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Abstract. We present a logical framework Υ for reasoning on a very
general class of languages featuring binding operators, called nominal
algebras, presented in higher-order abstract syntax (HOAS). Υ is based
on an axiomatic syntactic standpoint and it consists of a simple types
theory à la Church extended with a set of axioms called the Theory of
Contexts, recursion operators and induction principles. This framework
is rather expressive and, most notably, the axioms of the Theory of Con-
texts allow for a smooth reasoning of schemata in HOAS. An advantage
of this framework is that it requires a very low mathematical and logi-
cal overhead. Some case studies and comparison with related work are
briefly discussed.
Keywords: higher-order abstract syntax, induction, logical frameworks.

Introduction

In recent years there has been growing interest in developing systems for defining
and reasoning on languages featuring α-conversion. A very promising line of ap-
proach has focused on Higher-Order Abstract Syntax (HOAS) [7,17,9]. The gist
of this approach is to delegate to type-theoretic metalanguages the machinery
for dealing with binders. This approach however has some drawbacks. First of
all, being equated to metalanguage variables, object level variables cannot be
defined inductively without introducing exotic terms [2, 14]. A similar difficulty
arises with contexts, which are rendered as functional terms. Reasoning by induc-
tion and definition by recursion on object level terms is therefore problematic.
Finally, the major virtue of HOAS bites back, in the sense that one looses the
possibility of reasoning on the properties which are delegated on the metalan-
guage, e.g. substitution and α-equivalence themselves. Various approaches have
been proposed to overcome these problems based on different techniques such as
modal types, functor categories, permutation models of ZF, etc. [3, 4, 8, 6, 5, 13].

The purpose of this paper is to present in broad generality yet another logical
framework for reasoning on systems presented in HOAS, called Υ , based on an
axiomatic syntactic standpoint. This system stems from the technique originally
used by the authors in [10] for formally deriving in Coq [11] the metatheory of
strong late bisimilarity of the π-calculus as in [16].
? Work partially supported by Italian MURST TOSCA project and EC-WG TYPES.



Υ consists of a simple types theory à la Church extended with a set of axioms
called the Theory of Contexts, recursion operators and induction principles.

According to our experience, this framework is rather expressive. Higher
Order Logic allows for the impredicative definition of many relations, possibly
functional; the recursors and induction principles allow for the definition of many
important functions and properties over contexts; and most notably the axioms
in the Theory of Contexts allow for a smooth handling of schemata in HOAS.

We feel that one of the main advantages of our axiomatic approach, compared
to other semantical solutions in the literature [4,6], is that it requires a very low
mathematical and logical overhead. We do not need to introduce a new abstrac-
tion and concretion operators as in [6], but we can continue to model abstraction
with λ-abstraction and instantiation with functional application. Therefore our
approach can be easily utilized in existing interactive proof assistants, e.g. Coq,
without needing any redesign of the system.

Of course there are some tradeoffs. One of the major theoretical problems
concerning our method is the consistency of the axioms. It is here that we have
to resort to more sophisticated mathematical tools, such as functor categories,
à la Hofmann [8]. These are closer in spirit to [4,6], although not quite so, since
our method cannot be construed as a mere axiomatization of a topos, but rather
of a special tripos model. The consistency of the particular version of the system
Υ tailored to the treatment of the π-calculus is proved in [1].

Another tradeoff concerns functions. Our system does not satisfy the Axiom
of Unique Choice and hence it is functionally not very expressive. The expressive
power however can be recovered using functional relations in place of functions.

In this paper we try also to outline in full generality our methodological
protocol (which is the one underpinning [10]), using some well-known languages
as running examples.

We feel that the present work can be useful for users of interactive proof
assistants (Coq, LEGO, Isabelle [19]), as well as developers of programs/pro-
cesses/ambients calculi willing to consider higher order notions in their theories,
as well as implementors of proof assistants willing to extend their systems with
principles for reasoning on schemata.

Synopsis. In Section 1 we introduce the notion of nominal algebra, together with
some examples. In Section 2 we present the logical framework Υ , with the Theory
of Contexts. In Section 3 we discuss first-order and higher-order recursion and
induction principles in Υ . Some case studies are briefly presented in Section 4.
Conclusions and comparison with related work are in Section 5.

1 Nominal algebras

In this section we present a rather general class of languages with binders, which
we call nominal algebras. The notion of binding signature [4] can be viewed as a
special case. Many languages we encounter in logic and computer science can be
easily viewed as nominal algebras. Languages with infinitely many sorts (such

2



as the simply typed λ-calculus à la Church) or polyadic languages (such as the
polyadic π-calculus) escape the proposed format. We could have easily extended
it, at the expense of a more cumbersome notation, but this would have brought
in side issues inessential to our purposes.

Definition 1. A names set υ is an infinite enumerable set of different atomic
objects, with a decidable equality. A names base is a finite set V = {υ1, . . . , υk}
of names sets.

Definition 2. Let V = {υ1, . . . , υk} be a names base, whose elements are ranged
over by υ. Let I = {ι1, . . . , ιm} be a set of basic types, ranged over by ι.

A constructor arity over V, I for ι is a type α of the form τ1 × · · · × τn → ι,
where n ≥ 0 and for i = 1 . . . n, the type τi is either in V or it is of the form
τi = υi1 × · · · × υimi → σi where υij ∈ V and σi ∈ I. If mi > 0 for some i, then
α is said to be a binding arity, or to bind υi1,. . . , υimi over σi.

