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Abstract. We introduce objective partial groups, of which the linking systems and p-local
finite groups of Broto, Levi, and Oliver, the transporter systems of Oliver and Ventura,
and the F-localities of Puig are examples, as are groups in the ordinary sense. As an

application we show that if F is a saturated fusion system over a finite p-group then there
exists a centric linking system L having F as its fusion system, and that L is unique up to
isomorphism. The proof relies on the classification of the finite simple groups in an indirect

and - for that reason - perhaps ultimately removable way.

Introduction

Let S be a finite p-group, p a prime. A fusion system on S is a category whose objects
are the subgroups of S, and whose morphisms are injective group homomorphisms, among
which are all of those which are induced by conjugation by elements of S. A fusion system
F on S is saturated if it satisfies some further conditions, such as would be found to hold
if S were a Sylow subgroup of a finite group G and if the morphisms in F were the
homomorphisms between subgroups of S induced by conjugation within G.

Saturated fusion systems were introduced by Lluis Puig (as “Frobenius categories”)
in notes which, although widely influential, remained unpublished for some years. Puig’s
formalism provided a setting for the Brauer Theory of blocks of characters of finite groups,
in which no ambient finite group need be assumed. Somewhat later, David Benson [Be]
suggested the possibility of associating a “classifying space” to each Frobenius category.
The notion of such a classifying space was then formulated in a rigorous way by Carles
Broto, Ran Levi, and Bob Oliver in [BLO], thereby providing a generalized setting for
the homotopy theory of p-completed classifying spaces of finite groups. Here also, as in
Puig’s setup, no ambient finite group is required. Instead, what is required is a “linking
system” (or “p-local finite group”) attached to a given saturated fusion system, and
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which has a richer and, in many respects, a more “group-like” structure than the fusion
system alone.

More recently, linking systems and their homotopy-theoretic correlatives have been
further generalized by Bob Oliver and Joana Ventura [OV] to “transporter systems”.
More recently still, the notions of linking system and transporter system have been
treated by Puig in his book [P2], where they are called “F-localities” - but where the
homotopical context is absent (as will also be the case in the present work).

This paper is intended, in part, as a step toward providing a setting for the methods
of the so-called “p-local analysis” from finite group theory, in which no ambient finite
group is required. The formalism developed here turns out to be equivalent in a technical
sense to that of [BLO] and [OV], but it is pitched in a completely different language -
one which involves nothing of categories and functors - and it has a more recognizably
finite group-like flavor. Partly for this reason, and partly because the “p-local” in “p-
local finite groups” already has a meaning for finite group theorists, we have chosen to
adopt Puig’s terminology; and so this paper involves the study of what we call localities.
We retain the terminology from [BLO] for the special sort of locality known as a linking
system. The aim is to establish some basic structural properties of localities in general,
and to prove the following result.

Main Theorem. Let F be a saturated fusion system on the finite p-group S, p a prime.
Then there exists a centric linking system L such that F is the fusion system generated
by the conjugation maps in L between subgroups of S. Further, L is uniquely determined
by F , up to an an isomorphism which restricts to the identity map on S.

We remark that if L is a centric linking system on S, then it is straightforward to
show that the fusion system FS(L) generated by the conjugation maps in L between
subgroups of S is saturated (see 2.17(a), below). Thus, the effect of the Main Theorem is
that there is a one-to-one correspondence, up to a rigid notion of isomorphism, between
saturated fusion systems and centric linking systems.

In this introduction we shall outline our proof of the Main Theorem, and point out the
indirect way in which it relies on the classification of the finite simple groups (hereinafter
referred to as the CFSG).

A group may be regarded as a set G together with an “inversion map” and a mul-
tivariable “product” Π : W → G, where W = W(G) is the free monoid on G. The
usual definition of a group is easily formulated in terms of Π instead of the binary mul-
tiplication. To obtain the notion of “partial group”, one drops the requirement that Π
be defined on all words in W, and one places certain conditions on the subset D of W
on which Π is defined, while retaining the essential properties that one expects from a
product.

Once the definition is written down in 2.1, partial analogs of basic group-theoretic
notions immediately suggest themselves, including the notions of homomorphism and
subgroup. A partial subgroup of a partial group may in fact be a group. Moreover, it
may be the case for a given partial group M that there is a collection ∆ of subgroups
which determines the domain D of the product Π. Namely, it may happen that a word
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w = (f1, · · · , fn) is in the domain D if and only if there exists a sequence (X0, · · · , Xn)
of “objects” (i.e. members of ∆) such that Xi−1 is conjugated by fi to Xi for all i,
1 ≤ i ≤ n. If such is the case, and if moreover, any subgroup of an object containing
a conjugate of an object is again an object, then the pair (M,∆) is an objective partial
group.

Our interest is in objective partial groups L = (M,∆) such that the set ∆ of objects
has a unique maximal member S with respect to inclusion, and where S is a finite p-group
which is maximal (though not necessarily uniquely so) in the poset of all p-subgroups of
M. When these conditions are met, and M is finite, then the triple L = (M,∆, S) is
a locality. A locality L is a ∆-linking system if, for any object P ∈ ∆, the centralizer
subgroup CL(P ) is just the center Z(P ) of P . If, moreover, ∆ is the set of all subgroups
P of S such that CS(Q) = Z(Q) for every L-conjugate Q of P with Q ≤ S, then L is a
centric linking system.

To any locality L = (M,∆, S) there is associated a fusion system F := FS(L) on S,
whose morphisms are those maps ϕ from one subgroup of S into another, such that ϕ is a
composition of restrictions of L-conjugation maps between objects. We find that for any
locality L, the pair (L,FS(L)) is essentially the same thing as a “transporter system”
in the sense of Oliver and Ventura [OV], and we show that all transporter systems arise
from localities in this way. The proof is given in an Appendix, so as not to interrupt the
flow of the development. The Appendix includes also a proof that the Main Theorem
implies the corresponding result for “centric linking systems” taken in the sense of [BLO].

Section 1 introduces saturated fusion systems (and the notion of “fully normalized”
subgroup) in an unconventional way, in analogy to the way in which one defines a scheme
as a gluing-together of affine schemes. In this analogy, the “affine” things are the fusion
systems FR(H) of finite groups H at a Sylow p-subgroup R, where H has the property
that CH(Op(H)) ≤ Op(H). A fusion system F on a finite p-group S is saturated provided
that F is locally affine, F is “generated” by its affine subsystems, and every F-centric
subgroup of S has a fully normalized F-conjugate. Another way to say this is that our
definition of saturation is based on the notion, due to Aschbacher [As], of a “model” of
a “constrained” fusion system. In any case, our formulation is equivalent to those found
in [BLO] and elsewhere. Readers who are already familiar with fusion systems and with
models will find little new after 1.4. Indeed, the purpose of section 1 is primarily to
fix terminology and notation - and to state a result (Proposition 1.10) announced by
Aschbacher and proved by Oliver - which lies at the foundation of this work.

The definitions pertaining to partial groups, objective partial groups, and localities are
introduced, and a few of their elementary consequences are derived, in section 2. Among
these consequences is the basic one (Proposition 2.10) that for any locality L = (M,∆, S),
and any f ∈ M, the set Sf of elements x ∈ S such that the product xf := f−1xf is
defined and is an element of S, is in fact an object, and hence a subgroup of S. As a
corollary, we obtain the result (Proposition 2.21) that every subgroup of M is contained
in the normalizer of an object, and that all p-subgroups of M are conjugate to subgroups
of S.
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Section 3 introduces homomorphisms of partial groups and of partial normal sub-
groups. A few very basic consequences of the definitions are derived, but it isn’t until
the focus is restricted to localities, in section 4, that these concepts begin to bear fruit.
We make no attempt in this paper to formulate a general notion of homomorphism of
localities beyond an obvious notion of isomorphism.

Section 4 provides some basic computational tools for working with a locality L =
(L,∆, S) and a partial normal subgroup N E L. The “Frattini lemma” (4.6) says that
every element f ∈ L can be written as a product xh (or hy := hxh) with x, y ∈ N and
with h ∈ NL(S ∩ N ). The “splitting lemma” (4.10) shows that it is possible to choose
the pairs (x, h) so that (Sf )

x ≤ S. The section ends with a result (4.11) on extending
an automorphisms of a sub-locality of a finite group to an automorphism of the group
itself.

It is in section 5 that the proof of the Main Theorem begins to take shape. The main
results (Theorems 5.14 and 5.15) yield a concrete procedure for constructing a locality
L+ from a locality L having a smaller set of objects. Thus: suppose that one is given a
locality L with the set ∆ of objects, and maximal object S; and suppose that one is given
also a fusion system F on S such that L is “F-natural”, in the sense that for any object
P , the set of L-conjugation maps from P into S is equal to the set of F-homomorphisms
of P into S. Now suppose further that one is given a subgroup T of S, such that T
is not in ∆, but with the property that every pair of distinct F-conjugates of T in S
generates a member of ∆. One may assume (upon replacing T by a suitable L-conjugate)
that T is fully normalized in F , in the sense of 1.2. There are then two questions to
consider. First: under what conditions is it possible to regard L as the “restriction” to
∆ of an F-natural locality L+ whose set ∆+ of objects is the union of ∆ with the set
of overgroups in S of F-conjugates of T ? Second: under what conditions are two such
“extensions” of L to ∆+ “rigidly isomorphic” (i.e. isomorphic via an isomorphism which
restricts to the identity map on S)? Theorems 5.14 and 5.15 provide a complete answer
to these questions; and in doing so they provide a blueprint for the proof of the Main
Theorem.

In brief, Theorem 5.14 says that there exists an F-natural locality L+ extending L in
the prescribed manner, provided that there exists

(1) a finite groupM containing NS(T ) as a Sylow p-subgroup, and with fusion system
FNS(T )(M) equal to NF (T ), and

(2) a rigid isomorphism λ from the normalizer locality NL(T ) to a locality L∆T
(M)

contained in M ,

where ∆T is the set of objects Q ∈ ∆ such that T ≤ Q ≤ NS(T ), and L∆T
(M) is the

locality obtained by restricting the group M (itself viewed as a locality) to ∆T . Further,
Theorem 5.15 says that if λ and λ′ are two isomorphisms as in (2), then the resulting
localities L+(λ) and L+(λ′) are rigidly isomorphic if and only if the composition λ−1

followed by λ′ extends to an automorphism of M .
Theorem 5.17 establishes that every locality L = (M,∆, S) can be constructed in the

above way, by an iterative procedure. For example, one may begin with the group NL(S),
regarded as the restriction of L to a locality with a single object. One then proceeds (via
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the “+-operation” outlined above) to construct the restriction of L to larger and larger
sets of objects, until the set ∆ has been exhausted. At that point L itself will have been
recovered as a “filtration” of its restrictions to an increasing sequence of subsets of ∆.

Section 6 provides a proof of the Main Theorem modulo a technical condition on
localities in finite groups which is proved in section 7 as Proposition 7.1. In somewhat
more detail: the proof of the Main Theorem depends on being able to produce an iterative
procedure, of the kind described in the preceding paragraph, by which to create a linking
system rather than to recover one, starting only with a saturated fusion system F on S
and with the set ∆ = Fc of F-centric subgroups of S. The procedure begins with the
linking system L0 of NF (R) for some suitably chosen R ∈ ∆; and where the existence
and uniqueness of L0 is given by a result (see 1.10 below), obtained independently by
Bob Oliver and Lluis Puig, which lies at the foundation of this paper. The difficulty, in
going from one step to the next via the +-construction, lies in showing that what has
already been constructed (and constructed uniquely, up to rigid isomorphism) yields an
essentially unique rigid isomorphism λ at the local level required for the next step. This
requires finding a good way to descend, step by step, through ∆ - and this is what is
achieved in section 6. The argument focuses on properties of one version of the Thompson
J-subgroup J(R) of a finite p-group R, and on properties of finite groups G such that
R is a Sylow p-subgroup of G, F ∗(G) = Op(G), and J(R) is not a normal subgroup of
G. Thus, section 6 provides a method of “descent”, while Proposition 7.1 enables the
argument in section 6 and completes the proof of the Main Theorem. By ordering things
in this way, all of the non-elementary finite group theory involved in the proof of the
Main Theorem is pushed to the very end.

Proposition 7.1 concerns so-called FF -pairs (G,V ), where G is a finite group such
that Op(G) = 1, and where V is a faithful G-module over the field of p elements, having
the following property:

(*) There exists a non-identity abelian p-subgroup A of G (called a “best offender”
in G on V ) such that |A||CV (A)| ≥ |B||CV (B)| for every subgroup B of A,

and where G is generated by the set of such best offenders. The classification of such pairs
(G,V ) has been carried out piecemeal, over a period of many years, by many authors. It
has only very recently been given a complete treatment (including the determination of
the best offenders in the case where V is irreducible and G is almost simple) by Meier-
frankenfeld and Stellmacher [MS2], as part of the project initiated by Meierfrankenfeld
to provide an alternative approach to the classification of finite simple groups of local
characteristic p. Parts of the classification of FF -pairs (for example the decomposition
into “J-components”) are elementary, but as things stand at this date, the determination
of the possible J-components themselves relies on the CFSG. Though we have attempted
to organize the arguments on the basis of general principles where possible (see for ex-
ample 7.7), any proof based on the CFSG, by its very nature, is opportunistic to some
degree, and not entirely principled.

We should alert those readers who are familiar with arguments involving the Thomp-
son J-subgroup J(P ) of a finite p-group P , that in this paper J(P ) is not defined in
the way that has gained currency over the course of the decades since Thompson first
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introduced his version of J(P ). That is, we define J(P ) to be the subgroup of P that is
generated by the abelian subgroups of P of maximal order (as in [Th]), rather than the
elementary abelian subgroups of maximal order. This is the definition which is needed
here, for reasons that will become clear from the arguments in sections 6 and 7.

Remark. Our tendency is toward right-hand notation for mappings, in any discussion
which may involve composition of mappings. In particular, if C is a category, and X,Y, Z
are objects of C, then composition defines a mapping

MorC(X,Y )×MorC(Y,Z) →MorC(X,Z).

Consistent with this policy, conjugation within any group G is taken in the right-handed
sense, so that xg = g−1xg for any x, g ∈ G.

Acknowledgements: First, to my friends at Christian-Albrechts Universität zu Kiel, I
wish to extend my thanks for their kind hospitality during my visits, over the course of
many years, and for their patience in the face of lectures in which some tentative efforts
were made to frame fusion systems and linking systems in a group-theoretic way. Special
thanks are due to Bob Oliver for his hospitality in the fall of 2007, at Paris XIII, where
the ideas that led to this paper were first conceived, and for his guidance past some
fundamental misconceptions. My most heartfelt thanks go to Bernd Stellmacher, not
least for his insightful reading of portions of earlier versions of this paper. His comments
and suggested revisions, often given in great detail, have led to the simplification and
clarification of many arguments, and to corrections of errors too embarassing to mention.
In particular, the definition of “partial group” owes a great deal to his intervention, as
does much of section 4. The remaining errors and infelicities are all my own.

Section 1: Fusion systems, saturation, and models

This section is, in part, a review of the basic notions pertaining to fusion systems
and saturation; but the definitions of “fully normalized subgroup” and of saturation that
turn out to be most convenient for the task at hand are not the standard ones. Still, the
ideas are due to Puig [P1], while the terminology that we employ is that of [BLO], which
has gained broad currency.

Let p be a prime, G a finite group, and S a Sylow p-subgroup of G. For subgroups P
and Q of S, set

NG(P,Q) = {g ∈ G | P g ≤ Q}.

Here P g is the set of elements xg := g−1xg, for x ∈ P . Set

HomG(P,Q) = {cg : P → Q | g ∈ NG(P,Q)},

where cg : P → Q is the conjugation map x 7→ xg induced by g. The fusion system
FS(G) induced on S by G is the category whose objects are the subgroups of S, and
where the set of morphisms P → Q is HomG(P,Q). More generally:
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Definition 1.1. Let S be a finite p-group. A fusion system on S is a category F ,
whose objects are the subgroups of S, and whose morphisms satisfy the following two
conditions.

(a) HomS(P,Q) ⊆ HomF (P,Q) for all subgroups P and Q of S.

(b) Every F-homomorphism can be factored in F as an F-isomorphism followed by
an inclusion map, and every F-isomorphism is an isomorphism of groups.

Example. For any finite p-group S there is the total fusion system F(S), characterized
by

HomF(S)(P,Q) = Inj(P,Q),

where Inj(P,Q) is the set of all injective group homomorphisms P → Q.

Let F be a fusion system on S and let P ≤ S be a subgroup of S. A subgroup Q ≤ S
is an F-conjugate of P if Q = Pϕ for some F-isomorphism ϕ.

Definition 1.2. Let F be a fusion system on S. A subgroup P of S is fully normalized
in F provided that, for each F-conjugate Q of P , there exists an F-homomorphism
ψ : NS(Q) → NS(P ) such that Qψ = P .

Example. If F = FS(G), G a finite group, and S ∈ Sylp(G), then every subgroup of S
has a fully normalized F-conjugate, by Sylow’s Theorem.

Definition 1.3. Let S be a finite p-group and let F be a subset of Hom(F(S)) (i.e. a
subset of the set of morphisms of the total fusion system on S) such that F contains
Hom(FS(S)). The fusion system on S generated by F is the category whose objects are
the subgroups of S, and whose morphisms are the homomorphisms ϕ : P → Q such that
ϕ is a composition of restrictions of members of F.

We note that it is immediate from definition 1.1 that the “fusion system generated by
F” is in fact a fusion system on S.

Example. Let F be a fusion system on S and let T ≤ S be a subgroup of S, with T
fully normalized in F . Define NF (T ) to be the fusion system on NS(T ) generated by the
set of all F-homomorphisms ϕ : P → NS(T ) such that T E P and such that Tϕ = T .

A collection ∆ of subgroups of S is closed under F-conjugation (or, is F-invariant) if
Pϕ ∈ ∆ whenever P ∈ ∆ and ϕ ∈ HomF (P, S). We say that ∆ is overgroup closed if
Q ∈ ∆ whenever Q is a subgroup of S which contains a member of ∆.

Example. For any fusion system F on S, let Fc be the largest F-invariant collection
∆ of subgroups P of S such that CS(P ) ≤ P for all P ∈ ∆. Then S ∈ Fc, and Fc is
overgroup closed in S. The members of Fc are the F-centric subgroups of S.
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Definition 1.4. Let F be a fusion system on S and let ∆ be a non-empty collection of
subgroups of S, such that ∆ is both overgroup closed and closed under F-conjugation.
Then F is ∆-saturated if the following two conditions hold.

(A) Every member of ∆ has a fully normalized F-conjugate.

(B) For each P ∈ ∆ ∩ Fc such that P is fully normalized in F , there exists a finite
group M such that NS(P ) ∈ Sylp(M), and with NF (P ) = FNS(P )(M).

If F is Fc-saturated, and F is generated by the union of its subsystems NF (P ) as P
ranges over the fully normalized members of Fc, then F is saturated.

Remark 1.5. (a) The above definition of saturation is equivalent to the (by now) stan-
dard one given in [BLO], and hence also to the various equivalent formulations found
in [5A1] and [Sta]. Actually, in view of the Main Theorem, one may be satisfied to
know that a fusion system satisfying the standard definition of saturation satisfies the
conditions of 1.4. That the standard definition implies 1.4(A) is an easy exercise, while
(B) follows from [2.4 and 2.5 in As]. The reverse implication (that 1.4 really does define
saturation in the standard sense) is given by [Theorem A in 5A1].

(b) For any finite group G with Sylow p-subgroup S, the fusion system FS(G) is
∆-saturated, for any non-empty, overgroup closed, FS(G)-invariant collection ∆ of sub-
groups of S.

Definition 1.6. Let F be a fusion system on S, and let T ≤ S be a subgroup of S. Then
T is normal in F if F = NF (T ). The (unique) largest subgroup of S which is normal
in F is denoted Op(F). More generally, T is strongly closed in F if Pϕ ≤ T whenever
P ≤ T and ϕ ∈ HomF (P, S). More generally still, T is weakly closed in F if Tϕ = T for
all ϕ ∈ HomF (T, S).

Lemma 1.7. Let F be a saturated fusion system on S, let P ≤ S be a subgroup of S such
that P is fully normalized in F , and let U be a subgroup of P such that NS(P ) ≤ NS(U).
Then there exists ϕ ∈ HomF (P, S) such that both Pϕ and Uϕ are fully normalized in F .

Proof. By 1.4(A) there exists ϕ ∈ HomF (NS(U), S) such that V := Uϕ is fully normal-
ized in F . Set Q = Pϕ. As NS(P ) ≤ NS(U), and P is fully normalized, ϕ restricts to an
isomorphism NS(P ) → NS(Q). Now let ψ ∈ HomF (Q,S) and set R = Qψ. Then R is
an F-conjugate of P , and so there exists η ∈ HomF (NS(R), NS(P )) with Rη = P . Com-
posing η with ϕ yields an F-homomorphism NS(R) → NS(Q), so Q is fully normalized
in F . �
Definition 1.8. Let F be a saturated fusion system over S. Then F is constrained if
Op(F) is F-centric.

The following terminology is taken from [As].

Definition 1.9. Let F be a constrained fusion system over S, and let M be a finite
group. Then M is a model for F provided that:

(1) S is a Sylow p-subgroup of M ,
8



(2) F = FS(M), and
(3) CM (Op(M)) ≤ Op(M).

Notice that if M is a model for F then Op(M) = Op(F).

The definition of model in [As] (or, equivalently, of “localizer” in [P2]) is somewhat
more flexible than the one we have given here; but 1.9 will suffice for our purposes. The
following quoted result may be interpreted as saying that the Main Theorem holds in
the case that F is constrained. This special result lies at the foundation of our proof of
the Main Theorem.

Proposition 1.10. Let F be a constrained fusion system over the finite p-group S. Then
the following hold.

(a) There exists a model M for F .
(b) Let M1 and M2 be models for F . Then there exists an isomorphism β :M1 →M2

such that β restricts to the identity map on S. Moreover, if β′ is any other such
isomorphism, then the automorphism β−1 ◦ β′ of M2 is an inner automorphism
cz, given by conjugation by an element z ∈ Z(S). In particular:

(c) If M is a model for F then {cz | z ∈ Z(S)} is the set of automorphisms of M
which restrict to the identity map on S.

Proof. Point (a), and the uniqueness of M up to isomorphism, appear as proposition 4.3
in [5A1]. A different treatment, along with the “strong uniqueness” of M in point (b), is
due to Puig [P2, Theorem 18.6]. There is also a subsequent (and independent) proof by
Bob Oliver - including the important point (b) [Theorem 5.10 in section III of AKO]. �
Lemma 1.11. Let M be a model of the saturated, constrained fusion system F over S,
and let E be a saturated fusion system on S such that the set Hom(E) of E-homomorphisms
is contained in Hom(F). Then M contains a unique model H for E.

Proof. Set T = Op(M), and let H be the set of all g ∈ M such the conjugation auto-
morphism cg of T is in E . The set of all such cg with g ∈ H is equal to AutE(T ), so H
is a subgroup of M . Moreover, S ≤ H as FS(S) ⊆ E .

Let E ′ be the fusion system FS(H). Then

Λ := AutE′(T ) = AutH(T ) = AutE(T ).

Fix λ ∈ Λ, let h ∈ H with ch = λ, and let Pλ be the largest subgroup P of S such
that AutP (T )

λ ≤ AutS(T ). Set P = Pλ and let Q be the pre-image in S of AutP (T )
λ.

As conjugation by h induces an automorphism of AutH(T ), the natural isomorphism of
AutH(T ) → H/Z(T ) yields Ph = Q. That is, α extends to an E ′-isomorphism ϕ : P → Q.
Since E is constrained, also E has a model, and so α extends also to an E-isomorphism
ψ : P → Q. Then ϕ ◦ ψ−1 is an F-automorphism which restricts to the identity on
T , and so ψ = ϕ ◦ cz for some z ∈ Z(T ). Since FS(S) ⊆ E ∩ E ′, we conclude that
Iso(E) = Iso(E ′). Then Hom(E) = Hom(E ′) by 1.1(b). Thus, E = E ′, and H is a model
for E .
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Now suppose that there is another subgroup K of M which is a model for E . Let
c : M → Aut(T ) be the map which sends g ∈ M to the automorphism cg of T . Then
Ker(c) = Z(T ) ≤ H ∩K, and Kc = AutK(T ) = AutH(T ) = Hc, so K = H. �

By a group of Lie type in characteristic p we mean a finite group Op
′
(CK(σ)), where

K is a semisimple algebraic group over the algebraic closure Fp of the field of p elements,

and where σ is a Steinberg endomorphism of K. The following well-known result will
play an important role in section 7.

Lemma 1.12. Let G be a group of Lie type in characteristic p, let S ∈ Sylp(G) be
a Sylow p-subgroup of G, and let X be a parabolic subgroup of G containing S. Then
Op(X) is weakly closed in FS(G).

Proof. Let Φ be the root system (or twisted root system) associated with G, and let Φ+

be the set of positive roots, taken so that S is generated by the set of root subgroups
Uα for α ∈ Φ+. Set Q = Op(X), set B = NG(S), and let H be a complement to S in
B. For any subset ∆ of Φ+ let ∆′ be the set of roots −α such that α ∈ Φ+ and α /∈ ∆.
Standard results concerning the structure of parabolic subgroups (see [Theorem 2.6.5 in
GLS]) yield the existence of a subset ∆ := ∆(X) of Φ+, such that

(*) Q = ⟨Uδ | δ ∈ ∆⟩, Op′(X) = ⟨Uγ | γ ∈ Φ+ ∪∆′⟩, and X = Op
′
(X)H.

Let g ∈ NG(Q,S). By Alperin’s fusion theorem there is a sequence (R1, · · · , Rn) of
subgroups of S, and elements gi ∈ NG(Ri), such that gi ∈ NG(Ri), Q ≤ R1, Q

g1···gi ≤ Ri
for all i, and such that g = hg1 · · · gn for some h ∈ CG(Q). Moreover, the groups Ri may
be chosen so that Ri = Op(NG(Ri)) and NS(Ri) ∈ Sylp(NG(Ri)), and then a theorem of
Borel and Tits [Theorem 3.1.3 in GLS] yields the result that each NG(Ri) is a parabolic
subgroup of G over S. Thus, in order to prove that Q′ = Q, and hence that Q is weakly
closed in FS(G), it suffices to consider the case where g = g1 ∈ Y for some parabolic
subgroup Y = NG(R) of G over S, with Q ≤ R = Op(Y ).

Set Γ = ∆(NG(R)). Then ∆ ⊆ Γ and Γ′ ⊆ ∆′. Applying (*) to both NG(R) and X,
we obtain NG(R) ≤ X. Thus g ∈ NG(Q), as required. �

Section 2: Partial groups, objective partial groups, and localities

For any set X we write W(X) for the free monoid on X. Thus, an element of W(X)
is a finite sequence of (or word in) the elements of X, and the multiplication in W(X)
consists of concatenation of sequences (denoted u◦v). The use of the same symbol “◦” for
concatenation of sequences and for composition of functions should cause no confusion.

The length ℓ(w) of the word w = (x1, · · · , xn) is n. The “empty word” is the word
(∅) of length 0. We shall make no careful distinction between the set X and the set of
words of length 1. That is to say, we regard X as a subset of W(X) via the identification
x 7→ (x).

Definition 2.1. Let M be a non-empty set, and let W = W(M) be the free monoid
10



on M. Let D be a subset of W such that

(1) M ⊆ D, and

u ◦ v ∈ D =⇒ u, v ∈ D.

(Notice that (1) implies that also the empty word is in D.) A mapping Π : D → M is a
product if:

(2) Π restricts to the identity map on M, and

(3) u ◦ v ◦ w ∈ D =⇒ u ◦ (Π(v)) ◦ w ∈ D, and Π(u ◦ v ◦ w) = Π(u ◦ (Π(v)) ◦ w).

An inversion on M consists of an involutory bijection f 7→ f−1 on M, together with
the mapping u 7→ u−1 on W given by

(f1, · · · , fn) 7→ (f−1
n , · · · f−1

1 ).

A partial group consists of a product Π : D → M, together with an inversion (−)−1 on
M, such that:

(4) u ∈ D =⇒ u−1 ◦ u ∈ D and Π(u−1 ◦ u) = 1,

where 1 denotes the image of the empty word under Π.

We list some elementary consequences of the definition, as follows.

Lemma 2.2. Let M (with D, Π, and inversion) be a partial group.

(a) Π is D-multiplicative. That is, if u ◦ v is in D then the word (Π(u),Π(v)) of
length 2 is in D, and

Π(u ◦ v) = Π(u)Π(v),

where Π(u)Π(v) is an abbreviation for Π((Π(u),Π(v)).
(b) Π is D-associative. That is:

u ◦ v ◦ w ∈ D =⇒ Π(u ◦ v)Π(w) = Π(u)Π(v ◦ w).

(c) If u ◦ v ∈ D then u ◦ (1) ◦ v ∈ D and Π(u ◦ (1) ◦ v) = Π(u ◦ v).
(d) If u ◦ v ∈ D then both u−1 ◦u ◦ v and u ◦ v ◦ v−1 are in D, Π(u−1 ◦u ◦ v) = Π(v),

and Π(u ◦ v ◦ v−1) = Π(u).
(e) The cancellation rule: If u ◦ v, u ◦ w ∈ D, and Π(u ◦ v) = Π(u ◦ w), then

Π(v) = Π(w) (and similarly for right cancellation).
(f) If u ∈ D then u−1 ∈ D, and Π(u−1) = Π(u)−1. In particular, 1−1 = 1.
(g) The uncancellation rule: Let u, v, w ∈ W, and suppose that both u ◦ v and u ◦ w

are in D and that Π(v) = Π(w). Then Π(u ◦ v) = Π(u ◦ w). (Similarly for right
uncancellation.)

11



Proof. Let u ◦ v ∈ D. Then 2.1(3) applies to (∅) ◦ u ◦ v and yields the result that
(Π(u)) ◦ v ∈ D with Π(u ◦ v) = Π((Π(u)) ◦ v). Now apply 2.1(3) to (Π(u)) ◦ v ◦ (∅), to
obtain (a).

Let u ◦ v ◦w ∈ D. Then u ◦ v and w are in D by 2.1(1), and D-multiplicativity yields
Π(u ◦ v ◦ w) = Π(u ◦ v)Π(w). Similarly, Π(u ◦ v ◦ w) = Π(u)Π(v ◦ w), and (b) holds.

Notice that point (c) is immediate from 2.1(3).

Assume u◦v ∈ D. Then v−1 ◦u−1 ◦u◦v ∈ D by 2.1(4), and then also u−1 ◦u◦v ∈ D.
Multiplicativity then yields

Π(u−1 ◦ u ◦ v) = Π(u−1 ◦ u)Π(v) = 1Π(v) = Π(∅)Π(v) = Π(∅ ◦ v) = Π(v).

As (w−1)−1 = w for any w ∈ W, one obtains w ◦ w−1 ∈ D for any w ∈ D, and
Π(w ◦ w−1) = 1. From this one easily completes the proof of (d).

Now let u ◦ v and u ◦ w be in D, with Π(u ◦ v) = Π(u ◦ w). Then (d) (together with
multiplicativity and associativity, which will not be explicitly mentioned hereafter) yield

Π(v) = Π(u−1 ◦ u ◦ v) = Π(u−1)Π(u)Π(v) = Π(u−1)Π(u)Π(w) = Π(u−1 ◦ u ◦w) = Π(w),

and (e) holds.

Let u ∈ D. Then u ◦ u−1 ∈ D, and then Π(u)Π(u−1) = 1. But also (Π(u),Π(u)−1) ∈
D, and Π(u)Π(u)−1 = 1. Now (f) follows by cancellation.

Let u, v, w be as in (g). Then u−1 ◦ u ◦ v and u−1 ◦ u ◦ w are in D by (d). By two
applications of (d), Π(u−1 ◦u◦v) = Π(v) = Π(w) = Π(u−1 ◦u◦w), so Π(u◦v) = Π(u◦w)
by (e). That is, Π(u)Π(v) = Π(u)Π(w), and (g) holds. �

Lemma 2.3. Let M be a partial group, and write xy for Π(x, y) when (x, y) ∈ D.

