
On Polymorphic Recursion, Type Systems, and
Abstract Interpretation

Marco Comini1, Ferruccio Damiani2, Samuel Vrech1

1 Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze, 206; I-33100 Udine, Italy

2 Dipartimento di Informatica, Università di Torino
Corso Svizzera, 185; I-10149 Torino, Italy

Abstract. The problem of typing polymorphic recursion (i.e., recursive
function definitions rec {x = e} where different occurrences of x in e are
used with different types) has been investigated both by people working
on type systems and by people working on abstract interpretation.
Recently, Gori and Levi have developed an abstract interpreter that is
able to type all the ML typable recursive definitions and interesting ex-
amples of polymorphic recursion. The problem of finding a type system
corresponding to their abstract interpreter was open.
In this paper we present a type system corresponding to the Gori-Levi
abstract interpreter. Interestingly enough, the type system is derived
from the system of simple types (which is the let-free fragment of the ML
type system) by adapting a general technique for extending a decidable
type system enjoying principal typings by adding a decidable rule for
typing recursive definitions. The key role played in our investigation by
the notion of principal typing suggests that this notion might be useful in
other investigations about the relations between type systems and type
inference algorithms synthesized by abstract interpretation.
Keywords. Principal Typing, Type Inference Algorithm

1 Introduction

The Hindley-Milner system (a.k.a. the ML type system) [2], which is the core of
the type systems of functional programming languages like SML, OCaml, and
Haskell, is only able to infer types for monomorphic recursion (i.e., recursive
function definitions rec {x = e} where all the occurrences of x in e are used
with exactly the same type inferred for e). The problem of inferring types for
polymorphic recursion (i.e., recursive function definitions rec {x = e} where dif-
ferent occurrences of x in e are used with different types that specialize the
type inferred for e) [11,14] has been studied both by people working on type
systems [7,10] and by people working on abstract interpretation [12,13].

Building on results by Cousot [1], Gori and Levi [5,6] have developed a type
abstract interpreter that is able to type all the ML typable recursive definitions
and interesting examples of polymorphic recursion. In particular, as explained
in [5,6], the type abstract interpreter is able to assign the expected type to all the

examples used in [14,1,12,13] to motivate polymorphic recursion. As pointed out
in [5,6], the problem of finding a type system corresponding to the type abstract
interpreter was open. Such a type system would lye between the Curry-Hindley
system (a.k.a. the system of simple types) [8], which is the let-free fragment of
the ML type system, and the let-free fragment of the Milner-Mycroft system [14].

In this paper we present a type system corresponding to the Gori-Levi ab-
stract interpreter. Interestingly enough, the type system is derived from the
Curry-Hindley system by adapting a general technique (developed in [4]) for ex-
tending a type system enjoying decidable typabilty and principal typings [9,17]
by adding a decidable rule for typing rec-expressions. The key role played in our
investigation by the notion of principal typing suggests that this notion might be
useful in other investigations about the relations between type systems [16] and
type inference algorithms synthesized by abstract interpretation [1] and, more in
general, between program analyses specified via type systems and program anal-
yses specified via abstract interpretation.

Organization of the Paper. Section 2 introduces a core functional program-
ming language (which can be considered the kernel of languages like SML,
OCaml, and Haskell) together with other basic definitions that will be used
in the rest of the paper. Section 3 applies the technique of [4] to the Curry-
Hindley type system obtaining a system equivalent to the let-free fragment of
the Milner-Mycroft type system. Section 4 briefly illustrates the Gori-Levi type
abstract interpreter [5,6] and Section 5 presents a new type system that corre-
sponds to this abstract interpreter.

2 Preliminary Definitions

2.1 A Small ML-like Language

Expressions (ranged over by e) are defined by the pseudo-grammar:

e ::= x | c | λ x.e | e1e2 | rec {x = e},

where x ranges over program variables (in PV) and c ranges over constants.
Free and bound occurrences of a variable in an expression are defined as usual.

The (finite) set of the free variables of an expression e is denoted by FV(e).
The set of constants includes the booleans (ranged over by [), the integer

numbers (ranged over by ι), the constructors for pairs (pair) and lists (nil and
cons), some logical and arithmetic operators, and the functions for decomposing
pairs (fst and snd) and lists (null, hd and tl).

We have omitted conditionals from the syntax of expressions since, for typing
purposes, the expression “if e0 then e1 else e2” can be considered as syntactic
sugar for the application “ifc e0 e1 e2”, where ifc is a constant of suitable type.

2.2 Types, Environments, Typings, and Principal Typings

The set of simple types (T0), ranged over by u, is defined by the pseudo-grammar:

u ::= α | u1 → u2 | bool | int | u1 × u2 | u list

2

We have type variables (ranged over by α), arrow types, and a selection of
ground types and parametric data-types. The ground types are bool (the type
of booleans) and int (the type of integers). The other types are pair types and
list types.

The constructor → is right associative, e.g., u1 → u2 → u3 means u1 →
(u2 → u3), and the constructors × and list bind more tightly than →, e.g.,
u1 → u2 × u3 means u1 → (u2 × u3).

