphism if there exists a homomorphism β′ : L′ → L such that β ◦ β′ and β′ ◦ β are
identity mappings.

We end this section with a few exercises (or lemmas). Some of these are perhaps not
much more than observations.

Lemma/Exercise 1.11. Let β : L → L′ be a homomorphism of partial groups. Then
1β = 1′, and (f−1)β = (fβ)−1 for all f ∈ L. �

Lemma/Exercise 1.12. Let β : L → L′ be a homomorphism of partial groups, and set
N = Ker(β). Then N is a partial normal subgroup of L. �

Lemma/Exercise 1.13. Let β : L → L′ be a homomorphism of partial groups, and let
M be a subgroup of L. Then Mβ is a subgroup of L′. (What might go wrong if M is
merely a partial subgroup of L ? I.e. why shouldn’t Mβ be a partial subgroup of L′ in
that case ?) �

Lemma/Exercise 1.14. Let α : G → G′ be a homomorphism of “binary groups” (i.e.
a homomorphism of groups in the usual sense - see 1.2). Then α is a homomorphism of
partial groups. �

Section 2: Objective partial groups and localities

Recall that if X is a subset of a partial group L, then any statement involving the
expression “Xf” should be understood as being based on the tacit hypothesis that X ⊆
D(f).

Throughout this section L is a partial group. For subgroups X and Y of L, set

NL(X,Y ) = {f ∈ L | X ⊆ D(f) and Xf ≤ Y },
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and define the normalizer

NL(X) = {f ∈ L | X ⊆ D(f) and Xf = X}.

The centralizer CL(X) is defined to be the set of all f ∈ NL(X) such that xf = x for all
x ∈ X.

Definition 2.1. Let L be a partial group and let ∆ be a collection of subgroups of L.
Define D∆ to be the set of all w = (f1, · · · , fn) ∈ W(L) such that:

(*) there exists (X0, · · · , Xn) ∈ W(∆) with (Xi−1)fi = Xi for all i (1 ≤ i ≤ n).
Then (L,∆) is an objective partial group (in which ∆ is the set of objects), if the following
three conditions hold.

(O1) D = D∆.
(O2) ∆ is overgroup closed. That is, whenever X,Z are objects, and Y is a subgroup

of Z containing X, then Y is an object.
(O3) ∆ is closed under “L-fusion”. That is whenever X and Y are objects, and g ∈

NL(X,Y ) is given, with the property that Xg is a subgroup of Y , then Xg is an
object.

It should be emphasized that in the condition (O3) it is required thatXg be a subgroup
of Y , in order to conclude that Xg be an object. Notice that the two conditions (O1)
and (O2) may be summarized by saying:
(O2’) Every subgroup of L which contains an L-conjugate of an object, and which is

contained in an object, is itself an object.

Example. Let G be a finite group, B a subgroup of G, and let ∆ be a collection of
subgroups of B such that Xg ∈ ∆ whenever X ∈ ∆ and g ∈ G with Xg ≤ B. Assume
also that ∆ is closed with respect to overgroups in B. Let L be the set of all g ∈ G such
that B ∩Bg ∈ ∆, and let D be the subset D∆ of W(L). Then L is a partial group (via
the multivariable product in G and the inversion in G), and (L,∆) is an objective partial
group. Specifically:

(a) If ∆ = {B} then L = NG(B), and L is a group.
(b) (Exercise) Take G = GL3(2), B ∈ Syl2(G), and let M1 and M2 be the two

maximal subgroups of G containing B. Set ∆ = FB(G)c. Then L = M1 ∪M2.
On the other hand, if ∆ is taken to be the set of all non-identity subgroups of B
then L = M1M2 ∪M2M1.

In an objective partial group (L,∆) we say that the word w = (f1, · · · , fn) is in D
via (X0, · · · , Xn) if the condition (*) in 2.1 applies specifically to w and (X0, · · · , Xn).
We may also say, more simply, that w is in D via X0, since the sequence (X0, · · · , Xn)
is determined by w and X0.

Examples/Exercises.
(1) Let G be a group and let ∆ be a non-empty collection of subgroups of G. Assume

that ∆ satisfies (O3’) with respect to G: Every subgroup of G which contains a
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G-conjugate of a member of ∆ and which is contained in a member of ∆ is itself
a member of ∆. Set

L = {g ∈ G | ∃X,Y ∈ ∆ with Xg = Y },

set D = D∆, and let ΠG : W(G) → G be the multivariable product in G. Then
the restriction Π of ΠG to D maps D into L, L is a partial group with respect to
Π and the inversion in G, and (L,∆) is objective.

(2) If, in (1), there exists X ∈ ∆ such that every G-conjugate of X is in ∆, then L is
the group G (see 1.2 for the definition of “group”). In particular, this will be the
case if the identity subgroup of G - or any other normal subgroup of G - is in ∆.

(3) Let G be the group O+
4 (2). That is, let G be a semidirect product V o S where

V is an elementary abelian, normal subgroup of G of order 9, and where S is a
dihedral subgroup of G of order 8 acting faithfully on V . (Another description
of G is that G is the “wreath product” of the symmetric group of degree 3 with
a cyclic group of order 2.) Let ∆ be the set of all non-identity subgroups of the
fixed Sylow 2-subgroup S of G, and form L as in (1). Check that S ∩ Sg 6= 1
for all g ∈ G, and conclude that G = L as sets. But L is not a group (i.e.
D(L) 6= W(L)).

(4*) Google “John Conway M(13)” to find out about the “puzzle” M13. Then figure
out how to view M13 as an objective partial group L in which each X ∈ ∆ is
isomorphic to the Mathieu group M12 (and where the cardinality of ∆ is 13).

(5) Find out about “centric linking systems” from [BLO] or [AKO]. Thus, a centric
linking system Lc is a category whose set ∆ of objects is a set of subgroups of
a group S. Moreover, Lc comes equipped with “inclusion morphisms” ιP,P , for
objects P and P such that P ≤ P . Because of this, one can define what it means
for an Lc-isomorphism φ : P → Q to extend to an Lc-isomorphism φ : P → Q. It
just means that the diagram

P
φ−−−−→ Q

ι
P,P

x xι
Q,Q

P
φ−−−−→ Q

commutes. Let ≈ be the weakest equivalence relation on the set Iso(Lc) of
Lc-isomorphisms, such that φ ≈ ψ if φ extends to ψ. The set Iso(Lc)/ ≈ of
equivalence classes is then a partial group L via composition in the category
Lc (one has to show that ≈ respects composition in order to establish that the
product is well defined) and via inversion of isomorphisms. (Again, one has to
show that ≈ is compatible with inversion.) Moreover, (L,∆) is objective. The
details of this are somewhat lengthy, and may be found in the Appendix to
[Ch1]. The only point to mentioning this “example” here, is to indicate how
partial groups and objective partial groups were originally conceived.
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Lemma 2.2. Let (L,∆) be an objective partial group.
(a) NL(X) is a subgroup of L for each X ∈ ∆.
(b) Let g ∈ L and let X ∈ ∆ with Y := Xg ∈ ∆. Then NL(X) ⊆ D(g), and

cg : NL(X) → NL(Y )

is an isomorphism of groups.
(c) Let w = (g1, · · · , gn) ∈ D via (X0, · · · , Xn). Then

cg1 ◦ · · · ◦ cgn = cΠ(w)

as maps (isomorphisms) from X0 to Xn.

Proof. (a) Let X ∈ ∆ and let u ∈ W(NL(X). Then u ∈ D via X, 1 ∈ NL(X) (1.5(d)),
and NL(X)−1 = NL(X) (1.5(c)). This shows that NL(X) is a subgroup of L.

(b) Let x, y ∈ NL(X) and set v = (g−1, x, g, g−1, y, g). Then v ∈ D via Y , and then
Π(v) = (xy)g = xgyg (using points (a) and (b) of 1.3). Thus, the conjugation map
cg : NL(X) → NL(Y ) is a homomorphism of “binary groups” (see 1.2), and hence a
homomorphism of partial groups (1.14). Since cg−1 = c−1

g by 1.5(c), it follows that cg is
an isomorphism of groups.

(c) Let x ∈ NL(X0), set ux = w−1 ◦ (x) ◦ w, and observe that ux ∈ D via Xn. Then
Π(ux) can be written as (· · · (x)g

1 · · · )g
n, and this yields (c). �

The next lemma provides two basic computational tools (and indicates that objective
partial groups are perhaps “closer” to being groups than are partial groups in general).

Lemma 2.3. Let (L,∆) be an objective partial group.
(a) Let (a, b, c) ∈ D, and set d = abc. Then bc = a−1d and ab = dc−1 (and all of

these products are defined).
(b) Let (f, g) ∈ D and let X ∈ ∆. Suppose that both Xf and Y fg are in ∆. Then

Xfg = (Xf )g.

Proof. (a) As (a, b, c) ∈ D = D∆, with abc = d, it follows from 2.2(c) that there is a
commutative diagram of conjugation maps:

B
b−−−−→ C

a

x xc

A −−−−→
d

D

in which the arrows are labelled by the conjugating elements, and where A,B,C,D are
objects. Since c−1

x = (cx)−1 for any x ∈ L, one may read off from the diagram that
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(a, a−1, d) ∈ D, and then aa−1d = d by 1.3. Since also abc = d, left cancelation yields
a−1d = bc. Similarly for ab = dc−1.