A constructor over V, I for ι is a typed constant cα where α is a constructor
arity over V, I. If α is a binding arity, then c is said to be a binding constructor,
or simply a binder.

A nominal algebra N is a tuple 〈V, I, C〉 where V is a set of names sets, I
is a set of basic types, and C is a set of constructors over V, I.

Example 1. Many languages can be viewed as nominal algebras.

– Untyped λ-calculus: Nλ = 〈{υ}, {Λ}, {varυ→Λ,λ(υ→Λ)→Λ, appΛ×Λ→Λ}〉
– First order logic (FOL): NFOL = 〈{υ}, {ι, φ}, {varυ→ι, 0ι, 1ι,+ι×ι→ι,

=ι×ι→φ,⊃φ×φ→φ,∀(υ→φ)→φ}〉
– Second Order Logic (SOL): NSOL = 〈{υ, υ′}, {ι, φ}, {varυ→ι, var′υ′→φ,

0ι, Sι→ι,=ι×ι→φ,⊃φ×φ→φ,∀(υ→φ)→φ, Λ(υ′→φ)→φ}〉
– π-calculus: Nπ = 〈{υ}, {ι},
{0ι, |ι×ι→ι, τ ι→ι,=υ×υ×ι→ι, ν(υ→ι)→ι, inυ×(υ→ι)→ι, outυ×υ×ι→ι}〉

Definition 3. Let N = 〈V, I, C〉 be a nominal algebra. The object language
generated by N , denoted by L(N) or simply L, is the set of well-typed terms
definable using the names in V and the constructors in C, up-to α-equivalence.
For ι ∈ I, we denote by Lι the subset of LN of terms of type ι.

A stage (in V = {υ1, . . . , υk}) is a tuple X = 〈X1, . . . , Xk〉 such that Xi ⊂ υi
finite for i = 1 . . . k. For X a stage in V , we denote by LX (resp., LιX) the subset
of L (resp., Lι) of terms with free names in X.

2 The Logical Framework Υ

In this section we present the type theoretic logical system Υ for reasoning
formally on nominal algebras. Many details of the underlying type theory are not
strictly intrinsic. The machinery that we define in this section could have been
based on any sufficiently expressive type theory, e.g., CIC. We picked Church
Simple Theory of Types only for simplicity.

3



−
Γ, x : τ `Σ x : τ

(VAR)

Γ `Σ M : τ ′ → τ Γ `Σ N : τ ′

Γ `Σ MN : τ
(APP)

Γ, x : τ ′ `Σ M : τ

Γ `Σ λx:τ ′.M : τ ′ → τ
(ABS)

−
Γ `Σ c : τ

(c:τ) ∈ Σc (CONST)

Γ `Σ M : o Γ `Σ N : o

Γ `Σ M ⇒ N : o
(IMP)

Γ, x : τ `Σ M : o

Γ `Σ ∀x:τ.M : o
(FORALL)

Fig. 1. Typing rules.

2.1 The Logical Framework Υ : Terms and Types

The logical framework Υ is a theory of Simple Types/Classical Higher Order
Logic à la Church (HOL) on a given signature Σ.

A type signature Σt is a finite list of atomic type symbols σ1, . . . , σn.
The simple types over a type signature Σt are ranged over by τ, σ (possi-

bly with indices or apices), and are defined by the following abstract syntax:
τ ::= o | σ | τ → τ where σ ∈ Σt

For each type there is a countably infinite disjoint set of variables.
A constant signature Σc is a finite list of constant symbols with simple types

c : τ1, . . . , cm : τm. A signature Σ consists of a type signature Σt and a constant
signature Σc.

The terms over the signature Σ = 〈Σc, Σt〉, ranged over by M,N,P,Q,R
(possibly with indices), are defined by the following abstract syntax:

M ::= x |MN | λx:τ.M | c |M ⇒ N | ∀x:τ.M where cσ ∈ Σc for some σ

As usual, we denote by M [N/x] capture-avoiding substitution. Terms are iden-
tified up-to α-conversion.

Remark 1. Primitive datatypes, such as natural numbers and lists, can be easily
added to the metalanguage. For the sake of simplicity, however, we prefer to
stick to the simplest theory of terms and types. Nevertheless, occasionally we
use natural numbers in the following examples.

A (typing) context is a finite set of typing assertions over distinct variables
(e.g. {x1 : τ1, x2 : τ2, . . . , xn : τn}). Typing contexts are ranged over by Γ .

Typing judgements have the form Γ `Σ M : τ , and they are inductively
defined by the rules in Figure 1.

Terms of type o are the propositions of our logic. Terms of type τ → o are
called predicates (over τ). As usual in HOL, all logical connectives can be defined
in terms of ∀ and⇒. We list some definitions which will be used in the following:

⊥ , ∀P :o.P ∃x:τ.P , ¬∀x:τ.¬p
¬P , P ⇒ ⊥ M =τ N , ∀R:τ → o.(RM ⇒ RN )

P ∨Q , ¬P ⇒ Q P ∧Q , ¬(P ⇒ ¬Q)
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2.2 Encoding nominal algebras in Υ

The theory of Υ is expressive enough to represent faithfully any nominal algebra.
The standard encoding methodology is based on the higher-order abstract syntax
paradigm [7,17], which can be succintely summarized as follows:

– object level names are represented by metalanguage variables;
– contexts are represented by higher-order terms, i.e. functions;
– binders are represented by constructors which take functions as arguments;
– contexts instantiation and capture-avoiding substitution are meta-level appli-

cations; hence, α-conversion is immediately inherited from the metalanguage.