(a) For each x ∈ M, both (x,1) and (1, x) are in D, and 1x = x1.
(b) For each x ∈ M, both (x−1, x) and (x, x−1) are in D, and x−1x = 1 = xx−1.
(c) If W(M) = D then M is a group via the binary operation (x, y) 7→ xy.

Proof. As x = ∅ ◦ x = x ◦ ∅, as Π(x) = x by 2.1(2), and since Π(∅) = 1, point (a) follows
from 2.2(a). Point (b) is immediate from 2.1(4). Thus, 1 is an identity element for M by
(a), and x−1 is an inverse for x by (b). Finally, if M×M×M ⊆ D then the operation
(x, y) 7→ xy is associative by 2.2(b). In particular, (c) holds. �

2.4 Examples.

1. The first example is the basic one, in which M is a group G, 1 is the identity element
of G, g−1 is the inverse of g in G, D = W(G), and Π is the (multi-variable) product in
G. Let “·” be the binary operation given by restricting Π to M × M. Then (M, ·) is
a group by 2.3(c), and visibly that group is equal to G. Conversely, if (M,D,Π) is a
partial group in which D = W then (M, ·) is a group, again by 2.3(c).
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2. Let G be a group and let ∆ be a collection of subgroups of G. For X ∈ ∆ and
g ∈ G write Xg for the subgroup g−1Xg ≤ G. One then obtains a partial group
M = M(G,∆), for which D is the set of all words w = (g1, · · · , gn) ∈ W(G) such that
there exists X ∈ ∆ with Xg1···gi ∈ ∆ for all i (1 ≤ i ≤ n). Take Π to be the restriction to
D of the multivariable product in G, inversion as the restriction to M of inversion in G,
and 1 as the identity element of G. Notice that if there exists X ∈ ∆ with Xg ∈ ∆ for
all g ∈ G, then all products are defined, and one then recovers G as a bona fide group.

3. Here is a special case of example (2). Let G be the group O+
4 (2) (or equivalently,

the wreath product S3 ≀ C2). Thus, G is a group of order 72, with a normal elementary
abelian subgroup A of order 9, and with a dihedral Sylow 2-subgroup S acting faithfully
on A. Let ∆ be the set of subgroups of S of order 2. Then, as a set, the partial group M
(defined as in example 2) is equal to G, since every element of G fuses some involution
of S into S. But D(M) is a proper subset of W(M), so M is not a group.

It is often convenient to eliminate the symbol “Π” and to speak of “the product
f1 · · · fn”. More generally, if {Xi}1≤i≤n is a collection of subsets of M then the “product
set X1 · · ·Xn” is by definition the image under Π of the set of words (f1, · · · , fn) ∈ D
such that fi ∈ Xi for all i. If Xi = {fi} is a singleton then we may write fi in place
of Xi in such a product. Thus, for example, the product Xfg stands for the set of all
Π(x, f, g) with (x, f, g) ∈ D, and with x ∈ X.

A word of urgent warning: in writing products in the above way one may be led,
mistakenly, into imagining that “associativity” holds in a stronger sense than that which
is given by 2.2(b). For example, one should not suppose, if (f, g, h) ∈ W, and both (f, g)
and (fg, h) are in D, that (f, g, h) is in D. That is, it may be that “the product fgh” is
undefined, even though the product (fg)h is defined. Of course, one is tempted to simply
extend the domain D to include such triples (f, g, h), and to “define” the product fgh
to be (fg)h. The trouble is that it may also be the case that gh and f(gh) are defined
(via D), but that (fg)h ̸= f(gh).

Let M be a partial group and let H be a non-empty subset of M. Then H is a partial
subgroup of M if H is closed under inversion (f ∈ H implies f−1 ∈ H) and with respect
to products. The latter condition means that Π(w) ∈ H whenever w ∈ W(H)∩D. If in
fact W(H) is contained in D, then H is a subgroup of M (i.e. a partial subgroup which
is a group) by 2.3.

For M a partial group and f ∈ M, write D(f) for the set of all x ∈ M such that the
product f−1xf is defined. There is then a mapping

cf : D(f) → M

given by x 7→ f−1xf (and called conjugation by f). Since our preference is for “right-
hand” notation, we write

x 7→ (x)cf or x 7→ xf

for conjugation by f .
13



At this early point, and in the context of arbitrary partial groups, one can say very
little about the maps cf . The cancellation rule 2.2(e) implies that each cf is injective,
but beyond that, the following lemma may be the best that can be obtained.

Lemma 2.5. Let M be a partial group and let f ∈ M. Then the following hold.

(a) 1 ∈ D(f) and 1f = 1.
(b) D(f) is closed under inversion, and (x−1)f = (xf )−1 for all x ∈ D(f).
(c) cf is a bijection D(f) → D(f−1), and cf−1 = (cf )

−1.
(d) M = D(1), and x1 = x for each x ∈ M.

Proof. By 2.1(4), f ◦ ∅ ◦ f−1 = f ◦ f−1 ∈ D, so 1 ∈ D(f) and then 1f = 1 by 2.3(a).
Thus (a) holds. Now let x ∈ D(f) and set w = (f−1, x, f). Then w ∈ D, and w−1 =
(f−1, x−1, f) by definition in 2.1. Then 2.1(4) yields w−1 ◦ w ∈ D, and so w−1 ∈ D
by 2.1(1). This shows that D(f) is closed under inversion. Also, 2.1(4) yields 1 =

Π(w−1 ◦ w) = (x−1)fxf , and then (x−1)f = (xf )
−1

by 2.2(f). This completes the proof
of (b).

As w ∈ D, 2.2(d) implies that f ◦ w and then f ◦ w ◦ f−1 are in D. Now 2.1(3) and
two applications of 2.2(d) yield

fxff−1 = Π(f, f−1, x, f, f−1) = Π((f, f−1, x) ◦ f ◦ f−1) = Π(f, f−1, x) = x.

Thus xf ∈ D(f−1) with (xf )f
−1

= x, and thus (c) holds.
Finally, 1 = 1−1 by 2.2(f), and ∅ ◦ x ◦ ∅ = x ∈ D for any x ∈ M, proving (d). �

If X is a subgroup of M with X ⊆ D(f), write Xf for {xf | x ∈ X}. Example 2.4(3),
with X a fours group contained in S, and with f a suitable element of order 3, shows
that Xf need not be a group with respect to the product Π.

For subgroups X and Y of M, set

NM(X,Y ) = {f ∈ M | X ⊆ D(f) and Xf ≤ Y },

and set

NM(X) = {f ∈ M | X ⊆ D(f) and Xf = X}.

In practice, all of the objective partial groups that will be encountered in this paper
will have the property that their objects are finite, so we will always have NM(X,X) =
NM(X) by 2.5(c). Write CM(X) for the set of all f ∈ NM(X) such that xf = x for all
x ∈ X.

Henceforth, if X is a subgroup of a partial group M, any statement involving the
expression “Xf” should be understood as being based on the tacit hypothesis that X ⊆
D(f).

Example 2.4(2) may be formalized and generalized as follows.
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Definition 2.6. Let M be a partial group and let ∆ be a collection of subgroups of M.
Let D∆ be the set of all w = (f1, · · · , fn) ∈ W(M) such that:

(*) there exists (X0, · · · , Xn) ∈ W(∆) with (Xi−1)
fi = Xi for all i (1 ≤ i ≤ n).

Then (M,∆) is an objective partial group (in which ∆ is the set of objects), if the following
two conditions hold.

(O1) D = D∆.
(O2) Whenever X,Z ∈ ∆, Y ≤ Z is a subgroup of Z, and f ∈ M with Xf ⊆ Y , then

Y ∈ ∆. In particular, Xf ∈ ∆.

We say that a word w = (f1, · · · , fn) is in D via (X0, · · · , Xn) if the condition (*) in
2.6 applies specifically to w and (X0, · · · , Xn). We may also say, more simply, that w is
in D via X0, since the sequence (X0, · · · , Xn) is determined by w and X0.

Remark. Notice that in the preceding definition, one needs to already have D in order
to know what D∆ is, since D∆ is defined in terms of conjugation in the partial group
defined byD. In practice, when one tries to construct an objective partial group, it’s often
easy to decide on a suitable D which yields the partial group that one wants, and which
has the property that D ⊆ D∆. But it can then be very difficult to establish the reverse
inclusion D ⊇ D∆. In fact, much of this paper is built around three such exercises: one
of them in the Appendix (in order to establish that Oliver-Ventura “transporter systems”
give rise to localities), and one each in sections 4 and 5.

Remark. Condition (O2) in 2.6 has been stated in the form appropriate for this paper,
where objects will always be finite p-groups, from 2.9 on. A more general formulation
would be:

(O2)′ Whenever X,Z ∈ ∆, Y ≤ Z is a subgroup of Z, and f ∈ M with Xf ⊆ Y , then
NY (X

f ) ∈ ∆.

Lemma 2.7. Let (M,∆) be an objective partial group.

(a) NM(X) is a subgroup of M for each X ∈ ∆.
(b) Let f ∈ M and let X ∈ ∆ with Xf ∈ ∆. Then NM(X) ⊆ D(f), and

cf : NM(X) → NM(Xf )

is an isomorphism of groups.
(c) Let w = (f1, · · · , fn) ∈ D via (X0, · · · , Xn). Then

cf1 ◦ · · · ◦ cfn = cΠ(w)

as maps from X0 to Xn.

Proof. We first prove (c). Thus, let w and (X0, · · · , Xn) be as in (c). For any x ∈ X0

set ux = w−1 ◦ (x) ◦ w. Then ux ∈ D∆ via Xn. Setting f = Π(w), and recalling that
Π(w−1) = f−1 (by 2.2(f)), we get

Π(f−1, x, f) = Π(ux) = ((· · · (x)f1) · · · )fn ,
15



by repeated application of 2.2(a). This yields (c).
Let X ∈ ∆ and set L = NM(X). Then L is non-empty since 1 ∈ L by 2.5(b). Further,

L is closed with respect to inversion by 2.5. For any w ∈ W(L), the condition (O1) in
2.6 implies that w ∈ D via X, and then Π(w) ∈ L by (c). Now (a) follows from 2.3(c).

Let f ∈ M with X ⊆ D(f) and with Xf ∈ ∆. Let x, y ∈ L and set u =
(f−1, x, f, f−1, y, f). Then u ∈ D∆ via Xf . Thus u ∈ D by (O1), and then 2.2(a)
yields Π(u) = xfyf . We note also that 2.1(3) and 2.3(b) yield

Π(x, f, f−1, y) = Π(x ◦ 1 ◦ y)

and so Π(x, f, f−1, y) = xy by 2.3(b). Then

Π(u) = Π(f−1 ◦ (x, f, f−1, y) ◦ f) = (xy)f

by 2.1(3), and thus cf : L→ Lf is a homomorphism of groups. Then cf an isomorphism
by 2.5(c), proving (b). �

Remark 2.8. We mention two structures associated with a given objective partial group
(M,∆).

1. There is a category C = Cat(M,∆) whose set of objects is ∆, whose morphisms are
triples (f,X, Y ) with X,Y ∈ ∆ and with f ∈ NM(X,Y ), and where composition of
morphisms is given by the product in M:

(f,X, Y ) ◦ (g, Y, Z) = (fg,X,Z),

(in right-hand notation). The morphisms (1, X, Y ) with X ≤ Y are called inclusion
morphisms. Notice that every morphism in C can be factored in a unique way as an
isomorphism followed by an inclusion morphism.

2. There is a category F = F(M,∆), to be called the fusion system of (M,∆), and
defined as follows. First, the objects of F are the groups U such that U ≤ X for
some X ∈ ∆. Then, the morphisms in F from U to V are taken to be the group
homomorphisms ϕ : U → V such that ϕ can be factored as a composition of restrictions
of conjugation homomorphisms cf : X → Y between objects.

3. There is another category F∗ = F∗(M,∆), in which Ob(F∗) = Ob(F(M,∆)), but
where HomF∗(U, V ) is the set (containing HomF (U, V )) of all homomorphisms ϕ : U →
V such that ϕ is a composition of restrictions of conjugation homomorphisms cf : X → Y
between subgroups X and Y of M. Here X and Y are not assumed to be objects. It
appears to be a highly non-trivial question, as to whether the fusion systems F and F∗

are necessarily equal - even in the case of localities or linking systems (defined below).

Here is the main definition.
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Definition 2.9. Let p be a prime, let L be a partial group, and let S be a finite p-
subgroup of L. Then (L, S) is a locality if L is finite, and provided that there exists a set
∆ of subgroups of S, such that S ∈ ∆, and such that the following two conditions hold.

(L1) (L,∆) is objective.
(L2) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

We say also that L is a locality on S via ∆.

There are a number of special sorts of localities that deserve special names. In order
to assign names to them in a way that is consistent with established usage, we define
F := FS(L) to be the fusion system on S whose homomorphisms are the compositions
of restrictions of conjugation maps in L from one object to another. That is, F is the
fusion system F(L,∆) defined in 2.8(2).

A locality L is a ∆-linking system if CL(P ) ≤ P for each P ∈ ∆. If moreover ∆ is the
set of all F-centric subgroups of S then L is a centric linking system.

Example/Lemma 2.9.1. Let M be a finite group, let S be a Sylow p-subgroup of M ,
set F = FS(M), and let Γ be a non-empty F-invariant collection of subgroups of S, such
that Γ is overgroup closed in S. Define L to be the set of all g ∈M such that S∩Sg ∈ Γ,
and set D = DΓ (as defined in 2.6). Then L is a partial group via the restriction of
the multivariable product in M to D. Moreover, (L, S) is a locality via Γ; to be denoted
LΓ(M).

Proof. If g ∈ L then (S ∩ Sg
−1

)g = S ∩ Sg ∈ Γ, and then (S ∩ Sg
−1

) ∈ Γ since Γ is
F-invariant. Thus L ⊆ D, and L is contained in the partial group M = M(M,Γ) given
by example 2.4(2). In that example, M is the set of all g ∈ M such that there exists
P ∈ Γ with P g ∈ Γ. Such an element g has the property that S ∩ Sg ∈ Γ since Γ is
overgroup closed, and so L = M. Example 2.4(2) now shows that L is a partial group
with respect to the multivariable product and the inversion in G. The condition (O1) for
objectivity is given by the definition of D, while (O2) is immediate from the assumption
that Γ is overgroup closed and F-invariant. Thus, (L,Γ) is objective. All members of
Γ are subgroups of S, and S is maximal in the poset of p-subgroups of G, so (L, S) is a
locality via Γ. �

For any locality (L, S), let Ω(L, S) be the set of all collections ∆ of subgroups of S,
such that S ∈ ∆ and such that (L,∆) is objective. We say that (L, S) is complete if it
satisfies the following condition.

(*) For each ∆ ∈ Ω(L, S), and each f ∈ L, the set Sf = {s ∈ S | sf ∈ S} is a member
of ∆. In particular, Sf is a subgroup of S.

Proposition 2.10. Every locality is complete.

Proof. Let L be a locality on S, let ∆ ∈ Ω(L, S), and let f ∈ L. The word (f) of length
1 is in D := D(L), so there exists P ∈ ∆ with Q := P f ∈ ∆. Let a ∈ Sf , and set b = af .
Then {a, a−1, f} ⊆ NL(P, S), while b ∈ NL(Q,S). Thus (a−1, f, b) ∈ D via P a. Then
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also (f, b) ∈ D, while (a, f) ∈ D via P a
−1

. From f−1af = b we get af = fb by 2.2(e),
and hence

a−1fb = a−1(fb) = a−1(af) = f,

by D-associativity. Since a−1fb conjugates P a into S, we conclude that:

(1) P a ≤ Sf for all a ∈ Sf , and for all P ∈ ∆ for which P f ≤ S.

In order to show that Sf is a subgroup of S it suffices to show that xy ∈ Sf for all
x, y ∈ Sf , since by 2.5(b) Sf is closed under inversion. From (1), both P x and (P x)y are
subgroups of S, and hence in ∆ by (O2). Further, (1) yields P xf and (P xy)f in ∆. Thus

w := (f−1, x, f, f−1, y, f) ∈ D via (P f , P, P x, P xf , P x, P xy, (P xy)f ).

Then (f−1xf)(f−1yf) = f−1(xy)f , and since xfyf ∈ S we get (xy)f ∈ S. That is,
xy ∈ Sf , and Sf is a subgroup of S. As Sf contains a member of ∆, (O2) then yields
Sf ∈ ∆. �
Corollary 2.11. Let L be a locality on S. There is then a unique smallest collection Γ
of subgroups of S such that (L,Γ) is objective.

Proof. Set Ω = Ω(L, S) and set Γ =
∩
Ω. That is, Γ is the set of all P such that P ∈ ∆

for all ∆ ∈ Ω. Let w = (f1, · · · , fn) ∈ D. Then for each ∆ ∈ Ω there exists P∆ ∈ ∆
such that w ∈ D via ∆, by (O1). Set Q0 = ⟨P∆ | ∆ ∈ Ω⟩. Then 2.10 shows that
Q0 ≤ Sf1 and that there is a well-defined sequence (Q0, · · · , Qn) of subgroups of S such
that Qi = (Qi−1)

fi for all i with 1 ≤ i ≤ n. Each Qi is in Γ by (O2), so (L,Γ) satisfies
(O1). Now let X,Y ∈ Γ and let f ∈ L with Xf ≤ Y . As Y ∈ ∆ for all ∆ ∈ Ω, (O2)
implies that the same holds for Xf , and so Xf ∈ Γ. That is, (L,Γ) satisfies (O2), and
(L,Γ) is objective. �
Lemma 2.12. Let L be a locality on S. Then there is a unique largest set Γ of subgroups
of S such that (L,Γ) is objective.

Proof. Let ∆1,∆2 ∈ Ω := Ω(L, S) and set ∆ = ∆1 ∪ ∆2. It will suffice to show that
∆ ∈ Ω.

Let (P0, · · · , Pn) ∈ W(∆), and let (f1, · · · , fn) ∈ W(L) such that P fkk−1 = Pk for all
k from 1 to n. Since all objects are subgroups of S, and S ∈ ∆i for all i, the condition
(O2) on (L,∆i) implies that if P0 ∈ ∆i then also each Pk is in ∆i. Thus,

D∆ ⊆ D∆1 ∪D∆2 = D(L) ⊆ D∆,

and so D∆ = D(L). That is, (L,∆) satisfies the condition (O1).
It remains to show that (L,∆) satisfies (O2). So, let X,Y ∈ ∆ and let f ∈ L with

Xf ≤ Y . Then Xf ≤ S ∈ ∆1 ∩ ∆2. If X ∈ ∆i then (O2) applied to (L,∆i) yields
Xf ∈ ∆i, so X

f ∈ ∆ and the proof is complete. �

For any word w in W(L), L a locality on S, we have also the notion of Sw, treated in
the following lemma.
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Lemma 2.13. Let L be a locality on S, set D = D(L), and let ∆ ∈ Ω(L, S). Let
w = (f1, · · · , fn) ∈ W(L), and define Sw to be the set of all elements s0 ∈ S such that
there is a sequence (s0, s1, · · · , sn) of elements of S given by (si−1)

fi = si (1 ≤ i ≤ n).
Then the following hold.

(a) Sw is a subgroup of S, and Sw ∈ ∆ if and only if w ∈ D.
(b) Let w,w′ ∈ D with Π(w) = Π(w′), and with Sw = Sw′ . Let u, v ∈ W. Then

u ◦ w ◦ v ∈ D ⇐⇒ u ◦ w′ ◦ v ∈ D.

Proof. (a): Let x0, y0 ∈ Sw, and define xi recursively by xi = (xi−1)
fi (1 ≤ i ≤ n).

Similarly define yi. Then xi−1yi−1 ∈ Sfi by 2.10, and (xi−1yi−1)
fi = xiyi by 2.7(b).

Thus Sw is closed under multiplication. Since 2.5(b) shows that Sw is closed under
inversion, and since 1 ∈ Sw, Sw is then a subgroup of S. If Sw ∈ ∆ then w ∈ D by (O1).
Conversely, if w ∈ D via some P ∈ ∆ P ≤ Sw and (O2) yields Sw ∈ ∆.

(b): Set a = u◦w◦v and b = u◦w′◦v, and assume that a ∈ D. Then (Sa)
Π(u) ≤ Sw◦v,

and

Sw◦v = {s ∈ Sw | sΠ(w) ∈ Sv} = {s ∈ Sw′ | sΠ(w′) ∈ Sv} = Sw′◦v.

Thus (Sa)
Π(u) ≤ Sw′◦v and b ∈ D via Sa. �

For any locality (L, S), we write FS(L) for the fusion system on S generated by the
conjugation maps in L between objects. Notice that FS(L) does not depend on the
choice ∆ of the set of objects, since 2.10 shows that Sf is independent of ∆ for f ∈ L.

Definition 2.14. Let L = (L,∆, S) be a locality and let P ∈ ∆ be an object. Then P
is centric in L if CL(P )/Z(P ) is a p

′-group; radical in L if P = Op(NL(P )); and essential
in L provided that

(i) P is centric in L,
(ii) NS(P ) ∈ Sylp(NL(P )), and
(iii) NL(P )/P has a strongly p-embedded subgroup.

Notice that condition (iii) implies that P is radical in L.

Definition 2.15. Let L = (L,∆, S) be a locality, let ∆e be the set of objects Q ∈ ∆
such that Q is essential in L, and set A = A(L) = ∆e ∪ {S}. Let f ∈ L. Then f is
A-decomposable if there exists w = (g1, · · · gn) ∈ D(L) such that the following hold.

(i) Sf ≤ Sw, and f = Π(w).

(ii) For all i: Sgi is in A, and either gi ∈ Op
′
(NL(Sgi)) or Sgi = S.

The Alperin-Goldschmidt fusion theorem [Gd] implies that in a locality L = LΓ(M)
of a finite group G, an element f ∈ L is A-decomposable provided that CG(Sf ) ≤ Sf . In
particular, each f ∈ L is A-decomposable if CM (Op(M)) ≤ Op(M). The following result
provides a generalization to linking systems. Recall the definition of ∆-linking system
preceding 2.9.1.
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Proposition 2.16. Let L = (L,∆, S) be a ∆-linking system and define A(L) as above.
Let f ∈ L. Then f is A(L)-decomposable.

Proof. Among all f for which the lemma fails to hold, choose f with P := Sf as large
as possible. Then P ̸= S. Set P ′ = P f and set A = A(L).

Let Q be a fully normalized L-conjugate of P (and hence also of P ′), and let g, h ∈ L
with Q = P g = (P ′)h. Thus, NS(Q) ∈ Sylp(NL(Q)). By 2.7(b) and Sylow’s Theorem,
g and h may be chosen so that NS(Q) contains both NS(P )

g and NS(P
′)h. The max-

imality of P then implies that g and h are A-decomposable. Then g−1 and h−1 are
A-decomposable via the inverses of words which yield A-composability for g and h.

Set f ′ = g−1fh, M = NL(Q), and R = NS(Q). Then f ′ ∈M , and u := (g, f ′, h−1) ∈
D via P , and Π(u) = f . If f ′ is A-decomposable then so is f , and thus we may assume
that f = f ′ and P = Q. That is, we are reduced to establishing the proposition for
the finite group M rather than the locality L. If P ∈ A then f is A-decomposable
by definition, so we may assume otherwise. Applying the Alperin-Goldschmidt theorem
to M , cf ∈ Aut(P ) is a composition cf = cg1 ◦ · · · ◦ cgn with gi ∈ NM (Ei) for some
Ei ∈ A(M). As P /∈ A, |P | < |Ei| for all i. The maximality of P then implies that
each gi is A-decomposable, and hence also g := g1 · · · gn is A-decomposable. Finally,
z := fg−1 ∈ CM (P ) = Z(P ), so f = zg is A-decomposable. �

Proposition 2.17. Let (L, S) be a locality via ∆, and let F := FS(L) be the associated
fusion system on S. Then the following hold.

(a) F is ∆-saturated, and if Fc ⊆ ∆ then F is saturated.
(b) For each P ∈ ∆, the map NL(P ) → AutF (P ) given by f 7→ cf is a surjective

homomorphism with kernel CL(P ).
(c) If P ∈ ∆ and P is fully normalized in F then NS(P ) is a Sylow p-subgroup of

NL(P ).
(d) If P ∈ ∆ and ϕ ∈ HomF (P, S) then ϕ = cf for some f ∈ NL(P, S).

Proof. We first show:

(1) For each P ∈ ∆ there exists f ∈ NL(P, S) such that NS(P
f ) is a Sylow p-

subgroup of NL(P
f ).

By (L2), (1) holds for P = S (and for f = 1). Among all P ∈ ∆ for which (1) fails, choose
P so that |S : P | is as small as possible. We are free to replace P with any L-conjugate
of P in S, so we may assume that |NS(P )| is maximal among all such conjugates. Set
R = NS(P ), and let R∗ be a Sylow p-subgroup of NL(P ) containing R. Then R is a
proper subgroup of R∗, and hence also a proper subgroup of NR∗(R). By the minimality
of |S : P |, there exists an L-conjugate Q := Rf of R such that NS(Q) is a Sylow p-
subgroup of NL(Q). Without loss, we may replace f with fg for any g ∈ NL(Q) since
any such product fg is defined via (R,Q,Q). By Sylow’s Theorem, we may therefore
assume that NR∗(R)f ≤ NS(Q). But NR∗(R)f normalizes P f , and we thereby contradict
the maximality of |NS(P )|. Thus, (1) is proved.

Next, let P ∈ ∆ and let ϕ ∈ HomF (P, S). By definition, ϕ is a composite ϕ =
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ϕ1 ◦ · · · ◦ ϕn, where ϕi is given by conjugation by an element hi of L, and where

(2) P (ϕ1 ◦ · · · ◦ ϕi) ≤ S

for all i with 1 ≤ i ≤ n. Then the word w = (h1, · · · , hn) is in D via P , and 2.7(c) yields
Pϕ = Ph where h = Π(w). Thus (d) holds, and one observes that point (b) follows
immediately from (d).

We may now complete the proof of (a) and (c). Namely, let P ∈ ∆ and let Q = P f

be an L-conjugate of P , as in (1), so that NS(Q) ∈ Sylp(NL(Q). As NS(P )
f ≤ NL(Q),

there then exists g ∈ NL(Q) such that (NS(P )
f )g ≤ NS(Q). As cf ◦ cg ∈ F , we conclude

that Q is fully normalized in F , in the sense of definition 1.2. Thus, F satisfies the
condition 1.4(A) for ∆-saturation. On the other hand, suppose that P itself is fully
normalized in F . Then, by (2), there exists h ∈ L such that NS(Q)h = NS(P ) and with
Qh = P . This shows that NS(P ) ∈ Sylp(NL(P )) (and thus (c) holds).

Set M = NL(P ). By definition, each ϕ in NF (P ) extends to an F-homomorphism
which maps P to P . Then (d) implies that ϕ = cf for some f ∈M . Thus FNS(P )(M) =
NF (P ), so that F satisfies the condition 1.4(B) for ∆-saturation. This completes the
proof that F is ∆-saturated.

Suppose that L is a centric linking system. Then ∆ is the set of F-centric subgroups
of S, by definition. By 2.16, F is generated by the fusion systems NF (P ) for P ∈ ∆ in
this case, so by definition 1.4, F is saturated. This completes the proof of (a), and of
the lemma. �

Recall the notion of normalizer from 2.7.

Lemma 2.18. Let (L, S) be a locality via the set ∆ of objects, let T be a subgroup of S,
and set ∆T = {NP (T ) | T ≤ P ∈ ∆}.

(a) NL(T ) is a partial subgroup of L.
(b) If ∆T ⊆ ∆, then (NL(T ),∆T ) is an objective partial group.
(c) If ∆T ⊆ ∆, and |NS(T )| ≥ |NS(U)| for every L-conjugate U of T in S, then

(NL(T ), NS(T )) is a locality via ∆T .

Proof. Let w = (f1, · · · , fn) ∈ W(NL(T )), and suppose that w ∈ D := D(L) via a
sequence (P0, · · · , Pn) of objects. Then ⟨Pi−1, T ⟩ ≤ Sfi for all i, by completeness, and
then

⟨Pi−1, T ⟩fi = ⟨Pi, T ⟩.

Thus, T ≤ Sw, and we may assume for the sake of simplicity that T ≤ Pi for all i.
Set f = Π(w). Then 2.7(c) yields T f = T , and so NL(T ) is closed under products.
One observes that if f ∈ NL(T ) and x ∈ T , with (f−1, x, f) ∈ D via P ∈ ∆, then

(f, x−1, f−1) ∈ D via P x
f

. Since an analogous statement holds when x is replaced by
x−1, it follows that NL(T ) is closed under inversion, and so (a) is proved.

For the remainder of the proof, we may assume that ∆T ⊆ ∆. Set

DT = D∆ ∩W(NL(T ))
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(where D∆ is defined in 2.6). With w and (P0, · · · , Pn) as in the proof of (a), we may
then replace Pi with NPi(T ), and this shows that DT is contained in the subset D∆T of
W(NL(T )). The reverse inclusion is obvious, so (NL(T ), NS(T )) satisfies the condition
(O1) for objectivity. Any overgroup in NS(T ) of an element of ∆T is again in ∆T , so
the condition (O2) is satisfied, and (NL(T ),∆T ) is an objective partial group. Thus, (b)
holds.

Now assume further that T has been chosen so that |NS(T )| ≥ |NS(U)| for each
L-conjugate U of T in S. In order to show that (NL(T ), NS(T )) is a locality via ∆T ,
it suffices to show that NS(T ) is maximal in the poset of p-subgroups of NL(T ). Set
R = NS(T ), let R1 be a p-subgroup of NL(T ) containing R, and set R2 = NR1

(R). As
R ∈ ∆, there exists f ∈ L such that Q := Rf is fully normalized in FS(L), by 2.17(a).
Then NS(Q) is a Sylow p-subgroup of NL(Q), and so there exists g ∈ NL(Q) such that
(R2)

fg ≤ NS(Q). But (R2)
fg ≤ NS(T

fg), and the maximality condition on R then
yields R = R2 and R = R1. This completes the proof of (c). �

Definition 2.19. Let (L,∆, S) be a locality, and let Γ ⊆ ∆ be a non-empty subset such
that Γ is both overgroup-closed in S and FS(L)-invariant. Set D = D(L), set

D |Γ:= {w ∈ D | Sw ∈ Γ},

and let L |Γ be the set of words of length 1 in D |Γ, regarded as a subset of L. The
restriction of L to Γ consists of L |Γ together with the restriction to D |Γ of the product
in L, and the restriction to L |Γ of the inversion in L.

Lemma 2.20. Let (L,∆, S) be a locality, and let Γ be a non-empty subset of ∆, such
that Γ is both overgroup-closed in S and FS(L)− invariant.

(a) D |Γ is the set DΓ of 2.6, and (L |Γ,Γ, S) is a locality.
(b) If L is a group M , then L |Γ is the locality LΓ(M) given by 2.9.1.

Proof. Set M = L |Γ. For any w ∈ W, the condition that Sw be in Γ is the defining
condition for D |Γ, and in view of 2.13(a) it is also the defining condition for DΓ.
These subsets of W are therefore identical, and (M,Γ) satisfies the condition (O1) for
objectivity. Condition (O2) is given by the assumption that Γ is closed in FS(L), so
(M,Γ) is objective. All members of Γ are subgroups of S, and S is maximal in the poset
of p-subgroups of M since the corresponding statement holds in L. As L is finite, so is
M, so M is a locality, and (a) holds.

Suppose that L is in fact a group M , and set K = LΓ(M). By definition, an element

g of M is in K if and only if S ∩Sg ∈ Γ. The latter condition means that Sg = S ∩Sg−1

,
so g ∈ K if and only if Sg ∈ Γ. Similarly, w ∈ D(K) if and only if Sw ∈ Γ. This shows
that D(K) = DΓ, and then (b) follows from (a). �

We shall refer to the locality (L |Γ,Γ, S) as the restriction of L to Γ.

The following proposition gives two applications of completeness to localities.
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Proposition 2.21. Let L be a locality on S and let ∆ ∈ Ω(L, S). Then the following
hold.

(a) Every subgroup of L is a ∆-local subgroup. That is: for any subgroup H of L,
there exists U ∈ ∆ such that H ≤ NL(U).

(b) Every p-subgroup of L is conjugate to a subgroup of S.