(b) As (f, g) ∈ ∆ we have also (f−1, f, g) ∈ ∆, and g = Π(f−1, f, g) = f−1(fg). Now
observe that (f−1, fg) ∈ D via P f , and apply 2.2(c) to obtain P fg = ((P f )f−1

)fg =
(P f )g. �

The following corollary should be compared with 1.4.

Corollary/Exercise 2.4. Let (L,∆) be an objective partial group, let f, g ∈ L, and
suppose that fg = f . Then gf = g and fg = gf .

The following result is, in some sense, the first non-trivial result in these notes. It is
fundamental to everything that follows.

Proposition 2.5. Let (L,∆) be an objective partial group, and suppose that there exists
S ∈ ∆ such that ∆ is a set of subgroups of S. For each f ∈ L, define Sf to be the set of
all x ∈ D(f) ∩ S such that xf ∈ S. Then Sf ∈ ∆, and Sf−1 = (Sf )f .

Proof. Fix f ∈ L. Every word of length 1 is in D by 1.1(2). As D = D∆ by (O1),
there then exists X ∈ ∆ such that Y := Xf ∈ ∆. Let a ∈ Sf and set b = af . Then
Xa and Xb are subgroups of S (as a, b ∈ S) and so Xa and Y b are in ∆ by (O2).
Then (a−1, f, b) ∈ D via Xa, and (f, b) ∈ D via X. Also, (a, f) ∈ D via Xa−1

. Since
f−1af = b we get af = fb by cancelation, and hence

a−1fb = a−1(fb) = a−1(af) = (a−1a)f = f

by D-associativity. Since a−1fb conjugates Xa to Y b, we draw the following conclusion.
(1) Xa ≤ Sf and (Xa)f ∈ ∆ for all a ∈ Sf , and for all X ∈ ∆ for which Xf ∈ ∆.

Now let c, d ∈ Sf . Then (1) shows that both Xc and Xcd are members of ∆ which are
conjugated to members of ∆ by f . Setting w = (f−1, c, f, f−1, d, f), we conclude (by
following Xf along the chain of conjugations given by w) that w ∈ D via Xf . One then
observes via 1.1(3) that

(2) Π(w) = (cd)f = cfdf .

Thus cd ∈ Sf . Since Sf is closed under inversion by 1.5(b), we conclude that Sf is a
subgroup of S. As X ≤ Sf ≤ S, where X and S are in ∆, (02) now yields Sf ∈ ∆. Since
cf−1 = (cf )−1 it follows that Sf−1 = (Sf )f . �

Lemma 2.6. Assume the hypothesis of 2.5, and let w = (g1, · · · , gn) ∈ W(L). Set

Σw = {(x0, · · · , xn) ∈ W(S) | (xi−1)gi = xi for all i with 1 ≤ i ≤ n},

and set
Sw = {x0 ∈ S | ∃(x0, · · · , xn) ∈ Σw}.
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Then Sw is a subgroup of S, and Sw ∈ ∆ if and only if w ∈ D.

Proof. Let x0, y0 ∈ Sw and let σ = (x0, · · · , xn) and τ = (y0, · · · , yn) be the correspond-
ing sequences in Σw (determined by x, y, and w). Set Sj = Sgj (1 ≤ j ≤ n). Then
xi−1 and yi−1 are elements of Si−1, and so xi−1yi−1 ∈ Si−1 by 2.5. As cgi restricts to a
homomorphism on Si−1 (see 2.2(b)) it follows that xiyi ∈ Si. Thus Sw is closed under
the binary multiplication in S. That Sw is closed under inversion is given by 1.5(b), so
Sw is a subgroup of S. If Sw ∈ ∆ then w ∈ D via Sw. Conversely, if w ∈ D then P ≤ Sw

for some P ∈ ∆, and then Sw ∈ ∆ by (O2). �

We are now going to narrow the focus considerably, by restricting attention to objec-
tive partial groups whose underlying set of elements is finite, and which satisfy further
conditions related to a prime p.

Definition 2.7. Let p be a prime, let L be a finite partial group, let S be a p-subgroup
of L, and let ∆ be a set of subgroups of S. Then (L, S) is a locality if the following two
conditions hold.

(L1) (L,∆) is objective, and
(L2) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

For any locality (L,∆, S) there is associated fusion system FS(L) on S. Namely,
FS(L) is defined to be the fusion system on S which is generated by the conjugation
maps cg : Sg → S (g ∈ L). Recall (?) that this means that the FS(L)-homomorphisms
are the mappings between subgroups of S that can be expressed as compositions of
restrictions of the maps cg for g ∈ L.

Example/Lemma 2.8. [RESTATE IN TERMS OF EARLIER EXAMPLE.] Let G be
a finite group, let S be a Sylow p-subgroup of G, set F = FS(G), and let Γ be a non-empty
F-invariant collection of subgroups of S, such that Γ is overgroup closed in S. Define L
to be the set of all g ∈ G such that S ∩ Sg ∈ Γ, and set D = DΓ. Then L is a partial
group via the restriction of the multivariable product in G to D, as in the examples (1)
through (3) following 2.1. Moreover, one may verify (L,Γ, S) is a locality; to be denoted
LΓ(G).

Proof. ———————————-
If g ∈ L then (S∩Sg−1

)g = S∩Sg ∈ Γ, and then (S∩Sg−1
) ∈ Γ since Γ is F-invariant.

Thus L ⊆ D, and L is contained in the partial group M = M(M,Γ) given by example
2.4(2). In that example, M is the set of all g ∈ M such that there exists P ∈ Γ with
P g ∈ Γ. Such an element g has the property that S ∩Sg ∈ Γ since Γ is overgroup closed,
and so L = M. Example 2.4(2) now shows that L is a partial group with respect to the
multivariable product and the inversion in G. The condition (O1) for objectivity is given
by the definition of D, while (O2) is immediate from the assumption that Γ is overgroup
closed and F-invariant. Thus, (L,Γ) is objective. All members of Γ are subgroups of S,
and S is maximal in the poset of p-subgroups of G, so (L, S) is a locality via Γ. �
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Lemma 2.9. Let (L,∆, S) be a locality and let P ∈ ∆. Then there exists g ∈ NL(P, S)
such that NS(P g) ∈ Sylp(P g).

proof. Since S is maximal in the poset of p-subgroups of L, S is a Sylow p-subgroup of
the (finite) group NL(S), and so the lemma holds for P = S (and with g = 1).

Assume now that the lemma is false, and among all P ∈ ∆ for which no there exists no
g ∈ NL(P, S) such that NS(P g) is a Sylow subgroup of NL(P g), choose P so that |P | is as
large as possible, and then so that |NS(P )| is as large as possible. Set R = NS(P ) and let
R∗ be a Sylow p-subgroup of NL(P ) containing R. Then R < R∗ (proper subgroup), and
then also R < NR∗(R). Observe that since P 6= S we have P < R, and the maximality of
|P | then yields the existence of an element f ∈ NL(R,S) with NS(Rf ) ∈ Sylp(NL(Rf ).

By 2.2(b) there is an isomorphism

NL(R)
cf−→ NL(Rf )

induced by conjugation by f . Apply Sylow’s Theorem to NL(Rf ) to obtain an element
x ∈ NL(Rf ) such that (NR∗(R)f )x ≤ NS(Rf ). Here (f, x) ∈ D via R, so 2.2(c) yields
(NR∗(R)f )x = NR∗(R)fx. Thus, by replacing f with fx, we may assume that f was
chosen to begin with so that NR∗(R)f ≤ NS(Rf ). Since R∗ normalizes P , and since cf is
an isomorphism, it follows that NR∗(R)f normalizes P f , and thus |NS(P f )| > |NS(P )|.
The maximality of |NS(P )| in the choice of R then implies that P f is not a counter-
example to the lemma. Set Q = P f . Thus, there exists h ∈ NL(Q,S) such that NS(Qh)
is a Sylow subgroup of NL(Qh). Since (f, h) ∈ D via P we have Qh = P g where g = fh,
and thus P is not a counter-example. �

At this point it may be helpful to review the peculiar definition of saturation, and of
∆-saturation, from section 0.

Proposition 2.10. Let (L,∆, S) be a locality and set F = FS(L). Then F is ∆-
saturated.

Proof. We first show that every P ∈ ∆ has a fully normalized F-conjugate. Namely,
by 2.9 we may assume (after possibly conjugating P by a suitable element of NL(P, S))
that NS(P ) is a Sylow p-subgroup of NL(P ). Now let Q be an F-conjugate of P . Thus
Q = Pφ where φ is a composition of restrictions of L-conjugation maps. All images of P
in S under L-conjugation are objects, by (O3), so 2.2(c) implies that in fact Q = P f for
some f ∈ L. Note that, as in the proof of 2.9, cf−1 : NL(Q) → NL(P ) is an isomorphism,
and there exists x ∈ NL(P ) such that NS(P )f−1x ≤ NS(P ). Setting g = f−1x (product
defined via Q) we obtain Qg = P and NS(Q)g ≤ NS(P ). Since cg is an F-homomorphism
NS(Q) → S we conclude that P is fully normalized in F .