Let N = 〈V, I, C〉 be a nominal algebra. The signature for N , Σ(N), is
defined as Σ(N) , 〈V ∪ I, {c : τ | cτ ∈ C}〉. Then, for each type τ ∈ V ∪ I and
for X stage in V , we define the encoding map ετX as follows:

– for υ ∈ V , let (ni)i be an enumeration of υ and (xi)i be an enumeration of
variables of type υ in Υ . Then, ευX(ni) , xi for ni ∈ Xi.
Without loss of generality, we can identify objects of υ with variables of type
υ, so that we can define ευX(x) , x.

– let cα ∈ C, where α = τ1 × · · · × τn → ι, τi = υi1 × · · · × υimi → τ ′i (mi ≥ 0)
and τ ′i ∈ V ∪ I. For i = 1 . . . n, let Yi be the stage whose components are
Yil , Xl ] {xij | υij = υl, j = 1 . . .mi}, for l = 1 . . . k. Let ti ∈ L

τ ′i
Yi

. Then, we
define ει(cα(t1, . . . , tn)) , (c λx1:υ1.ε

τ1
Y1

(t1) . . . λxn:υn.ετnYn(tn)), where λxi:υi
is a shorthand for λxi1:υi1 . . . λximi :υimi .

The canonical terms of Υ over Σ(N) correspond faithfully to L(N):

Theorem 1 (Adequacy of encoding). Let X be a stage in V , and let Γ (X) ,
{x : υi | x ∈ Xi, i = 1 . . . n}. For each type ι ∈ I, the map ειX is a compositional
bijection between LιX and the set of terms in βη-normal form of type ι in the
context Γ (X).

Example 2. The nominal algebras of Example 1 can be encoded in Υ as follows:

– Untyped λ-calculus: Σ(Nλ)t = υ, Λ,
Σ(Nλ)c = var : υ → Λ,λ : (υ → Λ)→ Λ, app : Λ→ Λ→ Λ

For instance, εΛ∅ (λxxx) = λλx:υ.(app (var x) (var x)).
– SOL: Σ(NSOL)t = υ, υ′, ι, φ; Σ(NSOL)c = var : υ → ι, var′ : υ′ → φ, 0 :
ι, S : ι→ ι,=: ι→ ι→ φ,⊃: φ→ φ→ φ,∀ : (υ → φ)→ φ,Λ : (υ′ → φ)→ φ

– π-calculus: Σ(Nπ)t = υ, ι; Σ(Nπ)c = 0 : ι, τ : ι → ι, | : ι → ι → ι,=: υ →
υ → ι→ ι, ν : (υ → ι)→ ι, in : υ → (υ → ι)→ ι, out : υ → υ → ι→ ι

2.3 The Logical Framework Υ : The Logic

Our framework Υ is a full-blown higher order logic. The logical derivation judge-
ment “Γ ;∆ `Σ p” expresses the fact that p derives from the set of propositions
∆ in context Γ . ∆ is a set of propositions p1, . . . , pn such that Γ `Σ pi : o.
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Γ ;∆, p `Σ q

Γ ;∆ `Σ p⇒ q
(⇒-I)

Γ ;∆ `Σ p⇒ q Γ ;∆ `Σ p

Γ ;∆ `Σ q
(⇒-E)

Γ, x : τ ;∆ `Σ p

Γ ;∆ `Σ ∀x:τ.p
x 6∈ FV (∆) (∀-I)

Γ ;∆ `Σ ∀x:τ.p Γ `Σ M : τ

Γ ;∆ `Σ p[M/x]
(∀-E)

Γ `Σ p : o

Γ ;∆ `Σ p ∨ ¬p (LEM)

Γ, x : τ `Σ M : σ Γ `Σ N : τ

Γ ;∆ `Σ (λx:τ.M)N =σ M [N/x]
(β)

Γ `Σ M : τ → σ

Γ ;∆ `Σ λx:τ.Mx =τ→σ M
x 6∈ FV (M) (η)

Γ, x : σ;∆ `Σ M =τ N

Γ ;∆ `Σ λx:σ.M =σ→τ λx:σ.N
(ξ)

Fig. 2. Logical rules and axioms.

H1 . . . Hn

Γ ;∆ `Σ x 6∈ιυ (c M1 . . .Mn)
cτ1×···×τn→ι ∈ C (Notinc)

where Hi =

{
Γ ;∆ `Σ ¬(x =υ Mi) if τi = υ

Γ, Γi;∆,∆i `Σ x 6∈ι
′
υ (Mi y1 . . . ymi) if τi = υi1 × · · · × υimi → ι′

Γi = y1 : υi1, . . . , ymi : υimi ∆i = {¬(x =υ yj) | υj = υ, j = 1 . . .mi}

Fig. 3. Rules for non-occurrence predicates.

The system for deriving judgements consists of a set of logical rules and
axioms and a set of axioms representing the Theory of Contexts. The logical
rules and axioms (see Figure 2) consist of a natural deduction-style system for
classical higher-order logic, with βηξ-equality.