We assume a countable set TV of type variables. A substitution s is a function
from type variables to simple types which is the identity on all but a finite number
of type variables. Substitutions will be denoted by [α1←u1, . . . , αn←un] (n ≥ 0);
the empty substitution will be denoted by []. The application of a substitution
s to a simple type u, denoted by s(u), is defined as usual. The composition of
two substitutions s1 and s2 is the substitution, denoted by s1 · s2, such that
s1 · s2(α) def= s1(s2(α)), for all type variables α. We say that s is more general
than s′, written s ≤ s′, if there is a substitution s′′ such that s′ = s′′ · s.

An environment E is a set {x1 : ρ1, . . . , xn : ρn} of assumptions for program
variables such that every variable xi (1 ≤ i ≤ n) can occur at most once in E.
The expression Dom(E) denotes the domain of E, which is the set {x1, . . . , xn}.
Given a set of program variables X, the expression E|X denotes the restriction of
E to X, which is the environment {x : ρ ∈ E | x ∈ X}. Given two environments
E1 and E2, we write E1 ⊕ E2 to denote the environment E1 ∪ E2 under the
assumption that x : ρ1 ∈ E1 and x : ρ2 ∈ E2 imply ρ1 = ρ2. We write E, x : ρ as
short for E ∪ {x : ρ} under the assumption that x 6∈ Dom(E). The application
of a substitution s to an environment E, denoted by s(E), is defined as usual.

Definition 1 (Simple type environments). A simple type environment U is
an environment {x1 : u1, . . . , xn : un} of simple type assumptions for variables.

According to Wells [17], in a given type system `, “a typing t for a typable
term e is the collection of all the information other than e which appears in
the final judgement of a proof derivation showing that e is typable”. In this
paper we are interested in typings of the shape 〈U ; u〉, where U is a simple type
environment and u is a simple type. The following definitions are fairly standard
(note that the relation ≤spc is reflexive and transitive).

Definition 2 (Typing specialization relation ≤spc). A typing 〈U ; u〉 can be
specialized to 〈U ′; u′〉 (notation 〈U ; u〉 ≤spc 〈U ′; u′〉) if s(U) = U ′ and s(u) = u′,
for some substitution s. We will write 〈U ; u〉 =spc 〈U ′; u′〉 to mean that both
〈U ; u〉 ≤spc 〈U ′; u′〉 and 〈U ′; u′〉 ≤spc 〈U ; u〉 hold.

Definition 3 (Principal typings). Let ` be a type system with judgements
of the shape ` e : t. A typing t is principal for a term e if ` e : t, and if ` e : t′

implies t ≤spc t′. We say that system ` has the principal typing property to
mean that every typable term has a principal typing.

3

(Spc) ` e : t
` e : t′

where t ≤spc t′
(Con) ` c : 〈∅; u〉

where u = type(c)
(Var) ` x : 〈{x : u}; u〉

where u ∈ T0

(App)
` e1 : 〈U1; u0 → u〉 ` e2 : 〈U2; u0〉

` e1 e2 : 〈U1 ⊕ U2; u〉

(Abs)
` e : 〈U, x : u0; u〉
` λ x.e : 〈U ; u0 → u〉 (AbsVac)

` e : 〈U ; u〉
` λ x.e : 〈U ; u0 → u〉

where x 6∈ FV(e) and u0 ∈ T0

Figure 1. Typing rules for the rec-free fragment of the language (system `0)

c type(c) c type(c) c type(c)

[bool not bool→ bool fst α1 × α2 → α1

ι int and, or bool× bool→ bool snd α1 × α2 → α2

pair α1 → α2 → (α1 × α2) +, −, ∗ int× int→ int null α list→ bool
nil α list =, < int× int→ bool hd α list→ α
cons α→ α list→ α list ifc bool→ α→ α→ α tl α list→ α list

Figure 2. Types for constants

3 Derivation of a Type System for Recursive Definitions

In this section we derive a type system for recursive definitions by applying the
technique of [4] to the Curry-Hindley system [8].

3.1 System `0: Typing the rec-free Fragment of the Language

The first step of the technique prescribes to take a type system that satisfies the
following requirements (parameterized over the actual shape of the typing and
of the typing specialization relation).

– It has typing judgements of the shape ` e : t, where the typing t contains
assumptions for exactly the variables in FV(e).

– It has the principal typing property (that is the property described by Def-
inition 3 where ≤spc denotes the suitable typing specialization relation).

– It is decidable to establish whether a pair t1 can be specialized to a pair t2
(i.e., whether t1 ≤spc t2 holds).

– There is an algorithm that for every term e decides whether e is typable
and, if so, returns a principal typing for e.

System `0 in Figure 1, which is just a is a reformulation of the system of simple
types [8], satisfies the above requirements.

Rule (Spc), which is the only non-structural rule, allows to specialize (in the
sense of Definition 2) the typing inferred for an expression. The rule for typing
constants, (Con), uses the function type (tabulated in Figure 2) which specifies
a type for each constant. Note that, by rule (Spc), it is possible to assign to a
constant c all the specializations of the typing 〈∅; type(c)〉.

4

Since `0 e : 〈U ; u〉 implies Dom(U) = FV(e), we have two rules for typing
an abstraction λ x.e, (Abs) and (AbsVac), corresponding to the two cases x ∈
FV(e) and x 6∈ FV(e).

3.2 System `P
0 : Typing Polymorphic Recursive Definitions

The second step of the technique prescribes to extend system `0 with a typing
rule that allows to assign to rec {x = e} any typing t that can be assigned to
e by assuming the typing t itself for x. This requires to introduce the notion of
typing environment.