Proof. (a) Let w = (h1, · · · , hn) ∈ W(H) be chosen so that the sequence (g1, · · · , gn),
in which gi = h1 · · ·hi, includes all of the elements of H. As H is a subgroup of L we
have W(H) ⊆ D (all products in H are defined), and so w ∈ D. Thus, there exists
P ∈ ∆ such that P gi ∈ ∆ for all i. Set U = ⟨P gi | 1 ≤ i ≤ n⟩; a subgroup of S. As
H = {gi}1≤i≤n, U = ⟨PH⟩, and so H ≤ NL(U). Here U ∈ ∆ as ∆ is overgroup closed in
S.

(b) Let Q be a p-subgroup of L. Then Q is finite, as L is. By (a) there exists U ∈ ∆
with Q ≤ NL(U). By 2.17(a) there is an L-conjugate V = Uf of U such that NS(V ) is
a Sylow p-subgroup of NL(V ). By Sylow’s Theorem, there then exists g ∈ NL(V ) such
that Qfg ≤ NS(V ). �

Section 3: Homomorphisms and partial normal subgroups

We introduce homomorphisms of partial groups and their kernels, and we tentatively
define homomorphisms of objective partial groups. The “correct definition” of a homo-
morphism of localities, and of linking systems, is elusive, and we shall make no attempt
here to formulate such a definition, other than to introduce an obvious notion of isomor-
phism, and a perhaps less obvious notion of projection.

Whenever M and M′ are partial groups, we write W for W(M) and W′ for W(M′).
Similarly for D and D′, for Π and Π′, and for 1 and 1′. We shall make no such careful
distinction regarding the inversion maps for M and M′.

Definition 3.1. Let M and M′ be partial groups, let β : M → M′ be a mapping,
and let β∗ : W → W′ be the induced mapping. Then β is a homomorphism (of partial
groups) if:

(H1) Dβ∗ ⊆ D′, and
(H2) (Π(w))β = Π′(wβ∗) for all w ∈ D.

The kernel of β is the set Ker(β) of all g ∈ M such that gβ = 1′. We say that β is an
isomorphism if there exists a homomorphism β′ : M′ → M such that β ◦ β′ and β′ ◦ β
are identity mappings.

Lemma 3.2. Let β : M → M′ be a homomorphism of partial groups. Then 1β = 1′,
and (f−1)β = (fβ)−1 for all f ∈ M.

Proof. Since 11 = 1, (H1) and (H2) yield 1β = (11)β = (1β)(1β), and then 1β = 1′

by left or right cancellation. Since (f, f−1) ∈ D for any f ∈ M, by 2.3(b), (H1) yields
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(fβ, (f−1)β) ∈ D′, and then 1β = (ff−1)β = (fβ)((f−1)β) by (H2). As 1β = 1′ =
(fβ)(fβ)−1, left cancellation yields (f−1)β = (fβ)−1. �
Lemma 3.3. Let β : M → M′ be a homomorphism of partial groups, and set N =
Ker(β). Then N is a partial subgroup of M, and f−1N f ⊆ N for all f ∈ M. That is,
gf ∈ N whenever g ∈ N ∩D(f).

Proof. By 3.2 N is closed under inversion. If w is in W(N )∩D then the map β∗ : W →
W′ induced by β sends w to a word of the form (1′, · · · ,1′). Then Π′(wβ∗) = 1′, and
thus Π(w) ∈ N . This shows that N is a partial subgroup of M. Now let f ∈ M and let
g ∈ N ∩D(f). Then

(f−1, g, f)β∗ = ((fβ)−1,1′, fβ) (by 3.2),

so that
(gf )β = Π′((f−1, g, f)β∗) = Π′(fβ)−1,1′, fβ) = 1′.

�
Definition 3.4. Let M be a partial group and let N be a partial subgroup of M. Then
N is a partial normal subgroup of M if f−1N f ⊆ N for all f ∈ M. (That is, xf ∈ N
whenever x ∈ N ∩D(f).)

We may write N E M to indicate that N is a partial normal subgroup of M.

Definition 3.5. Let L = (L,∆, S) and L′ = (L′,∆, S) be localities having the same set
of objects. An isomorphism β : L → L′ of partial groups is rigid (over S) if β restricts
to the identity map S → S.

Lemma 3.6. Let (L,∆, S) and (L′,∆, S) be localities having the same set ∆ of objects,
and let β : L → L′ be a surjective homomorphism of partial groups. Suppose:

(1) Sf = Sfβ for all f ∈ L, and
(2) Ker(β) = 1.

Then β is an isomorphism.

Proof. Let h ∈ L′ and let f, g ∈ L with fβ = gβ = h. Then Sf = Sg by (1), so
(f−1, g) ∈ D via (Sf )

f , and (f−1g)β = 1. Thus f = g by (2), and β is a bijection.
Let w′ = (h1, · · · , hn) ∈ D(L′), set gi = hiβ

−1, and set w = (g1, · · · , gn). Then
w ∈ D via Sw′ by (1), and Π(w)β = Π′(w′) as β is a homomorphism. Thus Π′(w′)β−1 =
Π(w′(β−1)∗)), and β−1 is a homomorphism. �
Lemma 3.7. Let L = (L,∆, S) be a locality and let N be a partial normal subgroup of
L. Set Γ = {P ∩N | P ∈ ∆} and suppose that Γ ⊆ ∆. Then (N ,Γ, S ∩N ) is a locality.

Proof. Let w = (f1, · · · , fn) ∈ D via P ∈ ∆. Then also w ∈ D via Q := P ∩ N , and
hence (N ,Γ) is objective. Each member of Γ is a subgroup of T := S ∩ N , and N is
finite, so it only remains to show that T is maximal in the poset of p-subgroups of N , in
order to conclude that (N ,Γ, T ) is a locality.
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Let R be a p-subgroup of N containing T . As T ≤ Sx for each x ∈ S, it follows
from the definition 3.4 of partial normal subgroup that T E S. As T ∈ Γ, S is then
a Sylow p-subgroup of the group NL(T ), and hence NR(T )

g ≤ S for some g ∈ NL(T ).
The definition of partial normal subgroup then yields NR(T )

g ≤ N , so NR(T )
g = T and

NR(T ) = T . Thus R = T , as required. �
Lemma 3.8. Let (L,∆, S) be a ∆-linking system, and let β be a rigid automorphism
of L. Let (K,Γ, R) be a locality such that K is a partial subgroup of L, and such that
Γ ⊆ ∆. Then β restricts to a rigid automorphism of (K,Γ, R).

Proof. Let f ∈ K and set P = Rf . That is, P is the largest subgroup of R which is
conjugated by f into R (obtained by applying 2.10 to the locality K). Then P ∈ Γ by
2.10, and hence P ∈ ∆. As L is a ∆-linking system, CK(P ) = CL(P ) = Z(P ). Now 2.16
implies that f is A-decomposable, where A is the union of {R} with the set of K-essential
objects in Γ. Thus f = Π(w) where w = (g1, · · · , gn) ∈ D(K), each gi normalizes some
Qi ∈ A, Qi = Rgi , and P ≤ Sw.

Since β is rigid, each Qi is β-invariant, and β then restricts to an automorphism γi
on each NL(Qi) by 2.7(b). But also β centralizes Qi, and CL(Qi) = Z(Qi). Taking
commutators in the subgroup AutL(Qi)⟨β⟩ of Aut(Qi), we then obtain

[NL(Qi), β] ≤ Z(Qi) ≤ NK(Qi).

We have thus shown that each of the groups NK(Qi) is β-invariant. Then

fβ = (Π(w))β = Π(wβ∗) = Π(g1β, · · · , gnβ) ∈ K,

and so K is β-invariant. The same holds for β−1, so β is restricts to an automorphism
βK of K. As R ≤ S, βK is rigid. �
Lemma 3.9. Let M be a finite group, and let K ≤M be a subgroup. Let S be a Sylow
p-subgroup of M , set F = FS(M), and let Γ be a non-empty F-invariant set of subgroups
of S, such that Γ is overgroup closed in S. Let L := LΓ(M) be the locality given by 2.9.1,
and set K = K ∩L. Then K is a partial subgroup of L, and is a partial normal subgroup
if K EM .

Proof. One observes first of all that K is closed under the inversion in M , which is the
inversion in L. Let w = (x1, · · · , xn) ∈ D(L) ∩W(K). Then Π(w) ∈ L ∩K, and so K is
a partial subgroup of L.

Now assume that K EM , let f ∈ L and let x ∈ K∩D(f). Then xf ∈ L and xf ∈ K,
so xf ∈ K. Thus K is a partial normal subgroup of M. �

Recall from 2.15 the notion of L-essential subgroup.

Lemma 3.10. Let (L,∆, S) be a ∆-linking system and let β be an endomorphism of

the partial group L such that β restricts to the identity automorphism on Op
′
(NL(R))

for each L-essential subgroup R ≤ S, and restricts to the identity automorphism also on
NL(S). Then β is the identity automorphism of L.
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Proof. Let f ∈ L and set Q = Sf . Let A be the union of {S} with the set of all L-
essential subgroups of S. Then f is A-decomposable by 2.16. In particular, f = Π(w)
for some w = (g1, · · · , gn) ∈ D having the property that gi ∈ NL(Ri) for some Ri ∈ A.
It is then immediate from definition 3.1 and from the hypothesis concerning β, that
fβ = f . �

Section 4: The Frattini Lemma and the Splitting Lemma

This section develops two of the main computational tools that will enable the later
arguments. We obtain an analog of the Frattini Lemma in 4.6, which shows if N is
a partial normal subgroup of a locality L, then each element of L may be written as
a product of an element f ∈ N and an element g ∈ NL(T ), where T = S ∩ N . The
“splitting lemma” (4.10) refines the choice of g. We end with an important application
(4.11) which provides a criterion for extending an automorphism of a linking system in
a finite group to an automorphism of the group itself.

The notation Sf and Sw, defined in 2.10 and 2.13, will be employed without further
comment.

The following hypothesis (and notation) will be assumed throughout this section.

Hypothesis 4.1. There is given a locality L = (L,∆, S) and a partial normal subgroup
N of L. Set T = S ∩N .

Lemma 4.2. The following hold.

(a) T is strongly closed in FS(L), and T is maximal in the poset of all p-subgroups
of N .

(b) If P ∈ ∆ and x ∈ N with P ≤ Sx, then PT = P xT .
(c) If T = 1, then NN (P, S) = CN (P ) for all P ∈ ∆.

Proof. Let x ∈ T and let ϕ ∈ F := FS(L) such that x lies in the domain of ϕ. As ϕ is
a composition of restrictions of conjugation maps between objects, it suffices, in proving
(a), to consider only the case where xϕ = xf for some f ∈ L; and in that case we have
xϕ ∈ N . Thus xϕ ∈ S ∩ N = T , and so T is strongly closed in F . Now let R be a
p-subgroup of N containing T . By 2.21(b) we may choose R with R ≤ S, and then
R = T . Thus (a) holds.

Next, let g ∈ P ∈ ∆ and let x ∈ NN (P, S). Then the word w = (x−1, g, x, g−1) is in

D via P x, and then Π(w) = x−1xg
−1

= gxg−1. Thus Π(w) ∈ N ∩ S = T , and gx ∈ gT .
In particular, this proves (c), and it shows that P x ≤ PT . Upon replacing (P, x) with
(P x, x−1), the same argument shows that P ≤ P xT , and this yields (b). �

Definition 4.3. Let L ◦ ∆ be the set of all pairs (f, P ) ∈ L × ∆ such that P ≤ Sf .
Define a relation ↑ on L ◦∆ by (f, P ) ↑ (g,Q) if there exist elements x ∈ NN (P,Q) and
y ∈ NN (P f , Qg) such that xg = fy.
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This relation may be indicated by means of a commutative diagram:

(*)

Q
g−−−−→ Qg

x

x xy
P

f−−−−→ P f

of conjugation maps, labeled by the conjugating elements, and in which the horizontal
arrows are isomorphisms and the vertical arrows are injective homomorphisms. The
relation (f, P ) ↑ (g,Q) may also be expressed by:

w := (x, g, y−1, f−1) ∈ D via P , and Π(w) = 1.

It is easy to see that ↑ is a reflexive and transitive relation on L◦∆. We say that (f, P )
is maximal in L ◦ ∆ if (f, P ) ↑ (g,Q) implies that |P | = |Q|. As S is finite there exist
maximal elements in L◦∆. Since (f, P ) ↑ (f, Sf ) for (f, P ) ∈ L◦∆, we have P = Sf for
every maximal element (f, P ). For this reason, we introduce the following terminology.

Definition 4.4. Let f ∈ L. Then f is ↑-maximal in L if (f, Sf ) is maximal in L ◦∆.

The first main result of this section is as follows.

Proposition 4.5. Let f ∈ L and suppose that f is ↑-maximal. Then T ≤ Sf .

The proof requires two preliminary lemmas.

Lemma 4.5.1. Let (g,Q), (h,R) ∈ L ◦∆ with (g,Q) ↑ (h,R), and suppose that T ≤ R.
Then there exists a unique y ∈ N with g = yh. Moreover:

(a) y ∈ NN (Q,R), and Q ≤ S(y,h).
(b) If NT (Q

g) ∈ Sylp(NN (Qg)), then NT (Q
y) ∈ Sylp(NN (Qy)).

Proof. By the definition of ↑, there exist elements u ∈ NN (Q,R) and v ∈ NN (Qg, Rh)
such that (u, h, v−1, g−1) ∈ D via Q, and such that Π(w) = 1.

R
h−−−−→ Rh

u

x xv
Q −−−−→

g
Qg

In particular, uh = gv. Since T ≤ R, points (a) and (b) of 4.2 yield

T = Th, QuT = QT ≤ R, and QgT = QgvT ≤ Rh.

Then
w := (u, h, v−1, h−1) ∈ D via (Q,Qu, Quh, Quhv

−1

= Qg, Qgh
−1

).

Set y = Π(w). Then y = u(v−1)h
−1 ∈ NN (Q,R). Since (u, h, v−1, h−1, h) and (g, v, v−1)

are in D (as L is a partial group), we get yh = uhv−1 = g. This yields (a), and the
uniqueness of y is given by right cancellation.

Suppose now that NT (Q
g) ∈ Sylp(NN (Qg)). As NT (Q

y)h = NT (Q
g), it follows from

2.7(b) that NT (Q
y) ∈ Sylp(NN (Qy)). �
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Lemma 4.5.2. Suppose that f is ↑-maximal, and let y ∈ NN (Sf , S). Then |T ∩ Sf | =
|T ∩ (Sf )

y|, and (f, Sf ) ↑ (y−1f, (Sf )
y). In particular, y−1f is ↑-maximal.

Proof. Set P = Sf . Then P
yT = PT , by 4.2(b). Then

|P y : P y ∩ T | = |P yT : T | = |PT : T | = |P : P ∩ T |,

and so |T ∩ P | = |T ∩ P y|. The following diagram

P y
y−1f−−−−→ P f

y

x x1

P −−−−→
f

P f

shows that (f, P ) ↑ (y−1f, P y). �

Proof of Proposition 4.5. Let f be ↑-maximal. Set P = Sf and Q = P f , and sup-
pose first that NT (P ) ∈ Sylp(NN (P )). Then NT (P )

f ∈ Sylp(NN (Q)), by 2.7(b), and
there exists x ∈ NN (Q) such that NT (Q) ≤ (NT (P )

f )x. Here (f, x) ∈ D via P , so
(NT (P )

f )x = NT (P )
fx, and then (f, P ) ↑ (fx,NT (P )P ). As f is ↑-maximal, we con-

clude that NT (P ) ≤ P , and hence T ≤ P . Thus T ≤ Sf if NT (P ) ∈ Sylp(NN (P )).
Assuming that f provides a counterexample to 4.5, we conclude:

(1) NT (P ) /∈ Sylp(NN (P )).

Among all counterexamples to 4.5, choose f so that first |P ∩ T | and then |P | are as
large as possible. Choose g ∈ NL(Q,S) so that Qg is fully normalized in FS(L), and set
h = fg and R = Ph. As R = Qg is fully normalized we have NS(R) ∈ Sylp(NL(R)), and
then NT (R) ∈ Sylp(NN (R)). Let (h−1, R) ↑ (h′, Sh′), where h′ is ↑-maximal, and set

R′ = Sh′ and P ′ = (R′)h
′
. Thus, there exist y, z ∈ N such that yh′ = h−1z, Ry ≤ R′,

and P z ≤ P ′, as indicated in the following diagram.

R′ h′

−−−−→ P ′

y

x xz
R −−−−→

h−1
P

Then (T ∩R)y ≤ T ∩R′.
Suppose that T � R′. The conditions on the choice of f then yield (T ∩R)y = T ∩R′

and Ry = R′. Since NT (R) ∈ Sylp(NN (R)), we get NT (R)
y ∈ Sylp(NN (R′)), and so

there exists x ∈ NN (R′) such that (NT (R)
y)x = NT (R

′). Replacing y and h′ with yx
and x−1h′, we then obtain NT (R)

y = NT (R
′). But then T ≤ R′ by (1), in any case, and

then also T ≤ P ′.
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Evidently (h, P ) ↑ ((h′)−1, P ′), so by 4.5.1 there exists ỹ ∈ NN (P, S) such that h =
ỹ(h′)−1, P ≤ S(ỹ,(h′)−1), and NT (P

ỹ) ∈ Sylp(NN (P ỹ)). Then 4.5.2 applies to (f, P ) and

ỹ, and yields the result that ỹ−1f is ↑-maximal and Sỹ−1f = P ỹ. Then (1) implies that

T ≤ P ỹ, and then also T ≤ P . �

Recall from 2.18(c) that the partial group NL(T ) is a locality via the set ∆T of objects
Q ∈ ∆ with Q ≤ T .

Corollary 4.6 (Frattini Lemma). Let L = (L,∆, S) be a locality, let N be a partial
normal subgroup of L, and set T = S ∩ N . Then L = NNL(T ) as a product of partial
subgroups of L.

Proof. Let f ∈ L, set P = Sf , and choose (g,Q) ∈ L ◦∆ so that (f, P ) ↑ (g,Q) and so
that g is ↑-maximal. By transitivity of ↑, we may take Q = Sg. Then T ≤ Q by 4.5, and
then by 4.5.1 there exists y ∈ NN (P,Q) with f = yg. Here g ∈ NL(T ) by 4.2(a). �

The next few results concern the decomposition of the partial group L into “cosets”
of N .

Lemma 4.7. Let (L,∆, S) be a locality, let N E L, and set T = S ∩ L. Let f ∈ NL(T )
and let x, y ∈ N with (x, f) and (f, y) ∈ D. Then the following hold.

(a) (f, f−1, x, f) ∈ D, xf = fxf , and S(x,f) = S(f,xf ) = Sx ∩ Sf .
(b) (f, y, f−1, f) ∈ D, fy = yf

−1

y, and S(f,y) = S(yf−1 ,y) = Syf−1 ∩ Sf .

Proof. For point (a): Set Q = S(x,f) and note that T ≤ Sf by hypothesis. We have
QxT = QT by 2.5(b), so Q ≤ Sf . Thus Q ≤ P := Sx ∩ Sf . But also P xT = PX, so
P = Q. Moreover, we now have (f, f−1, x, f) ∈ D via Q, and then Π(f, f−1, x, f) =
xf = fxf . Thus, (a) holds.

For point (b): Set R = S(f,y). Then RfyT = RfT ≤ Sf−1 , so (f, y, f−1, f) ∈ D

via R, and fy = yf
−1

f . The remainder of (b) now follows as an application of (a) to

(yf
−1

, f). �

We have the following immediate corollary.

Corollary 4.8. Let f ∈ NL(T ). Then the following hold.

(a) N f = fN .
(b) If x, y ∈ N , with (x, f), (f, y) ∈ D, and with xf = fy, then S(x,f) = S(f,y).

�

Recall that if {Xi}ni=1 is a collection of subsets of a partial group M, and {fi}ni=1 is
a set of elements of M, then the product X1f1 · · ·Xnfn is defined to be the set of all
products Π(x1, f1, · · · , xn, fn) with xi ∈ Xi and with (x1, f1, · · · , xn, fn) ∈ D.

Corollary 4.9. Let w = (f1, · · · , fn) ∈ D, and assume that each fi is ↑-maximal. Then

(*) N f1 · · · N fn = NΠ(w).
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Explicitly, if
u := (x1, f1, · · · , xn, fn) ∈ D with xi ∈ N ,

then

(**) Π(u) = Π(v), where v = (y1, · · · , yn, f1, · · · , fn) ∈ D,

and where y1 = x1, and yi = (xi)
(f1···fi−1)

−1 ∈ N for all i with 1 < i ≤ n.

Proof. Set A = N f1 · · · N fn and B = NΠ(w). Then A ⊇ B since 1 ∈ N . Now let
xi ∈ N with u := (x1, f1, · · · , xn, fn) ∈ D. By 4.8(b) there exists y := (xn)

fn−1 ∈ N ,
with fn−1xn = yfn−1. Then also S(fn−1,xn) = S(y,fn−1) by 4.8(b). Then 4.7(b) yields:

v := (x1, f1, · · · , xn−1, y, fn−1, fn) ∈ D and Π(u) = Π(v).

Iteration of this process yields (**), and hence A ⊆ B. �
The following result concerns a key relationship between N and the set of ↑-maximal

elements of L.
Lemma 4.10 (Splitting Lemma). Let f ∈ NL(T ) be ↑-maximal and let x ∈ N with
(x, f) ∈ D. Then Sxf = S(x,f). Similarly, if y ∈ N with (f, y) ∈ D then Sfy = S(f,y).

Proof. If g = xf with x ∈ N then 4.7(a) yields g = fy where y = xf . On the other

hand, if we begin with y ∈ N and g = fy then 4.7(b) yields g = xf where x = yf
−1

.
Further, 4.7 yields S(x,f) = S(f,y), so it will suffice to show that Sxf = S(x,f) in the case
that x ∈ N and (x, f) ∈ D.

Set Q = S(x,f) and set y = xf . Then Q ≤ Sg as g = xf . Thus, it suffices to show
that Sg ≤ Q. Among all counterexamples (x, f) (with Sg � Q), let (x, f) be chosen so
that |Q| is as large as possible. Set S0 = NSf

(Q), S1 = NSg (Q), and P = ⟨S0, S1⟩. Since
Q ≤ Sg and Q ̸= Sg, we get S1 � Q.

Set R = S0 ∩ S1. Then Rf ≤ NS(Q
f ) and Rg ≤ NS(Q

g). Here Q ≤ S(f,y) as

(Qf )y = Qg, so also (Rf )y = Rg, and R ≤ S(f,y). Then R ≤ Q, and thus R = Q. Since
S1 � Q, we obtain:

(1) S1 � Sf .

Case 1 The case x ∈ NN (T ).

Here T ≤ Q as f ∈ NL(T ), and then x ∈ NN (Q) by 4.2(b). Then Qg = Qxf = Qf .
Since x−1g = Π(x−1, x, f) = f , we get cf = c−1

x ◦ cg as an isomorphism NL(Q) →
NL(Q

f ), and hence:

Sf1 = (Sx
−1

1 )g ≤ (S1NN (Q))g ≤ NS(Q
g)NN (Qg) = NS(Q

f )NN (Qf ).

This yields
P f ≤ NS(Q

f )NN (Qf ).

As T ≤ Q we have T ≤ Qf , and hence NN (Qf )/T is a p′-group. Then NS(Q
f ) ∈

Sylp(NS(Q
f )NN (Qf ), and there exists z ∈ NN (Qf ) such that P fz ≤ NS(Q

f ). Thus

P ≤ Sfz. Here z ∈ NN (T ), so Sfz0 = Sf0 by 4.2(b). Thus:

(2) S0 ≤ S(f,z).
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By 4.8 there exists z′ ∈ NN (T ) such that

(*) fz = z′f and S(f,z) = S(z′,f).

If S(z′,f) = Sz′f then P ≤ S(z′,f) = S(f,z) ≤ Sf , and we contradict (1). Thus S(z′,f) ̸=
Sz′f , and (z′, f) is a counterexample to the lemma. The maximality of Q then yields
Q = S(z′,f), and then S0 ≤ Q by (2). Then Q = Sf and Sf ≤ Sfz. As f is ↑-maximal
we conclude that Sf = Sfz. As S1 ≤ P ≤ Sfz we again contradict (1).

Case 2 The general case.

Let h be ↑-maximal with (g, Sg) ↑ (h, Sh). Then g = rh for some r ∈ N , and
Sg ≤ S(r,h), by 4.5.1(a). Then Q ≤ S(r,h), and we obtain (f−1, x−1, r, h) ∈ D via Qg.

But now Π(f−1, x−1, r, h) = Π(g−1, g) = 1, so

f = x−1rh and h = r−1xf.

Since f, h ∈ NL(T ), it follows that x
−1r and r−1x are in NN (T ). Now Case 1, as applied

to (r−1x, f), yields Sh ≤ Sf . Since S1 ≤ Sg ≤ Sh, we again contradict (1). �
Lemma 4.11. Let M be a finite group, let S be a Sylow p-subgroup of M , and let K be
a normal subgroup of M . Set F = FS(M) and let Γ be a non-empty, overgroup closed,
F-invariant collection of subgroups of S. Let L := LΓ(M) be the locality given by 2.9.1,
and let β be a rigid automorphism of L. Assume that the following three conditions hold.

(1) Q ∩K ∈ Γ for all Q ∈ Γ.
(2) CM (Op(M)) ≤ Op(M) ≤ K.
(3) Γ is a set of F-centric subgroups of S.

Set Φ = {Q ∩K | Q ∈ Γ}, and set K = LΦ(K). Then:

(a) β restricts to a rigid automorphism κ of K, and
(b) β extends to an automorphism of M if and only if κ extends to an automorphism

of K.

Proof. Set Y = Op(M) and let P ∈ Γ. Since CM (Y ) ≤ Y by (2), the Thompson A× B
Lemma [5.3.4 in Gor] implies that CM (P ) is a p-group. Then CM (P ) = CL(P ) = Z(P ),
as P is F-centric by (3). Point (a) then follows from 3.8. Further, 2.16 yields:

(4) Every f ∈ L is a product Π(f1, · · · , fn), where fi is in a normalizer NL(Ri) for
some Ri ∈ Γ.

Let (M,β) be a counterexample to (b) with |M | as small as possible. Let K0 be the
subgroup of K generated by the subset K of K. Let g ∈ K ∩ L. Then Sg ∈ Γ and
Sg ∩K ∈ Φ, so g ∈ K. Thus K ∩L ⊆ K. The reverse inclusion is given by the definition
of K, so K = K ∩ L. Then K is a partial normal subgroup of L by 3.10. Set T = S ∩K
and observe that for any h ∈ NM (T ) we have (h−1, g, h) ∈ D via (Sg ∩ T )h, and hence
gh ∈ K. Thus, K is NM (T )-invariant, so also K0 is NM (T )-invariant.

Set M0 = NM (T )K0 and set L0 = LΓ(M0). We next show:

(5) NM (P ) ≤M0 for all P ∈ Γ.
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Among all P for which (5) fails to hold, choose P so that |P | is as large as possible.
Suppose that P is not fully normalized in F , and let P ′ be a fully normalized F-conjugate
of P . Then Alperin’s theorem yields a sequence w = (g1, · · · , gn) of elements of M
and a sequence (R1, · · · , Rn) of fully normalized F-centric subgroups of S, such that
P0 := P ≤ R1, Pi := P g1···gi ≤ Ri for all i, and P ′ = PΠ(w). One may assume that n
is minimal for these conditions, and hence Pi ̸= Ri for any i. The maximality of |P | in
the choice of P then yields NM (Ri) ≤M0 for all i, and hence Π(w) ∈M0. Without loss,
then, we may assume that P = P ′.

With P fully normalized in F we obtain NT (P ) ∈ Sylp(NK(P )). As NK(P ) E NM (P )
the Frattini Lemma yields

(*) NM (P ) = NK(P )(NM (NT (P )) ∩NM (P )).

If T ≤ P then (*) yields NM (P ) ≤ K0NM (T ) = M0, contrary to the choice of P .
Thus T � P , and hence NT (P ) � P . Set Q = NT (P )P . Then NM (Q) ≤ M0 by the
maximality of |P |, and then (*) again implies that NM (P ) ≤ M0. This completes the
proof of (5). Now (4) yields L ⊆M0. Thus:

(6) L0 = L.
Suppose next that K0 is a proper subgroup of K. Then K ∩M0 = NK(T )K0 = K0,

and so M0 is a proper subgroup of M . Since L0 = L, the minimality of |M | then
yields an extension of β to an automorphism γ of M0. The condition (2), together with
1.10(c) then implies that γ = cz is conjugation by some z ∈ Z(S). Since cz is also an
automorphism of M , we have an extension of β to an automorphism of M in this case,
so we conclude that K0 = K.

Let h, h ∈ K, let x, x ∈ NM (T ), and suppose that (h, x) and (h, x) are in D(L)
with hx = hx. Set P = Sh ∩K and P = Sh ∩K, and set Q = Ph and Q = P

h
. Then

(h, x, x−1) ∈ D via P , and Π(h, x, x−1) = h. It follows that P = P and that (h−1, h) ∈ D
via Q. Then

(**) Π(h−1β, hβ) = (h−1h)β = (xx−1)κ.

By hypothesis, there exists an extension η of κ to an automorphism of K. It follows from
(**) that there is a well-defined mapping γ : M → M given by γ : hx 7→ (hη)(xβ) for
h ∈ K and x ∈ NM (T ).

In order to show that γ is a homomorphism, it suffices to show that (hη)xβ = (hx)η
for all h ∈ K and x ∈ NM (T ). As K0 = K we may write h as a product ΠK(h1, · · · , hn)
with hi ∈ K. Then

(hx)η = (hx1 · · ·hxn)η = (hx1)η · · · (hxn)η
= (h1η)

xβ · · · (hnη)xβ = (h1η · · ·hnη)xβ = (hη)xβ ,

as required.
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We check that Ker(γ) = 1. Namely, if (hη)(xβ) = 1 with h and x as above, then
x ∈ NK(T ) and xβ = xη, and then hx = 1 as η is injective. Thus γ is injective, and is
therefore an automorphism of M . �

Section 5: Filtrations

Recall that for any partial group M and subgroups X and Y of M, NM(X,Y ) is the
set of all f ∈ M such that X ⊆ D(f) and Xf ⊆ Y . Write HomM(X,Y ) for the set of
all conjugation maps cf : X → Y with f ∈ NM(X,Y ).

Definition 5.1. Let S be a finite p-group, let F be a fusion system on S, and let ∆ be a
non-empty, F-invariant collection of subgroups of S, closed with respect to overgroups in
S. Let L be a partial group such that ∆ is a set of subgroups of L, and such that D(L) =
D∆ in the sense of (O1) in 2.6. Then L is F-natural if HomL(P,Q) = HomF (P,Q) for
all P,Q ∈ ∆.

Definition 5.2. Let M be a finite group, let S be a Sylow p-subgroup of M , and set
F = FS(M). Let Γ be an F-invariant, overgroup-closed collection of subgroups of S.
Let L = LΓ(M) be the locality given by 2.9.1. (Equivalently, by 2.20(b), L is the
locality obtained by restricting the group M , itself viewed as a locality on the set of all
subgroups of S, to the set Γ). Let Aut0(L) be the set of rigid automorphisms of L, and let
γ, γ′ ∈ Aut0(L). Then γ and γ′ are M -equivalent if γ−1 ◦γ′ extends to an automorphism
of the group M .

Notice that M -equivalence is in fact an equivalence relation on Aut0(L).

Hypothesis 5.3. Assume given:

(1) a fusion system F on the finite p-group S,
(2) an F-natural locality (L,∆, S),
(3) a subgroup T of S, fully normalized in F , and having the property that ⟨U, V ⟩ ∈ ∆

for every pair of distinct F-conjugates U, V of T ,
(4) a finite groupM such that T EM , NS(T ) ∈ Sylp(M), and NF (T ) = FNS(T )(M);

and
(5) a rigid isomorphism λ : NL(T ) → L∆T

(M), where ∆T is the set of all P ∈ ∆
such that T E P (and where L∆T (M) is the locality given by 2.9.1).

Hypothesis 5.3 will be assumed throughout the remainder of this section. The symbols
W, D, and Π will always refer to L, while ΠM denotes the multivariable product in the
group M .

Lemma 5.4. Let U be an F-conjugate of T . Then the following hold.

(a) NP (U) ∈ ∆ for every object P ∈ ∆ such that U ≤ P .
(b) There exists x ∈ L such that T x = U , and such that NSx(T )

x = NS(U).