Before introducing the Theory of Contexts, we define non-occurrence 6∈ιυ:
υ → ι → o for each υ ∈ V and ι ∈ I. The intuitive meaning of a proposition
“x 6∈ιυ M” (read “x not in M”) is “the name x (of type υ) does not appear free
in M (of type ι).” (The index υ will be dropped, when clear from the context.)
Since we have higher-order logic, these predicates can be defined by means of
higher-order quantifications and monotone operators over predicates, as in [1,10]:
x 6∈ιυ M , ∀P :υ → ι→ o.(∀y:υ.∀N :ι.(T 6∈ιυ P y N)⇒ (P y N))⇒ (P x M)

where T 6∈ιυ : (υ → ι → o) → (υ → ι → o) is a suitable monotone operator
defined on the syntax of the language, i.e., on the constructors in C. An explicit
definition of these operators, although straightforward, would be quite cumber-
some, especially in the case of languages with mutually defined syntactic sorts.
Thus for the sake of simplicity we give an implicit definition of the underlying
operators by means of a set of “derivation rules” for 6∈ιυ, as described in Figure
3. It should be clear, however, that these rules are derivable from the impredica-
tive definition of the non-occurrence predicates. From a practical point of view,
moreover, a rule-based definition is closer to the approach which would be used
in proof assistants featuring inductive predicates, as it has been done in [10]
using Coq.

Proposition 1 (Adequacy of 6∈τυ). For all Γ contexts, (x : υ) ∈ Γ and M
such that Γ `Σ M : ι, we have: Γ ; ∅ `Σ x 6∈τυ M iff x 6∈ FV (M)
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Γ `Σ P : ι

Γ ;∆ `Σ ∃x:υ.x 6∈ P (Unsatυι )

Γ `Σ P : υ → τ Γ `Σ Q : υ → τ Γ `Σ x : υ

Γ ;∆,x6∈υ→τP, x6∈υ→τQ, (P x) =τ (Q x) `Σ P =υ→τ Q
(Extτυ)

Γ `Σ P : τ Γ `Σ x : υ

Γ ;∆ `Σ ∃Q:υ → τ .x 6∈υ→τ Q ∧ P =τ (Q x)
(β expτυ)

where τ = υi1 → · · · → υik → ι

Fig. 4. Axiom schemata for the Theory of Contexts.

Proof. By induction on the derivation (⇒), and on the syntax of M (⇐). ut

Non-occurrence predicates can be lifted to contexts, that is terms of type
υi1 → · · · → υik → ι:

x 6∈υ→τυ M , ∀y:υ.¬(x =υ y)⇒ x 6∈τυ (M y)

x 6∈υ
′→τ
υ M , ∀y:υ′.x 6∈τυ (M y) (υ 6= υ′)

Now we can introduce the second set of axioms (Figure 4). This is the real core
of the Theory of Contexts. We do not give any informal motivation since these
axioms reflect rather natural properties of contexts, when these are rendered by
λ-abstractions. They are crucial for reasoning on terms in higher-order abstract
syntax, see Theorem 3 and case studies (Section 4).

Remark 2. Our experience in encoding and formally proving metatheoretical
properties of nominal algebras indicates that full classical logic is not strictly
needed. Actually we could drop rule LEM in Figure 2 and simply assume that
either Leibniz equality over names is decidable or occurrence predicates of names
in terms are decidable. Indeed, this is the approach we adopted in [10]. More
specifically, the two above axioms are rendered in Υ as follows:

Γ `Σ x : υ Γ `Σ y : υ
Γ ;∆ `Σ x =υ y ∨ x 6=υ y

(LEM=υ )
Γ `Σ x : υ Γ `Σ P : ι

Γ ;∆ `Σ x 6∈ιυ P ∨ ¬(x 6∈ιυ P )
(LEM6∈ιυ )

It is worth noticing that LEM=υ derives directly from LEM6∈ιυ . On the converse,
LEM6∈ιυ can be derived from LEM=υ using Unsatυι and by induction both over
plain terms and over contexts, using the principles Indι, Indυ→ι (Section 3.1.)

Remark 3. In [10] the Theory of Contexts is enriched by another rather useful
axiom stating the monotonicity of 6∈ιυ:

Γ `Σ x : υ Γ `Σ y : υ Γ `Σ p : υ → ι

Γ ;∆,x 6∈ιυ (p y) `Σ x 6∈υ→ιυ p
(MON6∈ιυ )

Recently, we discovered that the latter is indeed derivable from Unsatυι , LEM6∈ιυ
and Indι. Another possibility of deriving MON6∈ιυ is to exploit Indυ→ι without
any other axioms, i.e., to reason inductively on the structure of the context p.

7



2.4 Properties of Υ

One upmost concern is soundness:

Theorem 2. For all nominal algebras N , the framework Υ over the signature
Σ(N) is sound, in the sense that for all Γ , it is not the case that Γ ; ∅ `Σ(N) ⊥.

The proof of this theorem relies on the construction of a model based on functor
categories, following the approach presented in [8]. The construction is quite
complex; for further details, we refer the reader to [1, 20].

It would be interesting to investigate and formulate more expressive sound-
ness results, which could substantiate the intended meaning of our framework,
possibly based on this model. In this paper we discuss solely an important prop-
erty of Υ which motivates the very Theory of Contexts and can be viewed as a
first result in this direction. Let Γ `Σ p : υ → o; since terms are taken up-to
α-equivalence, we would like the following two rules to be derivable in Υ :

Γ ;∆ `Σ ∀y:υ.y 6∈υ→o p⇒ (p y)
Γ ;∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)

(∀∃) Γ ;∆ `Σ ∃y:υ.y 6∈υ→o p ∧ (p y)
Γ ;∆ `Σ ∀y:υ.y 6∈υ→o p⇒ (p y)

(∃∀)

Indeed, we have that

Theorem 3. In Υ : ∀∃ is derivable, and ∃∀ is admissible.