Definition 4 (Typing environments). A typing environment D is an envi-
ronment {x1 : t1, . . . , xn : tn} of typing assumptions for variables such that
Dom(D) ∩ VR(D) = ∅, where VR(D) def= ∪x:〈U ; u〉∈D Dom(U) is the set of vari-
ables occurring in the range of D. Every typing t occurring in D is implicitly
universally quantified over all type variables occurring in t.3

The typing rules of system `P
0 (where “P” stands for “polymorphic”) are

given in Figure 3. The judgement D `P
0 e : 〈U ; u〉 means “e is `P

0 -typable in D
with typing 〈U ; u〉”, where

– D is a typing environment specifying typing assumptions for variables that
may or may not occur free in e, and

– 〈U ; u〉 is the typing inferred for e, where U is simple type environment
containing the type assumptions for the free variables of e which are not in
Dom(D), and u is a simple type.

Let D be a typing environment, “x 6∈ D” is short for “x 6∈ Dom(D) ∪ VR(D)”
and FVD(e) def= (FV(e)−Dom(D))∪VR(D|FV(e)) is the set of the free variables
of the expression e in D. In any valid judgement D `P

0 e : 〈U ; u〉 it holds that
Dom(D) ∩Dom(U) = ∅ and Dom(U) = FVD(e).

Rules (Spc), (Con), (Var), (Abs), (AbsVac), and (App) are just the rules
of system `0 (in Figure 1) modified by adding the typing environment D on the
left of the typing judgements and, when necessary, side conditions (like “x 6∈
Dom(D)” in rule (Var)) to ensure that Dom(D) ∩Dom(U) = ∅.

Rule (Rec-P) allows to assign to a recursive definition rec {x = e} any typing
t that can be assigned to e by assuming the typing t for x. Note that the combined
use of rules (Var-P) and (Spc) allows to assign different specializations ti =
〈Ui; ui〉 (1 ≤ i ≤ n) of t = 〈U ; u〉 to different occurrences of x in e, provided
that ⊕1≤i≤nUi is defined.

The following theorem (taken from [4]) shows that system `P
0 has the same

expressive power of Milner-Mycroft system [14]. This implies that typability in
system `P

0 is undecidable (as is in the Milner-Mycroft system [7,10]).

Theorem 5 ([4]). Let e be a closed expression. Then ∅ `P
0 e : 〈∅; u〉 if and only

if ∅ ` e : u is Milner-Mycroft derivable.
3 To emphasize this fact we might have used assumption of the shape ∀−→α .t where −→α

is the sequence of all type variables occurring in t.

5

(Spc)
D ` e : t

D ` e : t′

where t ≤spc t′

(Con) D ` c : 〈∅; u〉
where u = type(c)

(Var) D ` x : 〈{x : u}; u〉
where u ∈ T0 and x 6∈ Dom(D)

(Abs)
D ` e : 〈U, x : u0; u〉

D ` λ x.e : 〈U ; u0 → u〉
where x 6∈ D

(AbsVac)
D ` e : 〈U ; u〉

D ` λ x.e : 〈U ; u0 → u〉
where x 6∈ FV(e), u0 ∈ T0, and x 6∈ D

(App)
D ` e1 : 〈U1; u0 → u〉 D ` e2 : 〈U2; u0〉

D ` e1 e2 : 〈U1 ⊕ U2; u〉

(Rec-P)
D, x : 〈U ; u〉 ` e : 〈U ; u〉
D ` rec {x = e} : 〈U ; u〉

where Dom(U) = FVD(rec {x = e}) and x 6∈ D

(Var-P) D, x : t ` x : t

Figure 3. Typing rules of system `P
0

3.3 Systems `k
0 (k ≥ 1): a Family of Decidable Restrictions of `P

0

The third step of the technique prescribes to introduce a family of decidable
restrictions of rule (Rec-P). This requires to introduce the notion of principal-
in-D typing, which adapts the notion of principal typing (see Definition 3) to
deal with the typing environment D.

Definition 6 (Principal-in-D typings). Let ` be a system with judgements
of the shape D ` e : t. A typing t is principal-in-D for a term e if D ` e : t,
and if D ` e : t′ implies t ≤spc t′. We say that system ` has the principal-in-D
typing property to mean that every typable term has a principal-in-D typing.

For every finite set of variables X = {x1, . . . , xn} (n ≥ 0) let

– TX
def= {〈U ; u〉 | 〈U ; u〉 is typing such that Dom(U) = X}, and

– BX
def= {〈{x1 : α1, . . . , xn : αn}; α〉 | the type variables α1, . . . , αn, α are all

distinct} ⊆ TX .

The typing specialization relation ≤spc (see Definition 2) is a preorder over TX

and, for all typings b ∈ BX and t ∈ TX , b ≤spc t. For every subset SX of TX ,

Min≤spc(SX)
def
= {t ∈ SX | t ≤spc t′ for all t′ ∈ SX}

is the (possibly empty) set of the ≤spc-minimum elements of SX .
The following proposition holds (the proof is straightforward, by Defini-

tion 6).

Proposition 7. Let ` be a system with judgements of the shape D ` e : t.
A typing t is a principal-in-D typing for a term e if and only if t ∈Min≤spc({t′ |
D ` e : t′}).