Proof. (a) Let P ∈ ∆ with U ≤ P . If U E P then there is nothing to prove, while
if U is not normal in P then NP (U) contains an L-conjugate of Ug ̸= U of U , where
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g ∈ NP (NP (U)). As HomS(U, S) ⊆ HomF (U, S), U
g is an F-conjugate of T , and then

5.3(3) yields ⟨U,Ug⟩ ∈ ∆. As ∆ is overgroup closed in S, we obtain (a).

As T is fully normalized in F , there exists ψ ∈ HomF (NS(U), S) such that Uψ = T .
Here NS(U) ∈ ∆ by (a). As L is F-natural, ψ is given by conjugation by an element
x′ ∈ L. Setting x = (x′)−1, (b) follows. �

Let Θ be the set of all triples

θ = (x−1, g, y) ∈ L ×M × L

which satisfy the following set (1) of conditions.

(1) T ≤ Sx ∩ Sy, NSx(T )
x = NS(T

x), and NSy (T )
y = NS(T

y).

Define a relation ∼0 on Θ as follows.

(2) (x−1, g, y) ∼0 (x−1, g, y) if

(i) T x = T x, T y = T y, and

(ii) (xx−1)λ · g = g · (yy−1)λ (as elements of M).

Notice that (2)(ii) makes sense. Namely, taking U := T x = T x (by (i)), we get
(x, x−1) ∈ D via (NSx

(T ), NS(U), NSx(T )) by (1) and 5.4(a), and hence xx−1 ∈ NL(T ).
Similarly, yy−1 ∈ NL(T ).

One may depict the relation ∼0 by means of a diagram, as follows:

U
x−1

−−−−→ T
g−−−−→ T

y−−−−→ V∥∥∥ (xx−1)λ

x x(yy−1)λ

∥∥∥
U −−−−→

x−1
T −−−−→

g
T −−−−→

y
V

where V = T y = T y. As L is F-natural, the conjugation maps cx−1 : Sx−1 → S and
cy−1 : Sy−1 → S are in F , and thus U and V are F-conjugates of T .

Lemma 5.5. ∼0 is an equivalence relation on Θ.

Proof. It is evident that ∼0 is reflexive and symmetric. Let θi = (x−1
i , gi, yi) ∈ Θ

(1 ≤ i ≤ 3) with θ1 ∼0 θ2 ∼0 θ3. Then T
x1 = T x3 and T y1 = T y3 . Notice that

(x3, x
−1
2 , x2, x

−1
1 ) ∈ D via NS(U)x

−1
3 and,

(y3, y
−1
2 , y2, y

−1
1 ) ∈ D via NS(V )y

−1
3 .
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Then

(x3x
−1
1 )λ · g1 = (x3x

−1
2 )λ · (x2x−1

1 )λ · g1
= (x3x

−1
2 )λ · g2 · (y2y−1

1 )λ

= g3 · (y3y−1
2 )λ · (y2y−1

1 )λ

= g3 · (y3y−1
1 )λ,

which completes the proof. �

Define a relation ⊢ from L to Θ, by taking f ⊢ (x−1, g, y) if g ∈ Im(λ), (x−1, gλ−1, y) ∈
D, and f = Π(x−1, gλ−1, y). Let ∼1 be the symmetrization of ⊢, and let ≈ be the weakest
equivalence relation on L ∪ Θ containing the union of ∼0 and ∼1. The ≈-class C of an
element θ = (x−1, g, y) of Θ may be denoted [x−1, g, y].

The following lemma is immediate from the definition of ∼0.

Lemma 5.6. Let Σ be a ∼0-equivalence class in Θ, let θ = (x−1, g, y) ∈ Σ, and set
U = T x and V = T y. Then the pair (U, V ) depends only on Σ, and not on the choice of
representative θ. �

Lemma 5.7. Let f ∈ L, and suppose that Sf contains an F-conjugate U of T . Set
V = Uf , and let Ξ = Ξ(f, U, V ) be the set of all θ ∈ Θ such that U = T x, V = T y, and
f ∼1 θ. Then the following hold.

(a) Ξ is a ∼0-class of Θ.
(b) If f ∈ L, and f ∼1 θ for some θ ∈ Ξ, then f = f .

Proof. As T is fully normalized in F , and since L is F-natural, there exist elements

x, y ∈ L such that both NS(U)x
−1

and NS(V )y
−1

are contained in NS(T ), and such that

T x = U and T y = V . Then (x, f, y−1) ∈ D via NSf
(U)x

−1

, and the product h = xfy−1

is an element of NL(T ). Set g = hλ. Then (x−1, g, y) ∈ Γ.

Set E = NSf
(U), and set A = Ex

−1

, B = Ag, and F = Ef . Then B = F y
−1

,
and each of E,A,B, F is in ∆ by 5.4(a). Let Σ be the ∼0-class containing θ, and let

θ = (x−1, g, y) ∈ ∆. Then U = T x and V = TY , by 5.6. By the definition of Θ, we have

E ≤ Sx−1 and the group A := Ex
−1

is contained in NS(T ). Similarly, F ≤ Sy−1 and

B := F y
−1 ≤ NS(T ). These facts, together with the rigidity of λ, result in a sequence

of conjugation maps between objects in ∆, in which the conjugating elements are as
indicated in the following diagram.

(*) E
x−1

−−→ A
xx−1

−−−→ A
(xx−1)λ−−−−−→ A

g−→ B
(yy−1)λ−−−−−→ B

yy−1

−−−→ B
y−→ F.

As θ ∼0 θ, we have

(xx−1)λ · g · (yy−1)λ = g
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and thus (*) yields

E
x−1

−−→ A
g−→ B

y−→ F.

As A and B are in ∆, it follows that g = hλ for some h ∈ NL(T ). But also,

f = Π(x−1, h, y) = Π(x−1, x, x−1, xx−1, h, yy−1, y, y−1, y)

= Π(x−1, xx−1, h, yy−1, y)

= Π(x−1, ((xx−1)λ · g · (yy−1)λ)λ−1, y)

= Π(x−1, (g)λ−1, y) = Π(x−1, h, y).

Thus f ∼1 θ, and (a) holds. If f ∈ L with f ∼1 θ, then f = Π(x−1, h, y) = f , and we
have (b). �

Let L+ be the set (L ∪ Θ)/ ≈ of equivalence classes, and let L+
0 be the set of all

C ∈ L+ such that C ∩Θ ̸= ∅.
Lemma 5.8. Let C ∈ L+.

(a) If C ∩ L = ∅ then C is a ∼0-class in Θ.
(b) If C ∩Θ = ∅ then C = {f} for some f ∈ L.

Proof. Immediate from the definition of ∼0 and ∼1. �
Lemma 5.9.

(a) Let f, g ∈ L. Then f ≈ g if and only if f = g.
(b) If θ ∈ Θ and f ∈ L with f ≈ θ, then f ∼1 θ.

Proof. (a) As f ≈ g there is a sequence

(f = f0, θ1, θ1, f1, · · · , fn−1, θn, θn, fn = g)

such that θi and θi are in Θ, fi is in L, and with fi−1 ∼1 θi ∼0 θi ∼1 fi. Then fi−1 = fi
by 5.7(b), and so f = g.

(b) Let θ ∈ Θ and f ∈ L with f ≈ θ. Point (a) together with 5.7(a) and 5.6, then yields
a sequence

f ∼1 θ1 ∼1 f ∼1 · · · ∼1 f ∼1 θn = θ,

and this proves (b). �
Define D+

0 to be the set of words w = (C1, · · · , Cn) ∈ W(L+
0 ) such that, for some

choice of representatives (x−1
i , gi, yi) of the classes Ci, the products yix

−1
i+1 are defined in

L and lie in NL(T ) (1 ≤ i < n). For such a word w, and such a choice of representatives,
set

w0 = (g1, (y1x
−1
2 )λ, g2, · · · , (yn−1x

−1
n )λ, gn).

We now wish to define a mapping Π+
0 : D+

0 → L+
0 by taking

(*) Π+
0 (w) = [x−1

1 ,ΠM (w0), yn].

Of course, we will define Π+
0 (∅) to be [1, 1M ,1].
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Lemma 5.10. There is a well-defined mapping Π+
0 : D+

0 → L+
0 , given by (∗).

Proof. By induction on word-length, we need only show that Π+
0 is well-defined on words

w = (C1, C2) ∈ D+
0 of length 2. Let D(w) be the set of all pairs (θ1, θ2) ∈ C1 × C2,

where θi = (x−1
i , gi, yi), and such that (y1, x

−1
2 ) ∈ D and T y1 = T x2 . That is, D(w) is

the set of all (θ1, θ2) for which it is possible to form a “product” as in (∗). The problem
is to show that [x−1

1 , g1 · (y1x−1
2 )λ · g2, y2] is independent of the choice of representatives

θi ∈ Ci.

Fix (θ1, θ2) ∈ D(w) and set U0 = T x1 , U1 = T y1 = T x2 , and U2 = T y2 . Suppose
first that Ci ∩ L ̸= ∅ for both i = 1 and 2, and that (f1, f2) ∈ D, where fi is the
unique element (see 5.8(b)) of Ci ∩ L. Set v = (f1, f2), set E1 = N(Sv)f1 (U1), and set

E0 = (E1)
f−1
1 and E2 = (E1)

f2 . Then v ∈ D via E0. Using the definition of Θ, one

observes that A1 := (E0)
x−1
1 ≤ NS(T ), and that B1 := (A1)

g1 = (E1)
y−1
1 . Similarly,

one has A2 := (E1)
x−1
2 ≤ NS(T ), and B2 := (A1)

g2 = (E2)
y−1
2 . Thus, the groups Ai,

and Bi are in ∆, and g1 · (y1x−1
2 )λ · g2 ∈ Im(λ). Setting hi = giλ

−1, one then has
(h1, y1x

−1
2 , h2) ∈ D via A1, and

(x−1
1 , g1 · (y1x−1

2 )λ · g2, y2) ∼1 f1f2.

The result is independent of the choice of (θ1, θ2) ∈ D(w), so the lemma holds in this
case. Thus, we may assume that no such pair (f1, f2) exists.

We now aim to show that (U0, U1, U2) is independent of the choice of (θ1, θ2) ∈ D(w).
This is given by 5.6 and 5.8(a) if Ci ∩ L = ∅ for both i = 1 and 2. Suppose next that
C1 ∩ L = ∅ ̸= C2 ∩ L. Here C1 uniquely determines (U0, U1), and then U1 = T x2 since
y1x

−1
2 ∈ NL(T ). Setting U2 = (U1)

f2 , for f2 ∈ C2 ∩L, it follows from 5.9(a) that, again,
(U0, U1, U2) depends only on (C1, C2) and not on the choice of representatives. The next
case, where C1 ∩ L ̸= ∅ = C2 ∩ L, evidently yields the same result. By assumption, we
have v = (f1, f2) /∈ D, and so Sv /∈ ∆. There is then a unique L-conjugate U0 of T with
U0 ≤ Sv. Set U1 = (U0)

f1 , and U2 = (U1)
f2 . Then each Ui is an L-conjugate of T ; and

(U0, U1, U2) is uniquely determined by (C1, C2), as desired.

Let (θ1, θ2) ∈ D(w), with θi = (x−1
i , gi, yi). The result of the preceding paragraph,

taken with 5.7(a) and 5.8(a) then yields θi ∼0 θi. The definition of ∼0 then yields a
commutative diagram as follows.

U0
x−1
1−−−−→ T

g1−−−−→ T
y1−−−−→ U1

x−1
2−−−−→ T

g2−−−−→ T
y2−−−−→ U2∥∥∥ r1

y yh1

∥∥∥ r2

y yh2

∥∥∥
U0 −−−−→

x−1
1

T −−−−→
g1

T −−−−→
y1

U1 −−−−→
x−1
2

T −−−−→
g2

T −−−−→
y2

U2

(Here ri = (xix
−1
i )λ and hi = (yiy

−1
i )λ.) The “middle” portion of this diagram leads at
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once to a commutative diagram in M , as follows.

T
g1−−−−→ T

(y1x
−1
2 )λ

−−−−−−→ T
g2−−−−→ T

r1

y h1

y yg2 yh2

T −−−−→
g1

T −−−−−−→
(y1x

−1
2 )λ

T −−−−→
g2

T

The result is a diagram

U0
x−1
1−−−−→ T

ΠM (w0)−−−−−→ T
y2−−−−→ U2∥∥∥ r1

y yh2

∥∥∥
U0 −−−−→

x−1
1

T −−−−−→
ΠM (w0)

T −−−−→
y2

U2

which establishes that Π+
0 is well defined. �

Let u = (f1, · · · , fn) ∈ W and let v = (C1, · · · , Cn) ∈ W(L+
0 ). We shall write u ≈ v

to indicate that fi ∈ Ci for all i. Write D+
0 ∩D for the set of all v ∈ D+

0 such that there
exists u ∈ D with u ≈ v.

Lemma 5.11. Π+
0 and Π agree on D+

0 ∩D.

Proof. Let w = (C1, · · · , Cn) ≈ (f1, · · · , fn) be in D+
0 ∩D, and let θi = (x−1

i , gi, yi) ∈ Ci
be chosen so that fi ∼1 θi. Let (U0, · · · , Un) be the sequence of L-conjugates of T given
by T xi = Ui−1 and T yi = Ui. As Ci ≈ fi we have gi ∈ Im(λ), and (x−1

i , (gi)λ
−1, yi) is in

D via a subgroup of NSgi
(Ui−1). This shows that when w is viewed as an element of D,

one has U0 ≤ Sw. Setting P0 = NSw(U0) we get P0 ∈ ∆ by 5.4(a), and w ∈ D via P0.
Set hi = (gi)λ

−1, and set

v = (x−1
1 , h1, y1, · · · , x−1

n , hn, yn) and v0 = (h1, y1x
−1
2 , · · · , yn−1x

−1
n , hn).

Set Pi = P f1···fi0 . Then 5.4(a) implies that v ∈ D via P0, since each Pi−1 is a member of ∆

contained in Sfi∩NS(T ). Then also v0 ∈ D via (P0)
x1

−1

, and since also v0 ∈ W(NL(T )),
the isomorphism λ : NL(T ) → L∆T

(M) sends Π(v0) to ΠM (w0), where

w0 = (g1, λ(y1x
−1
2 ), · · · , λ(yn−1x

−1
n ), gn).

We now obtain

Π+
0 (C1, · · · , Cn) = [x−1

1 ,ΠM (w0), yn] ≈ Π(f1, · · · , fn)

since (x−1
1 ,Π(v0), yn) ∈ D (via P0). This yields the lemma. �
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By 5.8 and 5.9(a) we may identify L+
0 and L with their images in L+ via ≈. Set

L0 = L+
0 ∩ L and set L1 = L − L0. Thus, L+ is the disjoint union of L+

0 and L1. Set
D+ = D+

0 ∪D. By 5.11 there is a “product”

Π+ = Π+
0 ∪Π : D+ → L+

whose restriction to D+
0 is Π+

0 , and whose restriction to D is Π. Set 1+ = [1, 1M ,1] (or
equivalently, via ≈, 1+ = 1). We now define an “inversion map” on L+

0 by [x−1, f, y] 7→
[y−1, f−1, x]. (That this is indeed a well-defined involutory bijection of L+

0 will be shown
in the proof of lemma 5.12, immediately below.) We extend the inversion on L+

0 to all
of L+ in the obvious way, by forming the union with the inversion on L.
Lemma 5.12. L+, with the above product, identity element, and inversion, is a partial
group.

Proof. That D+ contains L+ as words of length 1 is immediate from the definition, as
is the fact that u ◦ v ∈ D+ implies u, v ∈ D+. Thus 2.1(1) holds for L+. That Π+

restricts to the identity map on L+, and that Π+ is multiplicative is immediate from the
definition of Π+, and so points (2) and (3) of 2.1 hold for L+. It remains to check that
inversion is well defined and that L+ satisfies 2.1(4).

Let θ = (x−1, g, y) ∈ Θ and set θ−1 = (y−1, g−1, x). The conditions on x (immediately
following 5.4) which define θ as being in Θ are that T ≤ Sx and that T x ≤ S and
NSx(T )

x = NS(T
x); and these are the same conditions on x that are required in order

that θ−1 be in Θ. The analogous set of conditions applies to y, by symmetry, so we
obtain θ−1 ∈ Θ. Now let θ = (x−1, f , y) ∈ Θ, with θ ∼0 θ. Thus T

x = T x, T y = T y, and

(*) (xx−1)λ · g = g · (yy−1)λ.

The condition (*) concerns multiplication in the group M , where inversion and straight-
forward manipulation yields

(yy−1)λ · g−1 = g−1 · (xx−1)λ.

This shows that θ−1 ∼0 θ
−1

. Now suppose that f ∈ L and that θ ∼1 f . This means that
g ∈ Im(λ), (x−1, gλ−1, y) ∈ D, and f = Π(x−1, gλ−1, y). Then f−1 = Π(y−1, g−1λ−1, x)
by 2.2(f), and so θ−1 ∼1 f

−1. This completes the verification that there is a well-defined
mapping [x−1, g, y] 7→ [y−1, g−1, x] on ≈-classes, and which agrees with the inversion map
from L on L+

0 ∩ L. Evidently, this inversion map on L+ is then an involutory bijection.
One readily verifies that u−1 ◦u ∈ D+ if u ∈ D+, and that then Π+(u−1 ◦u) = 1+. Thus
2.1(4) holds for L+, and L+ is a partial group. �

Let ∆+ be the union of ∆ with the set of subgroups P of S such that P contains an
F-conjugate of T . We now have a candidate, in the partial group L+, for a locality whose
set of objects is ∆+. In order to establish the conditions (O1) and (O2) for objectivity
in 2.5, it must be shown that if A is an object in ∆+, and C ∈ L+ with AC ≤ S, then
either C ∈ L or else C is of the form [x−1, g, y] with T x = A and T y = AC . This is
not immediate, since the statement “AC ≤ S” merely says that for each a ∈ A, we have
(C−1, a, C) ∈ D+ and aC ∈ S. The following lemma addresses this issue.
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Lemma 5.13. Let θ = (x−1, g, y) ∈ Θ, let C be the ≈-class of θ, and let A be an
F-conjugate of T such that AC ≤ S.

(a) If θ ≈ f ∈ L, then A ≤ Sf .
(b) If C ∩ L = ∅, then A = T x and AC = T y.

Proof. (a): Let a ∈ A and set b = aC . Set P = Sf and Q = P f . Then (a−1, f, b) ∈ D
via (P a, P,Q,Qb), since a and b are elements of S, and similarly (a, f) and (f, b) are in
D.

Set w = (C−1, a, C). As w ∈ D+ we have also (a,C) ∈ D+ and the axioms 2.1 for a
partial group yield

Π+(a,C) = Π+((C) ◦ w) = Π+(C,Π+(w)) = Π+(C, b).

(In particular, (C, b) ∈ D+.) Since Π+(C−1, a, C) = b = Π(f−1, f, b) = Π+(C−1, C, b)
by 5.11, left cancellation and 5.11 yield Π(a, f) = Π(f, b). Then

f = Π(a−1, a, f) = Π(a−1, f, b),

by 2.2(e). Since conjugation by a−1fb carries P a to Qb, we conclude that P a ≤ Sf . That
is, P a = P , and then (f−1, a, f) ∈ D (via Q). Apply 5.11 to get af = b in the partial
group L. Thus a ∈ Sf , and (a) holds.

(b): Here C is a ∼0-class by 5.8(a). Set U = T x and V = T y, and recall that U and
V depend only on C, by 5.6. Again let a ∈ A and set b = aC . As (C−1, a, C) ∈ D+,
it follows that (C−1, a, C) ∈ D+ via (V,U,U, V ), and thus a ∈ NS(U). Similarly, b ∈
NS(V ). Then, by (1) in the definition of Θ, both ax

−1

and by
−1

are in NS(T ).
Set w = (a−1x−1,1, xa2) ∈ W(L), and observe that w ∈ D via NS(U), and that

also w ∈ D+ via (U, T, T, U). In particular, we get a ∼1 D := [a−1x−1, 1M , xa
2]. The

representatives (y−1, g−1, x) of C−1, (a−1x−1, 1M , xa
2) of D, and (x−1, g, y) of C have

the property that Π+(C−1, D,C) may be given in terms of these representatives. That
is, we have

Π+(C−1, a, C) = Π+(C−1, D,C) = [y−1, g−1(xax−1)g, y)] = [y−1, (ax
−1

)g, y],

since the products x(a−1x−1) and (xa2)x−1 are defined in L and lie in NL(T ). As aC = b,
we then have

b ≈ (y−1, (ax
−1

)g, y).

The reader may verify that y ∼1 (y, 1M ,1) and that

v := ((1, 1M , y), (y
−1, (ax

−1

)g, y), (y−1, 1M ,1)) ∈ D+,

and further that
Π+(v) = [1, (ax

−1

)g,1].
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Then, appealing to 5.9(b), we get

(1, by
−1

,1) ∼1 b
y−1

∼1 (1, (ax
−1

)g,1).

Now (1, by
−1

,1) ∼0 (1, (ax
−1

)g,1) by 5.7(a). A glance at the diagram following the

definition of ∼0 will now convince the reader that by
−1

= (ax
−1

)g. Thus (Ax
−1

)g = By
−1

,
and we obtain a sequence of conjugation maps (between subgroups of S) as follows.

UA
x−1

−−→ TAx
−1 g−→ TBy

−1 y−→ V B.

Since C /∈ L, it follows that UA /∈ ∆, whence A = U and B = V . This completes the
proof of (b). �

The following two theorems, along with proposition 1.10 above, form the foundation
for our proof of the Main Theorem.

Theorem 5.14. Assume hypothesis 5.3 and let ∆+ be the union of ∆ with the set of
subgroups P of S such that P contains an F-conjugate of T . Then (L+,∆+, S) is an
F-natural locality, and moreover:

(a) The isomorphism λ : NL(T ) → L∆T
(M) extends in a unique way to an isomor-

phism λ+ : NL+(T ) →M of groups, such that

(*) [x−1, g, y]λ+ = ΠM (x−1λ, g, yλ)

for any x, y ∈ NL(T ).
(b) If L is a ∆-linking system and CM (T ) ≤ T , then L+ is a ∆+-linking system.

Proof. Let w = (C1, · · · , Cn) ∈ W(L+) and (U0, · · · , Un) ∈ W(∆+), with UCi
i−1 = Ui for

all i, (1 ≤ i ≤ n). Suppose first that U0 (and hence each Ui) is an L-conjugate of T .
Then 5.13 implies that w ∈ D+

0 . On the other hand, if U0 ∈ ∆ then each Ui is in ∆, and
w ∈ D. Thus, either way, we get w ∈ D+, so that (L+,∆+) satisfies the condition (O1)
in the definition 2.6 of objectivity.

We next check that L+ is F-natural. For P and Q in ∆ we have HomL+(P,Q) =
HomL(P,Q) by construction, so HomL+(P,Q) = HomF (P,Q) in this case. Now let U
and V be L-conjugates of T , and let C ∈ NL+(U, V ). If C ≈ f for some f ∈ L then Uf =
V ; and since cf : Sf → S is an F-homomorphism we conclude that cC : U → V is an
F-homomorphism. On the other hand, suppose that C ∈ L+−L, and let (x−1, g, y) ∈ C.
Then 5.13 yields T x = U and T y = V . Here FNS(T )(M) = NF (T ) by hypothesis, so each
of cx, cgλ−1 , and cy is an F-homomorphism, and then so is cC . Thus HomL+(U, V ) ⊆ F ,
and L+ is F-natural. Then also L+ satisfies the condition (O2) for objectivity, and so
(L+,∆+) is an objective partial group.

By definition, S is the unique maximal member of ∆+. Since NL+(S) = NL(S) it
follows that also S is maximal in the poset of finite p-subgroups of L+, and so L+ satisfies
the conditions (L1) and (L2) in definition 2.9. As L and M are finite, so is the set Θ of
triples (x−1, g, y), and thus L+ is a locality.
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Set H = NL+(T ) and K = NL(T ). Let C = [x−1, g, y] ∈ H. Then x, y ∈ K,
and C = [1, (x−1λ)g(yλ),1]. Because of this, it is now readily verified that there is
a well-defined mapping λ+ : H → M given by C 7→ (x−1λ)g(yλ), that λ+ coincides
with λ on K, and that λ+ is a homomorphism of groups. Suppose that C ∈ Ker(λ+).
Then (x−1λ)g(yλ) = 1M , so g = (xy−1)λ ∈ Im(λ), and then (x−1, g−1, y) ∼1 1. Thus
Ker(λ+) = 1, and λ+ is then an isomorphism since M is finite. The uniqueness of λ+ is
immediate from the condition (*), so (a) holds.

Suppose next that L is a ∆-linking system and that CM (T ) ≤ T . Let U ∈ ∆+

with U /∈ ∆. There is then a unique F-conjugate U0 of T contained in U , and hence
NL+(U) ≤ NL+(U0). As L+ is F-natural, there exists C ∈ L+ such that (U0)

C = T .
Conjugation by C induces an isomorphism of NL+(U0) with NL+(T ), and hence withM .
Since CM (X) ≤ X for any p-subgroup X ofM containing T , it follows that CL+(U) ≤ U .
By construction, NL+(P ) = NL(P ) for P ∈ ∆, so we conclude that L+ is a ∆+-linking
system. Thus (b) holds. �

We write also L+(λ) for the locality constructed by 5.14, in order to emphasize its
dependence on the isomorphism λ : NL(T ) → L∆T (M). In the same vein, we may write
L+
0 (λ) for the partial subgroup L+

0 of L+.

Theorem 5.15. Assume Hypothesis 5.3, and let ∆+ be the union of ∆ with the set of
all subgroups of S which contain an F-conjugate of T .

(a) Let L∗ be a locality via the set ∆+ of objects, let L′ be the restriction of L∗

to ∆, let β : L → L′ be a rigid isomorphism, and let βT : NL(T ) → NL′(T )
be the isomorphism induced by restriction of β. Assume that there is given an
isomorphism µ : M → NL∗(T ) of groups, such that µ restricts to the identity
map on NS(T ). Let µ0 be the restriction of µ to L∆T

(M), and set λ = βT ◦µ−1
0 .

Then there exists a unique isomorphism β+ : L+(λ) → L∗ such that β+ restricts
to β on L and to λ+ ◦ µ on NL+(λ)(T ).

(b) Let (L,∆, S) and (L′,∆, S) be localities having the same set ∆ of objects, let
β : L → L′ be a rigid isomorphism, and let βT : NL(T ) → NL′(T ) be the rigid
isomorphism given by restriction of β. Further, let λ : NL(T ) → L∆T (M) and
λ′ : NL′(T ) → L∆T

(M) be rigid isomorphisms, and let µ0 be the automorphism
λ−1 ◦ βT ◦ λ′ of L∆T (M).
(i) There exists an isomorphism β+ : L+(λ) → (L′)+(λ′) extending β if and

only if µ0 extends to an automorphism µ of M .
(ii) Let µ be an extension of µ0 to M . Then there is a unique isomorphism

β+ : L+(λ) → (L′)+(λ′) having the property that β+ restricts to β on L
and to λ+ ◦µ ◦ ((λ′)+)−1 on NL+(T ). Moreover, β+ is then given explicitly
on L+

0 (λ) by

[x−1, g, y] 7→ [x−1β, gµ, yβ]

for (x−1, g, y) ∈ Θ.
(c) Suppose that there exists a rigid isomorphism NL(T ) → L∆T (M), and that all

rigid automorphisms of L∆T
(M) are M -equivalent (as defined in 5.2). Then, up
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to rigid isomorphism, there exists a unique locality (L∗,∆+, S) whose restriction
to ∆ is L, and having the property that NL∗(T ) is equal to M .

We now prove the points (b), (a), and (c) of 5.15, in that order.

Proof of 5.15(b). Set N = NL(T ) and N
′ = NL′(T ). Let Θ′ be the subset of L′×M ×L′

defined by the conditions immediately following 5.4, but now with respect to λ′. In order
to avoid confusion, we shall distinguish the relations ∼0, ∼1 and ≈ in the two cases,
by the following sort of notational device. Thus, for example, if ϕ = (x−1, g, y) and
ϕ = (x−1, g, y) are in Θ′, then we shall write, for example,

ϕ ∼0 ϕ (rel λ′)

to indicate that the products xx−1 and yy−1 exist, and are elements of N ′, and satisfy
the condition

(xx−1)λ′ · g = g · (yy−1)λ′.

The expressions “f ∼1 θ (rel λ′)”, and “f ≈ θ (rel λ′)” should be understood similarly.
The relations ∼0, ∼1, and ≈ on Θ will be provided with a corresponding “rel λ” in order
to lend emphasis to this distinction.

Set µ0 = λ−1 ◦ βT ◦ λ′ and assume that µ0 extends to an automorphism µ of M . Let
α be the mapping on Θ given by

α : (x−1, g, y) 7→ ((xβ)−1, gµ, yβ).

Since β is rigid, Tβ = T , and from this it is easily verified that Im(α) ⊆ Θ′. There is an
obvious inverse to α, so in fact α is a bijection Θ → Θ′.

We claim that α sends ∼0-classes (rel λ) to ∼0-classes (rel λ′). Namely, let θ and θ
be elements of Θ, written in the usual way, and assume that θ ∼0 θ (rel λ). Setting
a = xx−1 and b = yy−1, we then have (aλ) · g = g · (bλ) in M . Applying µ, we obtain
(aβ)λ′ · gµ = gµ · (bβ)λ′, and thus ((xβ)−1, gµ, yβ) ∼0 ((xβ)−1, gµ, yβ) (rel λ′). This
proves the claim.

Now let f ∈ L, and suppose that f ∼1 θ (rel λ). That is, suppose that there exists h ∈
N with g = hλ, that (x−1, h, y) ∈ D, and that f = Π(x−1, h, y). Then ((xβ)−1, hβ, yβ) ∈
D′ and fβ = Π′((xβ)−1, hβ, yβ). Since (hβ)λ′ = gµ, we conclude that α sends ∼1-classes
(rel λ) into ∼1-classes (rel λ′). By 5.8 and 5.9, any ≈-class C relative to λ is either a
∼0-class or is of the form {f}∪X where X is the set of all θ ∈ Θ such that f ∼1 θ. Since
the same is true for ≈-classes relative to λ′, we conclude that α respects the ≈-relations
relative to λ and λ′.

Set L+ = L+(λ) and (L′)+ = (L′)+(λ′), and similarly define L+
0 and (L′

0)
+. Thus α

induces a mapping

(*) γ : L+
0 → (L′

0)
+, ([x−1, g, y] 7→ [(xβ)−1, gµ, yβ]),

and fγ = fβ for all f ∈ L such that f ∼1 θ for some θ ∈ Θ. Since L+ is the union of L
with L+

0 , α extends to a mapping

γ : L+ → (L′)+,
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which restricts to the identity map on L. Further, since all of the above arguments can
be carried out with α−1 in place of α, γ is a bijection.

We next show that γ is a homomorphism of partial groups. Set D(λ) = D((L′)+(λ)),
and similarly define D(λ′). Let Π+ and (Π′)+ be the corresponding products. Let
w = (C1, · · · , Cn) ∈ D(λ) and set Q = Sw. If Q contains no L-conjugate of T then Ci ∈ L
for all i, wγ∗ = wβ∗, and hence (Π′)+(wγ∗) = (Π+(w))γ. On the other hand, suppose
that Q contains an L-conjugate of T . Then Ci = [x−1

i , gi, yi] for some (x−1
i , gi, yi) ∈ Θ,

and Π+
λ′(wγ∗) = [(x1β)

−1,ΠM (u0), ynβ], where

u0 = (g1µ, (y1x
−1
2 )βλ′, · · · , (yn−1x

−1
n )βλ′, gnµ).

One observes that u0 = w0µ
∗, where

w0 = (g1, (y1x
−1
2 )λ, · · · , (yn−1x

−1
n )λ, gn),

and hence (Π′)+(wγ∗) = (Π+(w))γ, and γ is a homomorphism. Since the roles of (L, λ)
and (L′, λ′) can be reversed γ is then an isomorphism, and γ is rigid since β is rigid.

