Simple Groups
Gernot Stroth
Syllabus: The course consists of two main parts.
A. Sporadic Groups
-
Understanding and constructing the Mathieu Groups.
-
The group J2:
Starting with the centralizer of an involution, we determine the order
of J2. On the way we will develop
basic tools like group order formulas, transfer and fusion.
-
We will construct the simple group HiS.
B. p-local theory
We shall develop important tools for studying p-local
subgroups in finite groups (mostly p=2).
-
Quadratic groups in characteristic two: Basic properties,
why Lie groups in odd characteristic usually do not possess quadratic modules
in characteristic two, construction of modules using ideas from Sheaf Homology.
As an example we shall construct the 12-dimensional module for 3U4(2)
and maybe some module for a sporadic group.
-
F-modules and 2F-modules. How such modules arise and
how they can be used to determine the p-local structure of a group.
As an example we shall construct the p-local structure of a group
of Lie type and a sporadic group.
References:
1. M. Aschbacher, Finite Group Theory, Cambridge
University press 1986.
2. N. Blackburn and B. Huppert, Finite Groups III,
Springer 1982.
3. H. Bender, Steiner systems and the Mathieu groups revisited,
Groups
and Combinatorics - in memory of Michio Suzuki, Math. Soc. Japan,
(2001), 255-278.
4. D. Gorenstein, Finite Simple Groups, Plenum
1985.
5. G. Highman, M. Powell (eds.) Finite Simple Groups,
Academic Press 1971.
6. A. A. Ivanov, Geometry of Sporadic Groups, Cambridge
University Press 1999.
7. H. Kurzweil, B. Stellmacher, The Theory of Finite
Groups, an Introduction, Springer 2004.
8. U. Meierfrankenfeld, G. Stroth, Quadratic GF(2)-modules
for sporadic simple groups, Comm. in Algebra 18 (1990), 2099-2140.
9 U. Meierfrankenfeld, G. Stroth, On quadratic GF(2)-modules
for Chevalley groups over fields of odd order, Arch. Math. 55
(1990), 105-110.
10. U. Meierfrankenfeld, G. Stroth, The H-structure
Theorem, in preparation.
11. M. Ronan, S. Smith, Computation of 2-modular
sheaves and representations for L4(2),
A7,
3S6, and M24,
Comm. in Algebra 17 (1989), 1199-1237.
12 M. Suzuki, Group Theory II, Springer 1986.
|