For every k ≥ 1, let `k
0 be the system obtained from `P

0 by replacing rule
(Rec-P) with the rule:

(Rec-k)
D, x : t0 ` e : t1 · · · D, x : tk−1 ` e : tk

D ` rec {x = e} : tk

6

where x 6∈ D,

t0 ∈ BFVD(rec {x=e}),

(∀i ∈ {1, . . . , k}) ti ∈Min≤spc({t | D, x : ti−1 ` e : t}), (3.1)

tk−1 = tk

(note that D `k
0 e : t implies D `k+1

0 e : t).
According to Proposition 7, in rule (Rec-k), the requirement (3.1) is equiv-

alent to

(for all i ∈ {1, . . . , k}) ti is a principal-in-(D,x : ti−1) typing for e.

Therefore, as pointed out in [4], the checking of a purported `k
0 derivation re-

quires the ability to decide whether a typing is principal-in-D. Note that require-
ment (3.1) is crucial. In fact, removing it would make rule (Rec-k) equivalent
to rule (Rec-P) for all k ≥ 2.

For all k ≥ 1, system `k
0 has the principal-in-D typing property and `k

0-
typability is decidable — see the explanations before Theorem 10.

An Inference Algorithm for `k
0 (k ≥ 1) An unification problem is a set of

equalities between simple types. A solution to an unification problem P (unifier)
is a substitution s such that s(u1) = s(u2) for all (u1 = u2) ∈ P . A Most General
Unifier is a solution minimal w.r.t. ≤ (and thus all Most General Unifiers are
equivalent up to renaming of type variables). We will write MGU(P) for the set
of all the most general unifiers for P and mgu(P) for any element of MGU(P).

The inference algorithm makes use of an algorithm for checking whether the
≤spc relation (see Definition 2) holds and of the standard algorithm for finding
a most general solution to an unification problem. Note that the first algorithm
is a particular case of the latter.

The inference algorithm is presented by defining (for all k ≥ 1) a function
PTk

0 which, for every expression e and environment D, returns a set of typings
PTk

0(D, e) such that

PTk
0(D, e) = Min≤spc({t | D `k

0 e : t}).

Definition 8 (Inductive characterization of the set of principal-in-D
typings for e w.r.t. `k

0). For every expression e and environment D, the set
PTk

0(D, e) is defined by structural induction on e.

– If e = x, then
• If x : 〈U ; u〉 ∈ D and the substitution s is a fresh renaming of −→α =

FTV(U) ∪ FTV(u), then 〈s(U); s(u)〉 ∈ PTk
0(D,x).

• If x 6∈ Dom(D) and α is a type variable, then 〈{x : α}; α〉 ∈ PTk
0(D,x).

– If e = c and type(c) = u, then 〈∅; u〉 ∈ PTk
0(D, c).

– If e = λ x.e0 and 〈U ; u0〉 ∈ PTk
0(D, e0), then

• If x 6∈ FV(e0) and α is a fresh type variable, then 〈U ; α → u0〉 ∈
PTk

0(D,λ x.e0).
• If x ∈ FV(e0) and U = U ′, x : u, then 〈U ′; u→ u0〉 ∈ PTk

0(D,λ x.e0).

7

– If e = e0e1 and 〈U0; u0〉 ∈ PTk
0(D, e0), then

• If u0 = α (a type variable), α1 and α2 are fresh type variables, 〈U1; u1〉 ∈
PTk

0(D, e1) is fresh, and s ∈ MGU({u1 = α1, α = α1 → α2} ∪ {u′ =
u′′ | x : u′ ∈ U0 and x : u′′ ∈ U1}, then 〈s(U0) ⊕ s(U1); s(α2)〉 ∈
PTk

0(D, e0e1).
• If u0 = u2 → u, the pair 〈U1; u1〉 ∈ PTk

0(D, e1) is fresh, and s ∈
MGU({u1 = u2} ∪ {u′ = u′′ | x : u′ ∈ U0 and x : u′′ ∈ U1}), then
〈s(U0)⊕ s(U1); s(u)〉 ∈ PTk

0(D, e0e1).
– If e = rec {x = e0}, then
• If h ∈ {1, . . . , k}, t0 ∈ BFVD(e), t1 ∈ PTk

0((D,x : t0), e0), . . ., th ∈
PTk

0((D,x : th−1), e0), t1 6≤spc t0, . . . th−2 6≤spc th−1, and th ≤spc th−1,
then th−1 ∈ PTk

0(D, e).

For every k ≥ 1, expression e, and typing environment D, the set PTk
0(D, e) is

an equivalence class of typings modulo renaming of the type variables in a typing.
The following proposition holds (the proof is straightforward, by induction on
Definition 8)

Proposition 9. For every k ≥ 1, expression e and environment D, if 〈U ; u〉 ∈
PTk

0(D, e), then

1. Dom(U) = FVD(e), and
2. 〈U ′; u′〉 ∈ PTk

0(D, e) if and only if there is a bijection s : TV → TV such
that s(U) = U ′ and s(u) = u′.

Indeed Definition 8 specifies a sound, complete, and terminating inference algo-
rithm: to perform type inference on an expression e w.r.t. the environment D
simply try to build a typing by following the definition of PTk

0(D, e), choosing
fresh type variables and using the unification and ≤spc-checking algorithms as
necessary.