Set N+ = NL+(T ) and (N ′)+ = N(L′)+(λ′)(T ), and suppose that there is given an

isomorphism σ : L+(λ) → (L′)+(λ′) such that σ restricts to β on L. Let σT : N+ →
(N ′)+ be the isomorphism induced by σ. Then µ0 extends to the automorphism ν =
(λ+)−1◦σT ◦(λ′)+ ofM , and this completes the proof of (bi). In order to obtain (bii), one
need only observe that the formula (*) defines the unique mapping L+(λ)0 → L+(λ′)0
which, in union with β, defines a homomorphism β+ : L+ → (Λ′)+ which restricts to β
on L and to λ+ ◦ µ ◦ ((λ′)+)−1 on N+. �

Proof of 5.15(a). Let λ′ : NL′(T ) → L∆T
(M) be the restriction of µ−1 to NL′(T ).

To simplify the notation, we shall write L(λ) for L+(λ), and L′(λ′) for (L′)+(λ′). Set
LT = NL(T ) and L(λ)T = NL(λ)(T ), and similarly define L′

T and L′(λ′)T . Also, set
L∗
T = NL∗(T ), and let µ0 : L∆T

(M) → L′
T be the restriction of µ.

Suppose first that 5.15(a) holds in the case where L = L′ and where β is the identity
map on L. We shall show that 5.15(a) then holds in generality. Thus, taking (L′, λ′) in the
role of (L, λ), the assumed special case of 5.15(a) yields an isomorphism ϕ : L′(λ′) → L∗

such that ϕ restricts to the identity on L′ and to (λ′)+ ◦ µ on L′(λ)T .

Since λ = βT ◦ µ−1
0 by hypothesis, we have

λ−1 ◦ βT ◦ λ′ = µ0 ◦ β−1
T ◦ βT ◦ µ−1

0 = idL∆T
(M).

Thus λ−1 ◦ βT ◦ λ′ extends to the identity automorphism of M . By 5.15(b) (proved
above) there then exists an isomorphism γ : L(λ) → L′(λ′) whose restriction to L is β,
and whose restriction to L(λ)T → L′(λ′) is λ+ ◦ ((λ′)+)−1. Now set β+ = γ ◦ ϕ. Then
β+ restricts to β : L → L′, and on L(λ)T to

(λ+ ◦ ((λ′)+)−1) ◦ ((λ′)+ ◦ µ) = λ+ ◦ µ.
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Thus, β+ fulfills the requirements of the statement of 5.15(a). The uniqueness of β+

subject to the given conditions follows in the usual way (for example, as in the proof of
uniqueness in 5.15(b)), and is omitted.

We assume for the remainder of the proof that L = L′ and that β is the identity
automorphism of L. Then also βT is the identity automorphism of LT , and λ−1 = µ0.

Let θ = (x−1, g, y) ∈ Θ. Then (x−1, gµ, y) ∈ D∗ via the object T x, and one checks
that the product Π∗(x−1, gµ, y) in L∗ remains unchanged when θ is replaced by any θ
such that θ ∼0 θ. In some detail: let θ = (x−1, g, y) with θ ∼0 θ. Then T

x = T x by 5.6.
Since µ0 = λ−1 we get

Π∗(x−1, gµ, y) = Π∗(x−1, xx−1, gµ, yy−1, y) = Π∗(x−1, g, y).

Suppose next that f ∈ L with f ∼1 θ. Then g = hλ for some h ∈ NL(T ), (x
−1, h, y) ∈

D, and f is equal to the product x−1hy in L. This yields

Π∗(x−1, gµ, y) = Π∗(x−1, h, y) = f,

since β is the identity automorphism of L. Now 5.9(b) implies that Π∗(x−1, gµ, y) de-
pends only on the ≈-class of θ, and we have a well-defined mapping γ0 : L+

0 → L∗ given
by

γ0 : [x−1, g, y] → Π∗(x−1, gµ, y)

and which restricts to the identity map on L+
0 ∩ L. One also observes that

[x−1, g, y]λ+ = ΠM (x−1λ, g, yλ),

for [x−1, g, y] ∈ NL+(T ).
We now define the mapping γ : L+ → L∗ to be the union of the identity map on L

with γ0. Notice that if C = [x−1, g, y] ∈ NL+(T ), then

Cλ+ = (x−1λ · g · yλ) and (x−1λ · g · yλ)µ = Π∗(x−1, gµ, y).

Thus the restriction of γ to NL+(T ) is λ+ ◦ µ.
We next show:

(1) Let C ∈ L+, set f∗ = Cγ, and let a ∈ S. Then

aC ∈ S ⇐⇒ (af
∗
∈ S and aC = af

∗
).

The proof is as follows. First, let C = [x−1, g, y] ∈ L+
0 −L, and let (U, V ) be the pair

of F-conjugates of T , uniquely determined by C, such that U = T x and V = T y. Then

Ux
−1

= T = T g = V y
−1

. For any a ∈ U we then get

aC = ((ax
−1

)g)y

= (((ax
−1

)g)µ)y (as µ is rigid)(*)

= ((ax
−1

)gµ)y (again as µ is rigid)

= aCγ
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as Cγ = Π∗(x−1, gµ, y).
More generally, we find that (*) holds for C ∈ L+

0 and any a ∈ SC . Namely, if C∩L =
{f} and a ∈ Sf , then a = aγ and f = fγ, and hence aC = af = (af )γ = afγ = aCγ .

One observes that (1) and (*) may be read “in reverse”. Namely, if f∗ ∈ L∗, and
f∗ = Cγ with C ∈ L+

0 − L, then af∗
= aC for any a ∈ S such that af

∗ ∈ S. Finally, in
the case that C ∈ L+ with C ∩L ̸= ∅, there is really nothing to show since S ≤ L. Thus
(1) holds.

We may now show that γ is a homomorphism of partial groups. Namely, let γ∗ be
the map W(L+) → W(L∗) induced by γ. Let w ∈ D+, set X = Sw, and suppose first
that X ∈ ∆. Then w ∈ D(L) via X, and w = wγ∗. On the other hand, suppose that
X /∈ ∆. Then w = (C1, · · · , Cn) where Ci ∈ L+

0 , and there is a uniquely determined

sequence (U0, · · · , Un) of F-conjugates of T such that UCi
i−1 = Ui for all i from 1 to n.

Set f∗i = Ciγ and set w∗ = (f∗1 , · · · , f∗n). Then (1) yields U
f∗
i
i−1 = Ui for all i, and thus

w∗ ∈ D∗. The verification that

Π∗(w∗) = (Π+(w))γ,

and thus that γ is a homomorphism, is now a formality. We treat the case n = 2 in
detail; and for this it suffices to consider the case where w = (C1, C2) ∈ D+

0 , since the
restriction of γ to L is the identity map. Let θi = (x−1

i , gi, yi) ∈ Ci, with (y1, x
−1
2 ) ∈ D

and with y1x
−1
2 ∈ NL(T ). Then Π+(w) = [x−1

1 , g1 · (y1x−1
2 )λ · g2, y2], and

Π+(w)γ = Π∗(x−1
1 , (g1 · (y1x−1

2 )λ · g2)µ, y2)
= Π∗(x−1

1 , g1µ · (y1x−1
2 )λµ · g2µ, y2)

= Π∗(x−1
1 , g1µ · y1x−1

2 · g2µ, y2)
= Π∗(x−1

1 , g1µ, y1, x
−1
2 , g2µ, y2)

where the last line is obtained by observing that (1) implies that

(x−1
1 , g1µ, y1, x

−1
2 , g2µ, y2) ∈ D∗.

Now

Π∗(x−1
1 , g1µ, y1, x

−1
2 , g2µ, y2) = Π∗(x−1

1 (g1µ)y1, x
−1
2 (g2µ)y2) = Π∗(w∗).

The case w = (C1, · · · , Cn) with n > 2 differs in no essential way from the case n = 2,
so the above argument establishes that γ is a homomorphism.

The next step will be to show:

(2) For each P,Q ∈ ∆+, the mapping γP,Q : NL+(P,Q) → NL∗(P,Q) is surjective.

Of course, we may assume that NL∗(P,Q) is non-empty. If P ∈ ∆ then Q ∈ ∆ and
γP,Q = βP,Q is bijective. So assume that P /∈ ∆. Then P contains a unique L-conjugate
U of T , and hence U E P . Let f∗ ∈ NL∗(P,Q) and set V = Uf

∗
. By 5.4(b) there exist
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elements x, y ∈ L with T x = U and T y = V , and such that NSx(T )
x = NS(U) and

NSy (T )
y = NS(V ). Then (x, f∗, y−1) ∈ D∗ via T , and we set h∗ = Π∗(x, f∗, y−1). Then

(x−1, x, f∗, y−1, y) ∈ D∗ via U , so f∗ = Π∗(x−1, h∗, y) by 2.1(3). Moreover, we have
h∗ ∈ NL∗(T ). Now [x−1, h∗µ−1, y] is mapped to f∗ by γ, and so (2) holds.

Next, we show:

(3) Ker(γ) = 1.

As γ |L= id, the set of non-identity elements of Ker(γ) is contained in L+
0 . Let C =

[x−1, g, y] ∈ Ker(γ), and let U, V be the conjugates of T associated with C by 5.6. Then
1∗ = Cγ = Π∗(x−1, gµ, y), and (1) implies that U = V = T . Then C = [1, x−1λ · g ·
yλ,1] ∈ NL+(T ). Since µ is injective, we conclude that C = 1+, and thus (3) holds.

Since Sh ∈ ∆ for all h ∈ L′ it is immediate from (2) that γ is surjective, and from
(1) that Sf = Sfγ for all f ∈ L. Then (3) and 3.6 imply that γ is an isomorphism,
and hence a rigid isomorphism by construction. Thus, it remains only to establish the
uniqueness of γ, subject to the conditions that γ |L= idL and that γ |NL(T )= λ+ ◦µ. Let
γ′ : L+ → L∗ be another such isomorphism. Then, for any C = [x−1, g, y] ∈ L+

0 , we get

Cλ′ = ([x−1, 1M ,1][1, g,1][1, 1M , y])λ
′ = Π∗(x−1, gµ, y) = Cλ,

and this completes the proof. �

Proof of 5.15(c). Assuming that there exists a rigid isomorphism NL(T ) → L∆T
(M),

5.14 yields the existence of a locality (L∗,∆+, S) with the required properties, and 5.5(b)
implies that L∗ is rigidly isomorphic to some L+(λ). Assuming further that all rigid
automorphisms of L∆T (M) are M -equivalent, 5.15(b) yields the uniqueness of L∗ up to
rigid isomorphism. That is, 5.15(c) holds, and the proof is complete. �

This completes the proof of theorem 5.15.

It will be convenient, for the applications in the next two sections, to state a corollary
concerning a special case of 5.15.

Corollary 5.16. Assume hypothesis 5.3, and let (L∗,∆+, S) be a locality such that the
restriction of L∗ to ∆ is equal to L, and with NL∗(T ) =M . Let β be a rigid automorphism
of L and let λ := βT be the automorphism of NL(T ) given by restricting β.

(a) There exists a unique rigid isomorphism α : L+(λ) → L∗ such that β is the
restriction of α to L, and such that λ+ is the restriction of α to NL+(λ)(T ).

(b) β extends to an automorphism of L∗ if and only if λ extends to an automorphism
of M .

Proof. The locality L∗ is rigidly isomorphic to a locality of the form L+(λ), by 5.15(a)
(and with µ the identity automorphism of M). Then also 5.15(a) yields an isomorphism
α : L+(λ) → L∗ with the properties required in point (a). Point (b) is then given by
5.15(b).
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Definition 5.17. Let (L,∆, S) be a locality with fusion system F = FS(L). Let (∆i)
N
i=0

be a sequence of subsets of ∆, and let (Ri)
N
i=0 be a sequence of subgroups of S, such that

each Ri is fully normalized in F . Then (∆i, Ri)
N
i=0 is an F-filtration of ∆ if the following

conditions hold.

(1) R0 is weakly closed in F , and ∆0 is the set of overgroups of R0 in S.
(2) For i > 0, ∆i is the union of ∆i−1 with the set Ri of subgroups of S which

contain an F-conjugate of Ri.
(3) For any U, V ∈ Ri, ⟨U, V ⟩ ∈ Ri−1 if and only if U ̸= V .
(4) ∆ = ∆N .

Lemma 5.18. Let (L,∆, S) be a locality, let F = FS(L) be its fusion system, and let
R ∈ ∆ be weakly closed in F . Then there exists an F-filtration F = (∆i, Ri)

N
i=0 for L,

such that R0 = R, and such that, for all i > 0, Ri is of maximal order among subgroups
of S in ∆i −∆i−1.

Proof. Take R0 = R and let ∆0 be the set of all overgroups of R in S. Then ∆0 is
F-invariant as R is weakly closed in F . Now let m be an index with 1 ≤ m ≤ N . Now
suppose that ∆m−1 has been given, and that ∆m−1 is F-invariant and overgroup closed
in S, and that ∆m−1 ̸= ∆. Choose Q ∈ ∆ − ∆m−1 so that |Q| is as large as possible,
and let Rm be a fully normalized F-conjugate of Q. Define ∆m to be the union of ∆m−1

with the set of subgroups of S which contain an F-conjugate of Rm. Then ∆m is F-
invariant and overgroup closed, so the process may be iterated until arriving at an index
N with ∆N = ∆. The points (1), (2), and (4) of definition 5.17 are given at once by this
construction, while point (3) is immediate from the maximality in the choice of Rm. �

Section 6: The reduction to FF -pairs

Our aim in this section is to establish the Main Theorem, modulo a result (Proposition
6.10) on localities in finite groups. In order to state that result (to be proved in the
following section), we begin by reviewing some notions from finite group theory.

For any finite p-group P , the set of elements z ∈ Z(P ) such that zp = 1 is a character-
istic subgroup of P , often denoted Ω1(Z(P )), but which we shall write as ZP . A p-group
V is elementary abelian if V = ZV . Equivalently, V is elementary abelian if V is the

underlying group of a finite-dimensional vector space Ṽ over the field Fp of p elements.
Let A be a group, and let D be a group on which A acts (from the right). Then [D,A]

is by definition the subgroup of D generated by the set of commutators [g, a] = g−1a−1ga
(g ∈ D, a ∈ A). If [D,A] ≤ CD(A) one says that A acts quadratically on D, and one also
expresses this condition by writing [D,A,A] = 1.

We begin with two elementary (and well-known) results.

Lemma 6.1. Let D be an abelian p-group admitting action (from the right) by a group
X, and set V = ZD. Let A be the set of elements a ∈ X of order p such that [D, a, a] = 1,
and suppose that G = ⟨A⟩. Then [D,G] ≤ V .
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Proof. Let g ∈ D, let a ∈ A, and set h = [g, a]. Then h ∈ CD(a), and so h = ha
k

for all
integers k. Thus:

h = g−1ga = (ga)−1ga
2

= · · · = (ga
p−1

)−1ga
p

.

One then observes that hp = g−1ga
p

, and then hp = 1 since ap = 1.
Since D is abelian, we have [g, a]−1 = [g−1, a], and [g1g2, a] = [g1, a][g2, a] for all

g1, g2 ∈ D. Thus
V ≥ {[g, a] | g ∈ D, a ∈ A} = [D,G].

�
Lemma 6.2. Let X be a finite group, let S be a Sylow p-subgroup of X, and let D be
an abelian p-group. Assume that there is given an action X → Aut(D) of X on D. Set
V = ZD, and set

W = [V,Op(X)]CV (X)/CV (X).

Then the following hold.

(a) CD(S) ≤ [D,Op(X)]CD(X).
(b) Suppose that X = KS, where K E X is generated by elements that act quadrati-

cally on D. Then CD(S) = CV (S)CD(X).
(c) Suppose that [CW (S), X] = 1. Then [CD(S), X] = 1.

Proof. As X = Op(X)S there exists a right transversal {x1, · · · , xr} for S in X such that
each xi is in O

p(X). Thus Ω = {Sx1, · · · , Sxr} is the set of right cosets of S in X, and
each x ∈ X defines a permutation of Ω, by right multiplication. That is, (Sxi)x = Sxj
for some j. Let g ∈ CD(S), and set

h = gx1 · · · gxr .

Then hx = h for all x ∈ X, while also

h = gr[g, x1] · · · [g, xr] = grd,

where d ∈ [D,Op(X)]. As (p, r) = 1 and D is a p-group, we get hn = gdn for some n,
and thus g = d−nhn ∈ [D,Op(X)]CD(X). That is, point (a) holds.

We continue the preceding setup in order to prove:

(*) If [CV (S), X] = 1 then [CD(S), X] = 1.

Suppose by way of contradiction that [CV (S), X] = 1 but that [CD(S), X] ̸= 1. The
element g in the proof of (a) may then be chosen so that g /∈ CD(X) and with gp ∈
CD(X). Then gp ̸= 1. As (gx)p = (gx)p = gp for all x ∈ X, we get hp = gpr (where
h is defined as in the proof of (a)), and then hp ̸= 1 as r is relatively prime to p. Set
D0 = ⟨dp | d ∈ D⟩. We may assume that D = ⟨gX⟩, so D0 = ⟨gp⟩ = ⟨hp⟩ is cyclic. Then
D = V ⟨h⟩, and CD(S) = CV (S)⟨h⟩ = CD(X). This contradiction completes the proof
of (*).
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Now suppose that [CW (S), X] = 1. Applying (a) with V in the role of D, we obtain
CV (S) ≤ [V,X]CV (X). Then [CV (S), X] ≤ CV (X) by the definition of W , and so
[CV (S), O

p(X)] = 1. As X = Op(X)S, (c) is proved.
Finally, assume the hypothesis of (b). Then Op(X) ≤ K, and [D,Op(X)] ≤ V by 6.1.

Then (a) yields CD(S) ≤ CD(X)V , so

CD(S) = CD(S) ∩ CD(X)V = CD(X)(CD(S) ∩ V ) = CD(X)CV (S),

and (b) holds. �
Definition 6.3. Let M be a finite group, let S a Sylow p-subgroup of M , and set
Y = Op(M). Then M is p-reduced, and (M,S, Y ) is a reduced setup, if

CM (Y ) ≤ Y, CS(Z(Y )) = Y and Op(M/CM (Z(Y ))) = 1.

Lemma 6.4. Let (M,S, Y ) be a reduced setup, and set D = Z(Y ), V = ZY , and
G = M/CM (Z(Y )). Let A be an abelian p-subgroup of G. Then V = ZD, and the
following hold.

(a) CM (D) = CM (V ).
(b) If A acts quadratically on V then A is elementary abelian. In particular, if A

acts quadratically on D, then A is elementary abelian.

Proof. Evidently V = ZD, and CM (D) ≤ CM (V ) EM . But also Op(CM (V )) ≤ CM (D),
by [Theorem 5.3.10 in Gor]. Thus, the image of CM (V ) in M/CM (D) is a normal p-
subgroup of M/CM (V ), and then since M is p-reduced we obtain point (a). Point (b) is
given by [9.1.1(c) in KS]. �

The following result shows how to isolate a reduced setup from any finite group M
such that CM (Op(M)) ≤ Op(M).

Lemma 6.5. Let M be a finite group with CM (Op(M)) ≤ Op(M), and let S be a Sylow
p-subgroup of M . Then there exists a unique largest (with respect to inclusion) subgroup
D of Z(Op(M)) such that Z(S) ≤ D EM and such that Op(M/CM (D)) = 1. Moreover,
the following hold for Y := CS(D), H := NM (Y ), and F := FS(M).

(a) (H,S, Y ) is a reduced setup.
(b) Y is strongly closed in F .

Proof. We aim first of all to define subgroups Yk and Dk of S, for all k ≥ 0, with the
following properties:

(1) Yk is strongly closed in F , and CM (Yk) ≤ Yk.
(2) Dk = Z(Yk) EM .

The conditions (1) and (2) are satisfied by Y0 := Op(M) and D0 = Z(Y0). We shall
define Yk and Dk for k ≥ 1, in the following recursive way. Take Yk to be the pre-image
in S of Op(M/CM (Dk−1)) and take Dk = Z(Yk). We now check that the conditions (1)
and (2) hold for Yk and Dk under the asssumption that they hold for Yk−1 and Dk−1.
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As Dk−1 EM , also CM (Dk−1) EM , and then CM (Dk−1)P EM where P is defined
to be the pre-image in S of Op(M/CM (Dk−1)). As P is a Sylow p-subgroup of the
normal subgroup CM (Dk−1)P of M , P is strongly closed in F . Again as P is Sylow
in CM (Dk−1)P , we have CS(Dk−1) ≤ P , and so Yk−1 ≤ P . As CM (Yk−1) ≤ Yk−1 we
obtain CM (P ) ≤ P , and Z(P ) ≤ Z(Yk−1) = Dk−1. Here M = CM (Dk−1)NM (P ) by the
Frattini Lemma, so Z(P ) EM . Thus (1) and (2) hold where Yk = P and Dk = Z(P ).

As M is finite there exists n minimal subject to Dn = Dn+1. Set D = Dn and
Y = Yn+1. Then CS(D) ≤ Y and D = Z(Y ), so Y = CS(D) is a Sylow p-subgroup
of CM (D). The Frattini Lemma yields M = CM (D)H where H = NM (Y ). Also
Y CM (D)/CM (D) = Op(M/CM (D)), so as Y ≤ CM (D) we have Op(M/CM (D)) = 1.
Since M = CM (D)H we get M/CM (D) ∼= H/CH(D), so also Op(H/CH(D)) = 1. As
Op(H)CH(D)/CH(D) ≤ Op(H/CH(D)) = 1 it follows that Op(H) ≤ CS(D) = Y , so
Op(H) = Y . Since CH(Y ) ≤ Y by (1), (H,S, Y ) is then a reduced setup.

We now establish the uniqueness and maximality of D. Thus, let U be a subgroup
of Z(Y0) such that Z(S) ≤ U E M and such that Op(M/CM (U)) = 1. It will suffice to
show that U ≤ D. Assuming otherwise, we have [U, Y ] ̸= 1. Since Op(M/CM (U)) = 1
we have U ≤ Z(Op(M)). That is, U ≤ D0, and so there is a largest index n such that
U ≤ Dn. Then CM (U)Yn+1/CM (U) is a non-identity normal p-subgroup of M/CM (U),
contrary to Op(M/CM (U)) = 1. We conclude that U ≤ D, as required. �

In what follows, the group H = NM (Y ) in the preceding lemma will be called the
reduced core of M with respect to S.

We next review the definition of a certain characteristic subgroup of an arbitrary
finite p-group S, and of some terms related to it. All of the themes, and much of the
terminology and notation that will be introduced here, have their origin in early work of
John Thompson, and they have been of fundamental importance to the p-local viewpoint
in finite group theory ever since.

Let d(S) be the maximum, taken over all abelian subgroups A of S, of the numbers |A|.
As in [Th], we take A(S) to be the set of all abelian subgroups A of S such |A| = d(S),
and we set

(*) J(S) := ⟨A(S)⟩.

Notice that J(S) is the unique subgroup of S which is isomorphic to J(S). Because
of this, the operator ”J” has the following inheritance property: If R is a subgroup of
S and J(S) ≤ R, then J(S) = J(R). In particular, J(S) is weakly closed in any fusion
system on S. One observes that J(S) has the further property that it is centric in any
fusion system on S.

Remark. The tendency in the last 30 years or more, has been to define A(S) to be the
set of elementary abelian subgroups of S of maximal order, and then to define J(S) by
the formula (*). But the formulation that we have chosen is the one which is needed for
the task at hand.
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Let G be a finite group, let D be a finite abelian p-group, and suppose that there
is given a faithful group action (from the right, as always) of G on D. An abelian p-
subgroup A of G is an offender (on D, in G) if |A||CD(A)| ≥ |D|. An offender A is
non-trivial if A ̸= 1, and A is a best offender if |A||CD(A)| ≥ |B||CD(B)| for every
subgroup B of A. A quadratic offender is an offender A such that [D,A,A] = 1. Write
AD(G) for the set of best offenders in G on D, and set JD(G) = ⟨AD(G)⟩.

We shall most often be interested in the situation where D is a normal abelian p-
subgroup of a finite group M , and where G = M/CM (D). In this case, we say that
(G,D) is an FF -pair if Op(G) = 1 and JD(G) = G. The structure of FF -pairs in the
case that D is elementary abelian is analyzed in [MS2], using the CFSG (the classification
of the finite simple groups), and the preceding terminology is adapted from [MS2].

Lemma 6.6. Let D be a finite abelian p-group and let G be a finite group acting faithfully
on D.

(a) Every non-trivial offender in G (on D) contains a non-trivial best offender.
(b) Every non-trivial best offender in G contains a non-trivial quadratic best offender.
(c) If A is a best offender in G, and U is an A-invariant subgroup of D, then

A/CA(U) is a best offender in NG(U)/CG(U) on U .

Proof. Point (a) is a triviality: If A ̸= 1 is an offender on D, one has only to choose a
subgroup B ̸= 1 of A so as to maximize |B||CD(B)|, in order to obtain a best offender
on D.

Point (b) is essentially given by the Timmesfeld replacement theorem [Ti]; but here it
must be noted that in the hypothesis of Timmesfeld’s theorem the groups D and A are
assumed to be elementary abelian. A one-page proof of this result (with the extra, but
in fact extraneous, hypothesis concerning D and A) is given as [Theorem 2 in Ch]. At
no point in the proof is the extra hypothesis used.

The argument for (c) is again a case of asking the reader to check a very short proof
(about half a page) in which there is an extraneous hypothesis as mentioned in the proof
of (b). In this case, the relevant result is [Lemma 2.5(c) in MS1]. �

Lemma 6.7. Let M be a finite group, let S ∈ Sylp(M), let D be a normal abelian p-
subgroup of M , and set G = M/CM (D). Let A ∈ A(S), and set Y = CS(D). Then the
following hold.

(a) The image of A in G is a best offender on D.
(b) J(S) � Y ⇐⇒ J(S) ̸= J(Y ) =⇒ JD(G) ̸= 1.

Proof. We provide the standard argument for the convenience of the reader. Let A be
the image of A in G, and suppose that A is not a best offender on D. Thus, there exists
a subgroup B ≤ A such that

(1) |B||CD(B)| > |A||CD(A)|.
Let B be the preimage of B in A, and set B∗ = CD(B)B. Then:

(2) CB(D) = CA(D).
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As A ∈ A(S) we have CD(A) = D ∩A, and then also D ∩A = CD(B) ∩A. Thus:
(3) CD(B) ∩A = D ∩A = CD(A).

We now obtain:

|B∗| = |CD(B)||B|/|CD(B) ∩B|
= |CD(B)||B||CB(D)|/|CD(B) ∩B|
≥ |CD(B)||B||CB(D)|/|CD(B) ∩A|
> |CD(A)||A||CA(D)|/|CD(B) ∩A| by (1) and (2)

= |CD(A)||A||CA(D)|/|CD(A)| by (3)

= |CD(A)||A|/|CD(A)| = |A|.

This contradicts the maximality of |A| among the abelian subgroups of S, and completes
the proof of (a). Point (b) follows from (a) and from the inheritance property of the
J-operator, mentioned above. �

This completes the background material for this section. The next result lists some
criteria for extending rigid automorphisms of localities within finite groups to automor-
phisms of the groups themselves.

Lemma 6.8. Let M be a finite group, let S ∈ Sylp(M), set X = Op(M), and assume
that CM (X) ≤ X. Set F = FS(M), and let Γ be a non-empty, F-invariant, overgroup-
closed set of subgroups of S, such that X ≤ Q for all Q ∈ Γ. Set L = LΓ(M).

(a) Suppose that M = CM (Z(X))S. Then L is the unique F-natural Γ-linking sys-
tem, up to a unique rigid isomorphism. In particular, the identity automorphism
is the unique rigid automorphism of L.

(b) Let H be the reduced core of M with respect to S, set Y = Op(H), and let ΓY be
the set of all Q ∈ Γ such that Y ≤ Q. Let γ be a rigid automorphism of L, let
γH be the restriction of γ to LΓY (H) (see 3.9), and suppose that γH extends to
an automorphism of H. Then γ extends to an automorphism of M .

(c) Set D = Z(X) and assume that CM (D)/X is a p′-group. Assume also that there
exists Q ∈ Γ such that M = CM (D)NM (Q), and an automorphism γ of L such
that γ restricts to the identity automorphism of NM (Q). Then γ is the identity
automorphism of L.

Proof. (a) Let M be a minimal counterexample, and choose an F-filtration (Γk, Tk)
N
k=0

for Γ, with Γ0 = {S} (see 5.17). Let Lk be the restriction of L to Γk. Then L0 = NM (S).
As Z(S) ≤ Z(X), we have Z(S) ≤ Z(M), and then 1.10(b) shows that for any F-natural
∆0-linking system K0, there is a unique rigid isomorphism K0 → L0.

Let n be the largest index such that Ln is unique up to a unique rigid isomorphism,
in the preceding sense. Then, without loss of generality we may assume that n = N − 1.
Let K be an F-natural Γ-linking system, and let Kn be the restriction of K to Γn. There

53



is then no loss of generality in taking Kn = Ln. Set T = TN , and set KT = NK(T ) and
LT = NL(T ). Observe that

Op(NM (T )) ≤ Op(M) ≤ CM (Z(X)) ≤ CM (Z(T )).

Thus, the hypothesis of 6.8(a) holds with NM (T ) in place ofM , and with ΓT := {Q ∈ Γ |
T E Q} in place of Γ. As M is a minimal counterexample, we conclude that the identity
automorphism of LT is the unique rigid automorphism of LT . Now 5.15(b) yields a rigid
isomorphism γ : K → L. Since γ restricts to the identity automorphism on Ln and on
NM (T ) so γ is uniquely determined, by 5.16(a).

(b) Set E = Z(Y ) and note that M = CM (E)H by 6.5. Let βH be an extension of γH
to an automorphism of H. Then βH = cz for some z ∈ Z(S), by 1.10(c). Now let β
be the automorphism cz of M . In order to complete the proof of (b) it suffices to show
that β restricts to γ on L. Both cz and γ restrict to the identity map on CM (E)S, by
(a). Set K = CL(D). Then K is a partial normal subgroup of L by 3.9, and then the
Frattini Lemma 4.6 for localities yields the result that each f ∈ L is a product f = gh,
with g ∈ K and h ∈ H. Then

fγ = (gh)γ = (gγ)(hγ) = g(hβ) = ghz = (gh)z = fz = fβ,

as required.

(c) Let A0 be the set of L-essential subgroups of S (as defined in 2.14), and set A =
A0 ∪ {S}. By hypothesis, each member of Γ contains X, so CM (P ) ≤ P for all P ∈ Γ.
By 2.16, each f ∈ L is A-decomposable, so in order to prove (c) it suffices to show that

γ restricts to the identity map on Op
′
(NM (P )) for each P ∈ A0, and to the identity map

on NM (S).

Fix P ∈ A, and set N = Op
′
(NM (P )) (or N = NM (S) if P = S). Suppose first that

Q ≤ P and let g ∈ N . By hypothesis, g = g1g2 (where the product is taken in M), and
where g1 ∈ NM (Q) and g2 ∈ CM (D). Then Qg2 = Qg ≤ P (and thus (g1, g2) ∈ D(L)
via P ). As CM (D)/X is a p′-group, and X ≤ Q, it follows that Qg2 = Q, and thus
N ≤ NM (Q). As γ restricts to the identity map on NM (Q), there is no more to prove in
this case. In particular, we have shown that γ restricts to the identity map on NM (S).

We are now reduced to the case where P ∈ A0, and where Q � P . Then NQ(P ) � P .
On the other hand, NQ(P )CM (D) E CM (D)N , and thus NQ(P )CN (D)P/CN (D) is
a non-identity normal p-subgroup of N/CN (D), properly containing CN (D)P/CN (D).
Since N/P has a strongly p-embedded subgroup, it follows that N/CN (D) is a p-group.
Thus N = CN (D)NS(P ), and point (a) implies that γ restricts to the identity map on
N . �
Lemma 6.9. Let F be a constrained fusion system on S, letM be a model for F , let H be
the reduced core of M with respect to S, and set Y = Op(H). Suppose that there is given
an F-natural Γ-linking system (L,Γ, S) such that Y ∈ Γ, and such that Op(M) ≤ P for
all P ∈ Γ. Suppose also that there is given an isomorphism β : NL(Y ) → H of groups,
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such that β restricts to the identity map on S. Then β extends to an isomorphism
L → LΓ(M).