In order to complete the proof of ∆-saturation it remains to show that for each P ∈ ∆
with P fully normalized in F , there exists a group MP such that P E MP , NS(P ) ∈
Sylp(MP ), and such that

(*) FNS(P )(MP ) = NF (P ).
12



The obvious candidate for MP is NL(P ) - and indeed it remains only to verify (*). The
inclusion FNS(P )(MP ) ⊆ NF (P ) of fusion systems is immediate from the definition of F .
In order to prove the opposite inlusion, let φ be a homomorphism in in NF (P ). Then φ
is the restriction of an F-homomorphism ψ : R → R′ where P E R, P E R′, and where
Pψ = P . By 2.2(c), ψ is given by conjugation by an element g ∈ L, and then the same is
true of φ. Since g ∈ NL(P ) we conclude that φ is an FNS(P )(MP )-homomorphism; and
so the proof of (*), and of ∆-saturation, is complete. �

Proposition 2.11. Let (L,∆, S) be a locality and let H be a subgroup of L.
(a) There exists an object P ∈ ∆ such that H ≤ NL(P ). [All subgroups are “local”

subgroups.]
(b) If H is a p-group then there exists g ∈ L such that Hg ≤ S. [S is a “Sylow

subgroup” of L.]

Proof. (a) For any w = (h1, · · · , hn) ∈ W(H) let w′ be the word (g1, · · · , gn) defined
by gi = h1 · · ·hi. As L is finite, so is H, and one may therefore choose w ∈ W(H) so
that the cardinality of the set X = {g1, · · · , gn} is as large as possible. Suppose X 6= H,
let g ∈ H −X, and set h = Π(w)−1g. Then the set of entries of (w ◦ (h))′ is X ∪ {g},
contrary to the maximality of X. Thus X = H.

We have W(H) ⊆ D by our definition of subgroup, so w ∈ D via some P ∈ ∆. Then
P gi = Ph1···hi ≤ S for all i, and so Ph ≤ S for all h ∈ H. Set U = 〈Ph | h ∈ H〉 (the
subgroup of S generated by the union of all Ph for h ∈ H). Then U ∈ ∆ by (O2), so
it now suffices to show that H ≤ NL(U). For this it suffices to observe that, by 2.3(b),
(P f )g is defined and is equal to P fg for all f, g ∈ H.

(b) By point (a) there exists U ∈ ∆ with H ≤ NL(U), and by 2.9 there exists V ∈ ∆ and
g ∈ L such that V = Ug and such that NS(V ) ∈ Sylp(NL(V ). Let cg : NL(U) → NL(V )
be the isomorphism given by 2.2(b). Thus Hg is a p-subgroup of NL(V ), so there exists
x ∈ NL(V ) with (Hg)x ≤ NS(V ). Since (g, x) ∈ D via U we may apply 2.2(c), obtaining
(Hg)x = Hgx. Thus (b) holds with gx in the role of g. �

Recall (?) that for any subgroup X of a partial group L, the normalizer NL(X) is the
set of all elements g ∈ L such that Xg = X.

Lemma 2.12. Let (L,∆, S) be a locality, let T be a subgroup of S, and set∆T =
{NP (T ) | T ≤ P ∈ ∆}.

(a) NL(T ) is a partial subgroup of L.
(b) If ∆T ⊆ ∆, then (NL(T ),∆T ) is an objective partial group.
(c) If ∆T ⊆ ∆, and |NS(T )| ≥ |NS(U)| for every L-conjugate U of T in S, then

(NL(T ), NS(T )) is a locality via ∆T .

Proof. [FIX THE REFERENCES.] Let w = (f1, · · · , fn) ∈ W(NL(T )), and suppose
that w ∈ D := D(L) via a sequence (P0, · · · , Pn) of objects. Then 〈Pi−1, T 〉 ≤ Sfi for
all i, by completeness, and then

〈Pi−1, T 〉fi = 〈Pi, T 〉.
13



Thus, T ≤ Sw, and we may assume for the sake of simplicity that T ≤ Pi for all i.
Set f = Π(w). Then 2.8(c) yields T f = T , and so NL(T ) is closed under products.
One observes that if f ∈ NL(T ) and x ∈ T , with (f−1, x, f) ∈ D via P ∈ ∆, then
(f, x−1, f−1) ∈ D via P xf

. Since an analogous statement holds when x is replaced by
x−1, it follows that NL(T ) is closed under inversion, and so (a) is proved.

For the remainder of the proof, we may assume that ∆T ⊆ ∆. Set

DT = D∆ ∩W(NL(T ))

(where D∆ is defined in 2.6). With w and (P0, · · · , Pn) as in the proof of (a), we may
then replace Pi with NPi(T ), and this shows that DT is contained in the subset D∆T

of
W(NL(T )). The reverse inclusion is obvious, so (NL(T ), NS(T )) satisfies the condition
(O1) for objectivity. Any overgroup in NS(T ) of an element of ∆T is again in ∆T , so
the condition (O2) is satisfied, and (NL(T ),∆T ) is an objective partial group. Thus, (b)
holds.

Now assume further that T has been chosen so that |NS(T )| ≥ |NS(U)| for each
L-conjugate U of T in S. In order to show that (NL(T ), NS(T )) is a locality via ∆T ,
it suffices to show that NS(T ) is maximal in the poset of p-subgroups of NL(T ). Set
R = NS(T ), let R1 be a p-subgroup of NL(T ) containing R, and set R2 = NR1(R). As
R ∈ ∆, there exists f ∈ L such that Q := Rf is fully normalized in FS(L), by 2.17(a).
Then NS(Q) is a Sylow p-subgroup of NL(Q), and so there exists g ∈ NL(Q) such that
(R2)fg ≤ NS(Q). But (R2)fg ≤ NS(T fg), and the maximality condition on R then
yields R = R2 and R = R1. This completes the proof of (c). �

Definition 2.13. Let (L,∆, S) be a locality, and let Γ ⊆ ∆ be a non-empty subset such
that Γ is both overgroup-closed in S and FS(L)-invariant. Set D = D(L), set

D |Γ:= {w ∈ D | Sw ∈ Γ},

and let L |Γ be the set of words of length 1 in D |Γ, regarded as a subset of L. The
restriction of L to Γ consists of L |Γ together with the restriction to D |Γ of the product
in L, and the restriction to L |Γ of the inversion in L.

Lemma 2.14. [FIX THE REFERENCES.] Let (L,∆, S) be a locality, and let Γ be a
non-empty subset of ∆, such that Γ is both overgroup-closed in S and FS(L)−invariant.

(a) D |Γ is the set DΓ of 2.6, and (L |Γ,Γ, S) is a locality.
(b) If L is a group M , then L |Γ is the locality LΓ(M) given by 2.10.1.

Proof. Set M = L |Γ. For any w ∈ W, the condition that Sw be in Γ is the defining
condition for D |Γ, and in view of 2.13(a) it is also the defining condition for DΓ.
These subsets of W are therefore identical, and (M,Γ) satisfies the condition (O1) for
objectivity. Condition (O2) is given by the assumption that Γ is closed in FS(L), so
(M,Γ) is objective. All members of Γ are subgroups of S, and S is maximal in the poset
of p-subgroups of M since the corresponding statement holds in L. As L is finite, so is
M, so M is a locality, and (a) holds.
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Suppose that L is in fact a group M , and set K = LΓ(M). By definition, an element
g of M is in K if and only if S ∩Sg ∈ Γ. The latter condition means that Sg = S ∩Sg−1

,
so g ∈ K if and only if Sg ∈ Γ. Similarly, w ∈ D(K) if and only if Sw ∈ Γ. This shows
that D(K) = DΓ, and then (b) follows from (a). �

We refer to the locality (L |Γ,Γ, S) as the restriction of L to Γ.

Section 3: Partial normal subgroups of localities

This section contains three results (3.5 through 3.7) which enable the construction of
quotient localities. Throughout, we fix a locality The following hypothesis, and notation,
will be assumed throughout. L = (L,∆, S) and a partial normal subgroup N of L. Set
T = S ∩N , and set F = FS(L).

Lemma 3.1.

(a) T is strongly closed in F , and T is maximal in the poset of all p-subgroups of N .
(b) Let x ∈ N and let P be a subgroup of Sx. Then PT = P xT .
(c) T is maximal in the poset of p-subgroups of N .

Proof. (a) Let g ∈ L and let t ∈ Sg ∩ T . Then tg ∈ S, and tg ∩ N as N E L. Thus
tg ∈ T . Since F is generated by the conjugation maps cg : Sg → S, point (a) follows.

(b) Let a ∈ P . Then (P x)a ≤ S and P a = P . Setting w = (a−1, x−1, a, x) we then
have w ∈ D via P xa. Now Π(w) = a−1ax ∈ S, while also Π(w) = (x−1)ax ∈ N ,
and so Π(w) ∈ T . Then ax ∈ aT , and we have thus shown that P x ≤ PT . Then
P xT ≤ PT . The equality P xT = PT can then be deduced from (a) (which implies that
|P x ∩ T | = |P ∩ T |), or from symmetry with x−1 and P x in place of x and P .

(c) Let R be a p-subgroup of N containing T . By 2.9(b) there exists g ∈ L with Rg ≤ S,
and then Rg ≤ S ∩ N = T . As conjugation by g is injective (and since the groups we
are working with are finite) we conclude that T = R. �

Lemma 3.2. Let x, y ∈ N and let f ∈ NL(T ).
(a) If (x, f) ∈ D then (f, f−1, x, f) ∈ D, xf = fxf , and S(x,f) = S(f,xf ) = Sx ∩ Sf .
(b) If (f, y) ∈ D then (f, y, f−1, f) ∈ D, fy = yf−1

y, and S(f,y) = S(yf−1 ,y) =
Syf−1 ∩ Sf .