Theorem 10 (Soundness and completeness of PTk
0 for `k

0). For every
k ≥ 1, expression e, and environment D:

– If t ∈ PTk
0(D, e), then D `k

0 e : t.
– If D `k

0 e : t′, then t ≤spc t′ for some t ∈ PTk
0(D, e).

Corollary 11. For every k ≥ 1, expression e, and environment D:
PTk

0(D, e) = Min≤spc({t | D `k
0 e : t}).

Comparison with System `P
0 The relation between system `k

0 and system `P
0

is stated by the following theorems. Roughly speaking, the former says that when
rule (Rec-k) works at all, it works as well as rule (Rec-P) does, and the latter
says that the family of systems `k

0 (k ≥ 1) provides a complete stratification of
`P

0 -typability.

Theorem 12. For every k ≥ 1:

1. If D `k
0 e : t, then D `P

0 e : t.

8

2. If e is `k
0-typable in D and D `P

0 e : t, then D `k
0 e : t.

Theorem 13. If D `P
0 e : t, then there exists k ≥ 1 such that D `k

0 e : t.

Note that Theorem 10 (which implies that, for all k ≥ 1, system `k
0 has

the principal-in-D typing property), Theorem 13, and Theorem 12.2, imply that
system `P

0 has the principal-in-D typing property.

Comparison with the ML Type System For all k ≥ 1, system `k
0 is able

to type recursive definitions that are not ML-typable. The examples for k = 1
are not particularly interesting: the prototypical term is the always divergent
function rec {x = xx}, that has principal-in-∅ typing 〈∅; α〉). Instead, with k = 2
it is already possible to type many interesting examples of polymorphic recursion.
Consider for instance the OCaml program (taken from [15])

type ’a seq = EMPTY | SEQ of ’a * (’a * ’a) seq ;;

let rec size s = match s with

EMPTY -> 0

| SEQ(x,ps) -> 1 + 2 * (size ps) ;;

where ’a seq is a polymorphic sequence type (a sequence is either empty or
made of an element paired with a sequence of pairs of elements) and size is a
function that returns the number of elements contained in a sequence. Although
OCaml allows the definition of the ’a seq recursive data-type, the ML type sys-
tem (and, therefore, OCaml) is not able to type the function size. Instead, for all
k ≥ 2, rule (Rec-k) is able to assign the principal-in-∅ pair <{},’a seq -> int>
to the function size.

The following example shows that, for all k ≥ 1, system `k
0 is not able to

type all the ML-typable recursive definitions.

Example 14. The ML-typable term rec {f = λ g y.if false then y else g (f g y)} is
not `2

0-typable and `3
0-typable with principal-in-∅ typing 〈∅; (α→ α)→ α→ α〉.

The ML-typable term rec {f = λ g h1 y.if false then y else g (f g h1 (f h1 g y))} is
not `3

0-typable and `4
0-typable with principal-in-∅ typing 〈∅; (α → α) → (α →

α)→ α→ α〉. In general, for all m ≥ 0, the ML-typable term

rec {f = λ g h1 h2 · · ·hm y. if false then y else
g (f g h1 h2 · · ·hm (f h1 g h2 · · · hm (· · · (f h1 · · · hm−1 g y) · · ·))}

is not `m+2
0 -typable and `m+3

0 -typable with principal-in-∅ typing

〈∅; (α→ α)→ (α→ α)→ · · · → (α→ α)︸ ︷︷ ︸
m+1

→ α→ α〉.

9

3.4 Systems `k,ML
0 (k ≥ 1): Recovering ML-typability

The fourth step of the technique allows to extend system `k
0 (for any given

k ≥ 1) to type not `k
0-typable expressions that can be typed by a given decid-

able restriction of `P
0 , while preserving decidable typability and principal-in-D

typings.
We say that a typing rule for recursive definitions (Rec-?) is `P

0 -suitable to
mean that the system `?

0 obtained from `P
0 by replacing rule (Rec-P) with rule

(Rec-?):

1. is a restriction of system `P
0 (i.e., D `?

0 e : 〈U ; u〉 implies D `P
0 e : 〈U ; u〉),

2. has the principal-in-D typing property, and
3. there is an algorithm that, given a typing environment D and a term e,

returns a principal-in-D typing for e.

Theorems 10 and 12 guarantee that, for all k ≥ 1, adding to system `k
0 a `P

0 -
suitable rule (Rec-?) with an additional side condition ensuring that the rule
can be applied only if rule (Rec-k) is not applicable, results in a system, denoted
by `k,?

0 , with both decidable typability and principal-in-D typing property. So,
to extend system `k

0 to type all the ML typable recursive definitions, we have
just to add to system `k

0 a `P
0 -suitable rule which (without the additional side

condition) is at least as expressive as the ML rule for recursive definitions. The
simplest way of doing this would be to add (a version, modified to fit into system
`k

0 , of) the ML rule itself:

(Rec-ML)
D ` e : 〈U, x : u; u〉

D ` rec {x = e} : 〈U ; u〉 where x 6∈ D

and to restrict it with the additional side condition:

and there are no t0, t1, · · · , tk such that:
t0 ∈ BFVD(rec {x=e}),
(for all i ∈ {1, . . . , k}) ti ∈Min≤spc({t | D, x : ti−1 ` e : t}), and
tk−1 = tk

which ensures that the rule can be applied only when rule (Rec-k) is not appli-
cable. Let `k,ML

0 denote the resulting system.