Proof. As Y is weakly closed in F , by 6.5(b) 5.18 implies that there is an F-filtration
F = (∆i, Ti)

N
i=0 of Γ, in which ∆0 is the set of overgroups of Y in S. For each k,

1 ≤ k ≤ N , let Lk be the restriction of L to Γk, and set Mk = LΓk
(M). As Y ∈ Γ, β is

an isomorphism L0 → M0 = H. Let n be the largest index such that β extends to an
isomorphism βn : Ln → Mn. Thus n ≥ 0, and we may assume that n < N as otherwise
there is nothing to prove. There is then no loss of generality in assuming further that
n = N − 1.

Set M = LΓ(M). Then CM (Op(M)) ≤ Op(M) as M is a model for the constrained
fusion system F = FS(M). Since each P ∈ Γ contains Op(M), by assumption, M is
then a Γ-linking system. Set T = TN , K = NM (T ), Σ = {P ∈ Γn | T E P} and
K = LΣ(K). As T ∈ Γ, both NL(T ) and K are models for FNS(T )(K), so 1.10(b)
yields an isomorphism γ : NL(T ) → K which restricts to the identity map on NS(T ).
We may therefore apply 5.15(a) with K in the role of M , and find that there are rigid
isomorphisms λ and λ′ from NLn(T ) to K such that L and M are rigidly isomorphic to
L+(λ) and L+(λ′), respectively. Moreover, λ is given explicitly as βT ◦ γ−1 where βT is
the restriction of βn to NLn(T ), while λ

′ is the composition βT ◦ ι where ι is the identity
map on K.

Let α be the rigid automorphism λ−1 ◦ λ′ of K. By 5.15(b) it suffices to show that α
extends to an automorphism of K in order to conclude that β extends to an isomorphism
L → M.

Since T /∈ Γ0 we have Y � T , so T < NY (T )T , and then NY (T )T ∈ Γn by the
construction of F. Thus α restricts to an automorphism α0 of NK(NY (T )T ) which
centralizes NS(T ), and then 1.10(c) yields α0 = cz for some z ∈ Z(NS(T )). We now
observe that NY (T ) = NS(T ) ∩ CS(D) is a Sylow subgroup of CK(D), and hence

K = CK(D)NK(NY (T )) = CK(D)NK(NY (T )T )

by the Frattini Lemma. By 3.9, CK(D) is a partial normal subgroup of K, and evidently
NS(T ) ∩ CK(D) = NY (T ). The Frattini Lemma for localities (4.6) then yields

K = CK(D)NK(NY (T )) = CK(D)NK(NY (T )T ),

since NK(NY (T )) = NK(NY (T )T ), and since NY (T )T ∈ Σ.
Let C be the locality LΣ(CK(D)NS(Y )). Then the identity automorphism of C is

the unique rigid automorphism of C by 6.8(a). In particular, the restriction α1 of α to
C is the identity automorphism, and so cz induces α1 on C. By 4.6 each f ∈ K is a
product gh taken in K, where g ∈ CK(D) and h ∈ NK(NY (T )). Since Y ≤ T we have
z ∈ CM (Y ) = D, and so

fα = (gh)α = (gα1)(hα0) = ghz = (gh)z = fz,

and thus α extends to the automorphism cz of K. As remarked earlier, this suffices to
complete the proof. �
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Let (M,S, Y ) be a reduced setup, and set D = Z(Y ) and V = ZY . Recall from 6.4(a)
that CM (V ) = CM (D). Set G = M/CM (V ), and recall that, for any subgroup K of
G, JD(K) is defined to be the subgroup of K generated by the best offenders in K on
D, and similarly for JV (K). For the remainder of this paper, whenever such a setup is
given, and whenever H is a subgroup of M , we write J(H,D) for the preimage in H of
JD(H/CH(D)). We define J(H,V ) analogously, relative to JV (H/CH(V )).

The proof of the following proposition will be postponed to the next (concluding)
section.

Proposition 6.10. Let (M,S, Y ) be a reduced setup, and set D = Z(Y ). Let Γ be the
set of all overgroups Q of Y in S such that J(Q,D) ̸= Y , and assume that S ∈ Γ. Set
L = LΓ(M), and let γ be a rigid automorphism of L. Then γ extends to an automorphism
of M .

Proposition 6.11. Let M be a finite group, and assume that 6.10 holds for all reduced
setups (M ′, S′, Y ′) with |M ′| < |M |. Let S be a Sylow p-subgroup of M , and let X
be a normal p-subgroup of M with CM (X) ≤ X. Set Y = Op(M), set F = FS(M),
D = Z(Y ), and let Γ be an F-invariant, overgroup-closed collection of overgroups of X
in S such that

Q ∈ Γ =⇒ J(Q,D) ∈ Γ.

Assume that J(S,D) ∈ Γ. Then every rigid automorphism of LΓ(M) extends to an
automorphism of M .

Among all pairs (M,Γ) for which 6.11 fails, choose one so that first |M | is as small
as possible, and then so that |X| is as large as possible. Set L = LΓ(M), and fix a
rigid automorphism γ of L such that γ has no extension to an automorphism of M . Set
V = ZD.

6.11.1. X = Y , and Y /∈ Γ.

Proof. If Y ∈ Γ then LΓ(M) = M , and the conclusion of 6.11 holds trivially. Thus
Y /∈ Γ. Now suppose that X is a proper subgroup of Y , and let ΓY be the set of all
Q ∈ Γ such that Y ≤ Q. The maximality of |X| in the choice of (M,Γ) then implies that
every rigid automorphism of LΓY (M) extends to an automorphism of M . Let γY be the
restriction of γ to LΓY

(M) and let β be an extension of γY to an automorphism of M .
Let Q ∈ Γ. Then QY ∈ ΓY and NM (Q) ≤ NM (QY ), so γ and β agree on NM (Q) for

all Q ∈ Γ. By 3.8, β restricts to an automorphism β0 of LΓ(M), and now 3.10 shows
that β0 ◦ γ is the identity automorphism of LΓ(M). Thus, β is an extension of γ to an
automorphism of M . �
6.11.2. (M,S, Y ) is a reduced setup. In particular, CM (D) = CM (V ).

Proof. Suppose false, let H be the reduced core of M with respect to S, set R = Op(H),
and set LH = LΓ(H). If R ∈ Γ then LH = NM (R) = H, and then γ extends to an
automorphism of M by 6.8(b). We conclude that R /∈ Γ, and hence no member of Γ is
contained in R.

56



Let ΓR be the set of all products RP with P ∈ Γ. Thus, ΓR also has the usual
meaning. Namely, ΓR is the set of members Q of Γ such that R E Q. We note that since
R = Op(H) and H is reduced, we have R = CS(Z(R)). For Q ∈ ΓR write J(Q,Z(R)) for
the preimage in Q of JZ(R)(Q/R). Since Y ≤ R, and since J(Q,D) ∈ Γ for all Q ∈ Γ by
hypothesis, 6.6(c) implies that J(Q,Z(R)) ∈ ΓR for each Q ∈ ΓR. Since R /∈ ΓR, by the
preceding paragraph, the hypothesis of 6.11 is fulfilled with (H,ΓR) in place of (M,Γ).
Here H is a proper subgroup of M as (M,S, Y ) is not a reduced setup, so we conclude
that the restriction γH of γ to LΓR

(H) extends to an automorphism of H. We appeal
again to 6.8(b) and conclude that γ extends to an automorphism of M , contrary to our
choice of (M,γ). Thus, (M,S, Y ) is reduced, and then CM (D) = CM (V ) by 6.4(a). �

6.11.3. M = J(M,D).

Proof. Set K = J(M,D). Thus, K is the preimage in M of the subgroup of M/CM (D)
generated by best offenders on D, so K E M . Set S0 = S ∩K and let Φ be the set of
all Q ∈ Γ with Q ≤ S0. Then Φ is F-invariant. Since Q ∈ Γ implies J(Q,D) ∈ Γ, by
the hypothesis in 6.11, we get Q ∩ S0 ∈ Φ for all Q ∈ Γ. In particular, S0 ∈ Φ since (by
hypothesis) S ∈ Γ. Then Φ is a non-empty, overgroup-closed collection of subgroups of
S0.

Set K = LΦ(K). Then β restricts to a rigid automorphism κ of K, by 3.8. Assume
now that K ̸= M , and set X0 = X ∩ K. The hypothesis of 6.11 is satisfied with
(K,S0, X0,FS0(K),Φ) in place of (M,S,X,F ,Γ), and hence, by the minimality of |M |
as a counterexample to 6.11, κ extends to an automorphism λ ofK. But then γ extends to
an automorphism of M by 4.15, and contrary to the choice of (M,Γ). Thus M = K. �

Let Φ now denote the set of all subgroups P of S such that Y ≤ P and such that
J(P,D) ̸= Y . If Φ = Γ then 6.11.1 through 6.11.3 yield the hypothesis of 6.10, and then
6.10 yields an extension of γ to an automorphism of M . Thus Γ is a proper subset of Φ.
Choose T ∈ Φ− Γ so that:

(1) T is fully normalized in F ,
(2) |J(T,D)| is as large as possible subject to (1), and
(3) |T | is as small as possible subject to (2).

6.11.4. Y is a proper subgroup of T , and NM (T ) is a proper subgroup of M .

Proof. By assumption, Y ≤ T , and since Φ ̸= Γ we know that Y ̸= T . Then T � Y , and
so T is not normal in M . �

6.11.5. The following hold.

(a) T = J(T,D).
(b) If P and P ′ are distinct F-conjugates of T , then ⟨P, P ′⟩ ∈ Γ.

Proof. Since T ∈ Φ we have J(T,D) ̸= Y , and then J(T,D) ∈ Φ by definition. Since
J(T,D) has a fully normalized F-conjugate, point (a) then follows from the minimality
condition (3) in the choice of T . Then also P = J(P,D) for any F-conjugate P of
T . For F-conjugates P, P ′ of T , the definition of the “J(−, D)”-operator then yields
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⟨P, P ′⟩ = J(⟨P, P ′⟩, D). For P ̸= P ′ we get |J(⟨P, P ′⟩, D)| > |J(T,D)|, and then (b)
follows from the condition (2) in the choice of T . �

Set MT = NM (T ), set R = NS(T ), and let Γ+ be the union of Γ with the set of
subgroups of S which contain an F-conjugate of T . Let ΓT be the set of all Q ∈ Γ with
T ≤ Q ≤ R, and set LT = NL(T ). Thus:

LT = NL(T ) = LΓT (MT ).

6.11.6. Let γT be the restriction of γ to LT . Then γT does not extend to an automor-
phism of MT .

Proof. Suppose γT extends to an automorphism of MT . Then 5.16(b), with MT in the
role of M and with γ in the role of β, yields an extension of γ to an automorphism of
M . Thus, as (M,γ) is a counterexample to 6.11, no such extension of γT exists. �

Let H be the reduced core of MT with respect to R, set X = Op(H), and set U =
Z(X). Thus H = NMT

(X), and the Frattini Lemma yields

(*) MT = CMT
(U)H.

Set H = NLT
(X). Then CLT

(U) is a partial normal subgroup of LT by 3.9, and then
4.6 yields

(**) LT = CLT
(U)H.

6.11.7. Let β be the restriction of γT to H. Then β does not extend to an automorphism
of H. In particular, X /∈ Γ.

Proof. If β extends to an automorphism of H then γT extends to an automorphism of
MT , by 6.8(b), and contrary to 6.11.6. Thus no such extension of β exists. If X ∈ Γ
then H = NH(X) = NH(X) = H, so we conclude that X /∈ Γ. �
proof of 6.11.. Since H is a proper subgroup of M by 6.11.4, the minimality of M in the
choice of a counterexample to 6.11 implies that the conclusion of 6.11 holds with with
(H,ΓX) in place of (M,Γ). This contradicts 6.11.7, and so the proof is complete. �
Lemma 6.12. Let M , S, Y = X, D, F , and Γ be as in 6.11, and assume that 6.10
holds for all reduced setups (M ′, S′, Y ′) with |M ′| < |M |. Then every F-natural Γ-linking
system is rigidly isomorphic to LΓ(M).

Proof. Set L = LΓ(M) and let L′ be any other F-natural Γ-linking system. Set T0 =
J(S,D) and set L0 = NL(T0) and L′

0 = NL′(T0). Then L0 and L′
0 are isomorphic groups,

via an isomorphism which restricts to the identity map on S, by 1.10(b).
Let Γ0 be the set of overgroups of T0 in S. Among all groups T1 ∈ Γ − Γ0 such that

T1 is fully normalized in F , choose T1 so as first to maximize |J(T1, D)| and then so as
to minimize |T1|. Then T1 = J(T1, D) and, as in the proof of 6.11.5(b), we find that
any two distinct F-conjugates P and P ′ of T1 generate a member of Γ0. Let Γ1 be the
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union of Γ0 with the set of subgroups X of S such that X contains an F-conjugate of
T1, and then iterate this procedure, so as to obtain an F-filtration F = (Γi, Ti)

N
i=0 of Γ.

Let Li and L′
i be the restrictions of L and L′ to Γi, and let n be an index such that there

exists a rigid isomorphism Ln → L′
n. Then n < N , or else there is nothing to prove. Set

T = Tn+1, and set ∆ = Γn.
Set K = Ln and KT = NK(T ), and similarly define K′ and K′

T . Then KT =
L∆T

(NM (T )), and Ln+1 is rigidly isomorphic to K+(ι), where ι is the identity auto-
morphism of KT , by 5.15(a). But also, L′

n+1 is rigidly isomorphic to (K′)+(λ) for some
rigid isomorphism λ : KT → L∆T

(NM (T )), again by 5.15(a). Now, by 5.15(b)(i), it
suffices to show that all rigid automorphisms of L∆T

(NM (T )) extend to automorphisms
of NM (T ), in order to complete the proof.

Set MT = NM (T ), YT = Op(MT ), DT = Z(YT ), and set R = NS(T ). Then R ∈ ∆
by 5.4(a). Then J(R,D) ̸= T , by construction of the filtration F. Then, again by
construction of F, we get J(R,D) ∈ ∆. If J(R,D) ≤ YT then YT ∈ ∆ and L∆T

(MT ) =
MT . Since there is nothing to prove in that case, we may assume that J(R,D) �
YT . Then also J(R,DT ) � YT , by 6.6(c). In fact, the preceding argument shows that
J(Q,DT ) � YT for any Q ∈ ∆. We may then apply 6.11, with (MT , R,∆) in place
of (M,S,Γ), in order to conclude that all rigid automorphisms of L∆T

(MT ) extend to
automorphisms of MT , and to thereby complete the proof. �

Recall from 2.9 that a locality (L,∆, S) is a centric linking system if it is a ∆-linking
system, where ∆ is the set of all FS(L)-centric subgroups of P . Recall also from 2.17(a)
that if L is a centric linking system then FS(L) is saturated.

On the other hand, let F be a given saturated fusion system on S. By an F-centric
linking system we mean a centric linking system (L,∆, S) such that F = FS(L). Thus,
∆ is the set of F-centric subgroups of S if L is an F-centric linking system.

Assume now that the Main Theorem is false. We express this as a hypothesis, as
follows.

Hypothesis 6.13. Proposition 6.10 holds, and F is a saturated fusion system on the
p-group S such that one of the following holds.

(i) There exists no F-centric linking system on S.
(ii) There exist F-centric linking systems on S which are not rigidly isomorphic.

Set X0 = J(S), and define ∆0 to be the set of all overgroups of X0 in S. Then ∆0

is closed under F-conjugation since J(S) is weakly closed in F , and since J(S) = J(Q)
for all Q ∈ ∆0. As remarked earlier, it is immediate from the definition of J(S) that
J(S) ∈ Fc, and hence ∆0 ⊆ Fc.

Now suppose that ∆0 ̸= Fc, and let X = X1 be the set of all X ∈ Fc −∆0 such that
X is fully normalized in F . Among all X ∈ X1, choose X so that:

(1) d(X) is as large as possible,
(2) |J(X)| is as large as possible (subject to (1)),
(3) J(X) ∈ Fc, if possible, (subject to (1) and (2)), and
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(4) Subject to the conditions (1) through (3), |X| is as small as possible if J(X) ∈ Fc,
and otherwise |X| is as large as possible.

Set X1 = X, and define ∆1 to be the union of ∆0 with the set of subgroups of S which
contain an F-conjugate of X1. If ∆1 ̸= Fc we then repeat the above procedure, taking
X2 to be the set of all X ∈ Fc −∆1 such that X is fully normalized in F , and choosing
X2 ∈ X2 according to the rules (1) through (4). By iteration, we arrive at a sequence of
pairs

F = (∆i, Xi)
N
i=0

where ∆N = Fc. Recall now the notion of F-filtration from 5.17.

Lemma 6.14. F is an F-filtration of Fc. Moreover, each Xi may be chosen so that
J(Xi) is fully normalized in F .

Proof. As X0 is weakly closed in F we have 5.17(1), while points (2) and (4) of 5.17 (with
Fc in the role of ∆) hold by construction. Assuming now that F is not an F-filtration
of Fc, we conclude that 5.17(3) fails to hold. There is then a smallest index n such
that there exist F-conjugates P and P ′ of X := Xn such that P ̸= P ′ and such that
⟨P, P ′⟩ /∈ ∆n−1.

Set Q = ⟨P, P ′⟩. Then d(Q) = d(X), and |J(Q)| = |J(X)|, and thus J(P ) = J(Q) =
J(P ′). If J(P ) ∈ Fc then X = J(X) by the minimality condition in (4). But in that
case we obtain also P = J(P ) and P ′ = J(P ′), and so P = P ′, contrary to hypothesis.
Thus J(X) /∈ Fc. But then P = Q = P ′ by the maximality condition in (4), and again
contrary to hypothesis. Thus, F is an F-filtration of Fc. The second part of the lemma
follows from 1.7. �

Lemma 6.15. Let n be an index with 1 ≤ n ≤ N . Suppose that J(Xn) is F-centric,
and let Q ∈ ∆n−1 with Xn ≤ Q. Then J(Q) ∈ ∆n−1.

Proof. Suppose false, and let n be the smallest index for which the lemma fails. Set
X = Xn and set ∆ = ∆n−1. As J(X) is F-centric, by assumption, condition (4) in
the choice of X implies that X = J(X). If d(Q) > d(X), or if d(Q) = d(X) but
J(Q) > J(X), then J(Q) ∈ ∆ by the maximality conditions (1) and (2) in the choice of
X. So, we conclude that J(Q) = J(X), and then J(Q) = X.

As Q ∈ ∆, there exists an index m with 0 ≤ m < n such that Q contains an F-
conjugate U of Xm. Then the construction of F yields d(U) ≥ d(X). But d(U) ≤
d(Q) = d(X), so in fact d(U) = d(X). Similarly, we obtain |J(U)| = |J(X)|, and hence
J(U) ∼= J(X). Here J(U) is F-centric by condition (3) in the construction of ∆m, so
U = J(U) = J(X) = X. This is contrary to m < n, and completes the proof. �

By 1.10(a) there exists a model M0 for the fusion system NF (X0), and M0 may then
be viewed as an F-natural ∆0-linking system. Any two such linking systems are rigidly
isomorphic by 1.10(b), so there is a largest index n such that there exists an F-natural
∆n linking system, and such that all such linking systems are rigidly isomorphic. By
6.13, we have n < N . Set ∆ = ∆n, and let L be the unique (up to rigid isomorphism)
F-natural ∆-linking system.
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Set X = Xn+1, set R = NS(X), let MX be a model for NF (X), and let H be the
reduced core of MX with respect to R. Set Y = Op(H), and set D = Z(Y ). In view of
6.14 we may assume that J(X) is fully normalized in F .

Lemma 6.16. Suppose that Y /∈ ∆, and let ∆X be the set of all P ∈ ∆ with X E P .
Then the following hold.

(a) ∆X is the set of all subgroups Q of R, properly containing X, and such that
J(Q) ̸= X.

(b) X = J(X) = J(Y ).
(c) R = NS(Y ) ∈ ∆.
(d) Y is fully normalized in F , and H is a model for NF (Y ).

Proof. Let Q be a subgroup of R containing X, and suppose that Q /∈ ∆. The condition
(1) in the choice of X then yields d(X) = d(Q), and thus A(X) ⊆ A(Q) and J(X) ≤
J(Q). Now 6.15 will complete the proof of (a), once it is shown that J(X) is F-centric.

Set B = CS(J(X)). Then B is X-invariant, and

NB(X) = CR(J(X)) ≤ CR(Z(X)) ≤ CR(D) = Y,

and thus NB(X) = CY (J(X)). But J(X) = J(Y ) as Y /∈ ∆, and so

NB(X) = CY (J(Y )) ≤ J(Y ) ≤ X.

Thus B ≤ X, and since J(X) is fully normalized in F we conclude that J(X) is F-
centric. Then X = J(X) by condition (4) in the choice of X. This completes the proof
of (a) and of (b).

Suppose that R /∈ ∆. Then J(R) = J(X) = X, by (a) and (b). Then

NS(R) ≤ NS(J(R)) = NS(X) = R,

and hence R = S. Then X = J(S), and Y ∈ ∆0, contrary to Y /∈ ∆. Thus, R ∈ ∆.
We have Y E R by 6.5. Since NS(Y ) ≤ NS(J(Y )) and J(Y ) = X, we conclude that
R = NS(Y ), completing the proof of (c).

Let ϕ ∈ HomF (R,S) be chosen so that Y ′ := Y ϕ is fully normalized in F , and set
X ′ = Xϕ. Then NS(Y

′) ≤ NS(X
′) by (b), and since X is fully normalized it follows

that |NS(Y ′)| ≤ |R|. Thus NS(Y
′) = Rϕ, and so Y is fully normalized in F . Point (d)

then follows from 1.11. �
Lemma 6.17. Y ∈ ∆.

Proof. Suppose Y /∈ ∆. We check that the hypothesis of 6.11 (and hence also of 6.12)
holds, with the role of (M,S, Y,FS(M),Γ) being taken by (MX , R,X,NF (X),∆X).
First, CMX

(X) ≤ X as MX is a model of the constrained fusion system NF (X). Next,
by 6.16(a), Q ∈ ∆X implies J(Q) � X, while 6.16(b) implies that X = J(X) (and hence
that J(X) is F-centric). Then 6.15 yields J(Q) ∈ ∆X , and so J(Q,Z(X)) ∈ ∆X by
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6.7(b). In particular, J(R,Z(X)) ∈ ∆X , and so the claim has been verified. Since we
are assuming 6.10, we are free to apply 6.12 to the setup with MX ; and so L∆X (MX)
is the unique F∆X

(MX)-natural linking system, up to rigid isomorphism. Then all rigid
isomorphisms NL(X) → L∆X (MX) are MX -equivalent, by 5.15(b). Now 5.15(c) applies
with MX in the role of M , and we conclude that there exists an F-natural ∆n+1-linking
system, and that any two such are rigidly isomorphic. This contradicts the maximality
of n. �

Lemma 6.18. Y /∈ ∆.

Proof. Suppose Y ∈ ∆. Then Y ∈ ∆X as X ≤ Y . Set H = L∆X
(H). Then H =

NH(Y ) = H, and thus every rigid automorphism of H is in fact an automorphism of
H. Then 6.8(b) applies, with MX in the role of M , and so every rigid automorphism
of LDX (MX) extends to an automorphism of MX . That is, all rigid automorphisms
of L∆X

(MX) are MX -equivalent. As in the proof of 6.18, we conclude via 5.15(b) and
5.15(c) that there exists an F-natural ∆n+1-linking system, that any two such are rigidly
isomorphic, and thereby contradict the maximality of n. �

With 6.17 and 6.18 we now have a contradiction to Hypothesis 6.13. This contradiction
provides a proof of the Main Theorem modulo Proposition 6.10. Thus, in order to
complete the proof of the Main Theorem it remains to prove 6.10.

Section 7: The Main Theorem

Our aim in this section is to give a proof of Proposition 6.10, using the CFSG (the
Classification of the Finite Simple Groups). As was pointed out at the end of the pre-
ceding section, this will complete the proof of the Main Theorem.

We continue that terminology and notation relating to FF -pairs. In particular, it is
important to recall that our definition of J(P ), for P a p-group, is given in terms of
abelian (and not elementary abelian) subgroups of P of maximal order.

For ease of reference, we re-state 6.10, as follows.

Proposition 7.1. Let (M,S, Y ) be a reduced setup, and set D = Z(Y ). Let Γ be the
set of all overgroups Q of Y in S such that J(Q,D) ̸= Y , and assume that S ∈ Γ. Set
L = LΓ(M), and let γ be a rigid automorphism of L. Then γ extends to an automorphism
of M .

Among all (M,γ) satisfying the hypothesis of 7.1, and such that γ does not extend
to an automorphism of M , fix (M,γ) so that |M | is as small as possible. We note that
proposition 6.11 may then be applied to groups of order less than |M |.

Set F = FS(L), and recall the definition of F-essential subgroup of S, from 2.14.

Lemma 7.2. Let A be the union of {S} with the set of FS(L)-essential subgroups of S,
and set M0 = ⟨{NM (Q) | Q ∈ A⟩. Then M0 = M . In particular, there exists no proper
subgroup of M which contains the partial subgroup L of M .
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Proof. Suppose that M0 is a proper subgroup of M . We first show:

(1) L ⊆M0.

Indeed, in order to establish (1) it suffices, by 2.16, to show that CM (P ) ≤ P for all
P ∈ Γ. But CM (P ) ≤ CM (Y ) = D = Z(Y ) as (M,S, Y ) is a reduced setup. Thus (1)
holds.

Since L = LΓ(M) we have also L = LΓ(M0). We now claim that the hypothesis of
6.11 is fulfilled with (M0, Y,Γ) in the role of (M,X,∆). Set Y0 = Op(M0), D0 = Z(Y0),
and D = Z(Y ). Then Y ≤ Y0 and so D0 ≤ D. We must show that J(Q,D0) ∈ Γ for each

Q ∈ Γ. Set M̃ =M/CM (D). As Q ∈ Γ, J(Q,D) ̸= Y , so there exists A with Y ≤ A ≤ Q

such that the image Ã of A in M̃ is a best offender on D. By 6.6(c), AutA(D0) is a best
offender on D0, so J(Q,D)CQ(D0) ≤ J(Q,D0). Thus J(Q,D0) ∈ Γ, as required.

Now 6.11 yields an extension of γ to an automorphism β of M0. Then β = cz for
some z ∈ Z(S) by 1.10(c), and cz is then also an extension of γ to an automorphism of
M . �

In what follows, set V = ZY . That is, V is the subgroup (to be regarded as a vector
space over the field Fp of p elements) of D consisting of those elements x ∈ D such that
xp = 1. Set G =M/CM (D), and recall from 6.4(a) that also G =M/CM (V ).

Lemma 7.3. G is generated by quadratic best offenders on D, and any quadratic best
offender on D is also a quadratic best offender on V .

Proof. Let G0 be the subgroup of G generated by the set of all subgroups A of G such
that A is a quadratic best offender on D. Let M0 be the preimage of G0 in M , and
set S0 = S ∩M0. Then Y ≤ Op(M0). The reverse inclusion holds since M0 E M , so
Y = Op(M0).

Let Q ∈ Γ, and set P = Q ∩ S0. Here Y = CS(D) ≤ S0, and the image Q̃ of Q in G
contains a best offender on D, so by 6.6(b) there is a non-trivial quadratic best offender

B̃ ≤ Q̃. The preimage B of B̃ in S is contained in P , by the definition of M0, so P̃ ̸= 1.
Now let Φ be the set of all subgroups Q ∩ S0 of S0 with Q ∈ Γ. Thus:

(*) Φ ⊆ Γ.

Let K be the partial normal subgroup M0 ∩ L of L, as given by 3.9. Then 3.10 gives
K the structure of a locality K = LΦ(M0). Further, the hypothesis of 6.12 holds with
(M0, S0,Γ0) in the role of (M,S,Γ). By 4.15(a), γ restricts to an automorphism γ0 of
K, and if M0 ̸= M then γ0 extends to an automorphism β0 of M0 by 6.12. Then γ
extends to an automorphism of M by 4.15(b), contrary to hypothesis, and completing
the proof. �

Any group that acts faithfully and quadratically on an elementary abelian p-group is
itself elementary abelian, by [9.1.1(c) in KS]. For that reason the preceding lemma ef-
fects the transition from “abelian offenders on abelian p-groups” to “elementary abelian
offenders on vector spaces over Fp” that is needed in order to apply the results of Meier-
frankenfeld and Stellmacher [Theorems 1 and 2 in MS2] on FF -pairs.

63



The set of all non-identity subgroups X of G such that X = [X,G] is a poset, with
respect to inclusion, consisting of normal subgroups of G. Define X to be the set of
minimal elements of this poset. The elements of X are the J-components of G. The
product of the set X of J-components is then a normal subgroup of G, henceforth to be
denoted by G0. Set V = ZY and set

W = [V,G0]CV (G0)/CV (G0).

For any X ∈ X set WX = [W,X] and VX = [V,X].

It will turn out that for each X ∈ X, either X is quasisimple, or p ∈ {2, 3} and X
is isomorphic to the commutator subgroup of SL2(p) (a group of order 3 if p = 2, and
a quaternion group of order 8 if p = 3). It will be convenient to set up some further
notation, in order to accomodate such solvable J-components. Thus, let Xsol be the set
of all subgroups X of G such that X is a direct factor of G, X ∼= SL2(p) (with p = 2 or
3), [X,X] ∈ X, and |VX | = p2. Let X∗ be the union of Xsol with the set of non-solvable
J-components of G. The elements of X∗ will be referred to as the J∗-components of G.
Set G∗

0 = ⟨X∗⟩.

Theorem 7.4.1. The following hold.

(a) Each J∗-component of G is normal in G.
(b) G∗

0 is the direct product of the J-components of G.
(c) Let A ≤ G be a best offender on V . Then A is a best offender on every A-invariant

subspace of V and on every A-invariant subspace of W .
(d) If A ≤ G is a best offender on V , and X ∈ X, then CA(X) = CA(VX) =

CA(WX), and either [X,A] = 1 or [X,A] = X.
(e) W is the direct sum of its subspaces WX for X ∈ X∗, and [V,X1, X2] = 0

whenever X1 and X2 are distinct members of X∗.
(f) G = G0R where R is the image of S in G.

Proof. See [Theorem 1 in MS2]. We remark that points (a) through (e) are “elementary”
in that they are proved without appealing to the CFSG. �

In 7.4.2 and 7.4.3 we sum up the remaining parts of the General FF -module Theorem
in the form that will be needed here, and eliminate some special cases. As in [MS2] we
write U (r) for the direct sum of r copies of a module U .

Theorem 7.4.2. Suppose that G has only one J∗-component. Then one of the following
holds (where q is a power of p).

(1) G is a linear group SLn(q), and W is a direct sum U (r) ⊕ (U∗)(s), where U is
a natural module for G and U∗ is the dual of U . Moreover, if both r and s are
non-zero then n ≥ 4.

(2) G is a classical group (unitary, symplectic, or orthogonal) in characteristic p, and
W is a direct sum U (r) of natural modules for G. Specifically:
(i) G ∼= Sp2n(q) (n ≥ 2),
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(ii) G ∼= SUn(q) (n ≥ 4),
(iii) p is odd, G ∼= Ω2n+1(q) (n ≥ 2),
(iv) G ∼= Ωϵ2n(q) (n ≥ 3), or
(v) p = 2, G ∼= Oϵ2n(q) (n ≥ 3).

(3) p = 2, G is a symmetric group of degree n (n ≥ 5), and W is a natural module
for G.

Proof. Let R be the image of S in G. In the list of groups and their modules given by
[MS2], all but the three types listed above are eliminated by 7.2. In detail: by Theorem
2 in [MS2] G0 is either a group of Lie type in characteristic p or an alternating group. If
G0 is of Lie type in characteristic p then, in the cases other than the above three, [MS2]
states that either R contains a unique quadratic best offender A or that G ∼= Spin7(q)
and that W is a spin module of order q8. In the case of a unique quadratic offender A,
it follows from 6.6(b) that the image in G of the normalizer in M of any object in Γ is
contained in NG(A). Since every element of L is a product of elements of normalizers of
objects, by 2.16, it follows that L is contained in the proper subgroup CM (D)NM (B),
where B is the preimage of A in S; and we thereby obtain a contradiction to 7.2. In the
case where G ∼= Spin7(q), it is pointed out in [Theorem 2 in MS2] that every quadratic
best offender A has the same commutator space on W . Then L is contained in the
M -stabilizer of that subspace, and so in either case we contradict 7.2.