Proof. For point (a): Set Q = S(x,f) and note that T ≤ Sf by hypothesis. We have
QxT = QT by 3.1(b), so Q ≤ Sf . Thus Q ≤ P := Sx ∩ Sf . But also P xT = PX, so
P = Q. Moreover, we now have (f, f−1, x, f) ∈ D via Q, and then Π(f, f−1, x, f) =
xf = fxf . Thus, (a) holds.

For point (b): Set R = S(f,y). Then RfyT = RfT ≤ Sf−1 , so (f, y, f−1, f) ∈ D
via R, and fy = yf−1

f . The remainder of (b) now follows as an application of (a) to
(yf−1

, f). �

15



Definition 3.3. Let L ◦ ∆ be the set of all pairs (f, P ) ∈ L × ∆ such that P ≤ Sf .
Define a relation ↑ on L ◦∆ by (f, P ) ↑ (g,Q) if there exist elements x ∈ NN (P,Q) and
y ∈ NN (P f , Qg) such that xg = fy.

This relation may be indicated by means of a commutative diagram:

(*)

Q
g−−−−→ Qg

x

x xy

P
f−−−−→ P f

of conjugation maps, labeled by the conjugating elements, and in which the horizontal
arrows are isomorphisms and the vertical arrows are injective homomorphisms. The
relation (f, P ) ↑ (g,Q) may also be expressed by:

w := (x, g, y−1, f−1) ∈ D via P , and Π(w) = 1.

It is easy to see that ↑ is a reflexive and transitive relation on L ◦ ∆. We say that
(f, P ) is maximal in L ◦∆ if (f, P ) ↑ (g,Q) implies that |P | = |Q|. As S is finite there
exist maximal elements in L ◦ ∆. It’s clear that (f, P ) ↑ (f, Sf ) for (f, P ) ∈ L ◦ ∆, by
taking x = y = 1 in the diagram (*); so P = Sf for every maximal (f, P ). For this
reason, we will say that an element f ∈ L is ↑-maximal if (f, Sf ) is maximal in L ◦∆.

Lemma/Exercise/Observation 3.4. Let f ∈ L.
(a) If f ∈ NL(S) then f is ↑-maximal.
(b) f is ↑-maximal ⇐⇒ f−1 is ↑-maximal.
(c) ↑ is a transitive relation.
(d) For each (f, P ) ∈ L◦∆ there exists a maximal (f ′, P ′) such that (f, P ) ↑ (f ′, P ′).

�

The first main result of this section is as follows.

Proposition 3.5. Let f ∈ L and suppose that f is ↑-maximal. Then T ≤ Sf .

The proof requires two preliminary lemmas.

Lemma 3.5.1. Let (h, P ) ↑ (h′, P ′), and assume that T ≤ P ′. Then there exists y ∈ N
such that h = yh′. Moreover, we then have the following.

(a) y ∈ NN (P, P ′), and P ≤ S(y,h′).
(b) If NT (Ph) ∈ Sylp(NN (Ph)) then NT (P y) ∈ Sylp(NN (P y)).

Proof. Set R = Ph and R′ = (P ′)h′ . We are given a commutative diagram

P ′
h′−−−−→ R′

u

x xv

P −−−−→
h

P ′
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as in the definition of the relation ↑. (So, u, v ∈ N , and uh′ = hv). Since T ≤ P ′ we
get T = Th′ ≤ R′ from 3.1(a), and we get RvT = RT from 3.1(b). Thus RT ≤ R′, and
similarly PT ≤ R.

Set w = (u, h′, v−1, (h′)−1). Then w ∈ D via the sequence

(P, Pu, Puh′ = Phv, Ph = R,R(h′)−1
).

Set y = Π(w). Thus y = u(v−1)(h
′)−1

, and so y ∈ N , and indeed y ∈ NN (P, P ′). One
checks that

yh′ = uh′v−1 = hvv′ = h

(by checking that the products are defined), so we have produced the required element
y, and we’ve established point (a).

Notice that NN (R) is a normal subgroup of (the group) NL(R), by 1.7(d). By (a)
and 2.2(b) we have an isomorphism of groups

NL(P y)
ch′−−→ NL(R),

which then restricts to an isomorphism

NN (P y) −→ NN (R),

and which (since T ≤ P ′) restricts further to an isomorphism NT (P y) → NT (R). As-
suming now that NT (R) is a Sylow subgroup of NN (R), we conclude that NY (P y) is a
Sylow subgroup of NN (P y). That is, (b) holds. �

Lemma 3.5.2. Suppose that f is ↑-maximal, and let y ∈ NN (Sf , S). Then |T ∩ Sf | =
|T ∩ (Sf )y|, and (f, Sf ) ↑ (y−1f, (Sf )y). In particular, y−1f is ↑-maximal.

Proof. Set P = Sf . Then P yT = PT , by 3.1(b). Then

|P y : P y ∩ T | = |P yT : T | = |PT : T | = |P : P ∩ T |,

and so |T ∩ P | = |T ∩ P y|. The following diagram

P y y−1f−−−−→ P f

y

x x1

P −−−−→
f

P f

shows that (f, P ) ↑ (y−1f, P y). Transitivity of ↑ now implies that (y−1f, P y) is maximal
in L ◦∆. That is, y−1f is ↑-maximal. �

Proof of Proposition 3.5. Let f be ↑-maximal, set P = Sf , and set Q = P f .
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STEP 1: Suppose first that NT (P ) ∈ Sylp(NN (P )), and consider the isomorphism

NL(P )
cf−→ NL(Q)

and its restriction (as in the proof of 3.5.1) to an isomorphism

NN (P ) −→ NN (Q).

Then NT (P )f ∈ Sylp(NN (Q), and Sylow’s Theorem yields an element x ∈ NN (Q) such
that NT (Q) ≤ (NT (P )f )x. Here (f, x) ∈ D via P , so (NT (P )f )x = NT (P )fx.

Set P̃ = NT (Q)(fx)−1
P , and ovserve now that (f, P ) ↑ (fx, P̃ ) via the following

diagram.
P̃

fx−−−−→ NT (Q)Q

1

x xx

P −−−−→
f

Q

Maximality of (f, P ) yields |P | = |P̃ |, so P = P̃ and Q = NT (Q)Q. Thus NT (Q) ≤ Q,
whence T ≤ Q, and T ≤ P . We have thus shown:

(*) For any g ∈ L such that g is ↑-maximal, and such that NT (P ) ∈ Sylp(NN (P ),
we have T ≤ Sf .

STEP 2: Among all counter-examples to the proposition, assume that f has been chosen
so that first |P ∩ T | is as large as possible, and then so that |P | is as large as possible.
As above, write P = Sf , Q = P f . By 2.9 we may choose g ∈ NL(Q,S) such that
NS(Qg) ∈ Sylp(NL(Qg)). Set R = Qg. Since NN (R) is a normal subgroup of NL(R) we
obtain

(**) NT (R) ∈ Sylp(NN (R)).
(The intersection of a normal subgroup N of a finite group G with any given Sylow
subgroup of G is a Sylow subgroup of N .)

Set h = fg (defined via P ) and let (h′, P ′) be maximal in L◦∆, with (h, P ) ↑ (h′, P ′)
(3.4(d)). In the usual way, we express this relation by a diagram.

P ′
h′−−−−→ R′

u

x xv

P −−−−→
h

R

There are now two possibilities.

Case (A): Assume T � P ′. Then h′ is a counter-example to the proposition. Since
|P ∩ T | ≤ |P ′ ∩ T | it follows from the maximality of (|P ∩ T |, |P |) in our choice of f that
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|P | = |P ′|. Then h is ↑-maximal, and h−1 is ↑-maximal (3.4(b)). Then (**) and (*) yield
T ≤ R, and so T ≤ P (3.1(a)). That is, f is not a counter-example to the proposition.

Case (B): Assume T ≤ P ′. Then 3.5.1 applies, and yields an element y ∈ NN (P, P ′)
such that h = yh′. Then 3.5.2 applies and shows that y−1f is ↑-maximal and (f, P ) ↑
(f−1y, P y). As (f, P ) is ↑-maximal, and since (f−1y, P y) ↑ (f−1y, Sf−1y), the transitivity
of ↑ yields P y = Sy−1f .

Since NS(Ph) ∈ Sylp(NL(Ph)) by (**), we have NS(P y) ∈ Sylp(NL(P y) by 3.5.1(b),
and then NT (P y) ∈ Sylp(NN (P y). Then (*) applies to y−1f in the role of f , and yields
T ≤ P y. Then T ≤ P and, once again, f is not a counter-example. This completes the
proof. �

Corollary 3.6 (Frattini Lemma). Let L = (L,∆, S) be a locality, let N be a partial
normal subgroup of L, and set T = S ∩N . Then L = NNL(T ) = NL(T )N .