Proof. (Idea.) For ∀∃: some first-order reasoning and an application of Unsatυι .
For ∃∀: after some first-order reasoning using Extτυ, it is easy to see that this

rule is implied by the following fresh renaming rule:

Γ, x : υ;∆,x 6∈υ→o p `Σ (p x)
Γ, y : υ;∆, y 6∈υ→o p `Σ (p y)

x, y 6∈ FV (∆) (Ren)

Rule Ren is admissible in our system, because there is no way for a predicate in
Υ to discriminate between two fresh names. Thus, a derivation for (p y) can be
readily obtained by mimicking that for (p x) by replacing every free occurrence
of x by y. ut

Using Extτυ and β expτυ, one can prove that the rule schema ∃∀ is indeed derivable
in Υ and many of its extensions, for most specific predicates of interest. This is
the case, for instance, of the transition relation and strong (late) bisimilarity of
π-calculus in Coq [10].

Rule Ren is only admissible because there can be non-standard notions of
“predicates” which do not satisfy rule Ren and still are consistent with respect to
the Theory of Contexts. An example can be constructed from a logical framework
with a distinct type of names ῡ, denoting the sum of all classes in the names base.
Then, in a nominal algebra with at least two names sets, it would be possible to
define a predicate over ῡ which discriminates “red” bound names from “black”
bound names, thus invalidating rule Ren.

The type theory of Υ satisfies all the usual properties of simply typed λ-
calculi:
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Theorem 4. Let Γ be a context, M,N be terms and τ, σ be types.

– (Uniqueness of type) If Γ `Σ M : τ and Γ `Σ M : σ, then τ = σ

– (Subject reduction) If Γ `Σ M : τ and Γ ; ∅ `Σ M =τ N , then Γ `Σ N : τ
– (Normal form) If Γ `Σ M : τ , then there exists N in canonical form such

that Γ ; ∅ `Σ M =τ N

– (Church-Rosser) If Γ ;∆ `Σ M =τ N1 and Γ ;∆ `Σ M =τ N2 then there
exists N such that Γ ;∆ `Σ N1 =τ N and Γ ;∆ `Σ N2 =τ N

3 Induction and Recursion in Υ

In this section we face the problem of defining relations and functions by struc-
tural induction and recursion, in Υ , and in particular over higher-order types.
This very possibility is one of the main properties of the frameworks in [6, 5, 4].

As originally pointed out in [8] for the case of λ-calculus, a rather surprising
tradeoff of our natural framework for treating contexts is the following:

Proposition 2. The Axiom of Unique Choice

Γ ` R : σ → τ → o Γ, a : σ;∆ ` ∃!b : τ.(R a b)
Γ ;∆ ` ∃f : σ → τ .∀a : σ.(R a (f a))

(AC!σ,τ )

is inconsistent with the Theory of Contexts.

Proof. Let us consider the case of the π-calculus encoding (see Nπ in Example 1),
then, by Unsatυι , we can infer the existence of two fresh names u′, v′; hence, we
can define the term R , λu : υ.λq : ι.λx : υ.λp : υ.(x =υ u ∧ p =ι 0) ∨ (¬x =υ

u ∧ p =ι q). It is easy to show that, for all p′ : ι, (R u′ p′) : υ → ι → o
is a functional binary relation. At this point we can prove, by means of Extιυ
and AC!υ,ι, that the proposition ∀p : ι.p =ι 0 holds; Indeed, from AC!υ,ι we
can deduce the existence of a function f : υ → ι such that, for all x : υ,
((R u′ p) x (f x)) holds. Hence, by Extιυ, we can prove that f =υ→ι λx : υ.p
because for any fresh name w we have that (f w) =ι p. Then we have that, for all
names y, (f y) =ι ((λx : υ.p) y) =ι p holds, whence the thesis, since (f u′) = 0.

At this point the contradiction follows because, as a special case, we have
that 0|0 = 0 while ι is an inductive type (the constructors are injective). ut

As a consequence of Proposition 2, there are (recursive) functions which cannot
be defined as such in Υ , but which can nevertheless be described as functional
(inductively defined) relations. We will elaborate more on this in Remark 4.

A rather powerful theory of recursion can nonetheless be obtained also within
Υ , following Hofmann [8], exploiting in particular the initial algebra property of
the tripos model [1].
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{Γ, Γc;∆,∆c `Σ (Pι (c x1 . . . xn)) | cτ1×···×τn→ι ∈ C}
Γ ;∆ `Σ ∀x:ι.(Pι x)

(Indι)

where τi = υi1 × · · · × υimi → ιi

Γc , x1 : τ ′1, . . . , xn : τ ′n (τ ′i = υi1 → · · · → υimi → ιi)

∆c , {∀y1:υi1. . . . .∀ymi :υimi .(Pιi (xi y1 . . . ymi)) | i = 1, . . . , n, τi 6∈ V }

Fig. 5. First-order induction principle.

3.1 First-Order and Higher-Order Induction

The usual induction principles can be extended naturally to terms possibly con-
taining higher-order terms. In Figure 5 we give the definition of a induction
schema for any nominal algebra. In case terms of a syntactic category contain
terms of other categories, this scheme turns out to be a mutual induction prin-
ciple. In this case several inductive properties, one for each syntactic category,
are mutually defined. This schema is a direct generalization of those obtained in
Coq by Scheme . . . Induction [11].