An Inference Algorithm for `k,ML
0 (k ≥ 1) A sound and complete infer-

ence algorithm for system `k,ML
0 (PTk,ML

0) can be obtained from the inference
algorithm PTk

0 , given in Definition 8, by adding the following sub-clause to the
clause for rec-expression.

• Otherwise, if 〈U, x : u; u′〉 ∈ PTk
0(D, e0), and s ∈MGU({u = u′}),

then s(〈U ; u〉) ∈ PTk
0(D, e).

Theorem 15 (Soundness and completeness of PTk,ML
0 w.r.t. `k,ML

0).
For every k ≥ 1, expression e, and environment D:
(Soundness). If t ∈ PTk,ML

0 (D, e), then D `k,ML
0 e : t.

(Completeness). If D `k,ML
0 e : t′, then t ≤spc t′ for some t ∈ PTk,ML

0 (D, e).

10

(2) H B x⇒ H(x)
where x ∈ PV

(5)

H B e1 ⇒ (u1, s1) H B e2 ⇒ (u2, s2)
s = mgu

`
{u1 = f1 → f2, u2 = f1} ∪ eqs(s1) ∪ eqs(s2)

´
H B e1e2 ⇒ (s(u2), s)

(6)
H[x← (f1, ε)] B e⇒ (u, s) u1 = s(f1)

H B (λx.e)⇒ ((u1 → u), s)
(7)

H B rec{x = e} ⇒n
TP

(un, sn)
H B rec{x = e} ⇒n+1

TP
(un+1, sn+1)

(un, sn) = (un+1, sn+1)

H B rec{x = e} ⇒ (un, sn)

(8) H B rec{x = e} ⇒0
TP

(α, ε)
with α ∈ TV fresh

(9)

H B rec{x = e} ⇒n−1
TP

(u1, s1)

H B rec{x = e}(u1, s1)⇒TP (u2, s2)

H B rec{x = e} ⇒n
TP

(u2, s2)

(10)
H[x← (u, s)] B e⇒ (u1, s1)

H B rec{x = e}(u, s)⇒TP (u1, s1)
(1) H B c⇒ (type(c), ε)

Figure 4. Rules of the Gori-Levi type abstract interpreter BGL

Corollary 16. For every k ≥ 1, expression e, and environment D:
PTk

0(D, e) = Min≤spc({t | D `
k,ML
0 e : t}).

4 The Gori-Levi Type Abstract Interpreter Revisited

In this section we briefly recall the type abstract interpreter of Gori and Levi [5,6].
The syntax of the small ML-like language used in the present paper is slightly
different from the one in [5,6]. Namely, our language uses the rec-notation instead
of the µ-notation, uses booleans instead of integers in the test of conditionals,
and has more constants. In order to simplify the presentation of the correspon-
dence result (see Section 5.2) we reformulate in the following the type abstract
interpreter by using the language syntax and the notations that we have used
so far.

The abstract semantics (or abstract typing) of an expression e is the type
u ∈ T0 of the expression e together with a substitution s ∈ TV → T0 repre-
senting a constraint on the type variables. It is computed w.r.t. a given abstract
environment H, which is a partial function mapping program variables PV to
abstract typings (T0 × (TV → T0)). The intuition is that the substitution
s ∈ TV → T0 collects all the constraints generated on the type variables of H
while inferring the type u for the expression e.

Gori and Levi obtained systematically the rules of a non-effective type ab-
stract interpreter BGL by abstracting the concrete semantics on the type domain
PV → (T0×(TV → T0)). These rules are (modulo the change of notation) those
in Figure 4. Rule numbers correspond exactly to those in [5,6]. Note that, rule
(3) (for integer additions) and rule (4) (for conditionals) are missing because
they are encompassed by the use of the function type for typing constants in
rule (1) — see the discussion in Section 3.1. The operation eqs (used in rule (5))

11

(11)
H B rec{x = e} ⇒k

wid (u, s)

H B rec{x = e} ⇒ (u, s)
(12)

H B rec{x = e} ⇒k−1
TP

(u1, s1)

H B rec{x = e}(u1, s1)⇒TP (u2, s2)
(u1, s1) = (u2, s2)

H B rec{x = e} ⇒k
wid (u1, s1)

(13)

H B rec{x = e} ⇒k−1
TP

(u1, s1) H B rec{x = e}(u1, s1)⇒TP (u2, s2)

(u1, s1) 6= (u2, s2) s = mgu({s2(u1) = u2} ∪ eqs(s2))

H B rec{x = e} ⇒k
wid (s(u1), θ)

Figure 5. Rules of the Gori-Levi decidable type abstract interpreter Bk,ML
GL

is defined as eqs([α1←u1, . . . , αn←un]) def= {α1 = u1, . . . , αn = un} and H[x←ρ]
(used in rules (6) and (10)) is a destructive update.

As this interpreter is possibly non-effective, because the type domain is not
Nötherian, Gori and Levi [5,6] replace rule (7) with the rules (11), (12), (13) of
Figure 5 (that arises from a family of widening operators as k varies) yielding
the effective type abstract interpreter Bk,ML

GL .