Proof. Let f ∈ L, set P = Sf , and choose (g,Q) ∈ L ◦∆ so that (f, P ) ↑ (g,Q) and so
that g is ↑-maximal. By transitivity of ↑, we may take Q = Sg. Then T ≤ Q by 4.5,
and then 4.5.1 yields an element y ∈ NN (P,Q) with f = yg. Here g ∈ NL(T ) by 3.1(a).
Thus f ∈ NNL(T ). By 3.2 we have also f = fyf ∈ NL(T )N . �

Lemma 3.7 (Splitting Lemma). Let (x, f) ∈ D with x ∈ N and with f ↑-maximal.
Then S(x,f) = Sxf = S(f,xf ).

Proof. Appealing to 3.2, set y = xf and g = xf (so that also g = fy), and set Q = S(x,f))

(so that also Q = S(f,y)). Thus Q ≤ Sf ∩ Sg. Set

P0 = NSf
(Q), P1 = NSg

(Q), P = 〈P0, P1〉,

and set R = P0 ∩ P1. Then Q ≤ R. In fact, 2.3(b) shows that y = f−1g and that
(Rf )y = Rg, so R ≤ Q, and thus P0 ∩ P1 = Q. Assume now that (x, f) is a counter-
example to the lemma. That is, assume Q < Sg (proper inclusion). Then Q < P1 and
so P1 � P0. Thus:

(*) P1 � Sf .

Among all counter-examples, take (x, f) so that |Q| is as large as possible.

CASE 1: The case x ∈ NL(T ).

As f ∈ NL(T ) (3.5) we get T ≤ Q, and then x ∈ NL(Q) by 3.1(b). Thus Qg = Qxf =
Qf . Set Q′ = Qg. Then 2.2(b) yields an isomorphism cf : NL(Q) → NL(Q′). Since f =
x−1g, 2.2(c) yields cf = cx−1 ◦ cg. As x ∈ NN (Q) E NL(Q), we get (P1)x−1 ≤ NN (Q)P1,
and then

(P1)f = ((P1)x−1
)g ≤ (NN (Q)P1)g = NN (Q′)NS(Q′).

Also (P0)f ≤ NS(Q′), so

(**) P f ≤ NN (Q′)NS(Q′).
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Since T ≤ Q′, 3.1(c) implies that T is a Sylow p-subgroup of NN (Q′), and hence NS(Q′)
is a Sylow p-subgroup of NN (Q′)NS(Q′). Then (**) and Sylow’s Theorem together yield
an element v ∈ NN (Q′) such that P fv ≤ NS(Q′). In particular, we have P ≤ Sfv (and
where fv is defined via Q).

Set u = vf−1
. Then 3.2 yields (u, f) ∈ D and S(u,f) = S(f,v). If S(f,v) = Suf then

(f, v) ∈ D via P , so that P ≤ Sf , contrary to (*). Thus S(f,v) =6= Suf , and so (u, f) is a
counter-example to the lemma. As Q ≤ P , the maximality of |Q| in our choice of (x, f)
implies that Q = P , so Q = P1, and we again contradict (*). Thus, we are reduced to:

CASE 2: The case x ∈ NL(T ).

Let h be ↑-maximal, with (g, Sg) ↑ (h, Sh). Then T ≤ Sh by 3.5, and then 3.5.1 yields
an element r ∈ N with g = rh and (3.5.1(a)) with Sg ≤ S(r,h). Set w = (f−1, x−1, r, h)
and observe that w ∈ D via Qg and that Π(w) = (f−1x−1)(rh) = g−1g = 1. Then 2.3
yields h = r−1xf . Since both f and h are in NL(T ), 2.2(c) yields r−1x ∈ NL(T ), and
so r−1x ∈ NN (T ). Then Case 1 applies to (r−1x, f), and thus Sh = S(r−1x,f) ≤ Sf

(using 3.2). By definition of ↑ there exist a, b ∈ N such that one has the usual sort of
“commutative diagram”:

Sh
h−−−−→ Sh−1

a

x xb

Sg −−−−→
g

Sg−1

.

As T ≤ Sh, 3.1(b) yields
Sg ≤ SgT = (Sg)aT ≤ Sh,

and so Sg ≤ Sf . This again contradicts (*), and completes the proof. �

The Splitting Lemma yields a useful criterion for partial normality, as follows.

Corollary 3.8. Let L be a locality, let N E L, and let K E N be a partial normal
subgroup of N . Suppose that K is NL(T )-invariant. I.e. suppose that xh ∈ K for all
(h−1, x, h) ∈ D such that x ∈ K and h ∈ NL(T ).) Then K E L.

Proof. Let x ∈ K and let f ∈ L such that xf is defined. By the Frattini Lemma we may
write f = xh with x ∈ N and with h ↑-maximal, and then the Splitting Lemma yields
Sf = S(x,h). Set u = (f−1, x, f) and v = (h−1, g−1, x, g, h). Then Su = Sv ∈ ∆, and
xf = Π(u) = Π(v) = (xg)h. Thus xf ∈ K, and K E L. �

Lemma 3.9. Let h be ↑-maximal. Then Nh = hN = {g ∈ L | (g, Sg) ↑ (h, Sh)}.
Proof. Given (g, Sg) ↑ (h, Sh) with the usual diagram:

Sh
h−−−−→ Sh−1

u

x xv

Sg −−−−→
g

Sg−1

,
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one sees (as in 2.3) that the word w = (u, h, v−1, h−1, h, g−1) ∈ D via P , that Π(w) = 1,
and then that g = u(v−1)h−1

h ∈ Nh. Then also g ∈ hN by 3.2.
Conversely, let g be an element of Nh. So, g = xh with x ∈ N , and where Sg = S(x,h)

by th Splitting Lemma. Then Sg ≤ Sh by 3.2, and we get

(Sg)x ≤ (Sg)xT = SgT ≤ Sh,

using 3.1(b) and 3.5. Similarly, since g−1 = h−1x−1 = (x−1)hh−1 one finds that Sg−1T ≤
Sh−1 . Then

Sh
h−−−−→ Sh−1

x

x x1

Sg −−−−→
g

Sg−1

,

is a diagram which expresses (g, Sg) ↑ (h, Sh). �

Lemma 3.10. The following hold.

(a) fN = N f for all f ∈ NL(T ).
(b) If (g, Sg) ↑ (h, Sh) and h is ↑-maximal then Ng ⊆ Nh.
(c) L is partitioned by the set of all subsets N f such that f is ↑-maximal.
(d) Let u = (g1, · · · , gn) ∈ D, and let v = (h1, · · · , hn) be a sequence of up-maximal

elements of L such that gi ∈ Nhi for all i. Then v ∈ D, and TSu ≤ Sv.

Proof. Point (a) is contained in 3.2, and is included here for emphasis. Now let h be
↑-maximal and let g ∈ Nh. Thus g = xh for some x ∈ N , and then the Splitting
Lemma (3.7) yields Sg = S(x,h), and Sg ≤ Sh by 3.2. Let y ∈ N with (y, g) ∈ D. Then
(y, x, h) ∈ D via S(y,g), and yg = (yx)h ∈ Nh. Thus N g ⊆ Nh, and we have (b).

Next, let f and g be ↑-maximal in N with N f ∩ N g 6= ∅, and let h ∈ N f ∩ N g.
Then Nh ⊆ N f ∩ N g by point (b). Write h = xf with x ∈ N . The Splitting Lemma
yields (x−1, h) ∈ D via (Sh)x, so f = x−1h ∈ Nh, and so f ∈ N g and N f ⊆ N g by (b).
Similarly N g ≤ N f , and (c) holds.

Finally, let u and v be given as in (d), and write gi = xihi with xi ∈ N . Set
w = (x1, h1, · · · , xn, hn). Then Su = Sw by splitting (and by induction on n). Since
T ≤ Sv by 3.5, it suffices to show that Su ≤ Sv in order to prove (d).

Set P = Su and proceed by induction on n. Suppose geq2 and set u0 = (g1, · · · , gn−1)
and v0 = (h1, · · · , hn−1). Then P ≤ Su0 , and so P ≤ Sv0 by the inductive hypothesis.
Set g = Π(u0) and set Q = P g. Then Q ≤ Sgn = S(xn,hn), and in this way we are
reduced to the case n = 1. Here P x1 ≤ PT by 3.1(b), and so P x1 ≤ Sh1 by 3.2. Thus
P ≤ Sv, as required. �

We refer to the sets N f with f ↑-maximal as the maximal cosets of N . Notice that
N f is a maximal coset if and only if N f is maximal in the poset of all subsets N g
(partially ordered by set-theoretic inclusion), by points (b) and (c) of 3.10. We write
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L/N , or simply L, for the set of maximal cosets of N . Let ρ : L → L be the quotient
map, sending g ∈ L to the unique maximal coset [g] of N containing g.

Set W := W(L) and W = W(L), and let ρ∗ : W → W be the induced mapping of
free monoids. For any subset or element X of W, write X for the image of X under ρ∗,
and similarly if Y is a subset or element of L write Y for the image of Y under ρ. In
particular, D is the image of D under ρ∗. Set ∆ = {P | P ∈ ∆}.

For w ∈ W, we shall say that w is ↑-maximal if every entry of w is ↑-maximal.

Lemma 3.11. There is a unique mapping Π : D → L, a unique involutory bijection
f 7→ f

−1
on L, and a unique element 1 of L such that L, with these structures, is a

partial group, and such that ρ is a homomorphism of partial groups.