Finally, if G0 = G is an alternating group, then [MS2] (see 7.4.3 immediately following)
says that R contains a unique quadratic best offender, leading again to a contradiction
to 7.2. �
Proposition 7.4.3. Suppose that G is a symmetric group Sym(n) (n ≥ 5), and that W
is a natural module for G. Let R be the image of S in G. Then every offender in G on
W is a best offender, and one of the following holds.

(1) n is odd, and each offender A is generated by transpositions.
(2) n is even, and for any quadratic offender A ≤ R, there exists a set {t1, · · · , tk}

of pairwise commuting transpositions in R such that one of the following holds.
(a) A = ⟨t1, · · · , tk⟩.
(b) n = 2k and A = ⟨t1t2, . . . , tl−1tl⟩×⟨tl+1, · · · , tk⟩, for some l with 1 < l ≤ k.
(c) n = 2k and A = ⟨t1t2, s1s2⟩ × ⟨t3, · · · , tk⟩, where s1 and s2 are commuting

transpositions distinct from t1 and t2, and where Supp(s1s2) = Supp(t1t2).
(d) n = 8 = |A| = |W/CW (A)|, and A acts regularly on the standard G-set.

Moreover, if A is a quadratic offender and |A| > |W/CW (A)|, then n is even, and A is
generated by the set of all transpositions in R.

Proof. See [Theorem 2 in MS2]. �
Lemma 7.5. G has a unique J∗-component.

Proof. Suppose false, let K := K1 be a J∗-component of G, and let K2 be the product
of the J∗-components other than K. Let Ki be the preimage of Ki in M . Then Ki is
S-invariant by 7.4.1(a). Set Wi = CW (Ki). Then Wi is S-invariant, as is CM (Wi). Set
Mi = CM (Wi)S. Then Mi = KiS by 7.4.1(e).
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Set Li = LΓ(Mi), and set L = LΓ(M). Further, define Ci to be the set of all g ∈ L
such that [Wi, g] = 1. Then Ci is a partial subgroup of L, and in fact a partial normal
subgroup since each Wi is M -invariant. Since Γ is S-invariant, an element g of M is in
L1 if and only if g = hs for some h ∈ CM (W2) such that Sg ∈ Γ, and thus Li = CiS.
Also, for any h ∈ Ci we have hγ ∈ Ci, since γ centralizes V by rigidity. Thus Li is a
γ-invariant locality contained in L. Let γi be the restriction of γ to Li.

We have Mi = KiS by 7.4.1(e), so Mi is a proper subgroup of M . We may then
apply 6.11 with (Mi, Y ) in place of (M,X), and thereby conclude that γi extends to an
automorphism βi of Mi. Then βi centralizes S, and since CM (Y ) ≤ Y it follows from
1.10(c) that βi is conjugation by zi for some zi ∈ Z(S).

Set Di = [D,Ki]. Then Z(S) ≤ CD(Ki)Di by 6.2(a), and we may therefore take
zi ∈ Di. We now claim that z1 centralizesK2 (and by symmetry of argument, that z2 cen-
tralizes K1). To prove the claim, we recall that [W,K1] centralizes K2. Observe also that
D1 is K2-invariant, since K1 EM . Set V1 = V ∩D1 and set U1 = [V1,K1]/C[V1,K1](K1).
Then U1 is M -isomorphic to W1, and so [U1,K2] = 1. We now apply 6.2(c) with D1, V1,
and K2 in place of D, V , and X, and conclude that [CD1(S),K2] = 1. Thus, [z1,K2] = 1
as claimed, and similarly [z2,K1] = 1.

Since M =M1M2 = K1K2S it now follows that g extends to the automorphism cz1z2
of M . This contradicts the choice of (M,γ), and completes the proof. �

Lemma 7.6. Let T be a subgroup of S, such that T is weakly closed in F and properly
contains Y . Let Γ+ be the union of Γ with the set of subgroups P of S such that T ≤ P .
Then γ extends to an automorphism of LΓ+(M).

Proof. Set Φ = Γ+, K = LΦ(M), LT = NL(T ), and let ΓT be the set of all Q ∈ Γ such
that T ≤ Q. Then LT = LΓT

(NM (T )) since T ≤ Sw for all w ∈ D(L) ∩W(NM (T )).

Let H be the reduced core of NM (T ) with respect to S, set YT = Op(H), and set
DT = Z(YT ). Also, set H = NL(YT ), let γT be the restriction of γ to LT , and let η be
the restriction of γ to H. Recall that YT is weakly closed in NF (T ) by 6.5. Then, since
T is weakly closed in F , it follows that also YT is weakly closed in F . If YT ∈ Γ then
H = H by 2.3(c), and η is an automorphism of H. On the other hand, suppose that
YT /∈ Γ, and let R be the set of all R ∈ Γ containing YT . Since J(Q,V ) ∈ Γ for all Q ∈ Γ,
by 6.6(c), it follows that J(R, V ) � YT for any R ∈ R. Setting VT = Ω1(DT ), 6.6(c)
yields also J(R, VT ) ̸= YT for R ∈ R. Similarly, J(S,D) � YT , and then J(S,DT ) ̸= YT .
Thus, the hypothesis of 6.11 is satisfied with (H,R) in place of (M,Γ), and we conclude
that η extends to an automorphism of H. Thus, in any case, η either is, or extends to,
an automorphism of H, and then 6.8(b) implies that γT extends to an automorphism βT
of NM (T ).

Since T is weakly closed in F , it is vacuously true that any pair of distinct F-conjugates
of T generates a member of Γ. Then 5.15(a) implies that γ extends to an automorphism
β of K, such that β restricts to γ on L and to βT on NM (T ). This yields the lemma. �

Definition 7.7. Let S be the image of S in G, and let Q be the set of all non-identity
subgroups U of S such that NS(U) ∈ Sylp(NG(U)) and such that NG(U)/U has a
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strongly p-embedded subgroup. We say that G has an essential splitting if there exists a
subgroup H of G having the following properties.

(1) NG(S) ≤ H.
(2) Op(H) ̸= 1 and Op(H) is weakly closed in FS(G).
(3) For each U ∈ Q, either Op

′
(NG(U)) ≤ H or Op

′
(NG(U)) centralizes CW (U).

Proposition 7.8. G has no essential splitting.

Proof. Suppose false, and let H be a subgroup of G satisfying the conditions (1) through
(3) in definition 7.7. Set B = Op(H), and let B be the preimage of B in S. Then
B = S ∩ CM (D)B is a Sylow p-subgroup of CM (D)B, and it follows that B is weakly
closed in F := FS(M).

Let Σ be the union of Γ with the set of overgroups of B in S. By 5.17 there is an
F-filtration F = (Σi, Ri)

N
i=0 of Σ with R0 = B, and with the property that Ri is fully

normalized in F , and of maximal order subject to Ri /∈ Σi−1 (1 ≤ i ≤ N). Thus, Σ0 is
the set of overgroups of B in S, and ΣN = Σ.

Set K = LΣ(M) and let Ki be the restriction of K to Σi, as in 2.9.1. Thus K0 =
NM (B). Let σ be an extension of γ to an automorphism of K, as given by 7.6, and let
σi be the restriction of σ to Ki. Then σN = σ, while σ0 is a rigid automorphism of
the group NM (B). Since H contains the image of S in G, we have S ≤ NM (B), and
then 1.10(c) yields σ0 = cz (conjugation by z) for some z ∈ Z(S). If also σ is given on
all of K by z-conjugation, then γ is given by z-conjugation on L, and γ extends to the
automorphism cz of M . Since (M,γ) is a counterexample to 7.1, we conclude that the
largest index m such that σm = cz is smaller than N .

Set R = Rm+1, set L = NM (R), and let X be the subgroup of L generated by
CL(Z(S)) together with the set of all NL(P ) as P varies over the set of proper overgroups
of R in NS(R). Each such P is in Σm by the construction of F. The restriction of σL
to L (see 3.8) acts on X, and σL ◦ cz−1 centralizes a set of generators for X, so σL acts
as cz on X. If X = L then 5.15(a) implies that σm+1 is given by cz on all of Km+1,
contrary to the choice of m. Thus X ̸= L, and hence X/R is strongly p-embedded in

L/R. Moreover, we now have [Z(S), Op
′
(L)] ̸= 1.

For any subgroup E of L, let E be the image of E in G. Then L ̸= X since CL(D) ≤ X.
Then X/R is strongly p-embedded in L/R, and then condition (3) in definition 7.7 says

that either Op
′
(L) ≤ H or [CW (S), Op

′
(L)] = 1. Suppose Op

′
(L) ≤ H. As B ≤ Ri for

all i, where B is weakly closed in F , it follows that L ≤ NM (B), and hence σL = cz.
Again, 5.15(a) implies that σm+1 = cz on Km+1, contradicting the choice of m. Thus,

Op
′
(L) centralizes CW (S), and then Op

′
(L) centralizes Z(S) by 6.2(c). Then also Op

′
(L)

centralizes Z(S).

Set C = LΣ(CM (Z(S))). Then C is the set of all f ∈ K such that [Z(S), f ] = 1,
and thus C is σ-invariant. Since |C| < |L|, 6.12 applies and yields an extension of σ to
an automorphism σ∗ of CM (Z(S)). Then σ∗ is the identity automorphism, by 1.10(c),
and thus σL is the identity automorphism of L. Then σL = cz, and we again have a
contradiction via 5.15(a). �
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In the remaining arguments, whenever X is a subgroup ofM we write X for the image
CM (D)X/CM (D) of X in G.

Lemma 7.9. Assume that G is one of the classical groups that appear in 7.4.2. Then
either G has an essential splitting in the sense of 7.7, or G = SL2(q) (q a power of p).

Proof. In 7.4.2 it is given that W is a direct sum of copies of the natural G-module
U , or that G = SLn(q) (n ≥ 4) and W is a direct sum of copies of U and its dual
U∗. Then CG(CW (S)) is equal to either CG(CU (S)) or, in the exceptional case, to
CG(CU (S)) ∩ CG(CU∗(S)). Since the definition of essential splitting depends only on
G, and on the subgroup CG(CW (S)) of G, we may therefore assume, for the sake of
simplicity, that W = U or, exceptionally, that W = U ⊕U∗. In either case, write W0 for
the subspace U of W .

Set G0 = [G,G] if p = 2 and G = Oϵ2n(q), and otherwise set G0 = G. Let T be
the Sylow p-subgroup S of G, set T0 = T ∩ G0, let P be the set of minimal parabolic
subgroups L of G0 over T0 such that CW (T0) is not L-invariant, and set H = ⟨P⟩T .
Let Q be the set of all subgroups Q of T such that NT (Q) ∈ Sylp(NG(Q)) and such
that NG(Q)/Q has a strongly p-embedded subgroup. Set K = CG(CW (T )). It will then
suffice to show:

(a) Op(H) is weakly closed in FT (G), and if G ̸= SL2(q) then Op(H) ̸= 1.

(b) There exists a parabolic subgroup K∗ of G0 such that Op
′
(K∗)T ≤ K ≤ K∗T .

(c) For each Q ∈ Q, either NG(Q) ≤ H or Op
′
(NG(Q)) centralizes CU (T ).

Indeed, only (a) and (c) are needed, but (b) will play a role in obtaining these points.
We note at the outset that |G/G0| ≤ 2 and that p = 2 if |G/G0| ̸= 1.
Set K∗ = NG0(CW (T0)). If W is irreducible then CW (T0) is a 1-dimensional subspace

of W , and K∗ is a maximal parabolic subgroup of G0 over T0. On the other hand, if W
is reducible, so that G = SLn(q) with n ≥ 4, then K∗ is the parabolic subgroup of Lie
corank 2 obtained as the intersection of the two maximal parabolics L1 and L2 such that
Li/Op(Li) ∼= GLn−1(q). Then O

p′(K∗) centralizes CU (T0) and we obtain (b). Further:

(1) Either there is a unique minimal parabolic subgroup X of G0 over T0 not con-
tained in K∗, or there are two such (to be denoted X1 and X2). In the latter

case, X1X2 is a group, and Op
′
(X1X2)/Op(X1X2) ∼= SL2(q)× SL2(q).

Set H0 = H ∩ G0. Then (1) shows that either G = G0 and H is a parabolic subgroup
of G; or else G ̸= G0, H = H0T , and H0 is a minimal parabolic subgroup of G0.
Set P = Op(H) and set P0 = P ∩ G0. By 1.12, P0 is weakly closed in FT0(G0). As
H = NG(P0) = NG(P ), P is weakly closed in F := FT (G). If H = G then G0 is itself a
minimal parabolic subgroup of G0, since the exceptional case where H0 is not a minimal
parabolic occurs only when the Lie rank of G0 is greater than that of H0. In the list of
groups under consideration from 7.4.2, only SL2(q) has Lie rank equal to 1, so (a) holds.

Let Q ∈ Q, set N = NG(Q) and N0 = N ∩G0. Also, set E = Op
′
(N), E0 = E ∩G0,

and Q0 = Q ∩G0. In proving (c) we may assume that [CW (T ), E] ̸= 0.
As N/Q has a strongly p-embedded subgroup we have Q = Op(N). Suppose that

N ≤ G0. Since NT (Q) ∈ Sylp(NG(Q) by the definition of Q, a theorem of Borel and
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Tits [Theorem 3.1.3 in GLS] implies that NG0(Q) is a parabolic subgroup of G0 over
T0. Thus N/Q is a group of Lie type, as is E/Q. The only groups of Lie type having
a strongly p-embedded subgroup are those of Lie rank 1, so N is a minimal parabolic
subgroup of G0. Since [CU (T ), E] ̸= 0, we have [CU (T0), E] ̸= 0, and thus N is either
the unique minimal parabolic over T0 which does not normalize CU (T0), or N is one of
the two such minimal parabolics given by (1). Thus N ≤ H, and we have (c) in this
case. We have thus reduced the proof of (c) to the case where G ̸= G0, so p = 2 and
G = Oϵ2n(q) for some sign ϵ.

Suppose next that Q ≤ G0. Then O2(N0) ≤ O2(N) = Q, so the Borel-Tits theorem
implies that N0 is a parabolic subgroup of G0 over T0. Let K be an overgroup of Q in
N such that K/Q is strongly embedded in N/Q, and set K0 = K ∩G0. Then |K0/Q| is
divisible by 2 since NT0(Q) ≤ K, and hence K0/Q is strongly embedded in N0/Q. As
in the preceding paragraph, it follows that N0 is a minimal parabolic over T0, and N0

is then the unique minimal parabolic over T0 which does not normalize CW (T0). Then
N0 ≤ H, and since N = N0T where T ≤ H, (c) holds in this case. We may therefore
assume that Q � G0.

Set R = Op(NG0(Q0)). Then R is E-invariant, as is NR(Q0). Then NQR(Q) ≤ Q
as Q = Op(N), and thus R = Q0. By the Borel-Tits theorem NG0(Q0) is a parabolic
subgroup of G0 over T0.

Suppose Q0 = 1. Then |Q| = 2 and O2(CG0(Q)) = 1. Then [8.7 in AsSe] implies that
E0

∼= Sp2n−2(q). But E0
∼= E/Q in this case, so E0 has a strongly embedded subgroup.

This yields n = 2, whereas 7.4.2(2) excludes Oϵ4(q). Thus Q0 ̸= 1, and NG0(Q0) is a
proper parabolic subgroup of G0.

Set L = O2′(NG0(Q0)), and set L̃ = L/Q0. The Levi decomposition for NG(Q0) yields
a direct product decomposition

L̃ = L̃1 × · · · × L̃k

where each L̃i is a (possibly disconnected) group of Lie type, and where each L̃i is

Q̃-invariant. We choose such a decomposition so as to maximize k. Then

Ẽ0 = CẼ1
(Q̃)× · · · × CẼk

(Q̃),

and each CẼi
(Q̃) has even order. But Ẽ0

∼= E/Q, so Ẽ0 has a strongly embedded
subgroup. We conclude that k = 1.

Suppose that NG0(Q0) is disconnected. Then L̃ is a direct product of two factors (each

of them a group of Lie type) which are interchanged by Q̃, and Ẽ is isomorphic to each

of the factors. Then Ẽ ∼= SL2(q) as Ẽ has a strongly embedded subgroup, and NG0(Q0)
is a product of two minimal parabolic subgroups, with root system of type A1 × A1

acted on non-trivially by T/T0. But there is a unique minimal parabolic subgroup X
over T0 which does not normalize CU (T0), and hence NG0(Q0) normalizes CU (T0). Then
[CU (T0), E0] = 1 and [CU (T ), E] = 1, contrary to the choice of Q. We conclude that
NG0(Q0) is a connected parabolic, and moreover, X = NG0(Q0).
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From the discussion in [section 2.7 of GLS] on the relation between classical groups
and groups defined as groups of Lie type, it now follows that NG0(Q0) is contained in
the stabilizer of a singular j-space U for some j > 1, and that L/Q0 acts as SLj(q) on
U . Let t be an Fq-transvection in T on U . Then t centralizes every singular T0-invariant
subspace of U , so [L, t] ≤ O2(L) = Q0. Since E0 ≤ L, Q0⟨t⟩ is then an E-invariant
subgroup of T . But Q0 is the unique largest E0-invariant subgroup of T0, so Q is the
unique largest E0-invariant subgroup of T , and thus Q = Q0⟨t⟩. Then Q is L-invariant,
and so L = E0. Again, as E0/Q0 has a strongly embedded subgroup, we conclude that

L/Q0 has Lie rank 1, and thus E0 = O2′(X). As H = XT we obtain E = E0T ≤ H.
Further, we now have H = NG(Q0), and so N ≤ H. This completes the proof of (c). �
Remark. The group Sym(8) is well known to be isomorphic to O+

6 (2), by means of a
quadratic form on the natural irreducible Sym(8)-module preserved by Sym(8). Thus,
the preceding lemma applies to the case where G = Sym(8) and W is the natural
irreducible module.

Lemma 7.10. Suppose that p = 2, and suppose that G = Sym(n) is a symmetric group,
with n ≥ 5, and that W is isomorphic to the natural irreducible G-module over F2. Then
n = 8, and W is a natural module for G.

Proof. We assume throughout that n ̸= 8. Let Ω = {1, 2, · · · , n} be the standard G-set,

and let G0 = Alt(n) be the subgroup of index 2 in G. Let Ṽ be the natural permutation
module for G, identified with the set 2Ω of subsets of Ω (where addition is given by

symmetric difference of subsets). Let W̃ be the submodule of Ṽ consisting of subsets of

Ω of even order, and let Z̃ be the 1-dimensional submodule {∅,Ω} of Ṽ . By definition,

W ∼= W̃ if n is odd, and W ∼= W̃/Z if n is even.
Recall the notation V = Ω1(D). We now write V = V0 × V1, where V1 ≤ CV (G),

and where V1 is a G-submodule of V chosen to be as small as possible subject to V =
V0CV (G). Thus, V0 is indecomposable for G. We claim that V0 is isomorphic to a G-

submodule of Ṽ or of Ṽ /Z. Indeed, by an elementary calculation [exercise 3 on page
74 of FGT] we have |H1(G0,W )| = 1 if n is odd, |H1(G0,W )| = 2 if n is even, and

Ṽ indecomposable for G0 if n is even. The claim follows in a straightforward way from
this exercise, and from the observations made in the preceding paragraph. In particular,
transpositions in G are transvections on V0, and hence also on V .

Set K = CM (CW (S)) and let K be the image of K in G. Then K ≤ CM (CD(S))
by 6.2(c). By 3.8 there is an automorphism γK of LΓ(K) given by restricting γ. Since
|K| < |M |, and since best offenders on D are also best offenders on CD(O2(K)) by 6.6(c),
we may apply 6.12 with (K,S,O2(K),Γ) in the role of (M,S, Y,Γ). Thus γK extends to
an automorphism of K. As [Z(S),K] = 1, 1.10(c) yields:

(1) The identity map on K is the unique extension of γK to an automorphism of K.

Let T be the set of subgroups T of S such that Y ≤ T , and such that T is generated by
a transposition. For any subgroup P of S set

PT = ⟨T ∈ T | T ≤ P ⟩Y.
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Set R = ST , set R0 = R ∩ M0 where M0 is the preimage of Alt(n) in M , and set
H = NM (R). Then H = NM (R0), and H ∼= 2m o Sym(m) where m is the greatest
integer in n/2.

If the set {R,R0} contains all of the quadratic best offenders onD contained in S, then
every member of Γ contains R0, and then L = LΓ(M) = H, contrary to 7.2. Thus there
exists a quadratic best offender A ≤ S with A /∈ {R,R0}. Since n ̸= 8 by assumption,
7.4.3 implies that |W/CW (A)| = |A| and that A contains a transposition t. Notice that

(*) |W/CW (A)| ≤ |V/CV (A)| ≤ |D/CD(A)|.

Since A is a best offender on D, hence also on V by 6.6(c), we conclude that the inequal-
ities in (*) are equalities, and hence that D = CD(A)V . Then CD(A)CV (t) has index 2
in D, and thus |D/CD(t)| = 2. Since G is generated by n−1 transpositions, we conclude
that |D/CD(G)| ≤ 2n−1, and hence

(2) D = CD(G)V .

Further, since |D/CD(t)| = 2, the preimage in S of any subgroup of ⟨T ⟩ generated by
transpositions is in Γ. Thus

(3) T ⊆ Γ, and QT ∈ Γ for any Q ∈ Γ such that NM (Q) � H.

Notice that (3) yields O2(H) ∈ Γ, so H = NL(O2(H)), and then γ restricts to an
automorphism of H. By 1.10(c), γ |H= cz for some z ∈ Z(S), and where of course cz is
also an automorphism of M . Replacing γ with γ ◦ c−1

z , we may assume:

(4) γ restricts to the identity automorphism on H.

Suppose that n = 2m is even, let Q ∈ Γ with NM (Q) � H, and let Q0 be a fully
normalized F-conjugate of QT . As H is m-transitive on T , Q0 is in fact an H-conjugate
of QT . Set X = NM (Q0). Then X ∼= (2k o Sym(k)) × Sym(n − 2k), where k is the
number of transpositions in Q0. Since n is even it follows from [lemma 2.8 in BHS] that
X is generated by its subgroups X ∩ H and X ∩K. Since CX(D) ≤ K, we then have
X = ⟨X ∩ H,X ∩ K⟩. Let γX be the restriction of γ to X. Then (1) and (5) imply
that γX induces the identity map on X. Here NM (QT ) = Xh for some h ∈ H. We
have (h−1, x, h) ∈ D(LΓ(M)) via QT for each x ∈ X, so γ restricts to the identity on
NM (QT ) by (5). Since NM (Q) ≤ NM (QT ) we conclude that γ restricts to the identity
map on NM (Q). Thus γ is the identity automorphism of L in the case that m is even,
and we may therefore assume that n = 2m+ 1 is odd.

Let G1 be a subgroup of G such that S ≤ G1, and with G1
∼= Sym(2m). Let M1 be

the pre-image of G1 inM and set L1 = LΓ(M1). Then L1 is γ-invariant by 3.8. Let γ1 be
the restriction of γ to L1. Then M1 = ⟨H,K⟩ (again by [2.8 in BHS]). The hypothesis of
7.1 holds with M1 in place of M , so the minimality of |M | implies that γ1 extends to an
automorphism β1 of M1. Then (1) and (5) imply that β1 is the identity automorphism.

Now let G2 be a subgroup of G such that G2
∼= Sym(m) × Sym(m + 1), and such

that S ∩G2 ∈ Syl2(G2). Let M2 be the preimage of G2 in M , set S2 = S ∩M2, and let
Γ2 be the set of all subgroups Q of S2 with Q ∈ Γ. One observes that R ≤M2, so Γ2 is
non-empty. Set L2 = LΓ2(M2). Then L2 is γ-invariant by 3.8. Let γ2 be the restriction
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of γ to L2. As |M2| < |M |, 6.12 applies with (M2, S2,Γ2) in the role of (M,S,Γ), yielding
an extension of γ2 to an automorphism β2 of M2. Then β2 = cu for some u ∈ Z(S2). As
n is odd, and as remarked above, we have H1(G,W ) = 0. Thus V may be identified with
W×CV (G). As G is generated by n−1 transpositions, it follows that |D/CD(G)| = 2n−1

and that D =W × CD(G). Thus, we may take u ∈W .

Recall that Ω denotes the standard G-set. We may then take G1 to be the stabilizer
in G of n, and we may take G2 to be the stabilizer in G of the partition (∆1,∆2) of
Ω, where ∆1 = {1, · · · ,m}. Identify W with the set of even-order subsets of Ω. As β1
is the identity map on M1, cu centralizes M1 ∩M2, and it follows that cu is either the
identity map on M2 or that cu is given on M2 by taking u = Ω−{n}. In either case, the
automorphism cu of M induces βi on Mi (i = 1, 2). Replacing γ with γ ◦ c−1

u , we may
assume that both β1 and β2 are identity maps.

We now argue as we did in the case where n is even, taking an arbitrary Q ∈ Γ, taking
Q0 to be a fully normalized F-conjugate of QT , and setting X = NM (Q0). As before, we
have X ∼= (2koSym(k))×Sym(n−2k), and now X is generated by its subgroups X∩G1

and X ∩G2. Thus X = ⟨X ∩M1, X ∩M2⟩. As each βi is an identity map, the restriction
γX of γ to X is the identity map on X. Since NM (Q) ≤ NM (ΓT ), and NM (QT ) is an
H-conjugate of X, it follows as in the case when n is even that γ restricts to the identity
map on NM (Q). Thus, γ is the identity automorphism of L, and we have obtained a
contradiction to the assumed non-existence of an extension of γ to an automorphism of
M . �

Proof of Proposition 7.1 By 7.5, G has a unique J-component, and 7.4.2 then
yields the possibilities for the structure of G and for the action of G on W . Recall that
(M,γ) is a counterexample to 7.1. By 7.10, if G is a symmetric group Sym(n), and
W its natural irreducible module, then n = 8. Since Sym(8) ∼= O+

6 (2) via a quadratic
form on the natural irreducible module for Sym(8) (see the remark following 7.8), 7.8
and 7.9 imply that G is a symmetric group Sym(n) with n ̸= 8 and with W the natural
module - or else that G = SL2(q). Thus, we have only the case G = SL2(q) and (by
7.4.2) W the natural SL2(q)-module left to consider. But in this last case, G has a
strongly p-embedded subgroup NG(S), and hence CM (D)NM (S) is a proper subgroup
of M containing LΓ(M). This contradicts 7.2, and thus the proof of 7.1 is complete.

Proof of the Main Theorem As pointed out at the beginning of this section, Propo-
sition 7.1 provides the remaining step required for the proof of Proposition 6.10. Then
6.11, and 6.14 through 6.18 - which were proved under the assumption that Proposition
6.10 holds - yield a contradiction to the presumed non-existence or non-uniqueness of a
centric linking system L whose fusion system FS(L) is a given saturated fusion system.

APPENDIX

In [OV], Bob Oliver and Joana Ventura introduced a category T of “transporter
systems” and isomorphisms of transporter systems. Part of the structure of any given
transporter system consists of a functor ρ : T → F , where T is a category and where
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F is a fusion system on a finite p-group; and one says that the given transporter system
is a “transporter system on (or over) F”. The category T has a full subcategory Tc of
“centric linking systems” whose definition is far different from the one given in 2.9 here.
The aim of this section is to show that transporter systems are the “same” as localities,
that the two definitions of centric linking system are essentially equivalent, and to obtain
the following result.

Theorem A. Let F be a saturated fusion system on a finite p-group S. Then there exists
a centric linking system T over F (in the sense of [OV] or [BLO]), and T is unique up
up to isomorphism of transporter systems.

In this way we will establish that our Main Theorem yields existence and uniqueness
of “centric linking systems” in either sense of this term. In order to do this, we first
review the definitions in [OV].

Let S be a finite p-group and let X be a collection of subgroups of S with S ∈ X.
There is then a category TX(S) whose set of objects is X, and whose morphism-sets are
given by

MorTX(S)(P,Q) = NS(P,Q)

for P,Q ∈ X. Composition is given by multiplication in S.

Here is the definition of transporter system from [OV], but with the notions of left and
right composition reversed from their original meanings, in order to maintain consistency
with our policy of taking all categories in the right-handed sense.

Definition X.1. Let F be a fusion system over a finite p-group S. A transporter system
associated to F is a non-empty finite category T , together with a pair of functors

TOb(T )(S)
ϵ−−−−→ T ρ−−−−→ F

satisfying the following conditions.

(A1) Ob(T ) ⊆ Ob(F), and Ob(T ) is closed under F-conjugacy and overgroups. Also,
ϵ is the identity on objects and ρ is the inclusion on objects.

(A2) For each P,Q ∈ Ob(T ), the kernel

E(P )
def
= Ker[ρP : AutT (P ) → AutF (P )]

acts freely on MorT (P,Q) by left composition, and ρP,Q is the orbit map for this
action. Also, E(Q) acts freely on MorT (P,Q) by right composition.

(B) For each P,Q ∈ Ob(T ), ϵP,Q : NS(P,Q) → MorT (P,Q) is injective, and the
composite ρP,Q ◦ ϵP,Q sends g ∈ NS(P,Q) to cg ∈ HomF (P,Q).

(C) For all ϕ ∈MorT (P,Q) and all g ∈ P , the diagram

P
ϕ−−−−→ Q

ϵP (g)

y yϵQ(g′)

P
ϕ−−−−→ Q
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commutes in T , where g′ is the image of g under ρ(ϕ).
(I) ϵS(S) ∈ Sylp(AutT (S)).

(II) Let ϕ ∈ IsoT (P,Q), and let P E P ≤ S andQ E Q ≤ S be such that ϕ−1◦ϵP (P )◦
ϕ ≤ ϵQ(Q). Then there exists ϕ ∈MorT (P ,Q) such that ϵP,P (1)◦ϕ = ϕ◦ϵQ,Q(1).

If moreover F is saturated, Ob(T ) = Fc, and E(P ) = Z(P ) for all objects P , then T is
a centric linking system.

Definition X.2. Let T = (T , ϵ, ρ) and T ′ = (T ′, ϵ′, ρ′) be transporter systems over a
fusion system F on S, with Ob(T ) = Ob(T ′). An isomorphism T → T ′ (of transporter
systems) consists of an invertible functor α : T → T ′ (of categories) such that, in right-
hand notation, ϵ ◦ α = ϵ′ and α ◦ ρ′ = ρ.

Let L = (L,∆, S) be a locality over S. Set T = Cat(L,∆) (as defined in 2.8(1)) and
let F be the fusion system FS(L) on S, generated by the conjugation maps between
objects. There is a functor

ϵ : T∆(S) → T

for which ϵOb : ∆ → Ob(T ) is the identity map, and where each ϵP,Q : NS(P,Q) →
MorT (P,Q) is an inclusion map. There is also a functor

ρ : T → F ,

such that ρOb : ∆ → Ob(F) is the inclusion map of ∆ into the set of all subgroups of
S, and such that ρP,Q(ϕ) is the conjugation map cg : P → Q, where g is the unique
element of L such that ϕ = (g, P,Q). (See the discussion in 2.8(1)). We note that the
functoriality of ρ depends on the condition (O2) in the definition 2.6 of “objective partial
group”.

Proposition X.3.

(a) Let L = (L,∆, S) be a locality. Then the diagram

(*) T∆(S)
ϵ−→ T ρ−→ F

of categories and functors is a transporter system, and if L is a centric linking
system in the sense of 2.9 then T is a centric linking system in the sense of [BLO]
or [OV].

(b) Let L = (L,∆, S) and L′ = (L′,∆, S) be localities having the same set ∆ of
objects, and let β : L → L′ be a rigid isomorphism. Define (T , ϵ, ρ) as above, and
define (T ′, ϵ′, ρ′) in the analogous way. There is then an isomorphism T → T ′ of
localities, given on objects by P 7→ P and on morphisms by (f, P,Q) 7→ (fβ, P,Q).