5 The Type Systems Corresponding to BGL and Bk,ML
GL

In this section we solve the open problem [5,6] of finding a type system corre-
sponding to the BGL and Bk,ML

GL type abstract interpreters.
As stated in [5,6], the type systems corresponding to the abstract interpreters

BGL and Bk,ML
GL would lye between the Curry-Hindley and Milner-Mycroft type

systems. Example 17 (see below) suggests that the type abstract interpreter BGL

infers a type to a recursive function definition rec {x = e} by requiring that all
the occurrences of x in e are used with a same type (as in the Curry-Hindley type
system) that specializes (as in the Milner-Mycroft type system) the type inferred
for e. Following this intuition, in Section 5.1 we will define a (less powerful) vari-
ant of system `P

0 , that we will call `GL, by requiring that all the occurrences of
x in e are used with the same type. In Section 5.2 we will prove that system
`GL is equivalent to the BGL type abstract interpreter. This result disproves the
misconception that in the type system corresponding to the abstract interpreter
BGL “the different function applications of a recursive function can lead to dif-
ferent (but compatible) instantiation of the recursive function type” ([6], page
142). Namely, our result shows that two different instantiations are compatible
if and only if they are the same.

Example 17. The term rec {f = λ x.((λ y.true) (not (f false))}, where the func-
tion f is recursively called with type bool→ bool, is Curry-Hindley typable with
principal typing 〈∅; bool → bool〉 and is typed by BGL with the more general
typing 〈∅; α→ bool〉, which is also the principal-in-∅ typing w.r.t. system `P

0 .
The term rec {g = λ x.((g 2) + (g false))}, where the function g is recursively

called with the two non-unifiable types int → int and bool → int, cannot be
typed by the BGL type abstract interpreter and can be typed by system `P

0 with
principal-in-∅ typing 〈∅; α→ int〉.

12

5.1 Systems `GL, `k
GL, and `k,ML

GL

Given a typing environment D and an expression e, the set FVGL
D (e) def= FV(e)∪

VR(D|FV(e)) is the set of the free variables of e and of the free variables of e
in D (note that FVGL

D (e) = FV(e) ∪ FVD(e)). The rules of system `GL are
obtained by those of system `P

0 (in Figure 3) by replacing the rules (Rec-P)
and (Var-P) with the following two rules:

(Rec-GL)
D, x : 〈U ; u〉 ` e : 〈U, x : u′; u〉

D ` rec {x = e} : 〈U ; u〉
where Dom(U) = FVGL

D (rec {x = e}) and x 6∈ D

(Var-GL) D, x : 〈U ; u〉 ` x : 〈U, x : u; u〉

Note that the combined use of rules (Var-GL) and (App) ensures that, in the
premise of rule (Rec-GL), the body e of the recursive definition rec {x = e} is
typed by assigning the same simple type u′ to all the occurrences of x.

System `GL can be seen as derived from system `0 (in Section 3.1) by adapt-
ing the second step (see Section 3.2) of the technique illustrated in Section 3.
We now adapt the third (see Section 3.3) and the fourth (see Section 3.4) steps
to system `GL, obtaining two new type systems that we will call `k

GL and `k,ML
GL ,

respectively.

Adapting the Third Step For every k ≥ 1, let `k
GL be the system obtained

from `GL by replacing rule (Rec-GL) with the rule:

(Rec-GL-k)
D, x : 〈U0; u0〉 ` e : 〈U1, x : u′1; u1〉 · · · D, x : 〈Uk−1; uk−1〉 ` e : 〈Uk, x : u′k; uk〉

D ` rec {x = e} : 〈Uk; uk〉
where x 6∈ D,

〈U0; u0〉 ∈ BFVGL
D

(rec{x=e}),

(∀i ∈ {1, . . . , k}) 〈Ui, x : u′i; ui〉 ∈Min≤spc({t | D, x : 〈Ui−1; ui−1〉 ` e : t}),
〈Uk−1; uk−1〉 = 〈Uk; uk〉

Adapting the Fourth Step For every k ≥ 1, let `k,ML
GL the system obtained

from `k
GL by adding the rule:

(Rec-GL-ML)
D ` e : 〈U, x : u; u〉

D ` rec {x = e} : 〈U ; u〉

where x 6∈ D and there are no 〈Ui; ui〉 (1 ≤ i ≤ k) such that:
〈U0; u0〉 ∈ BFVGL

D
(rec{x=e}),

(∀i ∈ {1, . . . , k}) 〈Ui, x : u′i; ui〉 ∈Min≤spc({t | D, x : 〈Ui−1; ui−1〉 ` e : t}),
〈Uk−1; uk−1〉 = 〈Uk; uk〉

5.2 Soundness and completeness of Bk,ML
GL /BGL w.r.t. `k,ML

GL /`GL

It is not possible to give a pointwise straightforward correspondence between
the structure of the proof tree in system `k,ML

GL /`GL and the steps of abstract
interpreter Bk,ML

GL /BGL because of the way environments are built. However when
Bk,ML

GL /BGL terminates we reach an abstract typing which is isomorphic w.r.t.
the corresponding typing in `k,ML

GL /`GL.