Proof. Let u = (g1, · · · , gn) and v = (h1, · · · , hn) be members of D such that u = v.
By 3.10(d) there exists for each i an ↑-maximal fi ∈ L with gi, hi ∈ N fi. Set w =
(f1, · · · , fn). Then w ∈ D by 3.13(e), and then 3.3(a) shows that Π(u) and Π(v) are
elements of NΠ(w). Thus Π(u) = Π(w) = Π(v), and there is a well-defined mapping
Π : D → L given by

(*) Π(w) = Π(w).

For any subset X of L write X−1 for the set of inverses of elements of X. For any f ∈ L
we then have (N f)−1 = f−1N−1 by 1.1(4). Here N−1 = N as N is a partial group, and
then (N f)−1 = N f−1 by 3.13(a). The inversion map N f 7→ N f−1 is then well-defined,
and is an involutory bijection on L. Set 1 = N .

We now check that the axioms in 2.1, for a partial group, are satisfied by the above
structures. Since D is the image of D under ρ∗, we get L ⊆ D. Now let w = u◦v ∈ D, let
u, v be ↑-maximal pre-images in W of u, and v, and set w = u◦v. Then w is ↑-maximal,
and so w ∈ D by 3.12(e). Then u and v are in D, and so u and v are in D. Thus D
satisfies 1.1(1). Clearly, (*) implies that Π restricts to the identity on L, so Π satisfies
1.1(2).

Next, let u ◦ v ◦ w ∈ D, and choose corresponding ↑-maximal pre-images u, v, w. Set
g = Π(v). Then g = Π(v) by (*). By 1.1(3) we have both u ◦ v ◦ w and u ◦ (g) ◦ w in
D, and these two words have the same image under Π. Applying ρ∗ we obtain words in
D having the same image under Π, and thus Π satisfies 1.1(3). By definition, Π(∅) = 1,
and then the condition 1.1(4) is readily verified. Thus, L is a partial group.

By definition, D is the image of D under ρ∗. So, in order to check that ρ is a
homomorphism of partial groups it suffices to show that if w ∈ D then Π(wρ∗) =
Π(w)ρ. But this is simply the statement (*). Moreover, it is this observation which
establishes that the given partial group structure on L is the unique one for which ρ is a
homomorphism of partial groups. We have f ∈ Ker(γ) if and only if fγ = 1 = N . Since
N f = N implies f = 1f ∈ N , and since N is the maximal coset of L containing 1, we
obtain Ker(γ) = N . �

We end this section with an important example.
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Proposition 3.12. Let (L,∆, S) be a locality having the property that for each P ∈ ∆,
CL(P ) is the direct product of a p-group with a (necessarily unique) p′-group Θ(P ), and
set

Θ =
⋃
{Θ(P ) | P ∈ ∆}.

Then Θ E L.

Section 4: Quotients and products

We begin this section by showing that the image of a locality under a “strongly
surjective” homomorphism β in induces the structure of a locality on the image of β.

[We need the following result on finite p-groups, to be placed in Appendix G.]

Lemma G.n. Let S be a finite p-group, let P ≤ S be a subgroup, and let C be a set of
S-conjugates of P . Set X =

⋃
C, and suppose that P x ∈ C for all x ∈ X. Then either

X = P or NS(P ) ∩X properly contains P .

Proof. Set S = S(0), and define S(n) for n > 0 by S(n) = [S(n−1), S]. Then P g ≤ PS(1)

for all g ∈ S, and so X ⊆ PS(1). Set X0 = X, and define Xn for n > 0 by Xn =
⋃
{P x |

x ∈ Xn−1}. A straightforward argument by induction shows that Xn ⊆ PS(n+1), and
hence there is a least index k such that Xk = P . Assuming that X 6= P we get k > 0,
and then P 6= Xk−1 ≤ NS(P ). �

Proposition 4.1. Let (L,∆, S) be a locality, let L′ be a partial group, and let β : L → L′
be a homomorphism of partial groups. Set D = D(L) and D′ = D(L′), S′ = Sβ, and
set ∆′ = {Pβ | P ∈ ∆}. Assume that Dβ∗ = D′. Then (L′,∆′, S′) is a locality, and the
following hold.

(a) For any subgroup M of L, the restriction of β to M is a surjective homomorphism
βM : M →Mβ of groups.

(b) If w ∈ D via P ∈ ∆, then wβ∗ ∈ D′ via Pβ.
(c) Let w′ ∈ D′ via P ′ ∈ ∆′, and let P be the pre-image of P ′ via the restriction βS

of β to S. Then there exists w ∈ D such that each entry of w is ↑-maximal with
respect to Ker(β) and such that wβ∗ = w′. Moreover, any such w is in D via P .

(d) If Ker(β) = 1 then β is an isomorphism.

Proof. We note first of all that the hypothesis Dβ∗ = D′ implies that β∗ maps the set
of words of length 1 in L onto the set of words of length 1 in L′. Thus β is surjective
and, in particular, L′ is finite.

Let M be a subgroup of L. Then W(M) ⊆ D by 1.2. Note that W(Xγ) = W(X)γ∗

for any set X and any mapping γ on X. As Dβ∗ ⊆ D′ by (1), one concludes that
W(Mβ) ⊆ D′, and hence Mβ is a subgroup of L′. Then β induces a homomorphism
M →Mβ of groups, by 1.13. Thus (a) holds. In particular, S′ is a p-group, and ∆′ is a
set of subgroups of S′.

Let P ∈ ∆ and let w ∈ D via P . If w = (∅) is the empty word then so is wβ∗, and
then (see definition 2.1) wβ∗ ∈ D′ via any member of ∆′. Suppose that w = (f) has
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length 1, and set Q = P f . Let x ∈ P . Then (f−1, x, f) ∈ D, and xf ∈ Q. As β is
a homomorphism we get (f−1, x, f)β∗ ∈ D′ and (xβ)fβ = (xf )β ∈ Qβ. Then 1.5(c)
shows that conjugation by fβ defines a bijection from Pβ to Qβ, where Pβ and Qβ are
subgroups of S′ by (a).

Now suppose that w = (f1, · · · , fn) ∈ D via (P0, · · · , Pn), write wβ∗ = w′ =
(f ′1, · · · , f ′n), and set P ′i = Piβ. Here w′ ∈ D′ since β is a homomorphism, and the
argument of the preceding paragraph shows that (P ′i−1)

f ′i = Pi for all i with 1 ≤ i ≤ n.
This is all that we mean by saying that w′ ∈ D′ via (P ′0, · · · , P ′n), or via P ′0 for short.
Thus (L′,∆′) satisfies the condition (O1) for objectivity in definition 2.1.

In the remaining arguments we shall need to consider the partial normal subgroup
N := Ker(β) of L (see 1.12), and the group T := S ∩ N . By 3.14 L is partitioned by
the maximal cosets of N , while 3.13(b) shows that each maximal coset is of the form
Nh where h is ↑-maximal with respect to N . Plainly, β is constant on each coset of N ,
hence every fiber of β contains an ↑-maximal representative.

Let f ′ ∈ L′ and let f be ↑-maximal in L with fβ = f ′. Set P = Sf and Q = P f , and
set P ′ = Pβ and Q′ = Qβ. Then P ′, Q′ ∈ ∆′ and (P ′)f ′ = Q′. Define X := S′f ′ to be
the set of all x ∈ S′ such that xf ′ is defined and such that xf ′ ∈ S′. We now claim that
(P ′)x ⊆ X for all x ∈ X. Indeed, let x ∈ X and set y = xf ′ . Then (x−1, f ′, y) ∈ D′

via (P ′)x. Then (f ′, y) ∈ D′, while (x, f ′) ∈ D′ via (P ′)x−1
. From (f ′)−1xf ′ = y we get

xf ′ = f ′y by 1.3(e), and hence x−1f ′y = x−1(f ′y) = x−1(xf ′). As (x−1, x, f ′) ∈ D′ by
1.3(d), we conclude that x−1f ′y = f ′, and thus (P ′)x ⊆ X, as claimed.

Suppose that P ′ 6= X. Then [the above LEMMA p-GROUPS] shows that X∩NS′(P ′)
properly contains P ′. Let x ∈ NS′(P ′) with x /∈ P ′, let a be a pre-image x under βS ,
and set A = P 〈a〉. We note that T ≤ P by 3.8, and we observe that T = Ker(βS). As
βS is a homomorphism S → S′ of groups, we get A ≤ NL(P ). Conjugation by f induces
an isomorphism NL(P ) → NL(Q) by 2.3(b), so B := Af is a p-subgroup of NL(Q).
Set K = NN (Q). Then K is a normal subgroup of the group M := NL(Q), by 1.7(d).
Moreover, T ≤ Q by 2.10(a), and then T ∈ Sylp(K) by 2.10(c). As BβM = (Aβ)f ′ , we
find B ≤ NS(Q)K, and then Sylow’s theorem yields Bc ≤ NS(Q) for some c ∈ K. Then
(P, f) ↑ (A, fc), contrary to the ↑-maximality of f . Thus:

(1) (*) (Sf )β = Sfβ for every f ∈ L such that f is ↑-maximal with respect to N .

It is immediate from (*) that the condition (O2) of definition 2.1 holds in L′. Since we
have already verified (O1), we now conclude that (L′,∆′) is an objective partial group.
If S′ is properly contained in a p-subgroup R′ of L′ then βNL(S) yields a contradiction to
the maximality of S among the p-subgroups of L. Since it has already been established
that L′ is finite, we conclude that (L′,∆′, S′) is a locality.