Proof. (a): By definition of T , ∆ = Ob(T ), and then also ∆ ⊆ Ob(F) since ∆ is a set
of subgroups of S. Since F is generated by the conjugation maps cf : P → Q with
f ∈ NL(P,Q), with P,Q ∈ ∆, the condition (O2) in 2.5 implies that ∆ is closed under
F-conjugacy. Since ∆ is overgroup closed by 2.9, we then have (A1).
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Let P,Q ∈ ∆ and define E(P ) and E(Q) as in (A2). Since left and right cancellation
holds in L, by 2.2, E(P ) acts freely on MorT (P,Q) by left composition, and E(Q) acts
freely by right composition. Let (f, P,Q) and (g, P,Q) ∈ MorT (P,Q) lie in the same
fiber of the map ρP,Q :MorT (P,Q) → HomF (P,Q). Then the conjugation maps cf and
cg from P to Q are equal. Set P ′ = P f (= P g) and regard cg−1 as a map from P ′ to P .
Then cfg−1 = cf ◦ cg−1 is the identity map on P , so that fg−1 ∈ E(P ). This shows that
each fiber of ρP,Q is contained in an orbit of E(P ). The reverse inclusion holds since

ρP,Q(hf) = ρ(hf) = ρ(h)ρ(f) = ρ(f),

for any h ∈ E(P ). Thus (A2) holds.
Condition (B) follows immediately from the definitions of the functors ϵ and ρ. The

commutativity of the diagram in (C) is no more than the observation that if (f, P,Q) ∈
MorT (P,Q) and g ∈ P , then gf is defined (via P f ), and gf = g(ρ(f)) ∈ Q. Condition
(I) is given by the hypothesis, in 2.9, that S ∈ ∆, so it only remains to establish (II). Here
NL(P ) is isomorphic to AutT (P ) via the map g 7→ (g, P, P ) for P ∈ ∆. LetP, P ,Q,Q ∈
∆, with P E P and Q E Q, and let f ∈ L with P f = Q. Then cf induces an isomorphism

NT (P ) → NT (Q). If (P )cf = Q then the T -isomorphism (f, P,Q) extends to the T -

isomorphism (f, P ,Q). Thus (II) holds, and T is a transporter system.
Now suppose that L is a centric linking system in the sense of 2.9. That is, assume

that ∆ is the set of all F-centric subgroups, and that CL(P ) ≤ P for all P ∈ ∆. Then
F is saturated, by 2.17(a), and E(P ) = Z(P ) for all P ∈ ∆, so T is a centric linking
system in the sense of [OV]. Thus (a) holds.

(b): Let T , T ′, and β : L → L′ be as given. Let α : T → T ′ be the pair of maps, given
on Ob(T ) = ∆ by P 7→ P , and on morphisms by (f, P,Q) 7→ (fβ, P,Q). That α is then a
functor is immediate from the fact that β is a homomorphism which sends each subgroup
P of S to P . The invertibility of α is immediate from the invertibility of β, and it is
trivially verified that ϵ ◦ α = ϵ′ (in right-hand notation). In order that α ◦ ρ′ be equal to
ρ it is necessary and sufficient that each conjugation map cf : P → Q with P,Q ∈ ∆ be
equal to the conjugation map cfβ . Thus, let x ∈ P . Then xf ∈ Q, so xf ∈ S, and then

xf = (xf )β = (xβ)fβ = xfβ .

Thus cf = cfβ as required, and (b) holds. �
Corollary X.4. Let F be a saturated fusion system on S, S a finite p-group. Then there
exists a centric linking system (T , ϵ, ρ) whose fusion system is F .

Proof. The Main Theorem provides a centric linking system (L,∆, S) in the sense of 2.9,
with F = FS(L), and then X.3(a) provides the required centric linking system in the
sense of [OV]. �

For the remainder of this Appendix, let

T∆(S)
ϵ−−−−→ T ρ−−−−→ F
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be a transporter system. Set ιP,Q = ϵP,Q(1), write ιP for ϵP (1), and observe that ιP
is the identity element of AutT (P ) by X.1(C). The morphisms ιP,Q are called inclusion
morphisms, and condition (B) implies that ρ sends inclusion morphisms in T to inclusion
maps in F . Whenever P ≤ P ′ ≤ S and Q ≤ Q′ ≤ S are in Ob(T ), and whenever

P
ϕ−−−−→ Q

ιP,P ′

y yιQ,Q′

P ′ ϕ′

−−−−→ Q′

is a commutative square in T , we say that ϕ is a restriction of ϕ′ (and sometimes write
ϕ′ |P,Q= ϕ); or we may say that ϕ′ is an extension of ϕ. Some of the results that follow
can be found in [section 24 of P2]. Most notably, point (a) of Lemma X.8 (and which is
the key point of this appendix) appears to be pre-figured in [Remark 24.12 in P2].

The following lemma collects what are for our purposes the key properties of T ,
established in [OV].

Lemma X.5. The following hold.

(a) All morphisms of T are both monomorphisms and epimorphisms in the categorical
sense. That is, we have left and right cancellation for morphisms in T .

(b) For every morphism ϕ ∈MorT (P,Q), and every P0, Q0 ∈ Ob(T ) such that P0 ≤
P , Q0 ≤ Q, and ρ(ϕ) maps P0 into Q0, there is a unique ϕ0 ∈ MorT (P0, Q0)
such that ϕ0 = ϕ |P0,Q0 . In particular, every morphism in T is the composite of
an isomorphism followed by an inclusion morphism.

(c) Let ϕ and ϕ′ be T -homomorphisms P → Q, and let P0 and Q0 be objects of T
with P0 ≤ P and Q0 ≤ Q. Suppose that ρ(ϕ) and ρ(ϕ′) map P0 into Q0, and that
ϕ |P0,Q0= ϕ′ |P0,Q0 . Then ϕ = ϕ′.

(d) Let P, P ,Q,Q be objects of T , with P E P and with Q E Q. If ϕ ∈MorT (P ,Q)
is an extension of ϕ ∈ IsoT (P,Q) then the square

P
ϕ−−−−→ Q

ϵP (x)

y yϵQ(x(ρ(ϕ))

P
ϕ−−−−→ Q

commutes for all x ∈ P .

Proof. Three of these points are given by the following results in [OV]: (a) by 3.2(b) and
3.8, (b) by 3.2(c), and (d) by 3.3.

For the proof of (c): write ψ for ϕ |P0,Q0 , and hence also for ϕ′ |P0,Q0 . Then

ιP0,P ◦ ϕ = ψ ◦ ιQ0,Q = ιP0,P ◦ ϕ′,

and (c) follows from left cancellation. �
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Lemma X.6. Let ϕ0 : P0 → Q0, ϕ : P → Q, and ϕ′ : P ′ → Q′ be T -isomorphisms, and
suppose that both ϕ and ϕ′ are extensions of ϕ0. Then the following hold.

(a) P = P ′ if and only if Q = Q′.
(b) There is a unique extension of ϕ0 to a T -isomorphism ϕ1 : P ∩P ′ → Q∩Q′, and

each of ϕ and ϕ′ is an extension of ϕ1.

Proof. (a) Suppose that P = P ′. Let x ∈ NP (P0), and let y and y′ be the images of x
under ρ(ϕ) and ρ(ϕ′), respectively. Then X.5(d), with ϕ0 in the role of ϕ, yields

ϕ−1
0 ◦ ϵP0(x) ◦ ϕ = ϵQ0(y) = ϵQ0(y

′).

As ϵQ0 is injective, by condition (B), we get y = y′, and thus ρ(ϕ) and ρ(ϕ′) agree on
P1 := NP (P0). Let Q1 be the image of P1 under ρ(ϕ). By X.5(b) there is a restriction
ϕ1 : P1 → Q1 of ϕ and a restriction ϕ′1 : P1 → Q1 of ϕ′, and X.2(c) implies that ϕ1 = ϕ′1.
Replacing ϕ0 by ϕ1 in (a), and applying induction on the index of P0 in P , we obtain
Q = Q′ as desired. On the other hand, if Q = Q′ then we obtain P = P ′ by working

with ϕ−1
0 , ϕ−1, and ϕ′

−1
.

(b) Set P1 = P ∩ P ′ and Q1 = Q ∩ Q′. Then ϕ and ϕ′ have restrictions ϕ1 and ϕ′1 to
P1 which, in turn, restrict to ϕ0. Then (a) implies that ϕ1 and ϕ′1 are T -isomorphisms
P1 → Q1, and X.5(c) yields ϕ1 = ϕ′1. �

Define a relation ↑ on the setMor(T ) of morphisms of T by ϕ ↑ ϕ′ if ϕ′ is an extension
of ϕ. That is, ϕ ↑ ϕ′ if ϕ : P → Q and ϕ′ : P ′ → Q′ with P ≤ P ′, Q ≤ Q′, and with
ιP,P ′ ◦ ϕ′ = ϕ ◦ ιQ,Q′ . We may write also ϕ′ ↓ ϕ for ϕ ↑ ϕ′.

Lemma X.7. The following hold.

(a) The relation ↑ induces a partial order on Iso(T ).
(b) The relation ↑ respects composition of morphisms. That is, if ϕ ↑ ϕ′ and ψ ↑ ψ′,

and the compositions ϕ ◦ ψ and ϕ′ ◦ ψ′ are defined, then (ϕ ◦ ψ) ↑ (ϕ′ ◦ ψ′).

Proof. The transitivity of the relation ↑ is easily verified. Suppose that both ϕ ↑ ϕ′ and
ϕ ↓ ϕ′, where ϕ ∈ IsoT (P,Q) and ϕ′ ∈ IsoT (P

′, Q′). Then P = P ′, Q = Q′, ιP,P ′ = ιP ,
and ιQ,Q′ = ιQ. Further, ιPϕ

′ = ϕ ◦ ιQ and then ϕ′ = ϕ since ιP and ιQ are identity
morphisms in T . Thus (a) holds.

Suppose that we are given ϕ ↑ ϕ′ and ψ ↑ ψ′, with ϕ ◦ψ and ϕ′ ◦ψ′ defined on objects
P and P ′ respectively. Set Q = Pϕ and R = Qψ, and set Q′ = P ′ϕ′ and R′ = Q′ψ′.
The following diagram, in which the vertical arrows are inclusion morphisms, adequately
demonstrates that ϕ ◦ ψ ↑ ϕ′ ◦ ψ′.

P ′ ϕ′

−−−−→ Q′ ψ′

−−−−→ R′x x x
P −−−−→

ϕ
Q −−−−→

ψ
R

77



This yields (b).

Let ≡ be the equivalence relation on Iso(T ) generated by the restriction of ↑ to
isomorphisms. Let L be the set Iso(T )/ ≡ of equivalence classes. For ϕ ∈ Iso(T ) we
write [ϕ] for the equivalence class containing ϕ.

Lemma X.8. Let f ∈ L.
(a) There is a unique maximal ϕ ∈ f with respect to ↑, and ϕ−1 is then maximal in

[ϕ−1].
(b) f ∩ IsoT (P,Q) has cardinality at most 1 for any P,Q ∈ Ob(T )

Proof. Let ϕ : P → Q be maximal in f with respect to ↑. Suppose that there exists
ϕ′ : P ′ → Q′ in f such that ϕ is not an extension of ϕ′. Then ϕ′ may be chosen so that
there exists ϕ0 : P0 → Q0 in f with ϕ0 ↑ ϕ and ϕ0 ↑ ϕ′. Among all such pairs (ϕ′, ϕ0),
choose one so that |P0| is as large as possible. Then X.6(b) implies that P0 = P ∩P ′ and
Q0 = Q ∩Q′. It follows that NP ′(P0) � P , and so we may replace ϕ′ by the restriction
of ϕ′ to NP ′(P0) → NQ′(Q0). That is, we may assume that P0 E P ′ and Q0 E Q′.

Let λ : AutT (P0) → AutT (Q0) be the isomorphism induced by conjugation by ϕ0.
Set P1 = NP (P0) and Q1 = NQ(Q0). Also, set P ′′ = ⟨P1, P

′⟩ and Q′′ = ⟨Q1, Q
′⟩. Then

X.5(d) implies that λ maps ϵP0(P
′′) onto ϵP0(Q

′′). By condition (II) in X.1, there is an
extension of ϕ0 to a T -isomorphism P ′′ → Q′′, and the maximality of P0 then yields
P ′′ ≤ P . Thus P ′ ≤ P , and we have a contradiction. Thus f has a unique maximal
element ϕ.

Set ψ = ϕ−1 and let ψ ↑ ψ. Then ψ : Q → P for some Q containing Q and some

P containing P . Then ϕ ↑ ψ−1
, so ϕ = ψ

−1
and ψ = ψ. Thus ϕ−1 is maximal in its

≡-class, and (a) holds.
In order to prove (b), let ψ,ψ′ ∈ f ∩ IsoT (P,Q). Then both ψ and ψ′ are restrictions

of a single ϕ ∈ f , by (a). Now X.5(b) implies that ψ = ψ′. �
Define D to be the set of words w = (f1, · · · , fn) ∈ W(L) such that there exists a

sequence (ϕ1, · · · , ϕn) of T -isomorphisms with ϕi ∈ fi, and a sequence (P0, · · · , Pn) of
objects of T with ϕi : Pi−1 → Pi for all i. We say also that w ∈ D via (P0, · · · , Pn), or
via P0. Define

Π : D → L

by Π(w) = f , where f is the unique maximal element of [ϕ1 ◦ · · · ◦ ϕn] given by X.8(a).
That Π is well-defined follows from X.7(b) and an obvious induction on the length of w.
Set 1 = [ιS ], and for any f ∈ L let f−1 be the equivalence class of ϕ−1, where ϕ is the
unique maximal member of f .

Proposition X.9. L, with the above structures, is a partial group. Moreover, the fol-
lowing hold.

(a) For any g ∈ S, the [ϵS(g)] is the set of all ϵP,Q(g) such that P g = Q, and ϵS(g)
is the maximal member of its class.

(b) [ιS ] is the set of all ιP , P ∈ Ob(T ), and ιS is the maximal member of its class.
(c) For any ϕ ∈ Iso(T ), [ϕ−1] is the set of inverses of the members of [ϕ].
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Proof. We first check that L is a partial group. Of course L is non-empty since T is
non-empty. For any f ∈ L and any representative ϕ of f , f is a T -isomorphism between
objects of T , so the word (f) of length 1 is in D. Now let w = (f1, · · · , fn) be in D.
Clearly, any prefix u = (f1, · · · fk) and any suffix v = (fk+1, · · · , fn) of w is in D, so
2.1(1) holds for L. By definition Π(f) = f for f ∈ L, so 2.1(2) holds. Condition 2.1(3) is
a straightforward consequence of associativity of composition of isomorphisms in T , and
of the definition of Π.

That the inversion map f 7→ f−1 is an involutory bijection follows from X.8(a). Now
let u = (f1, · · · , fn) ∈ D via (P0, · · · , Pn), and set u−1 = (f−1

n , · · · , f−1
1 ). Then u−1 ∈ D

via (Pn, · · · , P0), so u
−1 ◦ u ∈ D. One obtains a representative in the class Π(u−1 ◦ u)

via a sequence of cancellations ϕ−1
k ◦ ϕ of representatives ϕk ∈ fi, so Π(u−1 ◦ u) is the

equivalence class containing ιP0 . Since ιP0 ↑ ιS , and since 1 = [ιS ] by definition, we get
Π(u−1 ◦ u) = 1. Thus 2.1(4) holds in L, and L is a partial group.

We now prove (a). Let P ≤ P ′ and Q ≤ Q′ in Ob(T ), and let g be an element of S
such that P g = Q and (P ′)g = Q′. The functoriality of ϵ yields

ϵP,P ′(1) ◦ ϵP ′,Q′(g) = ϵP,Q′(g) = ϵP,Q(g) ◦ ϵQ,Q′(1),

which means that ϵP,Q(g) ↑ ϵP ′,Q′(g). In particular, we get ϵP,Q(g) ↑ ϵS(g). In order
to complete the proof of (a), it now suffices to show that for any ϕ ∈ IsoT (P,Q) with
ϵS(g) ≡ ϕ, we have ϕ = ϵP,Q(g).

Suppose false, and let σ = (ϕ1, · · · , ϕn) be a sequence of T -isomorphisms with ϕ = ϕ1,
ϵS(g) = ϕn, and with either ϕi ↑ ϕi+1 or ϕi ↓ ϕi+1 for all i with 1 ≤ i < n. Among all
(ϕ, P,Q) with ϕ ̸= ϵP,Q(g) and ϵS(g) ≡ ϕ, choose (ϕ, P,Q) so that the length of such
a chain σ is as small as possible. Set ψ = ϕ2. Then ψ = ϵX,Y (g), where X and Y are
objects of T with Xg = Y . Suppose ϕ ↑ ψ. Applying the functor ρ to the commutative
diagram

X
ϵX,Y (g)−−−−−→ Y

ιP,X

y yιQ,Y

P
ϕ−−−−→ Q

,

and applying condition (B) in X.1 to ρ(ϵX,Y (g)), we conclude that ρ(ϕ) is the restriction
of cg to the homomorphism ρ(ϕ) : P → Q. In particular, we get P g = Q, so that also
ϵP,Q(g) is a restriction of ϵX,Y (g). Then X.5(a) yields ϕ = ϵP,Q(g), and contrary to
assumption. On the other hand, if ϕ ↓ ψ, then ϕ = ϵP,Q(g) by X.6, again contrary to
assumption. This completes the proof of (a), and then (b) is the special case of (a) given
by g = 1.

Let f = [ϕ] be an equivalence class, with ϕ maximal in f . One checks (by reversing
pairs of arrows in the appropriate diagrams) that if ψ is a T -isomorphism, and ψ is a
restriction of ϕ, then the T -isomorphism ψ−1 is a restriction of ϕ−1. Point (c) follows
from this observation. �

In view of X.9(a), there is no harm in writing g to denote the equivalence class [ϵS(g)],
for g ∈ S.
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Lemma X.10. Let ϕ : Z → W be a T -isomorphism, maximal in its ≡-class. Let X
and Y be objects of T contained in Z, and let U and V be the images of X and Y ,
respectively, under ρ(ϕ). Suppose that there exist elements g and g′ in S such that the
following diagram commutes.

(*)

X
ϕ|X,U−−−−→ U

ϵX,Y (g)

y yϵU,V (g′)

Y
ϕ|Y,V−−−−→ V

Then g ∈ Z, and g′ is the image of g under ρ(ϕ).

Proof. Let ϕ′ be the composition (in right-hand notation)

ϕ′ = ϵZg,Z(g
−1) ◦ ϕ ◦ ϵW,W g′ (g′).

Thus, ϕ′ ∈ IsoT (Z
g,W g′), and the commutativity of (*) yields ϕ |Y= ϕ′ |Y . Thus,

ϕ ≡ ϕ′, and the maximality of ϕ : Z → W implies that Zg ≤ Z and W g′ ≤ W . That is,
g ∈ NS(Z) and g

′ ∈ NS(W ). There is then a commutative diagram as follows.

Z
ϕ−−−−→ W

ϵZ(g)

y yϵW (g′)

Z
ϕ−−−−→ W

Condition (I) in X.1 implies that there is an extension of ϕ to a T -isomorphism ⟨Z, g⟩ →
⟨W, g′⟩, and the maximality of ϕ then yields g ∈ Z and g′ ∈ W . Condition (C) in X.1
implies that g′ is the image under ρ(ϕ) of g. �

Set ∆ = Ob(T ).

Corollary X.11. Let f ∈ L and let P ∈ ∆ with the property that, for all x ∈ P ,
(f−1, x, f) ∈ D and Π(f−1, x, f) ∈ S. Let Q be the set of all such products Π(f−1, x, f).
Then Q ∈ ∆ and there exists ψ ∈ f such that ψ ∈ IsoT (P,Q).

Proof. As (f−1, x, f) ∈ D there exist U,X, Y, V ∈ ∆ and representatives ψ and ψ of f
such that

U
ψ

−1

−−−−→ X
ϵX,Y (x)−−−−−→ Y

ψ−−−−→ V

is a chain of T -isomorphisms, and where the middle arrow in the diagram is indeed

ϵX,Y (x) by Lemma X.9(a). As Π(f−1, x, f) ∈ S there exists x′ ∈ S such that ψ
−1 ◦

ϵX,Y (x) ◦ ψ = ϵU,V (x
′). Let ϕ : Z → W be the maximal element of f . Then X.10

implies that x ∈ Z, and x′ is the image of x under ρ(ϕ). In particular, we have P ≤ Z
and Q ≤ W , and we may therefore take X = Y = P and U = V = Q, obtaining
ψ ∈ IsoT (P,Q). �
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Lemma X.12. Let ψ : P → Q be a T -isomorphism, and let f = [ψ] be the equivalence
class of ψ. Then P ≤ D(f), and P f = Q in the partial group L.
Proof. For any g ∈ P , we have the composable sequence

Q
ϕ−1

−−→ P
ϵP (g)−−−→ P

ϕ−→ P

of T -isomorphisms, so (f−1, g, f) is in D, and P ⊆ D(f). By X.1(C), ψ−1 ◦ ϵP (g) ◦ ψ =
ϵQ(g

′), where g′ ∈ Q. The class [ϵQ(g
′)] is the same as [ϵS(g

′)] by X.8(a); and we recall
that we have introduced the convention to denote this class simply as g′. Thus gf = g′,
and so P f ⊆ Q. The conjugation map g 7→ gf is injective by 2.4(c), so P f = Q, as
required. �
Proposition X.13. (L,∆, S) is a locality, and if (T , ϵ, ρ) is a centric linking system (in
the sense of [BLO] and [OV]) then L is a centric linking system in the sense of definition
2.9.

Proof. First, L is a partial group, by X.9. In order to show that (L,∆) is objective, let
w = (f1, · · · , fn) ∈ D. By definition, there exist representatives ψi of the classes fi, and
a sequence (P0, · · · , Pn) of objects of T , such that each ψi is a T -isomorphism Pi−1 → Pi.

Then P fii−1 = Pi for all i, by X.12. Conversely, given w = (f1, · · · , fn) ∈ W, and given

(P0, · · · , Pn) ∈ W(∆) with P fii−1 = Pi for all i, it follows from X.11 that w ∈ D. Thus,
(L,∆) satisfies the condition (O1) of 2.6. The condition (O2) is given by X.11, so (L,∆)
is objective. That is, the condition (L1) for a locality holds. Also, since T is finite by
X.1, L is finite.

The mapping AutT (S) → NL(S) given by ψ 7→ [ψ] is a homomorphism, as follows
from X.7. It is surjective by the definition of L, and injective by X.8(b). As ϵS(S) ∈
Sylp(AutT (S)), by X.1(I), we conclude that S ∈ Sylp(NL(S)), and hence S is maximal
in the poset of p-subgroups of L. That is, (L2) holds for L, and thus L is a locality.

Now suppose that (T , ϵ, ρ) is a centric linking system. That is, suppose that ∆ =
Ob(T ) is the set Fc of F-centric subgroups of S, and suppose for each object P that
Z(P ) = Ker(ρP ). Let µ : AutT (P ) → NL(P ) be the mapping ϕ 7→ [ϕ]. Then µ is
a homomorphism by X.7(b). Let ϕ ∈ Ker(µ). Then [ϕ] = [ιS ], so ϕ ↑ ιS , and then
ϕ = ιP by X.9(b). That is, ϕ is the identity element of AutT (P ), and thus Ker(µ) = 1.
Now let f ∈ NL and let ψ ∈ f be the maximal element. Then ψ restricts to a T -
automorphism ϕ of P by X.11, so µ is surjective, and hence an isomorphism. Since
Z(P ) = Ker(ρP ) = CAutT (P ), we conclude that CL(P ) = Z(P ), and hence L is a
centric linking system in the sense of definition 2.9. �

Let ϕ : P → Q be a morphism in T (and not necessarily a T -isomorphism). Let Q0 be
the image of P under the homomorphism ρ(ϕ). Then by X.5(b) there is a well-defined
restriction ϕ0 = ϕ |P,Q0 of ϕ to a T -isomorphism P → Q0.

Lemma X.14. There is a functor η : T → Cat(L,∆), such that η is the identity map
on the set of objects, and such that

ηP,Q :MorT (P,Q) →MorCat(L,∆)(P,Q)
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is the mapping ϕ 7→ (f, P,Q), where f is the ≡-class of the T -isomorphism ϕ0 : P → Q0,
and where Q0 is the image of P under ρ(ϕ).

Proof. Let ϕ : P → Q and ψ : Q → R be composable morphisms in T , let Q0 be the
image of P under ρ(ϕ), and let R1 be the image of Q0 under ρ(ψ). The restrictions
ϕ0ϕ |P0,Q0 and ψ1 = ψ |Q0,R1 are then composable T -isomorphisms. Set θ = ϕ0 ◦ ψ1.
Then the product [ϕ0][ψ1] of ≡-classes is defined in L, and is equal to [θ], by X.7(b). Set
f = [ϕ0] and g = [ψ1]. Thus [θ] = fg, so (f, P,Q) ◦ (g,Q,R) = (fg,Q,R) in Cat(L,∆).
This shows that η is a functor. �

Lemma X.15. There is a functor ξ : Cat(L,∆) → T , such that ξ is the identity map
on the set of objects, and such that

ξP,Q :MorCat(L,∆)(P,Q) →MorT (P,Q)

is the mapping (f, P,Q) 7→ ϕ |P,P f ◦ιP f ,Q, where ϕ is the maximal element in the ≡-class
f . Moreover, ξ is invertible, and its inverse is η.

Proof. Let (f, P,Q) and (g,Q,R) be composable morphisms in Cat(L,∆), and let ϕ ∈ f
and ψ ∈ g be maximal. Then the composition ξ(f, P,Q) ◦ ξ(g,Q,R) is defined in T , as
the following calculation shows.

ξ(f, P,Q) ◦ ξ(g,Q,R) = (ϕ |P,P f ◦ιP f ,Q) ◦ (ψ |Q,Qg ◦ιQg,R)

= ϕ |P,P f ◦ψ |P f ,P fg ◦ιP fg,Qg ◦ ιQg,R(*)

= ϕ |P,P f ◦ψ |P f ,P fg ◦ιP fg,R.

Set θ0 = ϕ |P,P f ◦ψ |P f ,P fg . Then fg = [θ0], by the definition of the product in L. Let
θ be the maximal element of fg. Then θ0 = θ |P,P fg , and (*) then yields

ξ(f, P,Q) ◦ ξ(g,Q,R) = θ |P,P fg ◦ιP fg,R = ξ(fg, P,R).

Thus, ξ is a functor.
Set P ′ = P f . By X.11 there exists γ ∈ f such that γ = ϕ |P,P ′ . The functor ρ : T → F

sends MorT (P, P
′) to HomF (P, P

′), so P f is the image of P under ρ(γ). Then also P f

is the image of P under ρ(ϕ), since ρ(γ) is a restriction of the homomorphism ρ(ϕ) by
X.1(C). We now note that

η(ξ(f, P,Q)) = η(ϕ |P,P f ◦ιP f ,Q).

By definition of η, η(ξ(f, P,Q)) is then (f ′, P,Q), where f ′ is the ≡-class of the T -
isomorphism ϕ |P,P f . That is, f ′ = f , and the composition ξ followed by η is the identity
functor on Cat(L,∆).

In the other order: consider ξ(η(θ)), where θ : A → B is an arbitrary T -morphism.
Let B0 be the image of A under ρ(θ). Then η(θ) = (h,A,B) where h = [θ0] and where
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θ0 : A→ B0 is the restriction θ |A,B0 . Applying ξ to (h,A,B) yields the T -morphism θ′

where
θ′ = θ∗ |A,B0 ◦ιB0,B

and where θ∗ is the maximal element in the ≡-class h. Maximality of θ∗ yields θ0 ↑ θ∗,
and then θ∗ |A,B0= θ0. Now X.5(b) yields θ′ = θ, and thus η followed by ξ is the identity
morphism on T , completing the proof. �

We are now able to prove Theorem A, and to thereby translate the Main Theorem
into the language of [BLO] and [OV].

Theorem A. Let F be a saturated fusion system on the finite p-group S. Then, up to
isomorphism of transporter systems, there exists a unique centric linking system (T , ϵ, ρ)
over F .

Proof. Existence is given by X.4. Now let (T , ϵ, ρ) and (T ′, ϵ′, ρ′) be centric linking
systems over F in the sense of [OV]. Set (L,∆, S) = (Iso(T )/ ≡, Ob(T ), S), and similarly
define (L′,∆′, S). Then ∆ = ∆′ is the set of F-centric subgroups of S. By X.13 both L
and L′ are F-centric linking systems in the sense of 2.9, so the Main Theorem yields a rigid
isomorphism β : L → L′. Then X.3 yields an isomorphism β∗ : Cat(L,∆) → Cat(L′,∆)
of categories. We now apply X.14 and X.15 to obtain a sequence

T η−→ Cat(L,∆)
β∗

−→ Cat(L′,∆)
ξ′−→ T ′

of isomorphisms. Let α : T → T ′ be the composite. It now remains to show that (in
right-hand notation) ϵ ◦ α = ϵ′ and α ◦ ρ′ = ρ, in order to conclude that α fulfills the
requirements of definition X.2 for an isomorphism of transporter systems.

Let δ : T∆(S) → Cat(L,∆) be the functor which is the identity map on the set ∆
of objects, and which sends x ∈ NS(P,Q) to (x, P,Q). Let σ : Cat(L,∆) → F be the
functor which is the inclusion map ∆ → Ob(F) on objects and which sends (f, P,Q) to
cf : P → Q. Define δ′ and σ′ with respect to Cat(L′,∆) in the analogous way. We now
check that the following diagram of categories and functors (in which “=” indicates the
identity functor) commutes.

T∆(S) T∆(S) T∆(S) T∆(S)

ϵ

y δ

y yδ′ yϵ′
T η−−−−→ Cat(L,∆)

β∗

−−−−→ Cat(L′,∆)
ξ′−−−−→ T ′

ρ

y σ

y yσ′

yρ′
F F F F

Note that, by X.15, ξ′ is the inverse of a corresponding η′, so by symmetry it will suffice to
check the two left-hand squares and the middle squares in this diagram for commutativity.
Note also that all the arrows in the diagram act trivially on objects, so the problem is
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to check for commutivity when the arrows are applied to morphisms. We shall write all
mappings to the right in the following calculations.

First: the two middle squares. Given x ∈ NS(P,Q), one obtains

(xδP,Q)β
∗ = (x, P,Q)β∗ = (xβ, P,Q) = (x, P,Q) = xδ′P,Q

since β is the identity on S. Also, given (f, P,Q) a morphism in Cat(L,∆), one obtains

((f, P,Q)β∗)σ′ = (fβ, P,Q)σ′ = [cfβ : P → Q] = [cf : P → Q] = (f, P,Q)σ,

since cfβ = cf on any subgroup of Sf , again by the rigidity of β. Thus δ ◦ β∗ = δ′ and
β∗ ◦ σ′ = σ.

Next, in order to show that ϵ ◦ η = δ, we need to verify that (xϵP,Q)η = (x, P,Q) for
x ∈ NS(P,Q). By definition, η maps xϵP,Q to ([ϕ0], P,Q), where ϕ0 is the restriction
xϵP,Px of xϵP,Q. Since x ∈ S, the maximal element of [ϕ0] is xϵS , and [xϵS ] is (by the
convention established earlier) the element x of L. Thus ϵ ◦ η = δ.

Finally, let ϕ : P → Q be a T -morphism and set ϕ0 = ϕP,P ′ where P ′ is the image of
P under (ϕ)ρ. Applying η ◦ σ to ϕ we obtain cf : P → Q where f = [ϕ0]. Then P

′ = P f

by X.12. For any x ∈ P , X.1(C) yields ϕ−1
0 ◦ xϵP ◦ ϕ0 = x′ϵP ′ , where x′ is the image of

x under (ϕ0)ρ. Thus, conjugation cf : P → P ′ is, by the definition of the product Π in
L, given by

x = [xϵP ] 7→ [ϕ−1
0 ◦ xϵP ◦ ϕ0] = [x′ϵP ′ ] = x′,

and this shows that ((ϕ0)η)σ = (ϕ0)ρ. But ϕ = ϕ0 ◦ ιP ′,Q, where (ιP ′,Q)η = (1, P ′, Q),
and where (1, P ′, Q)σ is the inclusion map P ′ ⊆ Q. Functoriality of η and σ then yields
that (ϕ)(η ◦σ) is just (ϕ0)ρ followed by inclusion. Since also ρ sends inclusion morphisms
to inclusion maps, the result is that (ϕ)(η ◦ σ) = (ϕ)ρ. This completes the proof that
the big diagram commutes, and hence that α : T → T ′ is an isomorphism of transporter
systems. �
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