13

In order to express explicitly the isomorphism between the abstract typing
computed by Bk,ML

GL /BGL and the typing in `k,ML
GL /`GL, we need to introduce

some preliminary notations. Let Dom(H) denote the domain of the partial func-
tion H. Given H, we write H1, H2 as the projection functions (given H, if
x ∈ Dom(H) and H(x) = (u, s), then H1(x) = u and H2(x) = s). Also we
define Range(H) = {FTV(u) | H1(x) = u, x ∈ Dom(H)} as the range of H.
We can now define the equivalence relations ≈H and state the correspondence
results between Bk,ML

GL /BGL and `k,ML
GL /`GL.

Definition 18. Let H be an abstract environment, 〈U ; u〉 a typing, and (u, s)
an abstract typing. We write 〈U ; u〉 ≈H (u′, s) to mean that:

u = u′, Dom(s) ⊆ Range(H|Dom(U)), and (forall x : u′′ ∈ U) s(H1(x)) = u′′.

Definition 19. Let e be an expression, D a typing environment, and H an
abstract environment. We write D ∼= H to mean that:

Dom(D) ⊆ Dom(H) and (for all x ∈ Dom(D)) x : t ∈ D if and only if t ≈H H(x).

Theorem 20 (Soundness and completeness of Bk,ML
GL w.r.t. `k,ML

GL). Let
D be a typing environment and H be an abstract environment with D ∼= H, then
for every k ≥ 1 and expression e:
(Soundness). If H Bk

GL e ⇒ (u, s), then D `k,ML
GL e : t, with t ≈H (u, s) and

t ∈Min≤spc({t′ | D `
k,ML
GL e : t′}).

(Completeness). If D `k,ML
GL e : t, then H Bk

GL e⇒ (u, s), with t′ ≈H (u, s) for
some t′ ∈Min≤spc({t′′ | D `

k,ML
GL e : t′′}).

Theorem 21 (Soundness and completeness of BGL w.r.t. `GL). Let D
be a typing environment, H be an abstract environment with D ∼= H, then for
every expression e:
(Soundness). If H BGL e ⇒ (u, s), then D `GL e : t, with t ≈H (u, s) and
t ∈Min≤spc({t′ | D `GL e : t′}) .
(Completeness). If D `GL e : t, then H BGL e ⇒ (u, s) with t′ ≈H (u, s) for
some t′ ∈Min≤spc({t′′ | D `GL e : t′′}).

6 Conclusions and Future Work

In this paper we have exploited the general technique proposed in [4] to:

1. develop a family of decidable type systems that lye between of Curry-Hindley
type system and (the let-free fragment of) the Milner-Mycroft type system
and provide a complete stratification of (let-free) Milner-Mycroft typability;

2. solve the problem of finding type systems corresponding to the type abstract
interpreters proposed by Gori and Levi [5,6], thus providing a precise char-
acterization of the expressive power of these type abstract interpreters (see
the discussion at the beginning of Section 5).

14

We plan to extend the type systems (and the results) illustrated in this paper to
deal with let-expressions by exploiting a general technique (developed in [3]) for
extending a type system (without rules for let-expressions) enjoying the princi-
pal typing property with a typing rule for let-expressions. Moreover, we would
like to investigate whether the notion of principal typing can be exploited to de-
velop a framework to systematize (to some extent) the task of relating program
analyses specified via type systems and program analyses specified via abstract
interpretation.

References

1. P. Cousot. Types as Abstract Interpretations. In POPL’97, pages 316–331. ACM,
1997.

2. L. M. M. Damas and R. Milner. Principal type schemas for functional programs.
In POPL’82, pages 207–212. ACM, 1982.

3. F. Damiani. Rank 2 intersection types for local definitions and conditional expres-
sions. ACM Trans. Prog. Lang. Syst., 25(4):401–451, 2003.

4. F. Damiani. Rank 2 intersection for recursive definitions. Fundamenta Informati-
cae, 77(4):451–488, 2007.

5. R. Gori and G. Levi. An experiment in type inference and verification by abstract
interpretation. In VMCAI’02, volume 2294 of LNCS, pages 225–239. Springer,
2002.

6. R. Gori and G. Levi. Properties of a type abstract interpreter. In VMCAI’03,
volume 2575 of LNCS, pages 132–145. Springer, 2003.

7. F. Henglein. Type inference with polymorphic recursion. ACM
Trans. Prog. Lang. Syst., 15(2):253–289, 1993.

8. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, London, 1997.

9. T. Jim. What are principal typings and what are they good for? In POPL’96,
pages 42–53. ACM, 1996.

10. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of
polymorphic recursion. ACM Trans. Prog. Lang. Syst., 15(2):290–311, 1993.

11. L. Meertens. Incremental polymorphic type checking in B. In POPL’83, pages
265–275. ACM, 1983.

12. B. Monsuez. Polymorphic typing by abstract interpretation. Theoretical Computer
Science, 652:217–228, 1992.

13. B. Monsuez. Polymorphic types and widening operators. In SAS’93, volume 724
of LNCS, pages 224–281. Springer, 1993.

14. A. Mycroft. Polymorphic Type Schemes and Recursive Definitions. In International
Symposium on Programming, volume 167 of LNCS, pages 217–228. Springer, 1984.

15. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
16. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
17. J.B. Wells. The essence of principal typings. In ICALP’02, volume 2380 of LNCS,

pages 913–925. Springer, 2002.

15

	On Polymorphic Recursion, Type Systems, and Abstract Interpretation
	Marco Comini, Ferruccio Damiani, Samuel Vrech