Let w′ ∈ D′ via P ′ ∈ ∆′, let w be a lifting of w′ via β, such that every entry of w is
↑-maximal, and let P be the pre-image of P ′ via βS . Then (*) implies that w ∈ D via
P , and hence (c) is proved.

Finally, assume N = 1. Then every element of L is ↑-maximal with respect to N ,
and βS is an isomorphism. Let g1, g2 ∈ L with g′ := g1β = g2β, and set Ai = Sgi . Then
Aiβ = S′g′ by (*), and hence A1 = A2. Then (g−1

1 , g2) ∈ D via (A1)g1 , and (g−1
1 gi)β = 1.
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Thus g1 = g = g2, and β is injective.
Set γ = β−1, and let w′ ∈ D′ via P ′ ∈ ∆′. Then (b) yields w′γ ∈ D, and we have

(Π(w′γ∗))β = Π′(w′(γ∗ ◦ β∗)) = Π′(w′).

Now apply γ to obtain Π(w′γ∗) = Π′(w′)γ. Thus β−1 is a homomorphism, completing
the proof of (d). �

Definition 4.2. Let (L,∆, S) and (L′,∆′, S′) be localities, and let β : L → L′ be a
homomorphism of partial groups. Then β is a projection if the following two conditions
hold.

(1) Dβ∗ = D′.
(2) ∆′ = {Pβ | P ∈ ∆}.

Theorem 4.3 (First Isomorphism Theorem). Let (L,∆, S) be a locality, let N E L
be a partial normal subgroup, and let ρ : L → L be the homomorphism of partial groups
given by 3.15. Set ∆ = {Pρ | P ∈ ∆}.

(a) (L,∆, S) is a locality, and ρ : L → L is a projection.
(b) Let (L′,D′, S′) be a locality, let β : L → L′ be a projection, and suppose that

N = Ker(β). Then there is a unique isomorphism β : L/N → L′ such that
β = ρ ◦ β.

Proof. By definition of the partial group L in 3.15, the domain D(L) of the product Π
is the image of D(L) under ρ∗. Point (a) is therefore immediate from 4.1, and from the
definition of projection (4.2).

Let β : L → L′ be a projection as in (b), and set N = Ker(β). Then N E L by 1.12.
Clearly, β is constant on cosets N f of N . Since L is partitioned by the maximal cosets
of N , by 3.13(d), we may define a mapping β : L → L′ by applying β to each maximal
coset. Let β

∗
be the induced mapping W(L) → W(L′) of free monoids.

Let w ∈ D(L) and let w be an ↑-maximal word (i.e. in which each entry is ↑-maximal)
in W(L) such that wρ∗ = w. Then w ∈ D(L), and wβ

∗
= wβ∗ by definition of β. Here

wβ∗ ∈ D(L′) is a homomorphism, and

(*) Π′(wβ
∗
) = Π′(wβ∗) = Π(w)β.

Let [Π(w)] be the unique maximal coset of N containing Π(w). Then [Π(w)] = Π(w) by
definition of Π, and then (*) yields

Π′(wβ
∗
) = Π(w)β = [Π(w)]β = (Π(w))β.

Thus, β is a homomorphism of partial groups.
We note that

D(L)β
∗

= D(L)β∗ = D(L′)
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as β is a projection. Similarly, we find that ∆β = ∆′, and hence β is a projection.
Further, Ker(β) = 1 since Ker(β) = N , so β is an isomorphism by 4.1(d).

Finally, let γ : L → L′ be an isomorphism such that ρ ◦ γ = β. Let f ∈ L and let f
be an ↑-maximal pre-image of f via ρ. Then, in the obvious way:

fγ = f(ρ ◦ γ) = fβ = f(ρ ◦ β) = fβ,

and thus γ = β. This completes the proof of (b). �

Proposition 4.4 (Partial Subgroup Correspondence). Let (L,∆, S) be a locality,
let N E L be a partial normal subgroup of L, and set T = S ∩ N . Let (L,∆, S) be the
quotient locality L/N , and let ρ : L → L be the canonical projection. Then ρ induces
a bijection σ from the set H of partial subgroups H of L containing N to the set H of
partial subgroups H of L. Moreover, for any H ∈ H, we have Hσ E L/N if and only if
H E L.

Proof. Any partial subgroup of L containing N is a union of maximal cosets of N , by
3.14. Then 4.3 enables the same argument as in ordinary groups, for the proof that ρ
induces a bijection H → H.

For any g ∈ L denote by [g] the maximal coset of N containing g. Now suppose that
H ∈ H with H E L. Let g ∈ L and h ∈ H with u := ([g−1], [h], [g]) ∈ D(L/N ). As above
(and in view of 3.7(b)) we may take h and g to be ↑-maximal, with (g−1, h, g) ∈ D(L).
Then Π(g−1, h, g) ∈ H and Π(u) ∈ H. Thus H E L/N in this case.

Conversely, let K E L/N , and let f ∈ K and x ∈ L with (x−1, f, x) ∈ D(L). Let y be
↑-maximal in [x] and let h be ↑-maximal in [f ]. Then ([x−1], [f ], [x]) = ([y−1], [g], [y]) ∈
D(L/N ) and [gy] ∈ K. As [gy] = [fx], we conclude that fx ∈ K, and thus K E L. �

It may be worth-while to record the following essentialy trivial result.

Lemma 4.5. Let N E L and let ρ : L → L/N be the canonical projection. Further, let
H be a partial subgroup of L containing N and let X be an arbitrary subset of L. Then
(X ∩H)ρ = Xρ ∩Hρ.

Proof. By 3.14, H is a union of maximal cosets of N , and then Hρ is the set of those
maximal cosets. On the other hand Xρ is the set of all maximal cosets N g of N such
that U ∩N g 6= ∅. Thus Xρ ∩Hρ ⊆ (X ∩H)ρ. The reverse inclusion is obvious. �

Corollary 4.6. Let (L,∆, S) be a locality, let N E L, and let M be a partial normal
subgroup of L containing N . Let ρ : L → L/N be the canonical projection. Then
(S ∩M)ρ is a maximal p-subgroup of Mρ.

Proof. Write (L,∆, S) for the quotient locality given by 4.3, and set M = Mρ. Applying
4.5 with S in the role of X, we obtain (S ∩M)ρ = S ∩M. Since M E L, it follows
from 2.10(c) that S ∩M is maximal in the poset of p-subgroups of M, completing the
proof. �
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Proposition 4.7. Let (L,∆, S) be a locality, and let M E L and N E L be partial
normal subgroups. Set U = S ∩ M and V = S ∩ N , and assume that the following
condition holds.

(*) M normalizes V , and N normalizes U .
Then MN = NM E L. Moreover, if L is a ∆-linking system and CS(UV )UV ∈ ∆
then S ∩MN = UV .

The proof will require the following result on “splitting”.

Lemma 4.8. Assume the hypothesis of 4.7, and let g ∈MN . Then there exists (x, y) ∈
D with x ∈M, y ∈ N , and with Sg = S(x,y).

Proof. Among all (x, y) ∈ D ∩ (M×N ) with xy = g, choose (x, y) so that

(|U ∩ S(x,y)|, |V ∩ S(x,y)|, |S(x,y)|)

is as large as possible in the lexicographic ordering. Set Q = S(x,y) and set P = NSg (Q).
It suffices to show that P = Q in order to obtain the lemma.

By 3.2 we have (y, y−1, x, y) ∈ D and g = yxy. Suppose that P ≤ Sy. Then P y ≤ S,
and since P g ≤ S we conclude that P ≤ S(y,xy), and hence P = Q, as desired. Thus we
may assume:

(1) P � Sy.
Let h be ↑-maximal in the maximal coset of M containing g. Then 3.9 yields an el-
ement r ∈ M such that g = rh, and 3.11 yields Sg = S(r,h). Then Q ≤ S(r,h), so
(y−1, x−1, r, h) ∈ D via Qg and Π(y−1, x−1, r, h) = Π(g−1, g) = 1. Thus:

(*) y = x−1rh and h = r−1xy.

Since y, h ∈ NL(U), it follows that r−1x ∈ NM(U), and then that h = (r−1x)y ∈MN .
Suppose that h does not provide a counter-example to the lemma. That is, suppose

that there exists x′ ∈ M and y′ ∈ N such that (x′, y′) ∈ D, x′y′ = h, and S(x′,y′) = Sh.
As r−1xy = h = x′y′ we get xy = rx′y′, and (rx′, y′) ∈ D with rx′y′ = rh = g. The idea
now is to replace (x, y) with (rx′, y′) and to contradict the assumption that Sg 6= Q. In
order to achieve this, note first of all that Sg ≤ Sr since S(r,h) = Srh = Sg. Then note
that (Sg)r ≤ Sh, and that Sh = S(x′,y′) ≤ Sx′ . Thus (Sg)r ≤ Sx′ , and so Sg ≤ Srx′ . As
rx′y′ = g we conclude that Sg ≤ S(rx′,y′), which yields the desired contradiction. We
conclude that h is itself a counter-example to the lemma.

Since h = r−1xy by (*), and since h and y are in NL(U), we have r−1x ∈ NM(U),
and then U ≤ S(r−1x,y) since h ∈ NL(U). The maximality condition placed on Q in
our choice of g then yields U ≤ Q, and a symmetric argument yields V ≤ Q. Setting
H = NL(Q), it now follows from 3.1(b) that x, y ∈ H.