Example 3. The induction principle over terms of π-calculus of the previous
examples is the following:

Γ ;∆ ` (Pι 0) Γ, x : ι;∆, (Pι x) ` (Pι (τx))
Γ, x1 : ι, x2 : ι;∆, (Pι x1), (Pι x2) ` (Pι (x1|x2))

Γ, x1 : υ, x2 : υ, x3 : ι;∆, (Pι x3) ` (Pι [x1 = x2]x3)
Γ, x : υ → ι;∆,∀y:υ.(Pι (x y)) ` (Pι νx)

Γ, x1 : υ, x2 : υ → ι;∆,∀y:υ.(Pι (x2 y)) ` (Pι (in x1 x2))
Γ, x1 : υ, x2 : υ, x3 : ι;∆, (Pι x3) ` (Pι (out x1 x2 x3))

Γ ;∆ ` ∀x:ι.(Pι x)

The induction principles can be consistently axiomatized also for higher-order
terms, i.e. contexts. For the sake of simplicity, we present the general forms of
induction principles for simple contexts, that is terms of type υ → ι (Figure 6).
Nevertheless, the principles can be generalized to any number of abstractions;
see [1] for an example and for the semantic justification.

Notice that the terms ti’s are non deterministically defined. In the case that
τi is exactly υ, both the “xi” and “x” cases apply. This means that two premises,
one for each possible case, have to be taken. Hence, for each constructor c of
type τ1× · · ·× τn → ι, if υ occurs k times in the sequence τ1, . . . , τn, then in the
rule there are 2k premises. The following example should make this clear.

Example 4. The induction principle over contexts of λ-calculus is the following:

Γ, x1 : υ;∆ ` (P λx:υ.(var x1)) Γ, x1 : υ;∆ ` (P λx:υ.(var x))
Γ,M1:υ → Λ,M2:υ → Λ;∆, (P M1), (P M2) ` (P λx:υ.(app (M1 x) (M2 x)))

Γ,M1 : υ → υ → Λ;∆,∀y1:υ.(P λx:υ.(M1 x y1)) ` (P λx:υ.(λ(M1 x)))
Γ ;∆ ` ∀M :υ → Λ.(P M)

10



{Γ, Γc;∆,∆c `Σ (Pυ→ι λx:υ.(c t1 . . . tn)) | cτ1×···×τn→ι ∈ C}
Γ ;∆ `Σ ∀M :υ → ι.(Pυ→ι M)

(Indυ→ι)

where τi = υi1 × · · · × υimi → ιi and

Γc , {Mi : υ → τ ′i | τi 6∈ V } ∪ {xi : τi | τi ∈ V } (τ ′i = υi1 → · · · → υimi → ιi)

∆c , {∀y1:υi1 . . .∀ymi :υimi .(Pυ→ιi λx:υ.(Mi x y1 . . . ymi)) | i = 1, . . . , n, τi 6∈ V }

ti ,


(Mi x) if τi 6∈ V
xi if τi ∈ V, τi = υ

xi or x if τi = υ

Fig. 6. Higher-order induction principle.

This principle is stronger than the one provided by Coq. In fact, Coq does not
recognize that (M1 x) is structurally smaller than λx : υ.(λ (M1 x)).

3.2 First-Order and Higher-Order Recursion

Despite the drawback we mentioned earlier, many interesting functions can be
defined by recursion anyway. Υ can be extended with recursion operators or
simply recursors, which smoothly generalize the usual ones for plain datatypes
to HOAS types, and even higher-order types.

Definition 4. Let N = 〈V, I, C〉 be a nominal algebra. Let ι ∈ I, τ be a type in
Σ(N), and let Γ be a context. An elimination scheme over τ (in Γ ) is a family
of terms F τ = {fc | cα ∈ C} such that for cτ1×···×τn→ι ∈ C, we have

Γ ` fc : τ ′1 → · · · → τ ′n → τ

where τ ′i ,

{
τi if τi ∈ V
υi1 → · · · → υimi → τ if τi = υi1 × · · · × υimi → ιi

Let F τ be an elimination scheme in Γ . For each ι in I, we introduce in the
language a new symbol, F̂ τι , called the F -defined recursive map over ι. In Figure 7
we give the typing rules for each recursive map, and the equivalence rules for
each constructor. This schema naturally generalizes the usual one to the case of
mutually defined recursive maps, and to terms possibly containing higher-order
terms. This schema is validated by the model of the Theory of Contexts [1]. This
recursion schema allows to define many functions on the syntax of terms, like in
the following Example.

Example 5. In the signature Σ(Nλ) of the previous example, we will define, by
recursion, a map which counts the number of λ-abstractions in a λ-term. Let
F nat , {fvar, fapp, fλ} where fvar , 0, fapp , λn:nat.λm:nat.n + m, fλ ,
λg:υ → nat.(g z) + 1. Then, F nat is an elimination scheme in z : υ, and in any
context Γ containing z : υ, we have that Γ ` F̂ nat

Λ : Λ → nat and the following

11



F τ elimination scheme over τ in Γ

Γ `Σ F̂ τι : ι→ τ
(F̂ τι )

Γ `Σ F̂ τι : ι→ τ Γ `Σ t1:τ1 . . . Γ `Σ tn:τn

Γ ;∆ `Σ (F̂ τι (c t1 . . . tn)) =τ (fc M1 . . .Mn)
(F̂ τι eqc)

where cτ1×···×τn→ι ∈ C, fc ∈ F τ and for i = 1 . . . n:

Mi ,

{
λxi1:υi1 . . . λximi :υimi .(F̂

τ
ιi (ti xi1 . . . ximi)) if τi = υi1 × · · · × υimi → ιi

ti if τi ∈ V

Fig. 7. First-order recursion typing and equivalence rules

are derivable:

Γ ` x : υ
Γ ;∆ ` F̂ nat

Λ (var x) =nat 0
Γ `M : υ → Λ

Γ ;∆ ` F̂ nat
Λ (λM) =nat F̂ nat

Λ (M z) + 1
Γ `M : Λ Γ ` N : Λ

Γ ;∆ ` F̂ nat
Λ (app M N) =nat F̂ nat

Λ (M) + F̂ nat
Λ (N)

Recursion principles can be consistently axiomatized for higher-order terms,
i.e. contexts. For the sake of simplicity, we present the general forms of recur-
sion principles for simple contexts, that is terms of type υ → ι. Nevertheless,
the principles can be generalized to any number of abstractions; see [1] for an
example and for the semantic justification of the principles.