Set X = H ∩M and Y = H ∩ N . Then X,Y , and UV are normal subgroups of H,
and XY/UV is a p′-group. Here P ≤ H, and in the quotient group H := H/(X ∩Y )UV
we then have [P , g] = 1. As X ∩ Y = 1 we have CXY (P ) = CX(P )×CY (P ). As g = xy
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it follows that x and y centralize P . Thus P x ≤ (X ∩ Y )P and P ∈ Sylp((X ∩ Y )P ).
Sylow’s Theorem then yields z ∈ X ∩ Y with P x = P z. Replacing (x, y) with (xz−1, zy)
we get g = (xz−1)(zy) and P ≤ S(xz−1,zy). This contradicts the maximality of Q and
yields a final contradiction, proving the lemma. �

Proof of 4.7. Let w = (g1, · · · , gn) ∈ W(MN ) ∩D via Q ∈ ∆. By 4.8 we may write
gi = xiyi with xi ∈ M, yi ∈ N , and with Sgi = S(xi,yi). Set w′ = (x1, y1, · · · , xn, yn).
Then w′ ∈ D via Q and Π(w) = Π(w′). Since each yi normalizes U , it follows from 3.4
that Π(w′) = Π(w′′) for some w′′ such that w′′ = u ◦ v ∈ D, where u ∈ W(M), and
where v ∈ W(N ). Thus MN is closed under Π. In order to show that MN = (MN )−1

we note that if (x, y) ∈ D ∩ (M×N ) then (y−1, x−1) ∈ D and that y−1x−1 ∈ MN by
3.2. Thus MN is a partial subgroup of L. Moreover, we have shown that MN = NM.

Let g ∈ MN and let f ∈ L with (f−1, g, f) ∈ D. As usual we may write f = hr
with r ∈ N , h ∈ NL(V ), and Sf = S(r,h). Write g = xy as in 4.8. By assumption
we have (f−1, g, f) ∈ D via some P ∈ ∆. Setting v = (r−1, h−1, x, y, h, r) it follows
that u ∈ D via P and that gf = Π(u). Here 3.2 yields (h−1, h, y, h) ∈ D via S(y,h), so
v′ := (r−1, h−1, x, h−1, h, y, h, r) ∈ D via P and

gf = Π(v) = Π(v′) = (xhyh)r ∈ (MN )r.

Since r ∈ N , and MN is a partial group, we conclude that gf ∈MN . Thus MN E L.
Now suppose that R := CS(UV )UV ∈ ∆ and that L is a ∆-linking system. Then

NMN (UV ) is a subgroup of the group D := NL(R) by 3.4, and a normal subgroup by
1.7(d). Further, NM(U) andNN (V ) are contained inD as normal subgroups, and 2.10(c)
shows that NM(U)NN (V )/UV is a product of two normal p′-subgroups of D/UV , and
is therefore itself a p′-group. Let s ∈ NS(UV ) ∩MN . Then s ∈ D, and thus the image
of s in D/UV is trivial. Thus S ∩MN = UV , and the proof is complete. �

Corollary 4.9. Let M,N E L and suppose that M∩N ≤ S. Then MN E L.

Proof. Immediate from 4.7 and 2.17. �

Proposition 4.10. Let (L,∆, S) be a ∆-linking system, let N E L be a partial normal
subgroup, and set T = S ∩ N . Let (NL(T ),∆, S) be the locality given by 2.14(a) and let
K = 〈CL(T )N〉 be the partial subgroup of L generated by the set CL(T )N . Assume that
CS(T )T ∈ ∆. Then K E L and S ∩ K = CS(T )T .

Proof. Set LT = NL(T ), CT = CL(T ), NT = N ∩ LT , and T ∗ = CS(T )T . Then
NT = NN (T ∗) by 3.4. Since CT normalizes T , and NT normalizes T ∗, 4.7 implies that
CTNT is a partial normal subgroup of LT and that S ∩ CTNT = T ∗.

Let ρ : L → L/N be the canonical projection given by 4.3, and let β be the restriction
of ρ to LT . The definition of the product in L/N shows that for w ∈ D(L/N ) there
exists w ∈ D(L) with ρ̃∗ = w and such that each entry of w is ↑-maximal with respect
to N . Moreover, any such w is in D(LT ) by 3.8, and thus β is a projection, with kernel
NT . Let ρT : LT → LT /NT be the canonical projection. Then 4.3(b) yields a unique
isomorphism β : LT /NT → L/N such that ρT ◦ β = β. This shows that the image of
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CT under β is a partial normal subgroup of L/N . Its pre-image in L is then a partial
normal subgroup of L containing N by 4.4. Since K is the smallest partial subgroup of
L containing both N and CT , we conclude that K E L.

We have seen that T ∗ = S∩CTNT . Then T ∗ρT is a maximal p-subgroup of CTNT /NT

by 4.6, and so T ∗ρ is a maximal p-subgroup of K/N . By 4.1(a), ρ restricts to a homo-
morphism S ∩K → (S ∩K)ρ of groups, with kernel S ∩N = T . The maximality of T ∗ρ
then yields T ∗ = S ∩ K. �

[THE FOLLOWING APPLICATION OF 4.3 WON’T BE USED LATER ON IN
THIS PAPER. THE INTERNAL REFERENCES IN THE PROOF WILL BE FIXED
UP, LATER.]

Proposition 4.11. Let L = (L,∆, S) be a locality and set F = FS(L). For each P ∈ ∆
set Θ(P ) = Op(CL(P )), and set

Θ = ΘL =
⋃

P∈∆

Θ(P ).

(a) Assume that each Θ(P ) is a p′-group. Then Θ is a partial normal subgroup of L,
Θ ∩ S = 1, and CL/Θ(P ) ∼= CL(P )/Θ(P ) is a p-group for all P in ∆.

(b) Assume that F is saturated and that Fcr ⊆ ∆ ⊆ Fq. Then each Θ(P ) is a
p′-group, and L/Θ is a ∆-linking system.

Proof. (a): Set F = FS(L), and let P ∈ ∆ with P fully normalized in F . For any
g ∈ CL(P ) the conjugation map cg : Sg → S is an element of CF (P ). As P is F-centric,
CF (P ) is the fusion system FU (U) where U = CS(P ). In particular, the subsystem
FU (CL(P )) of CF (P ) is the fusion system of a p-group, and so Op(CL(P ) is a p′-group.
The same is then true of any F-conjugate of P , so Θ(P ) is a p′-group for any P ∈ ∆,
and Θ ∩ S = 1.

Assume that each Θ(P ) is a p′-group for each P ∈ ∆. Let f ∈ Θ, set R = Sf , and let
Q be maximal with respect to inclusion in {P ∈ ∆ | f ∈ Θ(P )}. Then [NR(Q), f ] ≤ S
since x−1xf ∈ S for all x ∈ R. But also [NR(Q), f ] ≤ Θ(Q) since Θ(Q) E NL(Q).
But S ∩ Θ(P ) = 1 as Θ(P ) is a p′-group, so [NR(Q), f ] = 1, and f is an element of
CM(NR(P )) of order prime to p. That is, we have f ∈ Θ(NR(Q)), and the maximality
of Q then yields Q = R. Thus:

(*) NΘ(P, S) = Θ(P ) for all P ∈ ∆.

Let w = (f1, · · · , fn) ∈ D with fi ∈ Θ for all i, and set P = Sw. Then (*) yields
fi ∈ Θ(P ) for all i, and so Π(w) ∈ Θ(P ). As Θ is closed under inversion we conclude
that Θ is a partial subgroup of M. Now let g ∈ L, and suppose that f ∈ D(f).
That is, suppose that (g−1, f, g) ∈ D via some P ∈ ∆. Since cg is an isomorphism
NL(P ) → NL(P f ), by 2.7(b), cg maps Θ(P ) to Θ(P f ). Thus, fg ∈ Θ, and so Θ E L.

Since Θ(P ) ∩ S = 1 for all P , we have Θ ∩ S = 1, so ∆ is equal to its image in the
quotent locality L/Θ. Since NL(P )/Θ(P ) ∼= NL/Θ(P ) by 4.13(b), (a) is proved.
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(b): Suppose now that ∆ is contained in the set Fc of F-centric subgroups of S, and
let P ∈ ∆. As F is ∆-saturated by 2.14(a), P has an L-conjugate Q such that Q is
fully normalized in F . Then CS(Q) = Z(Q) as Q is centric, and NS(Q) ∈ Sylp(NL(Q).
Thus Z(Q) is Sylow in CL(Q), and so CL(Q) = Z(Q)×Θ(Q) where Θ(Q) is a p′-group.
By conjugation (and 2.7(b)), the analogous factorization holds also for CL(P ). Now (a)
applies and yields CL/Θ(P ) = Z(P ). Thus L/Θ is a ∆-linking system, and is a centric
linking system if ∆ = Fc. �

Example 4.12. Let G be a finite group, let S be a Sylow p-subgroup of G, let F
be the fusion system FS(G), and let ∆ be an F-invariant, overgroup closed subset of
Fq containing Fcr. Let T := T∆(G) be the ∆-transporter system given by 2.5. The
preceding theorem then yields a D-linking system L∆(G) = (L/Θ,∆, S).
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