Before giving the definitions and the rules, we need some notation. Let α =
τ1 × · · · × τn → ι be an arity of constructor. Let υ ∈ V and let 1 ≤ i1 ≤ · · · ≤
ik ≤ n (k ≥ 0) be the indices such that τij = υ. Let L(α) , {0, 1}k be the set of
binary strings of length k, which we call the labels for α. (Thus, |L(α)| = 2k.)
For j = 1 . . . k, the j-th component of a label l is denoted by lij , that is it has
the same index of the occurrence of υ in τ1 . . . τn it refers to. Finally, we denote
by l • (τ ′1 → · · · → τ ′n → τ) the type obtained from τ ′1 → · · · → τ ′n → τ by
eliminating τ ′ij if lij = 0.

Definition 5. Let ι ∈ I, υ ∈ V , in Σ(N), and let Γ be a context. A υ-
elimination scheme over τ (in Γ ) is a family of terms F τ = {f lc | cα ∈ C, l ∈
L(α)} such that for cτ1×···×τn→ι ∈ C and l ∈ L(τ1 × · · · × τn → ι), we have

Γ ` f lc : l • (τ ′1 → · · · → τ ′n → τ)

where τ ′i ,

{
υ if τi = υ

υi1 → · · · → υimi → τ if τi = υi1 × · · · × υimi → ιi

Hence, for each constructor cα, there are |L(α)| terms in F τ .
Let F τ be a υ-elimination scheme in Γ . For each ι in I, we introduce in the

language a new symbol, F̂ τι , called the F -defined recursive map over υ → ι. In
Figure 8 we give the typing rules for each recursive map, and the equivalence

12



F τ υ-elimination scheme over τ in Γ

Γ `Σ F̂ τι : (υ → ι)→ τ
(F̂ τι )

Γ `Σ F̂ τι : (υ → ι)→ τ {Γ `Σ ti : υ → τi | τi 6∈ V } {Γ `Σ yi : τi | τi ∈ V }
Γ ;∆ `Σ (F̂ τι λx:υ.(c N1 . . . Nn)) =τ (f lc M1 . . .Mn)

(F̂ τι eqlc)

where cτ1×···×τn→ι ∈ C, l ∈ L(τ1 × · · · × τn → ι), f lc ∈ F τ , and for i = 1 . . . n:

Ni =


(ti x) if τi 6∈ V
yi if τi ∈ V and (τi 6= υ or li = 1)

x if τi = υ and li = 0

Mi =


λxi1:υi1 . . . λximi :υimi .(F̂

τ
ιi λx:υ.(ti x xi1 . . . ximi))

if τi = υi1 × · · · × υimi → ιi

yi if τi ∈ V and (τi 6= υ or li = 1)

(nothing) if τi = υ and li = 0

Fig. 8. Higher-order recursion typing and equivalence rules.

rules for each term in F τ . This schema is validated by the categorical model of
the Theory of Contexts [1].

Example 6. In the signature Σ(Nλ), we will define, by higher-order recursion,
the substitution ·[N/·] for a given λ-term such that Γ ` N : Λ. The three sets of
labels are L(υ → Λ) = {0, 1}, L(Λ→ Λ→ Λ) = L((υ → Λ)→ Λ) = {〈〉}. Thus,
let FΛ , {f0

var, f
1
var, fapp, fλ} where f0

var , N , f1
var , var, fapp , app, fλ , λ.

Then, FΛ is a υ-elimination schema in Γ , such that Γ ` F̂ΛΛ : (υ → Λ)→ Λ and
the following are derivable:

−
Γ ;∆ ` F̂ΛΛ (var) =Λ N

Γ ` y : υ
Γ ;∆ ` F̂ΛΛ (λx:υ.(var y)) =Λ (var y)

Γ `M : υ → υ → Λ

Γ ;∆ ` F̂ΛΛ (λx:υ.λ(M x)) =Λ λλx:υ.F̂ΛΛ (M x)
Γ `M1 : υ → Λ Γ `M2 : υ → Λ

Γ ;∆ ` F̂ΛΛ (λx:υ.(app (M1 x) (M2 x)) =Λ (app F̂ΛΛ (M1) F̂ΛΛ (M2))

Hence, for any M term and x variable, the term F̂ΛΛ (λx:υ.M) is equal to the
term obtained from M by replacing every free occurrence of x by N .

Remark 4. There are functions that we cannot define in Υ . The reason is that,
Υ does not allow to define functions whose definitions need freshly generated
names, since there is no means for generating a “fresh name” at the term level,
while we can use Unsatυτ for generating fresh names at the logical level. Nev-
ertheless, n-ary functions of this kind can be represented in Υ as (n + 1)-ary
relations, as in the next Example.
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Example 7. Let us consider the function count : Λ → nat which takes as argu-
ment a term M of type Λ and returns the number of occurrences of free vari-
ables occurring in M . The corresponding elimination scheme over nat should be
fvar , λx : υ.1, fapp , λn : nat.λn′ : nat.n + n′, fλ , λg : υ → nat.(g z) ·−1,
where ·−1 denotes the predecessor function over natural numbers. However, the
above definition cannot be expressed in Υ since the fresh name z, needed in
the definition of fλ, is not definable. We do not have a mechanism working at
the level of datatypes for generating fresh names on the spot, like Gabbay and
Pitts’ fresh operator [6]. It is straightforward that, in the presence of such a fresh
operator, fλ can be defined as λg : υ → nat.fresh z.(g z) ·−1. However, we can
represent fλ as a binary relation Rλ : (υ → nat)→ nat→ o defined as

Rλ(g, n) , ∃z : nat.z 6∈υ→nat g ∧ (g z) ·−1 =nat n
the existence of the fresh variable z being granted by Unsatυnat. Hence, the fresh
operator can be mimicked at the logical level by our Unsatυι axiom scheme.

4 Case studies

In order to prove the usability and expressiveness of our axiomatic Theory of
Contexts, we carried out several case studies about metatheoretical reasoning
on HOAS-based encodings. The first case study, which indeed yielded the first
version of our axiomatization, is the encoding of Milner’s π-calculus as presented
in [16]. We refer for more details to [10]; here we will only remark that the Theory
of Contexts allowed us to formally derive in Coq a substantial chapter of the
metatheory of strong late bisimilarity. For instance, the following property

[16, Lemma 6] If P .∼ Q and w 6∈ fn(P,Q), then P{w/x} .∼ Q{w/x}.

has been formally derived, using all axioms of the Theory of Contexts.
Another substantial case study concerned the untyped and simply typed λ-

calculus in Coq [15]. A set of important metatheoretical results has been formally
proved by means of the Theory of Contexts, such as determinism and totality
of substitution:

For all M,N, x, there exists exactly one M ′ such that M ′ = M [N/x].

In this development, substitution has been defined as a relation between contexts
and terms, and the proof of totality relies on higher-order induction over con-
texts. Other properties which have been proved include determinism and totality
of big-step semantics, subject reduction and equivalence between small-step and
big-step semantics. A similar case study has been carried out for First Order
Logic, and on a smaller scale for a λ-calculus with explicit substitutions.

Currently there is work in progress on more complex process algebras, namely
the spi calculus and the ambient calculus. These case studies are quite challenging
for testing the expressivity of our axiomatization, since they provide a notion
of substitution of terms for names, while the original π-calculus only relies on
substitution of names for names. Some of the modal logics for ambient calculi are
troublesome also because they introduce distinct sets for names and variables.
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5 Comparison with related work and concluding remarks

The Theory of Contexts and Isabelle/HOL. The Theory of Contexts can be
used in many different logical frameworks in order to reason on higher-order
abstract syntax. A HOAS-based encoding of the syntax of π-calculus processes
in Isabelle/HOL is given in [19]. The axioms MON 6∈ιυ , Extιυ and β expιυ are
formally derived there from well-formedness predicates. The proof of the mono-
tonicity of the occurrence predicate 6∈ιυ is straightforward, since this is not de-
fined independently, but simply as the negation of ∈ιυ. It can be formally proved
equivalent to the constructive one, however, by means of Unsatυι and Indι and
LEM=υ . The proofs of extensionality and β-expansion rely heavily on the fact
that Isabelle/HOL implements an extensional equality. These proofs cannot be
mimicked in COQ.

The FM approach. Gabbay and Pitts in [6] introduce a system, called FM, with
a special quantifier for expressing freshness of names. The intuitive meaning of
y.p is “p holds for y a fresh name”. resembles both ∀ and ∃, and it satisfies

the rules:
Γ, y#x ` p
Γ ` y.p

Γ ` y.p Γ, p, y#x ` q
Γ ` q

where x is the “support” of p. In the Theory of Contexts, y.p and y#x can be
encoded as follows:

y.p , ∀y:υ.y 6∈υ→o (λy:υ.p)⇒ p y#x , y 6∈o p

Rules, corresponding to the ones above, can then be easily derived using the
Theory of Contexts. The abstraction (x.a) and instantiation (a@x) operators
are taken as primitives in FM. In our approach both can be rendered naturally,
using the features of the metalanguage: the first as λ-abstraction, the latter as
application. Notice that instantiation in FM is only partially defined, i.e., when
x is not in the support of a, i.e., the free variables of a. The fresh operator, on
the other hand, cannot be encoded at the level of terms. Its uses however can
be recovered at the level of predicates, see the paragraph below. It is interesting
to notice that this condition has a bearing on the fact that AC! holds in FM.

Correspondingly, suitable adaptations of our Theory of Contexts are vali-
dated in the FM. More experiments need to be carried out to verify the ade-
quacy of these translations, and to compare the advantages of using FM versus
the Theory of Contexts in, possibly mechanized, proof search.

Programming in Υ . Currently there is a great deal of research on programming
languages featuring contexts and binding structures as datatypes [18,13,5]. The
term language of Υ could be extended naturally to a functional programming
language to this end, possibly adding a fixed point operator. However, in view
of Remark 4 this would not be a very expressive language. A much better alter-
native would be to define separately a programming language whose semantics
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would be the functional relations in Υ . An operational semantics for this lan-
guage could be given directly or in a logic programming style. A program logic
for this language should be derivable from Υ . More work needs to be done in
this direction.

Completeness of the Theory of Contexts. An open question.
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